1 // Copyright 2005, Google Inc.
2 // All rights reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are
6 // met:
7 //
8 // * Redistributions of source code must retain the above copyright
9 // notice, this list of conditions and the following disclaimer.
10 // * Redistributions in binary form must reproduce the above
11 // copyright notice, this list of conditions and the following disclaimer
12 // in the documentation and/or other materials provided with the
13 // distribution.
14 // * Neither the name of Google Inc. nor the names of its
15 // contributors may be used to endorse or promote products derived from
16 // this software without specific prior written permission.
17 //
18 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 //
30 // Author: wan@google.com (Zhanyong Wan)
31 //
32 // Tests for Google Test itself. This verifies that the basic constructs of
33 // Google Test work.
34
35 #include "gtest/gtest.h"
36 #include <vector>
37 #include <ostream>
38
39 // Verifies that the command line flag variables can be accessed
40 // in code once <gtest/gtest.h> has been #included.
41 // Do not move it after other #includes.
TEST(CommandLineFlagsTest,CanBeAccessedInCodeOnceGTestHIsIncluded)42 TEST(CommandLineFlagsTest, CanBeAccessedInCodeOnceGTestHIsIncluded) {
43 bool dummy = testing::GTEST_FLAG(also_run_disabled_tests)
44 || testing::GTEST_FLAG(break_on_failure)
45 || testing::GTEST_FLAG(catch_exceptions)
46 || testing::GTEST_FLAG(color) != "unknown"
47 || testing::GTEST_FLAG(filter) != "unknown"
48 || testing::GTEST_FLAG(list_tests)
49 || testing::GTEST_FLAG(output) != "unknown"
50 || testing::GTEST_FLAG(print_time)
51 || testing::GTEST_FLAG(random_seed)
52 || testing::GTEST_FLAG(repeat) > 0
53 || testing::GTEST_FLAG(show_internal_stack_frames)
54 || testing::GTEST_FLAG(shuffle)
55 || testing::GTEST_FLAG(stack_trace_depth) > 0
56 || testing::GTEST_FLAG(stream_result_to) != "unknown"
57 || testing::GTEST_FLAG(throw_on_failure);
58 EXPECT_TRUE(dummy || !dummy); // Suppresses warning that dummy is unused.
59 }
60
61 #include "gtest/gtest-spi.h"
62
63 // Indicates that this translation unit is part of Google Test's
64 // implementation. It must come before gtest-internal-inl.h is
65 // included, or there will be a compiler error. This trick is to
66 // prevent a user from accidentally including gtest-internal-inl.h in
67 // his code.
68 #define GTEST_IMPLEMENTATION_ 1
69 #include "src/gtest-internal-inl.h"
70 #undef GTEST_IMPLEMENTATION_
71
72 #include <limits.h> // For INT_MAX.
73 #include <stdlib.h>
74 #include <time.h>
75
76 #include <map>
77
78 namespace testing {
79 namespace internal {
80
81 // Provides access to otherwise private parts of the TestEventListeners class
82 // that are needed to test it.
83 class TestEventListenersAccessor {
84 public:
GetRepeater(TestEventListeners * listeners)85 static TestEventListener* GetRepeater(TestEventListeners* listeners) {
86 return listeners->repeater();
87 }
88
SetDefaultResultPrinter(TestEventListeners * listeners,TestEventListener * listener)89 static void SetDefaultResultPrinter(TestEventListeners* listeners,
90 TestEventListener* listener) {
91 listeners->SetDefaultResultPrinter(listener);
92 }
SetDefaultXmlGenerator(TestEventListeners * listeners,TestEventListener * listener)93 static void SetDefaultXmlGenerator(TestEventListeners* listeners,
94 TestEventListener* listener) {
95 listeners->SetDefaultXmlGenerator(listener);
96 }
97
EventForwardingEnabled(const TestEventListeners & listeners)98 static bool EventForwardingEnabled(const TestEventListeners& listeners) {
99 return listeners.EventForwardingEnabled();
100 }
101
SuppressEventForwarding(TestEventListeners * listeners)102 static void SuppressEventForwarding(TestEventListeners* listeners) {
103 listeners->SuppressEventForwarding();
104 }
105 };
106
107 } // namespace internal
108 } // namespace testing
109
110 using testing::AssertionFailure;
111 using testing::AssertionResult;
112 using testing::AssertionSuccess;
113 using testing::DoubleLE;
114 using testing::EmptyTestEventListener;
115 using testing::FloatLE;
116 using testing::GTEST_FLAG(also_run_disabled_tests);
117 using testing::GTEST_FLAG(break_on_failure);
118 using testing::GTEST_FLAG(catch_exceptions);
119 using testing::GTEST_FLAG(color);
120 using testing::GTEST_FLAG(death_test_use_fork);
121 using testing::GTEST_FLAG(filter);
122 using testing::GTEST_FLAG(list_tests);
123 using testing::GTEST_FLAG(output);
124 using testing::GTEST_FLAG(print_time);
125 using testing::GTEST_FLAG(random_seed);
126 using testing::GTEST_FLAG(repeat);
127 using testing::GTEST_FLAG(show_internal_stack_frames);
128 using testing::GTEST_FLAG(shuffle);
129 using testing::GTEST_FLAG(stack_trace_depth);
130 using testing::GTEST_FLAG(stream_result_to);
131 using testing::GTEST_FLAG(throw_on_failure);
132 using testing::IsNotSubstring;
133 using testing::IsSubstring;
134 using testing::Message;
135 using testing::ScopedFakeTestPartResultReporter;
136 using testing::StaticAssertTypeEq;
137 using testing::Test;
138 using testing::TestCase;
139 using testing::TestEventListeners;
140 using testing::TestPartResult;
141 using testing::TestPartResultArray;
142 using testing::TestProperty;
143 using testing::TestResult;
144 using testing::UnitTest;
145 using testing::kMaxStackTraceDepth;
146 using testing::internal::AddReference;
147 using testing::internal::AlwaysFalse;
148 using testing::internal::AlwaysTrue;
149 using testing::internal::AppendUserMessage;
150 using testing::internal::ArrayAwareFind;
151 using testing::internal::ArrayEq;
152 using testing::internal::CodePointToUtf8;
153 using testing::internal::CompileAssertTypesEqual;
154 using testing::internal::CopyArray;
155 using testing::internal::CountIf;
156 using testing::internal::EqFailure;
157 using testing::internal::FloatingPoint;
158 using testing::internal::ForEach;
159 using testing::internal::FormatTimeInMillisAsSeconds;
160 using testing::internal::GTestFlagSaver;
161 using testing::internal::GetCurrentOsStackTraceExceptTop;
162 using testing::internal::GetElementOr;
163 using testing::internal::GetNextRandomSeed;
164 using testing::internal::GetRandomSeedFromFlag;
165 using testing::internal::GetTestTypeId;
166 using testing::internal::GetTypeId;
167 using testing::internal::GetUnitTestImpl;
168 using testing::internal::ImplicitlyConvertible;
169 using testing::internal::Int32;
170 using testing::internal::Int32FromEnvOrDie;
171 using testing::internal::IsAProtocolMessage;
172 using testing::internal::IsContainer;
173 using testing::internal::IsContainerTest;
174 using testing::internal::IsNotContainer;
175 using testing::internal::NativeArray;
176 using testing::internal::ParseInt32Flag;
177 using testing::internal::RemoveConst;
178 using testing::internal::RemoveReference;
179 using testing::internal::ShouldRunTestOnShard;
180 using testing::internal::ShouldShard;
181 using testing::internal::ShouldUseColor;
182 using testing::internal::Shuffle;
183 using testing::internal::ShuffleRange;
184 using testing::internal::SkipPrefix;
185 using testing::internal::StreamableToString;
186 using testing::internal::String;
187 using testing::internal::TestEventListenersAccessor;
188 using testing::internal::TestResultAccessor;
189 using testing::internal::UInt32;
190 using testing::internal::WideStringToUtf8;
191 using testing::internal::kCopy;
192 using testing::internal::kMaxRandomSeed;
193 using testing::internal::kReference;
194 using testing::internal::kTestTypeIdInGoogleTest;
195 using testing::internal::scoped_ptr;
196
197 #if GTEST_HAS_STREAM_REDIRECTION
198 using testing::internal::CaptureStdout;
199 using testing::internal::GetCapturedStdout;
200 #endif
201
202 #if GTEST_IS_THREADSAFE
203 using testing::internal::ThreadWithParam;
204 #endif
205
206 class TestingVector : public std::vector<int> {
207 };
208
operator <<(::std::ostream & os,const TestingVector & vector)209 ::std::ostream& operator<<(::std::ostream& os,
210 const TestingVector& vector) {
211 os << "{ ";
212 for (size_t i = 0; i < vector.size(); i++) {
213 os << vector[i] << " ";
214 }
215 os << "}";
216 return os;
217 }
218
219 // This line tests that we can define tests in an unnamed namespace.
220 namespace {
221
TEST(GetRandomSeedFromFlagTest,HandlesZero)222 TEST(GetRandomSeedFromFlagTest, HandlesZero) {
223 const int seed = GetRandomSeedFromFlag(0);
224 EXPECT_LE(1, seed);
225 EXPECT_LE(seed, static_cast<int>(kMaxRandomSeed));
226 }
227
TEST(GetRandomSeedFromFlagTest,PreservesValidSeed)228 TEST(GetRandomSeedFromFlagTest, PreservesValidSeed) {
229 EXPECT_EQ(1, GetRandomSeedFromFlag(1));
230 EXPECT_EQ(2, GetRandomSeedFromFlag(2));
231 EXPECT_EQ(kMaxRandomSeed - 1, GetRandomSeedFromFlag(kMaxRandomSeed - 1));
232 EXPECT_EQ(static_cast<int>(kMaxRandomSeed),
233 GetRandomSeedFromFlag(kMaxRandomSeed));
234 }
235
TEST(GetRandomSeedFromFlagTest,NormalizesInvalidSeed)236 TEST(GetRandomSeedFromFlagTest, NormalizesInvalidSeed) {
237 const int seed1 = GetRandomSeedFromFlag(-1);
238 EXPECT_LE(1, seed1);
239 EXPECT_LE(seed1, static_cast<int>(kMaxRandomSeed));
240
241 const int seed2 = GetRandomSeedFromFlag(kMaxRandomSeed + 1);
242 EXPECT_LE(1, seed2);
243 EXPECT_LE(seed2, static_cast<int>(kMaxRandomSeed));
244 }
245
TEST(GetNextRandomSeedTest,WorksForValidInput)246 TEST(GetNextRandomSeedTest, WorksForValidInput) {
247 EXPECT_EQ(2, GetNextRandomSeed(1));
248 EXPECT_EQ(3, GetNextRandomSeed(2));
249 EXPECT_EQ(static_cast<int>(kMaxRandomSeed),
250 GetNextRandomSeed(kMaxRandomSeed - 1));
251 EXPECT_EQ(1, GetNextRandomSeed(kMaxRandomSeed));
252
253 // We deliberately don't test GetNextRandomSeed() with invalid
254 // inputs, as that requires death tests, which are expensive. This
255 // is fine as GetNextRandomSeed() is internal and has a
256 // straightforward definition.
