• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2011 Kolja Brix <brix@igpm.rwth-aachen.de>
5 // Copyright (C) 2011 Andreas Platen <andiplaten@gmx.de>
6 //
7 // This Source Code Form is subject to the terms of the Mozilla
8 // Public License v. 2.0. If a copy of the MPL was not distributed
9 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
10 
11 
12 #include "sparse.h"
13 #include <Eigen/SparseExtra>
14 #include <Eigen/KroneckerProduct>
15 
16 
17 template<typename MatrixType>
check_dimension(const MatrixType & ab,const unsigned int rows,const unsigned int cols)18 void check_dimension(const MatrixType& ab, const unsigned int rows,  const unsigned int cols)
19 {
20   VERIFY_IS_EQUAL(ab.rows(), rows);
21   VERIFY_IS_EQUAL(ab.cols(), cols);
22 }
23 
24 
25 template<typename MatrixType>
check_kronecker_product(const MatrixType & ab)26 void check_kronecker_product(const MatrixType& ab)
27 {
28   VERIFY_IS_EQUAL(ab.rows(), 6);
29   VERIFY_IS_EQUAL(ab.cols(), 6);
30   VERIFY_IS_EQUAL(ab.nonZeros(),  36);
31   VERIFY_IS_APPROX(ab.coeff(0,0), -0.4017367630386106);
32   VERIFY_IS_APPROX(ab.coeff(0,1),  0.1056863433932735);
33   VERIFY_IS_APPROX(ab.coeff(0,2), -0.7255206194554212);
34   VERIFY_IS_APPROX(ab.coeff(0,3),  0.1908653336744706);
35   VERIFY_IS_APPROX(ab.coeff(0,4),  0.350864567234111);
36   VERIFY_IS_APPROX(ab.coeff(0,5), -0.0923032108308013);
37   VERIFY_IS_APPROX(ab.coeff(1,0),  0.415417514804677);
38   VERIFY_IS_APPROX(ab.coeff(1,1), -0.2369227701722048);
39   VERIFY_IS_APPROX(ab.coeff(1,2),  0.7502275131458511);
40   VERIFY_IS_APPROX(ab.coeff(1,3), -0.4278731019742696);
41   VERIFY_IS_APPROX(ab.coeff(1,4), -0.3628129162264507);
42   VERIFY_IS_APPROX(ab.coeff(1,5),  0.2069210808481275);
43   VERIFY_IS_APPROX(ab.coeff(2,0),  0.05465890160863986);
44   VERIFY_IS_APPROX(ab.coeff(2,1), -0.2634092511419858);
45   VERIFY_IS_APPROX(ab.coeff(2,2),  0.09871180285793758);
46   VERIFY_IS_APPROX(ab.coeff(2,3), -0.4757066334017702);
47   VERIFY_IS_APPROX(ab.coeff(2,4), -0.04773740823058334);
48   VERIFY_IS_APPROX(ab.coeff(2,5),  0.2300535609645254);
49   VERIFY_IS_APPROX(ab.coeff(3,0), -0.8172945853260133);
50   VERIFY_IS_APPROX(ab.coeff(3,1),  0.2150086428359221);
51   VERIFY_IS_APPROX(ab.coeff(3,2),  0.5825113847292743);
52   VERIFY_IS_APPROX(ab.coeff(3,3), -0.1532433770097174);
53   VERIFY_IS_APPROX(ab.coeff(3,4), -0.329383387282399);
54   VERIFY_IS_APPROX(ab.coeff(3,5),  0.08665207912033064);
55   VERIFY_IS_APPROX(ab.coeff(4,0),  0.8451267514863225);
56   VERIFY_IS_APPROX(ab.coeff(4,1), -0.481996458918977);
57   VERIFY_IS_APPROX(ab.coeff(4,2), -0.6023482390791535);
58   VERIFY_IS_APPROX(ab.coeff(4,3),  0.3435339347164565);
59   VERIFY_IS_APPROX(ab.coeff(4,4),  0.3406002157428891);
60   VERIFY_IS_APPROX(ab.coeff(4,5), -0.1942526344200915);
61   VERIFY_IS_APPROX(ab.coeff(5,0),  0.1111982482925399);
62   VERIFY_IS_APPROX(ab.coeff(5,1), -0.5358806424754169);
63   VERIFY_IS_APPROX(ab.coeff(5,2), -0.07925446559335647);
64   VERIFY_IS_APPROX(ab.coeff(5,3),  0.3819388757769038);
65   VERIFY_IS_APPROX(ab.coeff(5,4),  0.04481475387219876);
66   VERIFY_IS_APPROX(ab.coeff(5,5), -0.2159688616158057);
67 }
68 
69 
70 template<typename MatrixType>
check_sparse_kronecker_product(const MatrixType & ab)71 void check_sparse_kronecker_product(const MatrixType& ab)
72 {
73   VERIFY_IS_EQUAL(ab.rows(), 12);
74   VERIFY_IS_EQUAL(ab.cols(), 10);
75   VERIFY_IS_EQUAL(ab.nonZeros(), 3*2);
76   VERIFY_IS_APPROX(ab.coeff(3,0), -0.04);
77   VERIFY_IS_APPROX(ab.coeff(5,1),  0.05);
78   VERIFY_IS_APPROX(ab.coeff(0,6), -0.08);
79   VERIFY_IS_APPROX(ab.coeff(2,7),  0.10);
80   VERIFY_IS_APPROX(ab.coeff(6,8),  0.12);
81   VERIFY_IS_APPROX(ab.coeff(8,9), -0.15);
