• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2011 Jitse Niesen <jitse@maths.leeds.ac.uk>
5 // Copyright (C) 2011 Chen-Pang He <jdh8@ms63.hinet.net>
6 //
7 // This Source Code Form is subject to the terms of the Mozilla
8 // Public License v. 2.0. If a copy of the MPL was not distributed
9 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
10 
11 #ifndef EIGEN_MATRIX_LOGARITHM
12 #define EIGEN_MATRIX_LOGARITHM
13 
14 #ifndef M_PI
15 #define M_PI 3.141592653589793238462643383279503L
16 #endif
17 
18 namespace Eigen {
19 
20 /** \ingroup MatrixFunctions_Module
21   * \class MatrixLogarithmAtomic
22   * \brief Helper class for computing matrix logarithm of atomic matrices.
23   *
24   * \internal
25   * Here, an atomic matrix is a triangular matrix whose diagonal
26   * entries are close to each other.
27   *
28   * \sa class MatrixFunctionAtomic, MatrixBase::log()
29   */
30 template <typename MatrixType>
31 class MatrixLogarithmAtomic
32 {
33 public:
34 
35   typedef typename MatrixType::Scalar Scalar;
36   // typedef typename MatrixType::Index Index;
37   typedef typename NumTraits<Scalar>::Real RealScalar;
38   // typedef typename internal::stem_function<Scalar>::type StemFunction;
39   // typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
40 
41   /** \brief Constructor. */
MatrixLogarithmAtomic()42   MatrixLogarithmAtomic() { }
43 
44   /** \brief Compute matrix logarithm of atomic matrix
45     * \param[in]  A  argument of matrix logarithm, should be upper triangular and atomic
46     * \returns  The logarithm of \p A.
47     */
48   MatrixType compute(const MatrixType& A);
49 
50 private:
51 
52   void compute2x2(const MatrixType& A, MatrixType& result);
53   void computeBig(const MatrixType& A, MatrixType& result);
54   static Scalar atanh(Scalar x);
55   int getPadeDegree(float normTminusI);
56   int getPadeDegree(double normTminusI);
57   int getPadeDegree(long double normTminusI);
58   void computePade(MatrixType& result, const MatrixType& T, int degree);
59   void computePade3(MatrixType& result, const MatrixType& T);
60   void computePade4(MatrixType& result, const MatrixType& T);
61   void computePade5(MatrixType& result, const MatrixType& T);
62   void computePade6(MatrixType& result, const MatrixType& T);
63   void computePade7(MatrixType& result, const MatrixType& T);
64   void computePade8(MatrixType& result, const MatrixType& T);
65   void computePade9(MatrixType& result, const MatrixType& T);
66   void computePade10(MatrixType& result, const MatrixType& T);
67   void computePade11(MatrixType& result, const MatrixType& T);
68 
69   static const int minPadeDegree = 3;
70   static const int maxPadeDegree = std::numeric_limits<RealScalar>::digits<= 24?  5:      // single precision
71                                    std::numeric_limits<RealScalar>::digits<= 53?  7:      // double precision
72                                    std::numeric_limits<RealScalar>::digits<= 64?  8:      // extended precision
73                                    std::numeric_limits<RealScalar>::digits<=106? 10: 11;  // double-double or quadruple precision
74 
75   // Prevent copying
76   MatrixLogarithmAtomic(const MatrixLogarithmAtomic&);
77   MatrixLogarithmAtomic& operator=(const MatrixLogarithmAtomic&);
78 };
79 
80 /** \brief Compute logarithm of triangular matrix with clustered eigenvalues. */
81 template <typename MatrixType>
compute(const MatrixType & A)82 MatrixType MatrixLogarithmAtomic<MatrixType>::compute(const MatrixType& A)
83 {
84   using std::log;
85   MatrixType result(A.rows(), A.rows());
86   if (A.rows() == 1)
87     result(0,0) = log(A(0,0));
88   else if (A.rows() == 2)
89     compute2x2(A, result);
90   else
91     computeBig(A, result);
92   return result;
93 }
94 
95 /** \brief Compute atanh (inverse hyperbolic tangent). */
96 template <typename MatrixType>