257 }
258
ClearCurrentTestPartResults()259 static void ClearCurrentTestPartResults() {
260 TestResultAccessor::ClearTestPartResults(
261 GetUnitTestImpl()->current_test_result());
262 }
263
264 // Tests GetTypeId.
265
TEST(GetTypeIdTest,ReturnsSameValueForSameType)266 TEST(GetTypeIdTest, ReturnsSameValueForSameType) {
267 EXPECT_EQ(GetTypeId<int>(), GetTypeId<int>());
268 EXPECT_EQ(GetTypeId<Test>(), GetTypeId<Test>());
269 }
270
271 class SubClassOfTest : public Test {};
272 class AnotherSubClassOfTest : public Test {};
273
TEST(GetTypeIdTest,ReturnsDifferentValuesForDifferentTypes)274 TEST(GetTypeIdTest, ReturnsDifferentValuesForDifferentTypes) {
275 EXPECT_NE(GetTypeId<int>(), GetTypeId<const int>());
276 EXPECT_NE(GetTypeId<int>(), GetTypeId<char>());
277 EXPECT_NE(GetTypeId<int>(), GetTestTypeId());
278 EXPECT_NE(GetTypeId<SubClassOfTest>(), GetTestTypeId());
279 EXPECT_NE(GetTypeId<AnotherSubClassOfTest>(), GetTestTypeId());
280 EXPECT_NE(GetTypeId<AnotherSubClassOfTest>(), GetTypeId<SubClassOfTest>());
281 }
282
283 // Verifies that GetTestTypeId() returns the same value, no matter it
284 // is called from inside Google Test or outside of it.
TEST(GetTestTypeIdTest,ReturnsTheSameValueInsideOrOutsideOfGoogleTest)285 TEST(GetTestTypeIdTest, ReturnsTheSameValueInsideOrOutsideOfGoogleTest) {
286 EXPECT_EQ(kTestTypeIdInGoogleTest, GetTestTypeId());
287 }
288
289 // Tests FormatTimeInMillisAsSeconds().
290
TEST(FormatTimeInMillisAsSecondsTest,FormatsZero)291 TEST(FormatTimeInMillisAsSecondsTest, FormatsZero) {
292 EXPECT_EQ("0", FormatTimeInMillisAsSeconds(0));
293 }
294
TEST(FormatTimeInMillisAsSecondsTest,FormatsPositiveNumber)295 TEST(FormatTimeInMillisAsSecondsTest, FormatsPositiveNumber) {
296 EXPECT_EQ("0.003", FormatTimeInMillisAsSeconds(3));
297 EXPECT_EQ("0.01", FormatTimeInMillisAsSeconds(10));
298 EXPECT_EQ("0.2", FormatTimeInMillisAsSeconds(200));
299 EXPECT_EQ("1.2", FormatTimeInMillisAsSeconds(1200));
300 EXPECT_EQ("3", FormatTimeInMillisAsSeconds(3000));
301 }
302
TEST(FormatTimeInMillisAsSecondsTest,FormatsNegativeNumber)303 TEST(FormatTimeInMillisAsSecondsTest, FormatsNegativeNumber) {
304 EXPECT_EQ("-0.003", FormatTimeInMillisAsSeconds(-3));
305 EXPECT_EQ("-0.01", FormatTimeInMillisAsSeconds(-10));
306 EXPECT_EQ("-0.2", FormatTimeInMillisAsSeconds(-200));
307 EXPECT_EQ("-1.2", FormatTimeInMillisAsSeconds(-1200));
308 EXPECT_EQ("-3", FormatTimeInMillisAsSeconds(-3000));
309 }
310
311 #if GTEST_CAN_COMPARE_NULL
312
313 # ifdef __BORLANDC__
314 // Silences warnings: "Condition is always true", "Unreachable code"
315 # pragma option push -w-ccc -w-rch
316 # endif
317
318 // Tests that GTEST_IS_NULL_LITERAL_(x) is true when x is a null
319 // pointer literal.
TEST(NullLiteralTest,IsTrueForNullLiterals)320 TEST(NullLiteralTest, IsTrueForNullLiterals) {
321 EXPECT_TRUE(GTEST_IS_NULL_LITERAL_(NULL));
322 EXPECT_TRUE(GTEST_IS_NULL_LITERAL_(0));
323 EXPECT_TRUE(GTEST_IS_NULL_LITERAL_(0U));
324 EXPECT_TRUE(GTEST_IS_NULL_LITERAL_(0L));
325
326 # ifndef __BORLANDC__
327
328 // Some compilers may fail to detect some null pointer literals;
329 // as long as users of the framework don't use such literals, this
330 // is harmless.
331 EXPECT_TRUE(GTEST_IS_NULL_LITERAL_(1 - 1));
332
333 # endif
334 }
335
336 // Tests that GTEST_IS_NULL_LITERAL_(x) is false when x is not a null
337 // pointer literal.
TEST(NullLiteralTest,IsFalseForNonNullLiterals)338 TEST(NullLiteralTest, IsFalseForNonNullLiterals) {
339 EXPECT_FALSE(GTEST_IS_NULL_LITERAL_(1));
340 EXPECT_FALSE(GTEST_IS_NULL_LITERAL_(0.0));
341 EXPECT_FALSE(GTEST_IS_NULL_LITERAL_('a'));
342 EXPECT_FALSE(GTEST_IS_NULL_LITERAL_(static_cast<void*>(NULL)));
343 }
344
345 # ifdef __BORLANDC__
346 // Restores warnings after previous "#pragma option push" suppressed them.
347 # pragma option pop
348 # endif
349
350 #endif // GTEST_CAN_COMPARE_NULL
351 //
352 // Tests CodePointToUtf8().
353
354 // Tests that the NUL character L'\0' is encoded correctly.
TEST(CodePointToUtf8Test,CanEncodeNul)355 TEST(CodePointToUtf8Test, CanEncodeNul) {
356 char buffer[32];
357 EXPECT_STREQ("", CodePointToUtf8(L'\0', buffer));
358 }
359
360 // Tests that ASCII characters are encoded correctly.
TEST(CodePointToUtf8Test,CanEncodeAscii)361 TEST(CodePointToUtf8Test, CanEncodeAscii) {
362 char buffer[32];
363 EXPECT_STREQ("a", CodePointToUtf8(L'a', buffer));
364 EXPECT_STREQ("Z", CodePointToUtf8(L'Z', buffer));
365 EXPECT_STREQ("&", CodePointToUtf8(L'&', buffer));
366 EXPECT_STREQ("\x7F", CodePointToUtf8(L'\x7F', buffer));
367 }
368
369 // Tests that Unicode code-points that have 8 to 11 bits are encoded
370 // as 110xxxxx 10xxxxxx.
TEST(CodePointToUtf8Test,CanEncode8To11Bits)371 TEST(CodePointToUtf8Test, CanEncode8To11Bits) {
372 char buffer[32];
373 // 000 1101 0011 => 110-00011 10-010011
374 EXPECT_STREQ("\xC3\x93", CodePointToUtf8(L'\xD3', buffer));
375
376 // 101 0111 0110 => 110-10101 10-110110
377 // Some compilers (e.g., GCC on MinGW) cannot handle non-ASCII codepoints
378 // in wide strings and wide chars. In order to accomodate them, we have to
379 // introduce such character constants as integers.
380 EXPECT_STREQ("\xD5\xB6",
381 CodePointToUtf8(static_cast<wchar_t>(0x576), buffer));
382 }
383
384 // Tests that Unicode code-points that have 12 to 16 bits are encoded
385 // as 1110xxxx 10xxxxxx 10xxxxxx.
TEST(CodePointToUtf8Test,CanEncode12To16Bits)386 TEST(CodePointToUtf8Test, CanEncode12To16Bits) {
387 char buffer[32];
388 // 0000 1000 1101 0011 => 1110-0000 10-100011 10-010011
389 EXPECT_STREQ("\xE0\xA3\x93",
390 CodePointToUtf8(static_cast<wchar_t>(0x8D3), buffer));
391
392 // 1100 0111 0100 1101 => 1110-1100 10-011101 10-001101
393 EXPECT_STREQ("\xEC\x9D\x8D",
394 CodePointToUtf8(static_cast<wchar_t>(0xC74D), buffer));
395 }
396
397 #if !GTEST_WIDE_STRING_USES_UTF16_
398 // Tests in this group require a wchar_t to hold > 16 bits, and thus
399 // are skipped on Windows, Cygwin, and Symbian, where a wchar_t is
400 // 16-bit wide. This code may not compile on those systems.
401
402 // Tests that Unicode code-points that have 17 to 21 bits are encoded
403 // as 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx.
TEST(CodePointToUtf8Test,CanEncode17To21Bits)404 TEST(CodePointToUtf8Test, CanEncode17To21Bits) {
405 char buffer[32];
406 // 0 0001 0000 1000 1101 0011 => 11110-000 10-010000 10-100011 10-010011
407 EXPECT_STREQ("\xF0\x90\xA3\x93", CodePointToUtf8(L'\x108D3', buffer));
408
409 // 0 0001 0000 0100 0000 0000 => 11110-000 10-010000 10-010000 10-000000
410 EXPECT_STREQ("\xF0\x90\x90\x80", CodePointToUtf8(L'\x10400', buffer));
411
412 // 1 0000 1000 0110 0011 0100 => 11110-100 10-001000 10-011000 10-110100
413 EXPECT_STREQ("\xF4\x88\x98\xB4", CodePointToUtf8(L'\x108634', buffer));
414 }
415
416 // Tests that encoding an invalid code-point generates the expected result.
TEST(CodePointToUtf8Test,CanEncodeInvalidCodePoint)417 TEST(CodePointToUtf8Test, CanEncodeInvalidCodePoint) {
418 char buffer[32];
419 EXPECT_STREQ("(Invalid Unicode 0x1234ABCD)",
420 CodePointToUtf8(L'\x1234ABCD', buffer));
421 }
422
423 #endif // !GTEST_WIDE_STRING_USES_UTF16_
424
425 // Tests WideStringToUtf8().
