1 // This file is part of Eigen, a lightweight C++ template library 2 // for linear algebra. 3 // 4 // Copyright (C) 2009 Mark Borgerding mark a borgerding net 5 // 6 // This Source Code Form is subject to the terms of the Mozilla 7 // Public License v. 2.0. If a copy of the MPL was not distributed 8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. 9 10 namespace Eigen { 11 12 namespace internal { 13 14 // This FFT implementation was derived from kissfft http:sourceforge.net/projects/kissfft 15 // Copyright 2003-2009 Mark Borgerding 16 17 template <typename _Scalar> 18 struct kiss_cpx_fft 19 { 20 typedef _Scalar Scalar; 21 typedef std::complex<Scalar> Complex; 22 std::vector<Complex> m_twiddles; 23 std::vector<int> m_stageRadix; 24 std::vector<int> m_stageRemainder; 25 std::vector<Complex> m_scratchBuf; 26 bool m_inverse; 27 28 inline make_twiddleskiss_cpx_fft29 void make_twiddles(int nfft,bool inverse) 30 { 31 m_inverse = inverse; 32 m_twiddles.resize(nfft); 33 Scalar phinc = (inverse?2:-2)* acos( (Scalar) -1) / nfft; 34 for (int i=0;i<nfft;++i) 35 m_twiddles[i] = exp( Complex(0,i*phinc) ); 36 } 37 factorizekiss_cpx_fft38 void factorize(int nfft) 39 { 40 //start factoring out 4's, then 2's, then 3,5,7,9,... 41 int n= nfft; 42 int p=4; 43 do { 44 while (n % p) { 45 switch (p) { 46 case 4: p = 2; break; 47 case 2: p = 3; break; 48 default: p += 2; break; 49 } 50 if (p*p>n) 51 p=n;// impossible to have a factor > sqrt(n) 52 } 53 n /= p; 54 m_stageRadix.push_back(p); 55 m_stageRemainder.push_back(n); 56 if ( p > 5 ) 57 m_scratchBuf.resize(p); // scratchbuf will be needed in bfly_generic 58 }while(n>1); 59 } 60 61 template <typename _Src> 62 inline workkiss_cpx_fft63 void work( int stage,Complex * xout, const _Src * xin, size_t fstride,size_t in_stride) 64 { 65 int p = m_stageRadix[stage]; 66 int m = m_stageRemainder[stage]; 67 Complex * Fout_beg = xout; 68 Complex * Fout_end = xout + p*m; 69 70 if (m>1) { 71 do{ 72 // recursive call: 73 // DFT of size m*p performed by doing 74 // p instances of smaller DFTs of size m, 75 // each one takes a decimated version of the input 76 work(stage+1, xout , xin, fstride*p,in_stride); 77 xin += fstride*in_stride; 78 }while( (xout += m) != Fout_end ); 79 }else{ 80 do{ 81 *xout = *xin; 82 xin += fstride*in_stride; 83 }while(++xout != Fout_end ); 84 } 85 xout=Fout_beg; 86 87 // recombine the p smaller DFTs 88 switch (p) { 89 case 2: bfly2(xout,fstride,m); break; 90 case 3: bfly3(xout,fstride,m); break; 91 case 4: bfly4(xout,fstride,m); break; 92 case 5: bfly5(xout,fstride,m); break; 93 default: bfly_generic(xout,fstride,m,p); break; 94 } 95 } 96 97 inline bfly2kiss_cpx_fft98 void bfly2( Complex * Fout, const size_t fstride, int m) 99 { 100 for (int k=0;k<m;++k) { 101 Complex t = Fout[m+k] * m_twiddles[k*fstride]; 102 Fout[m+k] = Fout[k] - t; 103 Fout[k] += t; 104 } 105 } 106 107 inline bfly4kiss_cpx_fft108 void bfly4( Complex * Fout, const size_t