atanh(typename MatrixType::Scalar x)97 typename MatrixType::Scalar MatrixLogarithmAtomic<MatrixType>::atanh(typename MatrixType::Scalar x)
98 {
99   using std::abs;
100   using std::sqrt;
101   if (abs(x) > sqrt(NumTraits<Scalar>::epsilon()))
102     return Scalar(0.5) * log((Scalar(1) + x) / (Scalar(1) - x));
103   else
104     return x + x*x*x / Scalar(3);
105 }
106 
107 /** \brief Compute logarithm of 2x2 triangular matrix. */
108 template <typename MatrixType>
compute2x2(const MatrixType & A,MatrixType & result)109 void MatrixLogarithmAtomic<MatrixType>::compute2x2(const MatrixType& A, MatrixType& result)
110 {
111   using std::abs;
112   using std::ceil;
113   using std::imag;
114   using std::log;
115 
116   Scalar logA00 = log(A(0,0));
117   Scalar logA11 = log(A(1,1));
118 
119   result(0,0) = logA00;
120   result(1,0) = Scalar(0);
121   result(1,1) = logA11;
122 
123   if (A(0,0) == A(1,1)) {
124     result(0,1) = A(0,1) / A(0,0);
125   } else if ((abs(A(0,0)) < 0.5*abs(A(1,1))) || (abs(A(0,0)) > 2*abs(A(1,1)))) {
126     result(0,1) = A(0,1) * (logA11 - logA00) / (A(1,1) - A(0,0));
127   } else {
128     // computation in previous branch is inaccurate if A(1,1) \approx A(0,0)
129     int unwindingNumber = static_cast<int>(ceil((imag(logA11 - logA00) - M_PI) / (2*M_PI)));
130     Scalar z = (A(1,1) - A(0,0)) / (A(1,1) + A(0,0));
131     result(0,1) = A(0,1) * (Scalar(2) * atanh(z) + Scalar(0,2*M_PI*unwindingNumber)) / (A(1,1) - A(0,0));
132   }
133 }
134 
135 /** \brief Compute logarithm of triangular matrices with size > 2.
136   * \details This uses a inverse scale-and-square algorithm. */
137 template <typename MatrixType>
computeBig(const MatrixType & A,MatrixType & result)138 void MatrixLogarithmAtomic<MatrixType>::computeBig(const MatrixType& A, MatrixType& result)
139 {
140   int numberOfSquareRoots = 0;
141   int numberOfExtraSquareRoots = 0;
142   int degree;
143   MatrixType T = A;
144   const RealScalar maxNormForPade = maxPadeDegree<= 5? 5.3149729967117310e-1:                     // single precision
145                                     maxPadeDegree<= 7? 2.6429608311114350e-1:                     // double precision
146                                     maxPadeDegree<= 8? 2.32777776523703892094e-1L:                // extended precision
147                                     maxPadeDegree<=10? 1.05026503471351080481093652651105e-1L:    // double-double
148                                                        1.1880960220216759245467951592883642e-1L;  // quadruple precision
149 
150   while (true) {
151     RealScalar normTminusI = (T - MatrixType::Identity(T.rows(), T.rows())).cwiseAbs().colwise().sum().maxCoeff();
152     if (normTminusI < maxNormForPade) {
153       degree = getPadeDegree(normTminusI);
154       int degree2 = getPadeDegree(normTminusI / RealScalar(2));
155       if ((degree - degree2 <= 1) || (numberOfExtraSquareRoots == 1))
156 	break;
157       ++numberOfExtraSquareRoots;
158     }
159     MatrixType sqrtT;
160     MatrixSquareRootTriangular<MatrixType>(T).compute(sqrtT);
161     T = sqrtT;
162     ++numberOfSquareRoots;
163   }
164 
165   computePade(result, T, degree);
166   result *= pow(RealScalar(2), numberOfSquareRoots);
167 }
168 
169 /* \brief Get suitable degree for Pade approximation. (specialized for RealScalar = float) */
170 template <typename MatrixType>
getPadeDegree(float normTminusI)171 int MatrixLogarithmAtomic<MatrixType>::getPadeDegree(float normTminusI)
172 {
173   const float maxNormForPade[] = { 2.5111573934555054e-1 /* degree = 3 */ , 4.0535837411880493e-1,
174             5.3149729967117310e-1 };
175   for (int degree = 3; degree <= maxPadeDegree; ++degree)
176     if (normTminusI <= maxNormForPade[degree - minPadeDegree])
177       return degree;
178   assert(false); // this line should never be reached
179 }
180 