426
427 // Tests that the NUL character L'\0' is encoded correctly.
TEST(WideStringToUtf8Test,CanEncodeNul)428 TEST(WideStringToUtf8Test, CanEncodeNul) {
429 EXPECT_STREQ("", WideStringToUtf8(L"", 0).c_str());
430 EXPECT_STREQ("", WideStringToUtf8(L"", -1).c_str());
431 }
432
433 // Tests that ASCII strings are encoded correctly.
TEST(WideStringToUtf8Test,CanEncodeAscii)434 TEST(WideStringToUtf8Test, CanEncodeAscii) {
435 EXPECT_STREQ("a", WideStringToUtf8(L"a", 1).c_str());
436 EXPECT_STREQ("ab", WideStringToUtf8(L"ab", 2).c_str());
437 EXPECT_STREQ("a", WideStringToUtf8(L"a", -1).c_str());
438 EXPECT_STREQ("ab", WideStringToUtf8(L"ab", -1).c_str());
439 }
440
441 // Tests that Unicode code-points that have 8 to 11 bits are encoded
442 // as 110xxxxx 10xxxxxx.
TEST(WideStringToUtf8Test,CanEncode8To11Bits)443 TEST(WideStringToUtf8Test, CanEncode8To11Bits) {
444 // 000 1101 0011 => 110-00011 10-010011
445 EXPECT_STREQ("\xC3\x93", WideStringToUtf8(L"\xD3", 1).c_str());
446 EXPECT_STREQ("\xC3\x93", WideStringToUtf8(L"\xD3", -1).c_str());
447
448 // 101 0111 0110 => 110-10101 10-110110
449 const wchar_t s[] = { 0x576, '\0' };
450 EXPECT_STREQ("\xD5\xB6", WideStringToUtf8(s, 1).c_str());
451 EXPECT_STREQ("\xD5\xB6", WideStringToUtf8(s, -1).c_str());
452 }
453
454 // Tests that Unicode code-points that have 12 to 16 bits are encoded
455 // as 1110xxxx 10xxxxxx 10xxxxxx.
TEST(WideStringToUtf8Test,CanEncode12To16Bits)456 TEST(WideStringToUtf8Test, CanEncode12To16Bits) {
457 // 0000 1000 1101 0011 => 1110-0000 10-100011 10-010011
458 const wchar_t s1[] = { 0x8D3, '\0' };
459 EXPECT_STREQ("\xE0\xA3\x93", WideStringToUtf8(s1, 1).c_str());
460 EXPECT_STREQ("\xE0\xA3\x93", WideStringToUtf8(s1, -1).c_str());
461
462 // 1100 0111 0100 1101 => 1110-1100 10-011101 10-001101
463 const wchar_t s2[] = { 0xC74D, '\0' };
464 EXPECT_STREQ("\xEC\x9D\x8D", WideStringToUtf8(s2, 1).c_str());
465 EXPECT_STREQ("\xEC\x9D\x8D", WideStringToUtf8(s2, -1).c_str());
466 }
467
468 // Tests that the conversion stops when the function encounters \0 character.
TEST(WideStringToUtf8Test,StopsOnNulCharacter)469 TEST(WideStringToUtf8Test, StopsOnNulCharacter) {
470 EXPECT_STREQ("ABC", WideStringToUtf8(L"ABC\0XYZ", 100).c_str());
471 }
472
473 // Tests that the conversion stops when the function reaches the limit
474 // specified by the 'length' parameter.
TEST(WideStringToUtf8Test,StopsWhenLengthLimitReached)475 TEST(WideStringToUtf8Test, StopsWhenLengthLimitReached) {
476 EXPECT_STREQ("ABC", WideStringToUtf8(L"ABCDEF", 3).c_str());
477 }
478
479 #if !GTEST_WIDE_STRING_USES_UTF16_
480 // Tests that Unicode code-points that have 17 to 21 bits are encoded
481 // as 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx. This code may not compile
482 // on the systems using UTF-16 encoding.
TEST(WideStringToUtf8Test,CanEncode17To21Bits)483 TEST(WideStringToUtf8Test, CanEncode17To21Bits) {
484 // 0 0001 0000 1000 1101 0011 => 11110-000 10-010000 10-100011 10-010011
485 EXPECT_STREQ("\xF0\x90\xA3\x93", WideStringToUtf8(L"\x108D3", 1).c_str());
486 EXPECT_STREQ("\xF0\x90\xA3\x93", WideStringToUtf8(L"\x108D3", -1).c_str());
487
488 // 1 0000 1000 0110 0011 0100 => 11110-100 10-001000 10-011000 10-110100
489 EXPECT_STREQ("\xF4\x88\x98\xB4", WideStringToUtf8(L"\x108634", 1).c_str());
490 EXPECT_STREQ("\xF4\x88\x98\xB4", WideStringToUtf8(L"\x108634", -1).c_str());
491 }
492
493 // Tests that encoding an invalid code-point generates the expected result.
TEST(WideStringToUtf8Test,CanEncodeInvalidCodePoint)494 TEST(WideStringToUtf8Test, CanEncodeInvalidCodePoint) {
495 EXPECT_STREQ("(Invalid Unicode 0xABCDFF)",
496 WideStringToUtf8(L"\xABCDFF", -1).c_str());
497 }
498 #else // !GTEST_WIDE_STRING_USES_UTF16_
499 // Tests that surrogate pairs are encoded correctly on the systems using
500 // UTF-16 encoding in the wide strings.
TEST(WideStringToUtf8Test,CanEncodeValidUtf16SUrrogatePairs)501 TEST(WideStringToUtf8Test, CanEncodeValidUtf16SUrrogatePairs) {
502 const wchar_t s[] = { 0xD801, 0xDC00, '\0' };
503 EXPECT_STREQ("\xF0\x90\x90\x80", WideStringToUtf8(s, -1).c_str());
504 }
505
506 // Tests that encoding an invalid UTF-16 surrogate pair
507 // generates the expected result.
TEST(WideStringToUtf8Test,CanEncodeInvalidUtf16SurrogatePair)508 TEST(WideStringToUtf8Test, CanEncodeInvalidUtf16SurrogatePair) {
509 // Leading surrogate is at the end of the string.
510 const wchar_t s1[] = { 0xD800, '\0' };
511 EXPECT_STREQ("\xED\xA0\x80", WideStringToUtf8(s1, -1).c_str());
512 // Leading surrogate is not followed by the trailing surrogate.
513 const wchar_t s2[] = { 0xD800, 'M', '\0' };
514 EXPECT_STREQ("\xED\xA0\x80M", WideStringToUtf8(s2, -1).c_str());
515 // Trailing surrogate appearas without a leading surrogate.
516 const wchar_t s3[] = { 0xDC00, 'P', 'Q', 'R', '\0' };
517 EXPECT_STREQ("\xED\xB0\x80PQR", WideStringToUtf8(s3, -1).c_str());
518 }
519 #endif // !GTEST_WIDE_STRING_USES_UTF16_
520
521 // Tests that codepoint concatenation works correctly.
522 #if !GTEST_WIDE_STRING_USES_UTF16_
TEST(WideStringToUtf8Test,ConcatenatesCodepointsCorrectly)523 TEST(WideStringToUtf8Test, ConcatenatesCodepointsCorrectly) {
524 const wchar_t s[] = { 0x108634, 0xC74D, '\n', 0x576, 0x8D3, 0x108634, '\0'};
525 EXPECT_STREQ(
526 "\xF4\x88\x98\xB4"
527 "\xEC\x9D\x8D"
528 "\n"
529 "\xD5\xB6"
530 "\xE0\xA3\x93"
531 "\xF4\x88\x98\xB4",
532 WideStringToUtf8(s, -1).c_str());
533 }
534 #else
TEST(WideStringToUtf8Test,ConcatenatesCodepointsCorrectly)535 TEST(WideStringToUtf8Test, ConcatenatesCodepointsCorrectly) {
536 const wchar_t s[] = { 0xC74D, '\n', 0x576, 0x8D3, '\0'};
537 EXPECT_STREQ(
538 "\xEC\x9D\x8D" "\n" "\xD5\xB6" "\xE0\xA3\x93",
539 WideStringToUtf8(s, -1).c_str());
540 }
541 #endif // !GTEST_WIDE_STRING_USES_UTF16_
542
543 // Tests the Random class.
544
TEST(RandomDeathTest,GeneratesCrashesOnInvalidRange)545 TEST(RandomDeathTest, GeneratesCrashesOnInvalidRange) {
546 testing::internal::Random random(42);
547 EXPECT_DEATH_IF_SUPPORTED(
548 random.Generate(0),
549 "Cannot generate a number in the range \\[0, 0\\)");
550 EXPECT_DEATH_IF_SUPPORTED(
551 random.Generate(testing::internal::Random::kMaxRange + 1),
552 "Generation of a number in \\[0, 2147483649\\) was requested, "
553 "but this can only generate numbers in \\[0, 2147483648\\)");
554 }
555
TEST(RandomTest,GeneratesNumbersWithinRange)556 TEST(RandomTest, GeneratesNumbersWithinRange) {
557 const UInt32 kRange = 10000;
558 testing::internal::Random random(12345);
559 for (int i = 0; i < 10; i++) {
560 EXPECT_LT(random.Generate(kRange), kRange) << " for iteration " << i;
561 }
562
563 testing::internal::Random random2(testing::internal::Random::kMaxRange);
564 for (int i = 0; i < 10; i++) {
565 EXPECT_LT(random2.Generate(kRange), kRange) << " for iteration " << i;
566 }
567 }
568
TEST(RandomTest,RepeatsWhenReseeded)569 TEST(RandomTest, RepeatsWhenReseeded) {
570 const int kSeed = 123;
571 const int kArraySize = 10;
572 const UInt32 kRange = 10000;
573 UInt32 values[kArraySize];
574
575 testing::internal::Random random(kSeed);
576 for (int i = 0; i < kArraySize; i++) {
577 values[i] = random.Generate(kRange);
578 }
579
580 random.Reseed(kSeed);
581 for (int i = 0; i < kArraySize; i++) {
582 EXPECT_EQ(values[i], random.Generate(kRange)) << " for iteration " << i;
583 }
584 }
585
586 // Tests STL container utilities.
587
588 // Tests CountIf().