fstride, const size_t m) 109 { 110 Complex scratch[6]; 111 int negative_if_inverse = m_inverse * -2 +1; 112 for (size_t k=0;k<m;++k) { 113 scratch[0] = Fout[k+m] * m_twiddles[k*fstride]; 114 scratch[1] = Fout[k+2*m] * m_twiddles[k*fstride*2]; 115 scratch[2] = Fout[k+3*m] * m_twiddles[k*fstride*3]; 116 scratch[5] = Fout[k] - scratch[1]; 117 118 Fout[k] += scratch[1]; 119 scratch[3] = scratch[0] + scratch[2]; 120 scratch[4] = scratch[0] - scratch[2]; 121 scratch[4] = Complex( scratch[4].imag()*negative_if_inverse , -scratch[4].real()* negative_if_inverse ); 122 123 Fout[k+2*m] = Fout[k] - scratch[3]; 124 Fout[k] += scratch[3]; 125 Fout[k+m] = scratch[5] + scratch[4]; 126 Fout[k+3*m] = scratch[5] - scratch[4]; 127 } 128 } 129 130 inline bfly3kiss_cpx_fft131 void bfly3( Complex * Fout, const size_t fstride, const size_t m) 132 { 133 size_t k=m; 134 const size_t m2 = 2*m; 135 Complex *tw1,*tw2; 136 Complex scratch[5]; 137 Complex epi3; 138 epi3 = m_twiddles[fstride*m]; 139 140 tw1=tw2=&m_twiddles[0]; 141 142 do{ 143 scratch[1]=Fout[m] * *tw1; 144 scratch[2]=Fout[m2] * *tw2; 145 146 scratch[3]=scratch[1]+scratch[2]; 147 scratch[0]=scratch[1]-scratch[2]; 148 tw1 += fstride; 149 tw2 += fstride*2; 150 Fout[m] = Complex( Fout->real() - Scalar(.5)*scratch[3].real() , Fout->imag() - Scalar(.5)*scratch[3].imag() ); 151 scratch[0] *= epi3.imag(); 152 *Fout += scratch[3]; 153 Fout[m2] = Complex( Fout[m].real() + scratch[0].imag() , Fout[m].imag() - scratch[0].real() ); 154 Fout[m] += Complex( -scratch[0].imag(),scratch[0].real() ); 155 ++Fout; 156 }while(--k); 157 } 158 159 inline bfly5kiss_cpx_fft160 void bfly5( Complex * Fout, const size_t fstride, const size_t m) 161 { 162 Complex *Fout0,*Fout1,*Fout2,*Fout3,*Fout4; 163 size_t u; 164 Complex scratch[13]; 165 Complex * twiddles = &m_twiddles[0]; 166 Complex *tw; 167 Complex ya,yb; 168 ya = twiddles[fstride*m]; 169 yb = twiddles[fstride*2*m]; 170 171 Fout0=Fout; 172 Fout1=Fout0+m; 173 Fout2=Fout0+2*m; 174 Fout3=Fout0+3*m; 175 Fout4=Fout0+4*m; 176 177 tw=twiddles; 178 for ( u=0; u<m; ++u ) { 179 scratch[0] = *Fout0; 180 181 scratch[1] = *Fout1 * tw[u*fstride]; 182 scratch[2] = *Fout2 * tw[2*u*fstride]; 183 scratch[3] = *Fout3 * tw[3*u*fstride]; 184 scratch[4] = *Fout4 * tw[4*u*fstride]; 185 186 scratch[7] = scratch[1] + scratch[4]; 187 scratch[10] = scratch[1] - scratch[4]; 188 scratch[8] = scratch[2] + scratch[3]; 189 scratch[9] = scratch[2] - scratch[3]; 190 191 *Fout0 += scratch[7]; 192 *Fout0 += scratch[8]; 193 194 scratch[5] = scratch[0] + Complex( 195 (scratch[7].real()*ya.real() ) + (scratch[8].real() *yb.real() ), 196 (scratch[7].imag()*ya.real()) + (scratch[8].imag()*yb.real()) 197 ); 198 199 scratch[6] = Complex( 200 (scratch[10].imag()*ya.imag()) + (scratch[9].imag()*yb.imag()), 201 -(scratch[10].real()*ya.imag()) - (scratch[9].real()*yb.imag()) 202 ); 203 204 *Fout1 = scratch[5] - scratch[6]; 205 *Fout4 = scratch[5] + scratch[6]; 206 207 