181 /* \brief Get suitable degree for Pade approximation. (specialized for RealScalar = double) */
182 template <typename MatrixType>
getPadeDegree(double normTminusI)183 int MatrixLogarithmAtomic<MatrixType>::getPadeDegree(double normTminusI)
184 {
185   const double maxNormForPade[] = { 1.6206284795015624e-2 /* degree = 3 */ , 5.3873532631381171e-2,
186             1.1352802267628681e-1, 1.8662860613541288e-1, 2.642960831111435e-1 };
187   for (int degree = 3; degree <= maxPadeDegree; ++degree)
188     if (normTminusI <= maxNormForPade[degree - minPadeDegree])
189       return degree;
190   assert(false); // this line should never be reached
191 }
192 
193 /* \brief Get suitable degree for Pade approximation. (specialized for RealScalar = long double) */
194 template <typename MatrixType>
getPadeDegree(long double normTminusI)195 int MatrixLogarithmAtomic<MatrixType>::getPadeDegree(long double normTminusI)
196 {
197 #if   LDBL_MANT_DIG == 53         // double precision
198   const double maxNormForPade[] = { 1.6206284795015624e-2 /* degree = 3 */ , 5.3873532631381171e-2,
199             1.1352802267628681e-1, 1.8662860613541288e-1, 2.642960831111435e-1 };
200 #elif LDBL_MANT_DIG <= 64         // extended precision
201   const double maxNormForPade[] = { 5.48256690357782863103e-3 /* degree = 3 */, 2.34559162387971167321e-2,
202             5.84603923897347449857e-2, 1.08486423756725170223e-1, 1.68385767881294446649e-1,
203             2.32777776523703892094e-1 };
204 #elif LDBL_MANT_DIG <= 106        // double-double
205   const double maxNormForPade[] = { 8.58970550342939562202529664318890e-5 /* degree = 3 */,
206             9.34074328446359654039446552677759e-4, 4.26117194647672175773064114582860e-3,
207             1.21546224740281848743149666560464e-2, 2.61100544998339436713088248557444e-2,
208             4.66170074627052749243018566390567e-2, 7.32585144444135027565872014932387e-2,
209             1.05026503471351080481093652651105e-1 };
210 #else                             // quadruple precision
211   const double maxNormForPade[] = { 4.7419931187193005048501568167858103e-5 /* degree = 3 */,
212             5.8853168473544560470387769480192666e-4, 2.9216120366601315391789493628113520e-3,
213             8.8415758124319434347116734705174308e-3, 1.9850836029449446668518049562565291e-2,
214             3.6688019729653446926585242192447447e-2, 5.9290962294020186998954055264528393e-2,
215             8.6998436081634343903250580992127677e-2, 1.1880960220216759245467951592883642e-1 };
216 #endif
217   for (int degree = 3; degree <= maxPadeDegree; ++degree)
218     if (normTminusI <= maxNormForPade[degree - minPadeDegree])
219       return degree;
220   assert(false); // this line should never be reached
221 }
222 
223 /* \brief Compute Pade approximation to matrix logarithm */
224 template <typename MatrixType>
computePade(MatrixType & result,const MatrixType & T,int degree)225 void MatrixLogarithmAtomic<MatrixType>::computePade(MatrixType& result, const MatrixType& T, int degree)
226 {
227   switch (degree) {
228     case 3:  computePade3(result, T);  break;
229     case 4:  computePade4(result, T);  break;
230     case 5:  computePade5(result, T);  break;
231     case 6:  computePade6(result, T);  break;
232     case 7:  computePade7(result, T);  break;
233     case 8:  computePade8(result, T);  break;
234     case 9:  computePade9(result, T);  break;
235     case 10: computePade10(result, T); break;
236     case 11: computePade11(result, T); break;
237     default: assert(false); // should never happen
238   }
239 }
240 
241 template <typename MatrixType>
computePade3(MatrixType & result,const MatrixType & T)242 void MatrixLogarithmAtomic<MatrixType>::computePade3(MatrixType& result, const MatrixType& T)
243 {
244   const int degree = 3;
245   const RealScalar nodes[]   = { 0.1127016653792583114820734600217600L, 0.5000000000000000000000000000000000L,