589
IsPositive(int n)590 static bool IsPositive(int n) { return n > 0; }
591
TEST(ContainerUtilityTest,CountIf)592 TEST(ContainerUtilityTest, CountIf) {
593 std::vector<int> v;
594 EXPECT_EQ(0, CountIf(v, IsPositive)); // Works for an empty container.
595
596 v.push_back(-1);
597 v.push_back(0);
598 EXPECT_EQ(0, CountIf(v, IsPositive)); // Works when no value satisfies.
599
600 v.push_back(2);
601 v.push_back(-10);
602 v.push_back(10);
603 EXPECT_EQ(2, CountIf(v, IsPositive));
604 }
605
606 // Tests ForEach().
607
608 static int g_sum = 0;
Accumulate(int n)609 static void Accumulate(int n) { g_sum += n; }
610
TEST(ContainerUtilityTest,ForEach)611 TEST(ContainerUtilityTest, ForEach) {
612 std::vector<int> v;
613 g_sum = 0;
614 ForEach(v, Accumulate);
615 EXPECT_EQ(0, g_sum); // Works for an empty container;
616
617 g_sum = 0;
618 v.push_back(1);
619 ForEach(v, Accumulate);
620 EXPECT_EQ(1, g_sum); // Works for a container with one element.
621
622 g_sum = 0;
623 v.push_back(20);
624 v.push_back(300);
625 ForEach(v, Accumulate);
626 EXPECT_EQ(321, g_sum);
627 }
628
629 // Tests GetElementOr().
TEST(ContainerUtilityTest,GetElementOr)630 TEST(ContainerUtilityTest, GetElementOr) {
631 std::vector<char> a;
632 EXPECT_EQ('x', GetElementOr(a, 0, 'x'));
633
634 a.push_back('a');
635 a.push_back('b');
636 EXPECT_EQ('a', GetElementOr(a, 0, 'x'));
637 EXPECT_EQ('b', GetElementOr(a, 1, 'x'));
638 EXPECT_EQ('x', GetElementOr(a, -2, 'x'));
639 EXPECT_EQ('x', GetElementOr(a, 2, 'x'));
640 }
641
TEST(ContainerUtilityDeathTest,ShuffleRange)642 TEST(ContainerUtilityDeathTest, ShuffleRange) {
643 std::vector<int> a;
644 a.push_back(0);
645 a.push_back(1);
646 a.push_back(2);
647 testing::internal::Random random(1);
648
649 EXPECT_DEATH_IF_SUPPORTED(
650 ShuffleRange(&random, -1, 1, &a),
651 "Invalid shuffle range start -1: must be in range \\[0, 3\\]");
652 EXPECT_DEATH_IF_SUPPORTED(
653 ShuffleRange(&random, 4, 4, &a),
654 "Invalid shuffle range start 4: must be in range \\[0, 3\\]");
655 EXPECT_DEATH_IF_SUPPORTED(
656 ShuffleRange(&random, 3, 2, &a),
657 "Invalid shuffle range finish 2: must be in range \\[3, 3\\]");
658 EXPECT_DEATH_IF_SUPPORTED(
659 ShuffleRange(&random, 3, 4, &a),
660 "Invalid shuffle range finish 4: must be in range \\[3, 3\\]");
661 }
662
663 class VectorShuffleTest : public Test {
664 protected:
665 static const int kVectorSize = 20;
666
VectorShuffleTest()667 VectorShuffleTest() : random_(1) {
668 for (int i = 0; i < kVectorSize; i++) {
669 vector_.push_back(i);
670 }
671 }
672
VectorIsCorrupt(const TestingVector & vector)673 static bool VectorIsCorrupt(const TestingVector& vector) {
674 if (kVectorSize != static_cast<int>(vector.size())) {
675 return true;
676 }
677
678 bool found_in_vector[kVectorSize] = { false };
679 for (size_t i = 0; i < vector.size(); i++) {
680 const int e = vector[i];
681 if (e < 0 || e >= kVectorSize || found_in_vector[e]) {
682 return true;
683 }
684 found_in_vector[e] = true;
685 }
686
687 // Vector size is correct, elements' range is correct, no
688 // duplicate elements. Therefore no corruption has occurred.
689 return false;
690 }
691
VectorIsNotCorrupt(const TestingVector & vector)692 static bool VectorIsNotCorrupt(const TestingVector& vector) {
693 return !VectorIsCorrupt(vector);
694 }
695
RangeIsShuffled(const TestingVector & vector,int begin,int end)696 static bool RangeIsShuffled(const TestingVector& vector, int begin, int end) {
697 for (int i = begin; i < end; i++) {
698 if (i != vector[i]) {
699 return true;
700 }
701 }
702 return false;
703 }
704
RangeIsUnshuffled(const TestingVector & vector,int begin,int end)705 static bool RangeIsUnshuffled(
706 const TestingVector& vector, int begin, int end) {
707 return !RangeIsShuffled(vector, begin, end);
708 }
709
VectorIsShuffled(const TestingVector & vector)710 static bool VectorIsShuffled(const TestingVector& vector) {
711 return RangeIsShuffled(vector, 0, static_cast<int>(vector.size()));
712 }
713
VectorIsUnshuffled(const TestingVector & vector)714 static bool VectorIsUnshuffled(const TestingVector& vector) {
715 return !VectorIsShuffled(vector);
716 }
717
718 testing::internal::Random random_;
719 TestingVector vector_;
720 }; // class VectorShuffleTest
721
722 const int VectorShuffleTest::kVectorSize;
723
TEST_F(VectorShuffleTest,HandlesEmptyRange)724 TEST_F(VectorShuffleTest, HandlesEmptyRange) {
725 // Tests an empty range at the beginning...
726 ShuffleRange(&random_, 0, 0, &vector_);
727 ASSERT_PRED1(VectorIsNotCorrupt, vector_);
728 ASSERT_PRED1(VectorIsUnshuffled, vector_);
729
730 // ...in the middle...
731 ShuffleRange(&random_, kVectorSize/2, kVectorSize/2, &vector_);
732 ASSERT_PRED1(VectorIsNotCorrupt, vector_);
733 ASSERT_PRED1(VectorIsUnshuffled, vector_);
734
735 // ...at the end...
736 ShuffleRange(&random_, kVectorSize - 1, kVectorSize - 1, &vector_);
737 ASSERT_PRED1(VectorIsNotCorrupt, vector_);
738 ASSERT_PRED1(VectorIsUnshuffled, vector_);
739
740 // ...and past the end.
741 ShuffleRange(&random_, kVectorSize, kVectorSize, &vector_);
742 ASSERT_PRED1(VectorIsNotCorrupt, vector_);
743 ASSERT_PRED1(VectorIsUnshuffled, vector_);
744 }
745
TEST_F(VectorShuffleTest,HandlesRangeOfSizeOne)746 TEST_F(VectorShuffleTest, HandlesRangeOfSizeOne) {
747 // Tests a size one range at the beginning...
748 ShuffleRange(&random_, 0, 1, &vector_);
749 ASSERT_PRED1(VectorIsNotCorrupt, vector_);
750 ASSERT_PRED1(VectorIsUnshuffled, vector_);
751
752 // ...in the middle...
753 ShuffleRange(&random_, kVectorSize/2, kVectorSize/2 + 1, &vector_);
754 ASSERT_PRED1(VectorIsNotCorrupt, vector_);
755 ASSERT_PRED1(VectorIsUnshuffled, vector_);
756
757 // ...and at the end.
758 ShuffleRange(&random_, kVectorSize - 1, kVectorSize, &vector_);
759 ASSERT_PRED1(VectorIsNotCorrupt, vector_);
760 ASSERT_PRED1(VectorIsUnshuffled, vector_);
761 }
762
763 // Because we use our own random number generator and a fixed seed,
764 // we can guarantee that the following "random" tests will succeed.
765
TEST_F(VectorShuffleTest,ShufflesEntireVector)766 TEST_F(VectorShuffleTest, ShufflesEntireVector) {
767 Shuffle(&random_, &vector_);
768 ASSERT_PRED1(VectorIsNotCorrupt, vector_);
769 EXPECT_FALSE(VectorIsUnshuffled(vector_)) << vector_;
770
771 // Tests the first and last elements in particular to ensure that
772 // there are no off-by-one problems in our shuffle algorithm.
773 EXPECT_NE(0, vector_[0]);
774 EXPECT_NE(kVectorSize - 1, vector_[kVectorSize - 1]);
775 }
776
TEST_F(VectorShuffleTest,ShufflesStartOfVector)777 TEST_F(VectorShuffleTest, ShufflesStartOfVector) {
778 const int kRangeSize = kVectorSize/2;
779
780 ShuffleRange(&random_, 0, kRangeSize, &vector_);
781
782 ASSERT_PRED1(VectorIsNotCorrupt, vector_);
783 EXPECT_PRED3(RangeIsShuffled, vector_, 0, kRangeSize);
784 EXPECT_PRED3(RangeIsUnshuffled, vector_, kRangeSize, kVectorSize);
785 }
786
TEST_F(VectorShuffleTest,ShufflesEndOfVector)787 TEST_F(VectorShuffleTest, ShufflesEndOfVector) {
788 const int kRangeSize = kVectorSize / 2;
789 ShuffleRange(&random_, kRangeSize, kVectorSize, &vector_);
790
791 ASSERT_PRED1(VectorIsNotCorrupt, vector_);
792 EXPECT_PRED3(RangeIsUnshuffled, vector_, 0, kRangeSize);
793 EXPECT_PRED3(RangeIsShuffled, vector_, kRangeSize, kVectorSize);
794 }
795
TEST_F(VectorShuffleTest,ShufflesMiddleOfVector)796 TEST_F(VectorShuffleTest, ShufflesMiddleOfVector) {
797 int kRangeSize = kVectorSize/3;
798 ShuffleRange(&random_, kRangeSize, 2*kRangeSize, &vector_);
799
800 ASSERT_PRED1(VectorIsNotCorrupt, vector_);
801 EXPECT_PRED3(RangeIsUnshuffled, vector_, 0, kRangeSize);
802 EXPECT_PRED3(RangeIsShuffled, vector_, kRangeSize, 2*kRangeSize);
803 EXPECT_PRED3(RangeIsUnshuffled, vector_, 2*kRangeSize, kVectorSize);
804 }
805
TEST_F(VectorShuffleTest,ShufflesRepeatably)806 TEST_F(VectorShuffleTest, ShufflesRepeatably) {
807 TestingVector vector2;
808 for (int i = 0; i < kVectorSize; i++) {
809 vector2.push_back(i);
810 }
811
812 random_.Reseed(1234);
813 Shuffle(&random_, &vector_);
814 random_.Reseed(1234);
815 Shuffle(&random_, &vector2);
816
817 ASSERT_PRED1(VectorIsNotCorrupt, vector_);
818 ASSERT_PRED1(VectorIsNotCorrupt, vector2);
819
820 for (int i = 0; i < kVectorSize; i++) {
821 EXPECT_EQ(vector_[i], vector2[i]) << " where i is " << i;
822 }
823 }
824
825 // Tests the size of the AssertHelper class.