scratch[11] = scratch[0] + 208 Complex( 209 (scratch[7].real()*yb.real()) + (scratch[8].real()*ya.real()), 210 (scratch[7].imag()*yb.real()) + (scratch[8].imag()*ya.real()) 211 ); 212 213 scratch[12] = Complex( 214 -(scratch[10].imag()*yb.imag()) + (scratch[9].imag()*ya.imag()), 215 (scratch[10].real()*yb.imag()) - (scratch[9].real()*ya.imag()) 216 ); 217 218 *Fout2=scratch[11]+scratch[12]; 219 *Fout3=scratch[11]-scratch[12]; 220 221 ++Fout0;++Fout1;++Fout2;++Fout3;++Fout4; 222 } 223 } 224 225 /* perform the butterfly for one stage of a mixed radix FFT */ 226 inline bfly_generickiss_cpx_fft227 void bfly_generic( 228 Complex * Fout, 229 const size_t fstride, 230 int m, 231 int p 232 ) 233 { 234 int u,k,q1,q; 235 Complex * twiddles = &m_twiddles[0]; 236 Complex t; 237 int Norig = static_cast<int>(m_twiddles.size()); 238 Complex * scratchbuf = &m_scratchBuf[0]; 239 240 for ( u=0; u<m; ++u ) { 241 k=u; 242 for ( q1=0 ; q1<p ; ++q1 ) { 243 scratchbuf[q1] = Fout[ k ]; 244 k += m; 245 } 246 247 k=u; 248 for ( q1=0 ; q1<p ; ++q1 ) { 249 int twidx=0; 250 Fout[ k ] = scratchbuf[0]; 251 for (q=1;q<p;++q ) { 252 twidx += static_cast<int>(fstride) * k; 253 if (twidx>=Norig) twidx-=Norig; 254 t=scratchbuf[q] * twiddles[twidx]; 255 Fout[ k ] += t; 256 } 257 k += m; 258 } 259 } 260 } 261 }; 262 263 template <typename _Scalar> 264 struct kissfft_impl 265 { 266 typedef _Scalar Scalar; 267 typedef std::complex<Scalar> Complex; 268 clearkissfft_impl269 void clear() 270 { 271 m_plans.clear(); 272 m_realTwiddles.clear(); 273 } 274 275 inline fwdkissfft_impl276 void fwd( Complex * dst,const Complex *src,int nfft) 277 { 278 get_plan(nfft,false).work(0, dst, src, 1,1); 279 } 280 281 inline fwd2kissfft_impl282 void fwd2( Complex * dst,const Complex *src,int n0,int n1) 283 { 284 EIGEN_UNUSED_VARIABLE(dst); 285 EIGEN_UNUSED_VARIABLE(src); 286 EIGEN_UNUSED_VARIABLE(n0); 287 EIGEN_UNUSED_VARIABLE(n1); 288 } 289 290 inline inv2kissfft_impl291 void inv2( Complex * dst,const Complex *src,int n0,int n1) 292 { 293 EIGEN_UNUSED_VARIABLE(dst); 294 EIGEN_UNUSED_VARIABLE(src); 295 EIGEN_UNUSED_VARIABLE(n0); 296 EIGEN_UNUSED_VARIABLE(n1); 297 } 298 299 // real-to-complex forward FFT 300 // perform two FFTs of src even and src odd 301 // then twiddle to recombine them into the half-spectrum format 302 // then fill in the conjugate symmetric half 303 inline fwdkissfft_impl304 void fwd( Complex * dst,const Scalar * src,int nfft) 305 { 306 if ( nfft&3 ) { 307 // use generic mode for odd 308 m_tmpBuf1.resize(nfft); 309 get_plan(nfft,false).work(0, &m_tmpBuf1[0], src, 1,1); 310 std::copy(m_tmpBuf1.begin(),m_tmpBuf1.begin()+(nfft>>1)+1,dst ); 311 }else{ 312 int ncfft = nfft>>1; 313 int ncfft2 = nfft>>2; 314 Complex * rtw = real_twiddles(ncfft2); 315 316 // use optimized mode for even real 317 fwd( dst, reinterpret_cast<const Complex*> (src), ncfft); 318 Complex dc = dst[0].real() + dst[0].imag(); 319 Complex nyquist = dst[0].real() - dst[0].imag(); 