246             0.8872983346207416885179265399782400L };
247   const RealScalar weights[] = { 0.2777777777777777777777777777777778L, 0.4444444444444444444444444444444444L,
248             0.2777777777777777777777777777777778L };
249   assert(degree <= maxPadeDegree);
250   MatrixType TminusI = T - MatrixType::Identity(T.rows(), T.rows());
251   result.setZero(T.rows(), T.rows());
252   for (int k = 0; k < degree; ++k)
253     result += weights[k] * (MatrixType::Identity(T.rows(), T.rows()) + nodes[k] * TminusI)
254                            .template triangularView<Upper>().solve(TminusI);
255 }
256 
257 template <typename MatrixType>
computePade4(MatrixType & result,const MatrixType & T)258 void MatrixLogarithmAtomic<MatrixType>::computePade4(MatrixType& result, const MatrixType& T)
259 {
260   const int degree = 4;
261   const RealScalar nodes[]   = { 0.0694318442029737123880267555535953L, 0.3300094782075718675986671204483777L,
262             0.6699905217924281324013328795516223L, 0.9305681557970262876119732444464048L };
263   const RealScalar weights[] = { 0.1739274225687269286865319746109997L, 0.3260725774312730713134680253890003L,
264             0.3260725774312730713134680253890003L, 0.1739274225687269286865319746109997L };
265   assert(degree <= maxPadeDegree);
266   MatrixType TminusI = T - MatrixType::Identity(T.rows(), T.rows());
267   result.setZero(T.rows(), T.rows());
268   for (int k = 0; k < degree; ++k)
269     result += weights[k] * (MatrixType::Identity(T.rows(), T.rows()) + nodes[k] * TminusI)
270                            .template triangularView<Upper>().solve(TminusI);
271 }
272 
273 template <typename MatrixType>
computePade5(MatrixType & result,const MatrixType & T)274 void MatrixLogarithmAtomic<MatrixType>::computePade5(MatrixType& result, const MatrixType& T)
275 {
276   const int degree = 5;
277   const RealScalar nodes[]   = { 0.0469100770306680036011865608503035L, 0.2307653449471584544818427896498956L,
278             0.5000000000000000000000000000000000L, 0.7692346550528415455181572103501044L,
279             0.9530899229693319963988134391496965L };
280   const RealScalar weights[] = { 0.1184634425280945437571320203599587L, 0.2393143352496832340206457574178191L,
281             0.2844444444444444444444444444444444L, 0.2393143352496832340206457574178191L,
282             0.1184634425280945437571320203599587L };
283   assert(degree <= maxPadeDegree);
284   MatrixType TminusI = T - MatrixType::Identity(T.rows(), T.rows());
285   result.setZero(T.rows(), T.rows());
286   for (int k = 0; k < degree; ++k)
287     result += weights[k] * (MatrixType::Identity(T.rows(), T.rows()) + nodes[k] * TminusI)
288                            .template triangularView<Upper>().solve(TminusI);
289 }
290 
291 template <typename MatrixType>
computePade6(MatrixType & result,const MatrixType & T)292 void MatrixLogarithmAtomic<MatrixType>::computePade6(MatrixType& result, const MatrixType& T)
293 {
294   const int degree = 6;
295   const RealScalar nodes[]   = { 0.0337652428984239860938492227530027L, 0.1693953067668677431693002024900473L,
296             0.3806904069584015456847491391596440L, 0.6193095930415984543152508608403560L,
297 		        0.8306046932331322568306997975099527L, 0.9662347571015760139061507772469973L };
298   const RealScalar weights[] = { 0.0856622461895851725201480710863665L, 0.1803807865240693037849167569188581L,
299             0.2339569672863455236949351719947755L, 0.2339569672863455236949351719947755L,
300  		        0.1803807865240693037849167569188581L, 0.0856622461895851725201480710863665L };
301   assert(degree <= maxPadeDegree);
302   MatrixType TminusI = T - MatrixType::Identity(T.rows(), T.rows());
303   result.setZero(T.rows(), T.rows());
304   for (int k = 0; k < degree; ++k)
305     result += weights[k] * (MatrixType::Identity(T.rows(), T.rows()) + nodes[k] * TminusI)