826
TEST(AssertHelperTest,AssertHelperIsSmall)827 TEST(AssertHelperTest, AssertHelperIsSmall) {
828 // To avoid breaking clients that use lots of assertions in one
829 // function, we cannot grow the size of AssertHelper.
830 EXPECT_LE(sizeof(testing::internal::AssertHelper), sizeof(void*));
831 }
832
833 // Tests the String class.
834
835 // Tests String's constructors.
TEST(StringTest,Constructors)836 TEST(StringTest, Constructors) {
837 // Default ctor.
838 String s1;
839 // We aren't using EXPECT_EQ(NULL, s1.c_str()) because comparing
840 // pointers with NULL isn't supported on all platforms.
841 EXPECT_EQ(0U, s1.length());
842 EXPECT_TRUE(NULL == s1.c_str());
843
844 // Implicitly constructs from a C-string.
845 String s2 = "Hi";
846 EXPECT_EQ(2U, s2.length());
847 EXPECT_STREQ("Hi", s2.c_str());
848
849 // Constructs from a C-string and a length.
850 String s3("hello", 3);
851 EXPECT_EQ(3U, s3.length());
852 EXPECT_STREQ("hel", s3.c_str());
853
854 // The empty String should be created when String is constructed with
855 // a NULL pointer and length 0.
856 EXPECT_EQ(0U, String(NULL, 0).length());
857 EXPECT_FALSE(String(NULL, 0).c_str() == NULL);
858
859 // Constructs a String that contains '\0'.
860 String s4("a\0bcd", 4);
861 EXPECT_EQ(4U, s4.length());
862 EXPECT_EQ('a', s4.c_str()[0]);
863 EXPECT_EQ('\0', s4.c_str()[1]);
864 EXPECT_EQ('b', s4.c_str()[2]);
865 EXPECT_EQ('c', s4.c_str()[3]);
866
867 // Copy ctor where the source is NULL.
868 const String null_str;
869 String s5 = null_str;
870 EXPECT_TRUE(s5.c_str() == NULL);
871
872 // Copy ctor where the source isn't NULL.
873 String s6 = s3;
874 EXPECT_EQ(3U, s6.length());
875 EXPECT_STREQ("hel", s6.c_str());
876
877 // Copy ctor where the source contains '\0'.
878 String s7 = s4;
879 EXPECT_EQ(4U, s7.length());
880 EXPECT_EQ('a', s7.c_str()[0]);
881 EXPECT_EQ('\0', s7.c_str()[1]);
882 EXPECT_EQ('b', s7.c_str()[2]);
883 EXPECT_EQ('c', s7.c_str()[3]);
884 }
885
TEST(StringTest,ConvertsFromStdString)886 TEST(StringTest, ConvertsFromStdString) {
887 // An empty std::string.
888 const std::string src1("");
889 const String dest1 = src1;
890 EXPECT_EQ(0U, dest1.length());
891 EXPECT_STREQ("", dest1.c_str());
892
893 // A normal std::string.
894 const std::string src2("Hi");
895 const String dest2 = src2;
896 EXPECT_EQ(2U, dest2.length());
897 EXPECT_STREQ("Hi", dest2.c_str());
898
899 // An std::string with an embedded NUL character.
900 const char src3[] = "a\0b";
901 const String dest3 = std::string(src3, sizeof(src3));
902 EXPECT_EQ(sizeof(src3), dest3.length());
903 EXPECT_EQ('a', dest3.c_str()[0]);
904 EXPECT_EQ('\0', dest3.c_str()[1]);
905 EXPECT_EQ('b', dest3.c_str()[2]);
906 }
907
TEST(StringTest,ConvertsToStdString)908 TEST(StringTest, ConvertsToStdString) {
909 // An empty String.
910 const String src1("");
911 const std::string dest1 = src1;
912 EXPECT_EQ("", dest1);
913
914 // A normal String.
915 const String src2("Hi");
916 const std::string dest2 = src2;
917 EXPECT_EQ("Hi", dest2);
918
919 // A String containing a '\0'.
920 const String src3("x\0y", 3);
921 const std::string dest3 = src3;
922 EXPECT_EQ(std::string("x\0y", 3), dest3);
923 }
924
925 #if GTEST_HAS_GLOBAL_STRING
926
TEST(StringTest,ConvertsFromGlobalString)927 TEST(StringTest, ConvertsFromGlobalString) {
928 // An empty ::string.
929 const ::string src1("");
930 const String dest1 = src1;
931 EXPECT_EQ(0U, dest1.length());
932 EXPECT_STREQ("", dest1.c_str());
933
934 // A normal ::string.
935 const ::string src2("Hi");
936 const String dest2 = src2;
937 EXPECT_EQ(2U, dest2.length());
938 EXPECT_STREQ("Hi", dest2.c_str());
939
940 // An ::string with an embedded NUL character.
941 const char src3[] = "x\0y";
942 const String dest3 = ::string(src3, sizeof(src3));
943 EXPECT_EQ(sizeof(src3), dest3.length());
944 EXPECT_EQ('x', dest3.c_str()[0]);
945 EXPECT_EQ('\0', dest3.c_str()[1]);
946 EXPECT_EQ('y', dest3.c_str()[2]);
947 }
948
TEST(StringTest,ConvertsToGlobalString)949 TEST(StringTest, ConvertsToGlobalString) {
950 // An empty String.
951 const String src1("");
952 const ::string dest1 = src1;
953 EXPECT_EQ("", dest1);
954
955 // A normal String.
956 const String src2("Hi");
957 const ::string dest2 = src2;
958 EXPECT_EQ("Hi", dest2);
959
960 const String src3("x\0y", 3);
961 const ::string dest3 = src3;
962 EXPECT_EQ(::string("x\0y", 3), dest3);
963 }
964
965 #endif // GTEST_HAS_GLOBAL_STRING
966
967 // Tests String::ShowCStringQuoted().
TEST(StringTest,ShowCStringQuoted)968 TEST(StringTest, ShowCStringQuoted) {
969 EXPECT_STREQ("(null)",
970 String::ShowCStringQuoted(NULL).c_str());
971 EXPECT_STREQ("\"\"",
972 String::ShowCStringQuoted("").c_str());
973 EXPECT_STREQ("\"foo\"",
974 String::ShowCStringQuoted("foo").c_str());
975 }
976
977 // Tests String::empty().
TEST(StringTest,Empty)978 TEST(StringTest, Empty) {
979 EXPECT_TRUE(String("").empty());
980 EXPECT_FALSE(String().empty());
981 EXPECT_FALSE(String(NULL).empty());
982 EXPECT_FALSE(String("a").empty());
983 EXPECT_FALSE(String("\0", 1).empty());
984 }
985
986 // Tests String::Compare().
TEST(StringTest,Compare)987 TEST(StringTest, Compare) {
988 // NULL vs NULL.
989 EXPECT_EQ(0, String().Compare(String()));
990
991 // NULL vs non-NULL.
992 EXPECT_EQ(-1, String().Compare(String("")));
993
994 // Non-NULL vs NULL.
995 EXPECT_EQ(1, String("").Compare(String()));
996
997 // The following covers non-NULL vs non-NULL.
998
999 // "" vs "".
1000 EXPECT_EQ(0, String("").Compare(String("")));
1001
1002 // "" vs non-"".
1003 EXPECT_EQ(-1, String("").Compare(String("\0", 1)));
1004 EXPECT_EQ(-1, String("").Compare(" "));
1005
1006 // Non-"" vs "".
1007 EXPECT_EQ(1, String("a").Compare(String("")));
1008
1009 // The following covers non-"" vs non-"".
1010
1011 // Same length and equal.
1012 EXPECT_EQ(0, String("a").Compare(String("a")));
1013
1014 // Same length and different.
1015 EXPECT_EQ(-1, String("a\0b", 3).Compare(String("a\0c", 3)));
1016 EXPECT_EQ(1, String("b").Compare(String("a")));
1017
1018 // Different lengths.
1019 EXPECT_EQ(-1, String("a").Compare(String("ab")));
1020 EXPECT_EQ(-1, String("a").Compare(String("a\0", 2)));
1021 EXPECT_EQ(1, String("abc").Compare(String("aacd")));
1022 }
1023
1024 // Tests String::operator==().
TEST(StringTest,Equals)1025 TEST(StringTest, Equals) {
1026 const String null(NULL);
1027 EXPECT_TRUE(null == NULL); // NOLINT
1028 EXPECT_FALSE(null == ""); // NOLINT
1029 EXPECT_FALSE(null == "bar"); // NOLINT
1030
1031 const String empty("");
1032 EXPECT_FALSE(empty == NULL); // NOLINT
1033 EXPECT_TRUE(empty == ""); // NOLINT
1034 EXPECT_FALSE(empty == "bar"); // NOLINT
1035
1036 const String foo("foo");
1037 EXPECT_FALSE(foo == NULL); // NOLINT
1038 EXPECT_FALSE(foo == ""); // NOLINT
1039 EXPECT_FALSE(foo == "bar"); // NOLINT
1040 EXPECT_TRUE(foo == "foo"); // NOLINT
1041
1042 const String bar("x\0y", 3);
1043 EXPECT_FALSE(bar == "x");
1044 }
1045
1046 // Tests String::operator!=().
TEST(StringTest,NotEquals)1047 TEST(StringTest, NotEquals) {
1048 const String null(NULL);
1049 EXPECT_FALSE(null != NULL); // NOLINT
1050 EXPECT_TRUE(null != ""); // NOLINT
1051 EXPECT_TRUE(null != "bar"); // NOLINT
1052
1053 const String empty("");
1054 EXPECT_TRUE(empty != NULL); // NOLINT
1055 EXPECT_FALSE(empty != ""); // NOLINT
1056 EXPECT_TRUE(empty != "bar"); // NOLINT
1057
1058 const String foo("foo");
1059 EXPECT_TRUE(foo != NULL); // NOLINT
1060 EXPECT_TRUE(foo != ""); // NOLINT
1061 EXPECT_TRUE(foo != "bar"); // NOLINT
1062 EXPECT_FALSE(foo != "foo"); // NOLINT
1063
1064 const String bar("x\0y", 3);
1065 EXPECT_TRUE(bar != "x");
1066 }
1067
1068 // Tests String::length().