82 }
83 
84 
test_kronecker_product()85 void test_kronecker_product()
86 {
87   // DM = dense matrix; SM = sparse matrix
88   Matrix<double, 2, 3> DM_a;
89   MatrixXd             DM_b(3,2);
90   SparseMatrix<double> SM_a(2,3);
91   SparseMatrix<double> SM_b(3,2);
92   SM_a.insert(0,0) = DM_a(0,0) = -0.4461540300782201;
93   SM_a.insert(0,1) = DM_a(0,1) = -0.8057364375283049;
94   SM_a.insert(0,2) = DM_a(0,2) =  0.3896572459516341;
95   SM_a.insert(1,0) = DM_a(1,0) = -0.9076572187376921;
96   SM_a.insert(1,1) = DM_a(1,1) =  0.6469156566545853;
97   SM_a.insert(1,2) = DM_a(1,2) = -0.3658010398782789;
98   SM_b.insert(0,0) = DM_b(0,0) =  0.9004440976767099;
99   SM_b.insert(0,1) = DM_b(0,1) = -0.2368830858139832;
100   SM_b.insert(1,0) = DM_b(1,0) = -0.9311078389941825;
101   SM_b.insert(1,1) = DM_b(1,1) =  0.5310335762980047;
102   SM_b.insert(2,0) = DM_b(2,0) = -0.1225112806872035;
103   SM_b.insert(2,1) = DM_b(2,1) =  0.5903998022741264;
104   SparseMatrix<double,RowMajor> SM_row_a(SM_a), SM_row_b(SM_b);
105 
106   // test kroneckerProduct(DM_block,DM,DM_fixedSize)
107   Matrix<double, 6, 6> DM_fix_ab;
108   DM_fix_ab(0,0)=37.0;
109   kroneckerProduct(DM_a.block(0,0,2,3),DM_b,DM_fix_ab);
110   CALL_SUBTEST(check_kronecker_product(DM_fix_ab));
111 
112   // test kroneckerProduct(DM,DM,DM_block)
113   MatrixXd DM_block_ab(10,15);
114   DM_block_ab(0,0)=37.0;
115   kroneckerProduct(DM_a,DM_b,DM_block_ab.block(2,5,6,6));
116   CALL_SUBTEST(check_kronecker_product(DM_block_ab.block(2,5,6,6)));
117 
118   // test kroneckerProduct(DM,DM,DM)
119   MatrixXd DM_ab(1,5);
120   DM_ab(0,0)=37.0;
121   kroneckerProduct(DM_a,DM_b,DM_ab);
122   CALL_SUBTEST(check_kronecker_product(DM_ab));
123 
124   // test kroneckerProduct(SM,DM,SM)
125   SparseMatrix<double> SM_ab(1,20);
126   SM_ab.insert(0,0)=37.0;
127   kroneckerProduct(SM_a,DM_b,SM_ab);
128   CALL_SUBTEST(check_kronecker_product(SM_ab));
129   SparseMatrix<double,RowMajor> SM_ab2(10,3);
130   SM_ab2.insert(0,0)=37.0;
131   kroneckerProduct(SM_a,DM_b,SM_ab2);
132   CALL_SUBTEST(check_kronecker_product(SM_ab2));
133 
134   // test kroneckerProduct(DM,SM,SM)
135   SM_ab.insert(0,0)=37.0;
136   kroneckerProduct(DM_a,SM_b,SM_ab);
137   CALL_SUBTEST(check_kronecker_product(SM_ab));
138   SM_ab2.insert(0,0)=37.0;
139   kroneckerProduct(DM_a,SM_b,SM_ab2);
140   CALL_SUBTEST(check_kronecker_product(SM_ab2));
141 
142   // test kroneckerProduct(SM,SM,SM)
143   SM_ab.resize(2,33);
144   SM_ab.insert(0,0)=37.0;
145   kroneckerProduct(SM_a,SM_b,SM_ab);
146   CALL_SUBTEST(check_kronecker_product(SM_ab));
147   SM_ab2.resize(5,11);
148   SM_ab2.insert(0,0)=37.0;
149   kroneckerProduct(SM_a,SM_b,SM_ab2);
150   CALL_SUBTEST(check_kronecker_product(SM_ab2));
151 
152   // test kroneckerProduct(SM,SM,SM) with sparse pattern
153   SM_a.resize(4,5);
154   SM_b.resize(3,2);
155   SM_a.resizeNonZeros(0);
156   SM_b.resizeNonZeros(0);
157   SM_a.insert(1,0) = -0.1;
158   SM_a.insert(0,3) = -0.2;
159   SM_a.insert(2,4) =  0.3;
160   SM_a.finalize();
161   SM_b.insert(0,0) =  0.4;
162   SM_b.insert(2,1) = -0.5;
163   SM_b.finalize();
164   SM_ab.resize(1,1);
165   SM_ab.insert(0,0)=37.0;
166   kroneckerProduct(SM_a,SM_b,SM_ab);
167   CALL_SUBTEST(check_sparse_kronecker_product(SM_ab));
168 
169   // test dimension of result of kroneckerProduct(DM,DM,DM)
170   MatrixXd DM_a2(2,1);
171   MatrixXd DM_b2(5,4);
172   MatrixXd DM_ab2;
173   kroneckerProduct(DM_a2,DM_b2,DM_ab2);
174   CALL_SUBTEST(check_dimension(DM_ab2,2*5,1*4));
175   DM_a2.resize(10,9);
176   DM_b2.resize(4,8);
177   kroneckerProduct(DM_a2,DM_b2,DM_ab2);
178   CALL_SUBTEST(check_dimension(DM_ab2,10*4,9*8));
179 }
180