306                            .template triangularView<Upper>().solve(TminusI);
307 }
308 
309 template <typename MatrixType>
computePade7(MatrixType & result,const MatrixType & T)310 void MatrixLogarithmAtomic<MatrixType>::computePade7(MatrixType& result, const MatrixType& T)
311 {
312   const int degree = 7;
313   const RealScalar nodes[]   = { 0.0254460438286207377369051579760744L, 0.1292344072003027800680676133596058L,
314             0.2970774243113014165466967939615193L, 0.5000000000000000000000000000000000L,
315             0.7029225756886985834533032060384807L, 0.8707655927996972199319323866403942L,
316             0.9745539561713792622630948420239256L };
317   const RealScalar weights[] = { 0.0647424830844348466353057163395410L, 0.1398526957446383339507338857118898L,
318             0.1909150252525594724751848877444876L, 0.2089795918367346938775510204081633L,
319             0.1909150252525594724751848877444876L, 0.1398526957446383339507338857118898L,
320             0.0647424830844348466353057163395410L };
321   assert(degree <= maxPadeDegree);
322   MatrixType TminusI = T - MatrixType::Identity(T.rows(), T.rows());
323   result.setZero(T.rows(), T.rows());
324   for (int k = 0; k < degree; ++k)
325     result += weights[k] * (MatrixType::Identity(T.rows(), T.rows()) + nodes[k] * TminusI)
326                            .template triangularView<Upper>().solve(TminusI);
327 }
328 
329 template <typename MatrixType>
computePade8(MatrixType & result,const MatrixType & T)330 void MatrixLogarithmAtomic<MatrixType>::computePade8(MatrixType& result, const MatrixType& T)
331 {
332   const int degree = 8;
333   const RealScalar nodes[]   = { 0.0198550717512318841582195657152635L, 0.1016667612931866302042230317620848L,
334             0.2372337950418355070911304754053768L, 0.4082826787521750975302619288199080L,
335             0.5917173212478249024697380711800920L, 0.7627662049581644929088695245946232L,
336             0.8983332387068133697957769682379152L, 0.9801449282487681158417804342847365L };
337   const RealScalar weights[] = { 0.0506142681451881295762656771549811L, 0.1111905172266872352721779972131204L,
338             0.1568533229389436436689811009933007L, 0.1813418916891809914825752246385978L,
339             0.1813418916891809914825752246385978L, 0.1568533229389436436689811009933007L,
340             0.1111905172266872352721779972131204L, 0.0506142681451881295762656771549811L };
341   assert(degree <= maxPadeDegree);
342   MatrixType TminusI = T - MatrixType::Identity(T.rows(), T.rows());
343   result.setZero(T.rows(), T.rows());
344   for (int k = 0; k < degree; ++k)
345     result += weights[k] * (MatrixType::Identity(T.rows(), T.rows()) + nodes[k] * TminusI)
346                            .template triangularView<Upper>().solve(TminusI);
347 }
348 
349 template <typename MatrixType>
computePade9(MatrixType & result,const MatrixType & T)350 void MatrixLogarithmAtomic<MatrixType>::computePade9(MatrixType& result, const MatrixType& T)
351 {
352   const int degree = 9;
353   const RealScalar nodes[]   = { 0.0159198802461869550822118985481636L, 0.0819844463366821028502851059651326L,
354             0.1933142836497048013456489803292629L, 0.3378732882980955354807309926783317L,
355             0.5000000000000000000000000000000000L, 0.6621267117019044645192690073216683L,
356             0.8066857163502951986543510196707371L, 0.9180155536633178971497148940348674L,
357             0.9840801197538130449177881014518364L };
358   const RealScalar weights[] = { 0.0406371941807872059859460790552618L, 0.0903240803474287020292360156214564L,
359             0.1303053482014677311593714347093164L, 0.1561735385200014200343152032922218L,
360             0.1651196775006298815822625346434870L, 0.1561735385200014200343152032922218L,
361             0.1303053482014677311593714347093164L, 0.0903240803474287020292360156214564L,
