• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
5 //
6 // This Source Code Form is subject to the terms of the Mozilla
7 // Public License v. 2.0. If a copy of the MPL was not distributed
8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9 
10 #include "main.h"
11 
linearStructure(const MatrixType & m)12 template<typename MatrixType> void linearStructure(const MatrixType& m)
13 {
14   /* this test covers the following files:
15      CwiseUnaryOp.h, CwiseBinaryOp.h, SelfCwiseBinaryOp.h
16   */
17   typedef typename MatrixType::Index Index;
18   typedef typename MatrixType::Scalar Scalar;
19 
20   Index rows = m.rows();
21   Index cols = m.cols();
22 
23   // this test relies a lot on Random.h, and there's not much more that we can do
24   // to test it, hence I consider that we will have tested Random.h
25   MatrixType m1 = MatrixType::Random(rows, cols),
26              m2 = MatrixType::Random(rows, cols),
27              m3(rows, cols);
28 
29   Scalar s1 = internal::random<Scalar>();
30   while (internal::abs(s1)<1e-3) s1 = internal::random<Scalar>();
31 
32   Index r = internal::random<Index>(0, rows-1),
33         c = internal::random<Index>(0, cols-1);
34 
35   VERIFY_IS_APPROX(-(-m1),                  m1);
36   VERIFY_IS_APPROX(m1+m1,                   2*m1);
37   VERIFY_IS_APPROX(m1+m2-m1,                m2);
38   VERIFY_IS_APPROX(-m2+m1+m2,               m1);
39   VERIFY_IS_APPROX(m1*s1,                   s1*m1);
40   VERIFY_IS_APPROX((m1+m2)*s1,              s1*m1+s1*m2);
41   VERIFY_IS_APPROX((-m1+m2)*s1,             -s1*m1+s1*m2);
42   m3 = m2; m3 += m1;
43   VERIFY_IS_APPROX(m3,                      m1+m2);
44   m3 = m2; m3 -= m1;
45   VERIFY_IS_APPROX(m3,                      m2-m1);
46   m3 = m2; m3 *= s1;
47   VERIFY_IS_APPROX(m3,                      s1*m2);
48   if(!NumTraits<Scalar>::IsInteger)
49   {
50     m3 = m2; m3 /= s1;
51     VERIFY_IS_APPROX(m3,                    m2/s1);
52   }
53 
54   // again, test operator() to check const-qualification
55   VERIFY_IS_APPROX((-m1)(r,c), -(m1(r,c)));
56   VERIFY_IS_APPROX((m1-m2)(r,c), (m1(r,c))-(m2(r,c)));
57   VERIFY_IS_APPROX((m1+m2)(r,c), (m1(r,c))+(m2(r,c)));
58   VERIFY_IS_APPROX((s1*m1)(r,c), s1*(m1(r,c)));
59   VERIFY_IS_APPROX((m1*s1)(r,c), (m1(r,c))*s1);
60   if(!NumTraits<Scalar>::IsInteger)
61     VERIFY_IS_APPROX((m1/s1)(r,c), (m1(r,c))/s1);
62 
63   // use .block to disable vectorization and compare to the vectorized version
64   VERIFY_IS_APPROX(m1+m1.block(0,0,rows,cols), m1+m1);
65   VERIFY_IS_APPROX(m1.cwiseProduct(m1.block(0,0,rows,cols)), m1.cwiseProduct(m1));
66   VERIFY_IS_APPROX(m1 - m1.block(0,0,rows,cols), m1 - m1);
67   VERIFY_IS_APPROX(m1.block(0,0,rows,cols) * s1, m1 * s1);
68 }
69 
test_linearstructure()70 void test_linearstructure()
71 {
72   for(int i = 0; i < g_repeat; i++) {
73     CALL_SUBTEST_1( linearStructure(Matrix<float, 1, 1>()) );
74     CALL_SUBTEST_2( linearStructure(Matrix2f()) );
75     CALL_SUBTEST_3( linearStructure(Vector3d()) );
76     CALL_SUBTEST_4( linearStructure(Matrix4d()) );
77     CALL_SUBTEST_5( linearStructure(MatrixXcf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE/2), internal::random<int>(1,EIGEN_TEST_MAX_SIZE/2))) );
78     CALL_SUBTEST_6( linearStructure(MatrixXf (internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
79     CALL_SUBTEST_7( linearStructure(MatrixXi (internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
80     CALL_SUBTEST_8( linearStructure(MatrixXcd(internal::random<int>(1,EIGEN_TEST_MAX_SIZE/2), internal::random<int>(1,EIGEN_TEST_MAX_SIZE/2))) );
81     CALL_SUBTEST_9( linearStructure(ArrayXXf (internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
82   }
83 }
84