TEST(StringTest,Length)1069 TEST(StringTest, Length) {
1070 EXPECT_EQ(0U, String().length());
1071 EXPECT_EQ(0U, String("").length());
1072 EXPECT_EQ(2U, String("ab").length());
1073 EXPECT_EQ(3U, String("a\0b", 3).length());
1074 }
1075
1076 // Tests String::EndsWith().
TEST(StringTest,EndsWith)1077 TEST(StringTest, EndsWith) {
1078 EXPECT_TRUE(String("foobar").EndsWith("bar"));
1079 EXPECT_TRUE(String("foobar").EndsWith(""));
1080 EXPECT_TRUE(String("").EndsWith(""));
1081
1082 EXPECT_FALSE(String("foobar").EndsWith("foo"));
1083 EXPECT_FALSE(String("").EndsWith("foo"));
1084 }
1085
1086 // Tests String::EndsWithCaseInsensitive().
TEST(StringTest,EndsWithCaseInsensitive)1087 TEST(StringTest, EndsWithCaseInsensitive) {
1088 EXPECT_TRUE(String("foobar").EndsWithCaseInsensitive("BAR"));
1089 EXPECT_TRUE(String("foobaR").EndsWithCaseInsensitive("bar"));
1090 EXPECT_TRUE(String("foobar").EndsWithCaseInsensitive(""));
1091 EXPECT_TRUE(String("").EndsWithCaseInsensitive(""));
1092
1093 EXPECT_FALSE(String("Foobar").EndsWithCaseInsensitive("foo"));
1094 EXPECT_FALSE(String("foobar").EndsWithCaseInsensitive("Foo"));
1095 EXPECT_FALSE(String("").EndsWithCaseInsensitive("foo"));
1096 }
1097
1098 // C++Builder's preprocessor is buggy; it fails to expand macros that
1099 // appear in macro parameters after wide char literals. Provide an alias
1100 // for NULL as a workaround.
1101 static const wchar_t* const kNull = NULL;
1102
1103 // Tests String::CaseInsensitiveWideCStringEquals
TEST(StringTest,CaseInsensitiveWideCStringEquals)1104 TEST(StringTest, CaseInsensitiveWideCStringEquals) {
1105 EXPECT_TRUE(String::CaseInsensitiveWideCStringEquals(NULL, NULL));
1106 EXPECT_FALSE(String::CaseInsensitiveWideCStringEquals(kNull, L""));
1107 EXPECT_FALSE(String::CaseInsensitiveWideCStringEquals(L"", kNull));
1108 EXPECT_FALSE(String::CaseInsensitiveWideCStringEquals(kNull, L"foobar"));
1109 EXPECT_FALSE(String::CaseInsensitiveWideCStringEquals(L"foobar", kNull));
1110 EXPECT_TRUE(String::CaseInsensitiveWideCStringEquals(L"foobar", L"foobar"));
1111 EXPECT_TRUE(String::CaseInsensitiveWideCStringEquals(L"foobar", L"FOOBAR"));
1112 EXPECT_TRUE(String::CaseInsensitiveWideCStringEquals(L"FOOBAR", L"foobar"));
1113 }
1114
1115 // Tests that NULL can be assigned to a String.
TEST(StringTest,CanBeAssignedNULL)1116 TEST(StringTest, CanBeAssignedNULL) {
1117 const String src(NULL);
1118 String dest;
1119
1120 dest = src;
1121 EXPECT_STREQ(NULL, dest.c_str());
1122 }
1123
1124 // Tests that the empty string "" can be assigned to a String.
TEST(StringTest,CanBeAssignedEmpty)1125 TEST(StringTest, CanBeAssignedEmpty) {
1126 const String src("");
1127 String dest;
1128
1129 dest = src;
1130 EXPECT_STREQ("", dest.c_str());
1131 }
1132
1133 // Tests that a non-empty string can be assigned to a String.
TEST(StringTest,CanBeAssignedNonEmpty)1134 TEST(StringTest, CanBeAssignedNonEmpty) {
1135 const String src("hello");
1136 String dest;
1137 dest = src;
1138 EXPECT_EQ(5U, dest.length());
1139 EXPECT_STREQ("hello", dest.c_str());
1140
1141 const String src2("x\0y", 3);
1142 String dest2;
1143 dest2 = src2;
1144 EXPECT_EQ(3U, dest2.length());
1145 EXPECT_EQ('x', dest2.c_str()[0]);
1146 EXPECT_EQ('\0', dest2.c_str()[1]);
1147 EXPECT_EQ('y', dest2.c_str()[2]);
1148 }
1149
1150 // Tests that a String can be assigned to itself.
TEST(StringTest,CanBeAssignedSelf)1151 TEST(StringTest, CanBeAssignedSelf) {
1152 String dest("hello");
1153
1154 // Use explicit function call notation here to suppress self-assign warning.
1155 dest.operator=(dest);
1156 EXPECT_STREQ("hello", dest.c_str());
1157 }
1158
1159 // Sun Studio < 12 incorrectly rejects this code due to an overloading
1160 // ambiguity.
1161 #if !(defined(__SUNPRO_CC) && __SUNPRO_CC < 0x590)
1162 // Tests streaming a String.
TEST(StringTest,Streams)1163 TEST(StringTest, Streams) {
1164 EXPECT_EQ(StreamableToString(String()), "(null)");
1165 EXPECT_EQ(StreamableToString(String("")), "");
1166 EXPECT_EQ(StreamableToString(String("a\0b", 3)), "a\\0b");
1167 }
1168 #endif
1169
1170 // Tests that String::Format() works.
TEST(StringTest,FormatWorks)1171 TEST(StringTest, FormatWorks) {
1172 // Normal case: the format spec is valid, the arguments match the
1173 // spec, and the result is < 4095 characters.
1174 EXPECT_STREQ("Hello, 42", String::Format("%s, %d", "Hello", 42).c_str());
1175
1176 // Edge case: the result is 4095 characters.
1177 char buffer[4096];
1178 const size_t kSize = sizeof(buffer);
1179 memset(buffer, 'a', kSize - 1);
1180 buffer[kSize - 1] = '\0';
1181 EXPECT_STREQ(buffer, String::Format("%s", buffer).c_str());
1182
1183 // The result needs to be 4096 characters, exceeding Format()'s limit.
1184 EXPECT_STREQ("<formatting error or buffer exceeded>",
1185 String::Format("x%s", buffer).c_str());
1186
1187 #if GTEST_OS_LINUX
1188 // On Linux, invalid format spec should lead to an error message.
1189 // In other environment (e.g. MSVC on Windows), String::Format() may
1190 // simply ignore a bad format spec, so this assertion is run on
1191 // Linux only.
1192 EXPECT_STREQ("<formatting error or buffer exceeded>",
1193 String::Format("%").c_str());
1194 #endif
1195 }
1196
1197 #if GTEST_OS_WINDOWS
1198
1199 // Tests String::ShowWideCString().
TEST(StringTest,ShowWideCString)1200 TEST(StringTest, ShowWideCString) {
1201 EXPECT_STREQ("(null)",
1202 String::ShowWideCString(NULL).c_str());
1203 EXPECT_STREQ("", String::ShowWideCString(L"").c_str());
1204 EXPECT_STREQ("foo", String::ShowWideCString(L"foo").c_str());
1205 }
1206
1207 // Tests String::ShowWideCStringQuoted().
TEST(StringTest,ShowWideCStringQuoted)1208 TEST(StringTest, ShowWideCStringQuoted) {
1209 EXPECT_STREQ("(null)",
1210 String::ShowWideCStringQuoted(NULL).c_str());
1211 EXPECT_STREQ("L\"\"",
1212 String::ShowWideCStringQuoted(L"").c_str());
1213 EXPECT_STREQ("L\"foo\"",
1214 String::ShowWideCStringQuoted(L"foo").c_str());
1215 }
1216
1217 # if GTEST_OS_WINDOWS_MOBILE
TEST(StringTest,AnsiAndUtf16Null)1218 TEST(StringTest, AnsiAndUtf16Null) {
1219 EXPECT_EQ(NULL, String::AnsiToUtf16(NULL));
1220 EXPECT_EQ(NULL, String::Utf16ToAnsi(NULL));
1221 }
1222
TEST(StringTest,AnsiAndUtf16ConvertBasic)1223 TEST(StringTest, AnsiAndUtf16ConvertBasic) {
1224 const char* ansi = String::Utf16ToAnsi(L"str");
1225 EXPECT_STREQ("str", ansi);
1226 delete [] ansi;
1227 const WCHAR* utf16 = String::AnsiToUtf16("str");
1228 EXPECT_EQ(0, wcsncmp(L"str", utf16, 3));
1229 delete [] utf16;
1230 }
1231
TEST(StringTest,AnsiAndUtf16ConvertPathChars)1232 TEST(StringTest, AnsiAndUtf16ConvertPathChars) {
1233 const char* ansi = String::Utf16ToAnsi(L".:\\ \"*?");
1234 EXPECT_STREQ(".:\\ \"*?", ansi);
1235 delete [] ansi;
1236 const WCHAR* utf16 = String::AnsiToUtf16(".:\\ \"*?");
1237 EXPECT_EQ(0, wcsncmp(L".:\\ \"*?", utf16, 3));
1238 delete [] utf16;
1239 }
1240 # endif // GTEST_OS_WINDOWS_MOBILE
1241
1242 #endif // GTEST_OS_WINDOWS
1243
1244 // Tests TestProperty construction.
TEST(TestPropertyTest,StringValue)1245 TEST(TestPropertyTest, StringValue) {
1246 TestProperty property("key", "1");
1247 EXPECT_STREQ("key", property.key());
1248 EXPECT_STREQ("1", property.value());
1249 }
1250
1251 // Tests TestProperty replacing a value.
TEST(TestPropertyTest,ReplaceStringValue)1252 TEST(TestPropertyTest, ReplaceStringValue) {
1253 TestProperty property("key", "1");
1254 EXPECT_STREQ("1", property.value());
1255 property.SetValue("2");
1256 EXPECT_STREQ("2", property.value());
1257 }
1258
1259 // AddFatalFailure() and AddNonfatalFailure() must be stand-alone
1260 // functions (i.e. their definitions cannot be inlined at the call
1261 // sites), or C++Builder won't compile the code.