362             0.0406371941807872059859460790552618L };
363   assert(degree <= maxPadeDegree);
364   MatrixType TminusI = T - MatrixType::Identity(T.rows(), T.rows());
365   result.setZero(T.rows(), T.rows());
366   for (int k = 0; k < degree; ++k)
367     result += weights[k] * (MatrixType::Identity(T.rows(), T.rows()) + nodes[k] * TminusI)
368                            .template triangularView<Upper>().solve(TminusI);
369 }
370 
371 template <typename MatrixType>
computePade10(MatrixType & result,const MatrixType & T)372 void MatrixLogarithmAtomic<MatrixType>::computePade10(MatrixType& result, const MatrixType& T)
373 {
374   const int degree = 10;
375   const RealScalar nodes[]   = { 0.0130467357414141399610179939577740L, 0.0674683166555077446339516557882535L,
376             0.1602952158504877968828363174425632L, 0.2833023029353764046003670284171079L,
377             0.4255628305091843945575869994351400L, 0.5744371694908156054424130005648600L,
378             0.7166976970646235953996329715828921L, 0.8397047841495122031171636825574368L,
379             0.9325316833444922553660483442117465L, 0.9869532642585858600389820060422260L };
380   const RealScalar weights[] = { 0.0333356721543440687967844049466659L, 0.0747256745752902965728881698288487L,
381             0.1095431812579910219977674671140816L, 0.1346333596549981775456134607847347L,
382             0.1477621123573764350869464973256692L, 0.1477621123573764350869464973256692L,
383             0.1346333596549981775456134607847347L, 0.1095431812579910219977674671140816L,
384             0.0747256745752902965728881698288487L, 0.0333356721543440687967844049466659L };
385   assert(degree <= maxPadeDegree);
386   MatrixType TminusI = T - MatrixType::Identity(T.rows(), T.rows());
387   result.setZero(T.rows(), T.rows());
388   for (int k = 0; k < degree; ++k)
389     result += weights[k] * (MatrixType::Identity(T.rows(), T.rows()) + nodes[k] * TminusI)
390                            .template triangularView<Upper>().solve(TminusI);
391 }
392 
393 template <typename MatrixType>
computePade11(MatrixType & result,const MatrixType & T)394 void MatrixLogarithmAtomic<MatrixType>::computePade11(MatrixType& result, const MatrixType& T)
395 {
396   const int degree = 11;
397   const RealScalar nodes[]   = { 0.0108856709269715035980309994385713L, 0.0564687001159523504624211153480364L,
398             0.1349239972129753379532918739844233L, 0.2404519353965940920371371652706952L,
399             0.3652284220238275138342340072995692L, 0.5000000000000000000000000000000000L,
400             0.6347715779761724861657659927004308L, 0.7595480646034059079628628347293048L,
401             0.8650760027870246620467081260155767L, 0.9435312998840476495375788846519636L,
402             0.9891143290730284964019690005614287L };
403   const RealScalar weights[] = { 0.0278342835580868332413768602212743L, 0.0627901847324523123173471496119701L,
404             0.0931451054638671257130488207158280L, 0.1165968822959952399592618524215876L,
405             0.1314022722551233310903444349452546L, 0.1364625433889503153572417641681711L,
406             0.1314022722551233310903444349452546L, 0.1165968822959952399592618524215876L,
407             0.0931451054638671257130488207158280L, 0.0627901847324523123173471496119701L,
408             0.0278342835580868332413768602212743L };
409   assert(degree <= maxPadeDegree);
410   MatrixType TminusI = T - MatrixType::Identity(T.rows(), T.rows());
411   result.setZero(T.rows(), T.rows());
412   for (int k = 0; k < degree; ++k)
413     result += weights[k] * (MatrixType::Identity(T.rows(), T.rows()) + nodes[k] * TminusI)
414                            .template triangularView<Upper>().solve(TminusI);
415 }
416 
417 /** \ingroup MatrixFunctions_Module
418   *
419   * \brief Proxy for the matrix logarithm of some matrix (expression).