320 int k; 321 for ( k=1;k <= ncfft2 ; ++k ) { 322 Complex fpk = dst[k]; 323 Complex fpnk = conj(dst[ncfft-k]); 324 Complex f1k = fpk + fpnk; 325 Complex f2k = fpk - fpnk; 326 Complex tw= f2k * rtw[k-1]; 327 dst[k] = (f1k + tw) * Scalar(.5); 328 dst[ncfft-k] = conj(f1k -tw)*Scalar(.5); 329 } 330 dst[0] = dc; 331 dst[ncfft] = nyquist; 332 } 333 } 334 335 // inverse complex-to-complex 336 inline invkissfft_impl337 void inv(Complex * dst,const Complex *src,int nfft) 338 { 339 get_plan(nfft,true).work(0, dst, src, 1,1); 340 } 341 342 // half-complex to scalar 343 inline invkissfft_impl344 void inv( Scalar * dst,const Complex * src,int nfft) 345 { 346 if (nfft&3) { 347 m_tmpBuf1.resize(nfft); 348 m_tmpBuf2.resize(nfft); 349 std::copy(src,src+(nfft>>1)+1,m_tmpBuf1.begin() ); 350 for (int k=1;k<(nfft>>1)+1;++k) 351 m_tmpBuf1[nfft-k] = conj(m_tmpBuf1[k]); 352 inv(&m_tmpBuf2[0],&m_tmpBuf1[0],nfft); 353 for (int k=0;k<nfft;++k) 354 dst[k] = m_tmpBuf2[k].real(); 355 }else{ 356 // optimized version for multiple of 4 357 int ncfft = nfft>>1; 358 int ncfft2 = nfft>>2; 359 Complex * rtw = real_twiddles(ncfft2); 360 m_tmpBuf1.resize(ncfft); 361 m_tmpBuf1[0] = Complex( src[0].real() + src[ncfft].real(), src[0].real() - src[ncfft].real() ); 362 for (int k = 1; k <= ncfft / 2; ++k) { 363 Complex fk = src[k]; 364 Complex fnkc = conj(src[ncfft-k]); 365 Complex fek = fk + fnkc; 366 Complex tmp = fk - fnkc; 367 Complex fok = tmp * conj(rtw[k-1]); 368 m_tmpBuf1[k] = fek + fok; 369 m_tmpBuf1[ncfft-k] = conj(fek - fok); 370 } 371 get_plan(ncfft,true).work(0, reinterpret_cast<Complex*>(dst), &m_tmpBuf1[0], 1,1); 372 } 373 } 374 375 protected: 376 typedef kiss_cpx_fft<Scalar> PlanData; 377 typedef std::map<int,PlanData> PlanMap; 378 379 PlanMap m_plans; 380 std::map<int, std::vector<Complex> > m_realTwiddles; 381 std::vector<Complex> m_tmpBuf1; 382 std::vector<Complex> m_tmpBuf2; 383 384 inline PlanKeykissfft_impl385 int PlanKey(int nfft, bool isinverse) const { return (nfft<<1) | int(isinverse); } 386 387 inline get_plankissfft_impl388 PlanData & get_plan(int nfft, bool inverse) 389 { 390 // TODO look for PlanKey(nfft, ! inverse) and conjugate the twiddles 391 PlanData & pd = m_plans[ PlanKey(nfft,inverse) ]; 392 if ( pd.m_twiddles.size() == 0 ) { 393 pd.make_twiddles(nfft,inverse); 394 pd.factorize(nfft); 395 } 396 return pd; 397 } 398 399 inline real_twiddleskissfft_impl400 Complex * real_twiddles(int ncfft2) 401 { 402 std::vector<Complex> & twidref = m_realTwiddles[ncfft2];// creates new if not there 403 if ( (int)twidref.size() != ncfft2 ) { 404 twidref.resize(ncfft2); 405 int ncfft= ncfft2<<1; 406 Scalar pi = acos( Scalar(-1) ); 407 for (int k=1;k<=ncfft2;++k) 408 twidref[k-1] = exp( Complex(0,-pi * (Scalar(k) / ncfft + Scalar(.5)) ) ); 409 } 410 return &twidref[0]; 411 } 412 }; 413 414 } // end namespace internal 415 416 } // end namespace Eigen 417 418 /* vim: set filetype=cpp et sw=2 ts=2 ai: */ 419