AddFatalFailure()1262 static void AddFatalFailure() {
1263 FAIL() << "Expected fatal failure.";
1264 }
1265
AddNonfatalFailure()1266 static void AddNonfatalFailure() {
1267 ADD_FAILURE() << "Expected non-fatal failure.";
1268 }
1269
1270 class ScopedFakeTestPartResultReporterTest : public Test {
1271 public: // Must be public and not protected due to a bug in g++ 3.4.2.
1272 enum FailureMode {
1273 FATAL_FAILURE,
1274 NONFATAL_FAILURE
1275 };
AddFailure(FailureMode failure)1276 static void AddFailure(FailureMode failure) {
1277 if (failure == FATAL_FAILURE) {
1278 AddFatalFailure();
1279 } else {
1280 AddNonfatalFailure();
1281 }
1282 }
1283 };
1284
1285 // Tests that ScopedFakeTestPartResultReporter intercepts test
1286 // failures.
TEST_F(ScopedFakeTestPartResultReporterTest,InterceptsTestFailures)1287 TEST_F(ScopedFakeTestPartResultReporterTest, InterceptsTestFailures) {
1288 TestPartResultArray results;
1289 {
1290 ScopedFakeTestPartResultReporter reporter(
1291 ScopedFakeTestPartResultReporter::INTERCEPT_ONLY_CURRENT_THREAD,
1292 &results);
1293 AddFailure(NONFATAL_FAILURE);
1294 AddFailure(FATAL_FAILURE);
1295 }
1296
1297 EXPECT_EQ(2, results.size());
1298 EXPECT_TRUE(results.GetTestPartResult(0).nonfatally_failed());
1299 EXPECT_TRUE(results.GetTestPartResult(1).fatally_failed());
1300 }
1301
TEST_F(ScopedFakeTestPartResultReporterTest,DeprecatedConstructor)1302 TEST_F(ScopedFakeTestPartResultReporterTest, DeprecatedConstructor) {
1303 TestPartResultArray results;
1304 {
1305 // Tests, that the deprecated constructor still works.
1306 ScopedFakeTestPartResultReporter reporter(&results);
1307 AddFailure(NONFATAL_FAILURE);
1308 }
1309 EXPECT_EQ(1, results.size());
1310 }
1311
1312 #if GTEST_IS_THREADSAFE
1313
1314 class ScopedFakeTestPartResultReporterWithThreadsTest
1315 : public ScopedFakeTestPartResultReporterTest {
1316 protected:
AddFailureInOtherThread(FailureMode failure)1317 static void AddFailureInOtherThread(FailureMode failure) {
1318 ThreadWithParam<FailureMode> thread(&AddFailure, failure, NULL);
1319 thread.Join();
1320 }
1321 };
1322
TEST_F(ScopedFakeTestPartResultReporterWithThreadsTest,InterceptsTestFailuresInAllThreads)1323 TEST_F(ScopedFakeTestPartResultReporterWithThreadsTest,
1324 InterceptsTestFailuresInAllThreads) {
1325 TestPartResultArray results;
1326 {
1327 ScopedFakeTestPartResultReporter reporter(
1328 ScopedFakeTestPartResultReporter::INTERCEPT_ALL_THREADS, &results);
1329 AddFailure(NONFATAL_FAILURE);
1330 AddFailure(FATAL_FAILURE);
1331 AddFailureInOtherThread(NONFATAL_FAILURE);
1332 AddFailureInOtherThread(FATAL_FAILURE);
1333 }
1334
1335 EXPECT_EQ(4, results.size());
1336 EXPECT_TRUE(results.GetTestPartResult(0).nonfatally_failed());
1337 EXPECT_TRUE(results.GetTestPartResult(1).fatally_failed());
1338 EXPECT_TRUE(results.GetTestPartResult(2).nonfatally_failed());
1339 EXPECT_TRUE(results.GetTestPartResult(3).fatally_failed());
1340 }
1341
1342 #endif // GTEST_IS_THREADSAFE
1343
1344 // Tests EXPECT_FATAL_FAILURE{,ON_ALL_THREADS}. Makes sure that they
1345 // work even if the failure is generated in a called function rather than
1346 // the current context.
1347
1348 typedef ScopedFakeTestPartResultReporterTest ExpectFatalFailureTest;
1349
TEST_F(ExpectFatalFailureTest,CatchesFatalFaliure)1350 TEST_F(ExpectFatalFailureTest, CatchesFatalFaliure) {
1351 EXPECT_FATAL_FAILURE(AddFatalFailure(), "Expected fatal failure.");
1352 }
1353
1354 #if GTEST_HAS_GLOBAL_STRING
TEST_F(ExpectFatalFailureTest,AcceptsStringObject)1355 TEST_F(ExpectFatalFailureTest, AcceptsStringObject) {
1356 EXPECT_FATAL_FAILURE(AddFatalFailure(), ::string("Expected fatal failure."));
1357 }
1358 #endif
1359
TEST_F(ExpectFatalFailureTest,AcceptsStdStringObject)1360 TEST_F(ExpectFatalFailureTest, AcceptsStdStringObject) {
1361 EXPECT_FATAL_FAILURE(AddFatalFailure(),
1362 ::std::string("Expected fatal failure."));
1363 }
1364
TEST_F(ExpectFatalFailureTest,CatchesFatalFailureOnAllThreads)1365 TEST_F(ExpectFatalFailureTest, CatchesFatalFailureOnAllThreads) {
1366 // We have another test below to verify that the macro catches fatal
1367 // failures generated on another thread.
1368 EXPECT_FATAL_FAILURE_ON_ALL_THREADS(AddFatalFailure(),
1369 "Expected fatal failure.");
1370 }
1371
1372 #ifdef __BORLANDC__
1373 // Silences warnings: "Condition is always true"
1374 # pragma option push -w-ccc
1375 #endif
1376
1377 // Tests that EXPECT_FATAL_FAILURE() can be used in a non-void
1378 // function even when the statement in it contains ASSERT_*.
1379
NonVoidFunction()1380 int NonVoidFunction() {
1381 EXPECT_FATAL_FAILURE(ASSERT_TRUE(false), "");
1382 EXPECT_FATAL_FAILURE_ON_ALL_THREADS(FAIL(), "");
1383 return 0;
1384 }
1385
TEST_F(ExpectFatalFailureTest,CanBeUsedInNonVoidFunction)1386 TEST_F(ExpectFatalFailureTest, CanBeUsedInNonVoidFunction) {
1387 NonVoidFunction();
1388 }
1389
1390 // Tests that EXPECT_FATAL_FAILURE(statement, ...) doesn't abort the
1391 // current function even though 'statement' generates a fatal failure.
1392
DoesNotAbortHelper(bool * aborted)1393 void DoesNotAbortHelper(bool* aborted) {
1394 EXPECT_FATAL_FAILURE(ASSERT_TRUE(false), "");
1395 EXPECT_FATAL_FAILURE_ON_ALL_THREADS(FAIL(), "");
1396
1397 *aborted = false;
1398 }
1399
1400 #ifdef __BORLANDC__
1401 // Restores warnings after previous "#pragma option push" suppressed them.
1402 # pragma option pop
1403 #endif
1404
TEST_F(ExpectFatalFailureTest,DoesNotAbort)1405 TEST_F(ExpectFatalFailureTest, DoesNotAbort) {
1406 bool aborted = true;
1407 DoesNotAbortHelper(&aborted);
1408 EXPECT_FALSE(aborted);
1409 }
1410
1411 // Tests that the EXPECT_FATAL_FAILURE{,_ON_ALL_THREADS} accepts a
1412 // statement that contains a macro which expands to code containing an
1413 // unprotected comma.
1414
1415 static int global_var = 0;
1416 #define GTEST_USE_UNPROTECTED_COMMA_ global_var++, global_var++
1417
TEST_F(ExpectFatalFailureTest,AcceptsMacroThatExpandsToUnprotectedComma)1418 TEST_F(ExpectFatalFailureTest, AcceptsMacroThatExpandsToUnprotectedComma) {
1419 #ifndef __BORLANDC__
1420 // ICE's in C++Builder.
1421 EXPECT_FATAL_FAILURE({
1422 GTEST_USE_UNPROTECTED_COMMA_;
1423 AddFatalFailure();
1424 }, "");
1425 #endif
1426
1427 EXPECT_FATAL_FAILURE_ON_ALL_THREADS({
1428 GTEST_USE_UNPROTECTED_COMMA_;
1429 AddFatalFailure();
1430 }, "");
1431 }
1432
1433 // Tests EXPECT_NONFATAL_FAILURE{,ON_ALL_THREADS}.
1434
1435 typedef ScopedFakeTestPartResultReporterTest ExpectNonfatalFailureTest;
1436
TEST_F(ExpectNonfatalFailureTest,CatchesNonfatalFailure)1437 TEST_F(ExpectNonfatalFailureTest, CatchesNonfatalFailure) {
1438 EXPECT_NONFATAL_FAILURE(AddNonfatalFailure(),
1439 "Expected non-fatal failure.");
1440 }
1441
1442 #if GTEST_HAS_GLOBAL_STRING
TEST_F(ExpectNonfatalFailureTest,AcceptsStringObject)1443 TEST_F(ExpectNonfatalFailureTest, AcceptsStringObject) {
1444 EXPECT_NONFATAL_FAILURE(AddNonfatalFailure(),
1445 ::string("Expected non-fatal failure."));
1446 }
1447 #endif
1448
TEST_F(ExpectNonfatalFailureTest,AcceptsStdStringObject)1449 TEST_F(ExpectNonfatalFailureTest, AcceptsStdStringObject) {
1450 EXPECT_NONFATAL_FAILURE(AddNonfatalFailure(),
1451 ::std::string("Expected non-fatal failure."));
1452 }
1453
TEST_F(ExpectNonfatalFailureTest,CatchesNonfatalFailureOnAllThreads)1454 TEST_F(ExpectNonfatalFailureTest, CatchesNonfatalFailureOnAllThreads) {
1455 // We have another test below to verify that the macro catches
1456 // non-fatal failures generated on another thread.
1457 EXPECT_NONFATAL_FAILURE_ON_ALL_THREADS(AddNonfatalFailure(),
1458 "Expected non-fatal failure.");
1459 }
1460
1461 // Tests that the EXPECT_NONFATAL_FAILURE{,_ON_ALL_THREADS} accepts a
1462 // statement that contains a macro which expands to code containing an
1463 // unprotected comma.