420   *
421   * \tparam Derived  Type of the argument to the matrix function.
422   *
423   * This class holds the argument to the matrix function until it is
424   * assigned or evaluated for some other reason (so the argument
425   * should not be changed in the meantime). It is the return type of
426   * matrixBase::matrixLogarithm() and most of the time this is the
427   * only way it is used.
428   */
429 template<typename Derived> class MatrixLogarithmReturnValue
430 : public ReturnByValue<MatrixLogarithmReturnValue<Derived> >
431 {
432 public:
433 
434   typedef typename Derived::Scalar Scalar;
435   typedef typename Derived::Index Index;
436 
437   /** \brief Constructor.
438     *
439     * \param[in]  A  %Matrix (expression) forming the argument of the matrix logarithm.
440     */
MatrixLogarithmReturnValue(const Derived & A)441   MatrixLogarithmReturnValue(const Derived& A) : m_A(A) { }
442 
443   /** \brief Compute the matrix logarithm.
444     *
445     * \param[out]  result  Logarithm of \p A, where \A is as specified in the constructor.
446     */
447   template <typename ResultType>
evalTo(ResultType & result)448   inline void evalTo(ResultType& result) const
449   {
450     typedef typename Derived::PlainObject PlainObject;
451     typedef internal::traits<PlainObject> Traits;
452     static const int RowsAtCompileTime = Traits::RowsAtCompileTime;
453     static const int ColsAtCompileTime = Traits::ColsAtCompileTime;
454     static const int Options = PlainObject::Options;
455     typedef std::complex<typename NumTraits<Scalar>::Real> ComplexScalar;
456     typedef Matrix<ComplexScalar, Dynamic, Dynamic, Options, RowsAtCompileTime, ColsAtCompileTime> DynMatrixType;
457     typedef MatrixLogarithmAtomic<DynMatrixType> AtomicType;
458     AtomicType atomic;
459 
460     const PlainObject Aevaluated = m_A.eval();
461     MatrixFunction<PlainObject, AtomicType> mf(Aevaluated, atomic);
462     mf.compute(result);
463   }
464 
rows()465   Index rows() const { return m_A.rows(); }
cols()466   Index cols() const { return m_A.cols(); }
467 
468 private:
469   typename internal::nested<Derived>::type m_A;
470 
471   MatrixLogarithmReturnValue& operator=(const MatrixLogarithmReturnValue&);
472 };
473 
474 namespace internal {
475   template<typename Derived>
476   struct traits<MatrixLogarithmReturnValue<Derived> >
477   {
478     typedef typename Derived::PlainObject ReturnType;
479   };
480 }
481 
482 
483 /********** MatrixBase method **********/
484 
485 
486 template <typename Derived>
487 const MatrixLogarithmReturnValue<Derived> MatrixBase<Derived>::log() const
488 {
489   eigen_assert(rows() == cols());
490   return MatrixLogarithmReturnValue<Derived>(derived());
491 }
492 
493 } // end namespace Eigen
494 
495 #endif // EIGEN_MATRIX_LOGARITHM
496