TEST_F(ExpectNonfatalFailureTest,AcceptsMacroThatExpandsToUnprotectedComma)1464 TEST_F(ExpectNonfatalFailureTest, AcceptsMacroThatExpandsToUnprotectedComma) {
1465 EXPECT_NONFATAL_FAILURE({
1466 GTEST_USE_UNPROTECTED_COMMA_;
1467 AddNonfatalFailure();
1468 }, "");
1469
1470 EXPECT_NONFATAL_FAILURE_ON_ALL_THREADS({
1471 GTEST_USE_UNPROTECTED_COMMA_;
1472 AddNonfatalFailure();
1473 }, "");
1474 }
1475
1476 #if GTEST_IS_THREADSAFE
1477
1478 typedef ScopedFakeTestPartResultReporterWithThreadsTest
1479 ExpectFailureWithThreadsTest;
1480
TEST_F(ExpectFailureWithThreadsTest,ExpectFatalFailureOnAllThreads)1481 TEST_F(ExpectFailureWithThreadsTest, ExpectFatalFailureOnAllThreads) {
1482 EXPECT_FATAL_FAILURE_ON_ALL_THREADS(AddFailureInOtherThread(FATAL_FAILURE),
1483 "Expected fatal failure.");
1484 }
1485
TEST_F(ExpectFailureWithThreadsTest,ExpectNonFatalFailureOnAllThreads)1486 TEST_F(ExpectFailureWithThreadsTest, ExpectNonFatalFailureOnAllThreads) {
1487 EXPECT_NONFATAL_FAILURE_ON_ALL_THREADS(
1488 AddFailureInOtherThread(NONFATAL_FAILURE), "Expected non-fatal failure.");
1489 }
1490
1491 #endif // GTEST_IS_THREADSAFE
1492
1493 // Tests the TestProperty class.
1494
TEST(TestPropertyTest,ConstructorWorks)1495 TEST(TestPropertyTest, ConstructorWorks) {
1496 const TestProperty property("key", "value");
1497 EXPECT_STREQ("key", property.key());
1498 EXPECT_STREQ("value", property.value());
1499 }
1500
TEST(TestPropertyTest,SetValue)1501 TEST(TestPropertyTest, SetValue) {
1502 TestProperty property("key", "value_1");
1503 EXPECT_STREQ("key", property.key());
1504 property.SetValue("value_2");
1505 EXPECT_STREQ("key", property.key());
1506 EXPECT_STREQ("value_2", property.value());
1507 }
1508
1509 // Tests the TestResult class
1510
1511 // The test fixture for testing TestResult.
1512 class TestResultTest : public Test {
1513 protected:
1514 typedef std::vector<TestPartResult> TPRVector;
1515
1516 // We make use of 2 TestPartResult objects,
1517 TestPartResult * pr1, * pr2;
1518
1519 // ... and 3 TestResult objects.
1520 TestResult * r0, * r1, * r2;
1521
SetUp()1522 virtual void SetUp() {
1523 // pr1 is for success.
1524 pr1 = new TestPartResult(TestPartResult::kSuccess,
1525 "foo/bar.cc",
1526 10,
1527 "Success!");
1528
1529 // pr2 is for fatal failure.
1530 pr2 = new TestPartResult(TestPartResult::kFatalFailure,
1531 "foo/bar.cc",
1532 -1, // This line number means "unknown"
1533 "Failure!");
1534
1535 // Creates the TestResult objects.
1536 r0 = new TestResult();
1537 r1 = new TestResult();
1538 r2 = new TestResult();
1539
1540 // In order to test TestResult, we need to modify its internal
1541 // state, in particular the TestPartResult vector it holds.
1542 // test_part_results() returns a const reference to this vector.
1543 // We cast it to a non-const object s.t. it can be modified (yes,
1544 // this is a hack).
1545 TPRVector* results1 = const_cast<TPRVector*>(
1546 &TestResultAccessor::test_part_results(*r1));
1547 TPRVector* results2 = const_cast<TPRVector*>(
1548 &TestResultAccessor::test_part_results(*r2));
1549
1550 // r0 is an empty TestResult.
1551
1552 // r1 contains a single SUCCESS TestPartResult.
1553 results1->push_back(*pr1);
1554
1555 // r2 contains a SUCCESS, and a FAILURE.
1556 results2->push_back(*pr1);
1557 results2->push_back(*pr2);
1558 }
1559
TearDown()1560 virtual void TearDown() {
1561 delete pr1;
1562 delete pr2;
1563
1564 delete r0;
1565 delete r1;
1566 delete r2;
1567 }
1568
1569 // Helper that compares two two TestPartResults.
CompareTestPartResult(const TestPartResult & expected,const TestPartResult & actual)1570 static void CompareTestPartResult(const TestPartResult& expected,
1571 const TestPartResult& actual) {
1572 EXPECT_EQ(expected.type(), actual.type());
1573 EXPECT_STREQ(expected.file_name(), actual.file_name());
1574 EXPECT_EQ(expected.line_number(), actual.line_number());
1575 EXPECT_STREQ(expected.summary(), actual.summary());
1576 EXPECT_STREQ(expected.message(), actual.message());
1577 EXPECT_EQ(expected.passed(), actual.passed());
1578 EXPECT_EQ(expected.failed(), actual.failed());
1579 EXPECT_EQ(expected.nonfatally_failed(), actual.nonfatally_failed());
1580 EXPECT_EQ(expected.fatally_failed(), actual.fatally_failed());
1581 }
1582 };
1583
1584 // Tests TestResult::total_part_count().
TEST_F(TestResultTest,total_part_count)1585 TEST_F(TestResultTest, total_part_count) {
1586 ASSERT_EQ(0, r0->total_part_count());
1587 ASSERT_EQ(1, r1->total_part_count());
1588 ASSERT_EQ(2, r2->total_part_count());
1589 }
1590
1591 // Tests TestResult::Passed().
TEST_F(TestResultTest,Passed)1592 TEST_F(TestResultTest, Passed) {
1593 ASSERT_TRUE(r0->Passed());
1594 ASSERT_TRUE(r1->Passed());
1595 ASSERT_FALSE(r2->Passed());
1596 }
1597
1598 // Tests TestResult::Failed().
TEST_F(TestResultTest,Failed)1599 TEST_F(TestResultTest, Failed) {
1600 ASSERT_FALSE(r0->Failed());
1601 ASSERT_FALSE(r1->Failed());
1602 ASSERT_TRUE(r2->Failed());
1603 }
1604
1605 // Tests TestResult::GetTestPartResult().
1606
1607 typedef TestResultTest TestResultDeathTest;
1608
TEST_F(TestResultDeathTest,GetTestPartResult)1609 TEST_F(TestResultDeathTest, GetTestPartResult) {
1610 CompareTestPartResult(*pr1, r2->GetTestPartResult(0));
1611 CompareTestPartResult(*pr2, r2->GetTestPartResult(1));
1612 EXPECT_DEATH_IF_SUPPORTED(r2->GetTestPartResult(2), "");
1613 EXPECT_DEATH_IF_SUPPORTED(r2->GetTestPartResult(-1), "");
1614 }
1615
1616 // Tests TestResult has no properties when none are added.
TEST(TestResultPropertyTest,NoPropertiesFoundWhenNoneAreAdded)1617 TEST(TestResultPropertyTest, NoPropertiesFoundWhenNoneAreAdded) {
1618 TestResult test_result;
1619 ASSERT_EQ(0, test_result.test_property_count());
1620 }
1621
1622 // Tests TestResult has the expected property when added.
TEST(TestResultPropertyTest,OnePropertyFoundWhenAdded)1623 TEST(TestResultPropertyTest, OnePropertyFoundWhenAdded) {
1624 TestResult test_result;
1625 TestProperty property("key_1", "1");
1626 TestResultAccessor::RecordProperty(&test_result, property);
1627 ASSERT_EQ(1, test_result.test_property_count());
1628 const TestProperty& actual_property = test_result.GetTestProperty(0);
1629 EXPECT_STREQ("key_1", actual_property.key());
1630 EXPECT_STREQ("1", actual_property.value());
1631 }
1632
1633 // Tests TestResult has multiple properties when added.
TEST(TestResultPropertyTest,MultiplePropertiesFoundWhenAdded)1634 TEST(TestResultPropertyTest, MultiplePropertiesFoundWhenAdded) {
1635 TestResult test_result;
1636 TestProperty property_1("key_1", "1");
1637 TestProperty property_2("key_2", "2");
1638 TestResultAccessor::RecordProperty(&test_result, property_1);
1639 TestResultAccessor::RecordProperty(&test_result, property_2);
1640 ASSERT_EQ(2, test_result.test_property_count());
1641 const TestProperty& actual_property_1 = test_result.GetTestProperty(0);
1642 EXPECT_STREQ("key_1", actual_property_1.key());
1643 EXPECT_STREQ("1", actual_property_1.value());
1644
1645 const TestProperty& actual_property_2 = test_result.GetTestProperty(1);
1646 EXPECT_STREQ("key_2", actual_property_2.key());
1647 EXPECT_STREQ("2", actual_property_2.value());
1648 }
1649
1650 // Tests TestResult::RecordProperty() overrides values for duplicate keys.
TEST(TestResultPropertyTest,OverridesValuesForDuplicateKeys)1651 TEST(TestResultPropertyTest, OverridesValuesForDuplicateKeys) {
1652 TestResult test_result;
1653 TestProperty property_1_1("key_1", "1");
1654 TestProperty property_2_1("key_2", "2");
1655 TestProperty property_1_2("key_1", "12");
1656 TestProperty property_2_2("key_2", "22");
1657 TestResultAccessor::RecordProperty(&test_result, property_1_1);
1658 TestResultAccessor::RecordProperty(&test_result, property_2_1);
1659 TestResultAccessor::RecordProperty(&test_result, property_1_2);
1660 TestResultAccessor::RecordProperty(&test_result, property_2_2);
1661
1662 ASSERT_EQ(2, test_result.test_property_count());
1663 const TestProperty& actual_property_1 = test_result.GetTestProperty(0);
1664 EXPECT_STREQ("key_1", actual_property_1.key());
1665 EXPECT_STREQ("12", actual_property_1.value());
1666
1667 const TestProperty& actual_property_2 = test_result.GetTestProperty(1);
1668 EXPECT_STREQ("key_2", actual_property_2.key());
1669 EXPECT_STREQ("22", actual_property_2.value());
1670 }
1671
1672 // Tests TestResult::GetTestProperty().
TEST(TestResultPropertyDeathTest,GetTestProperty)1673 TEST(TestResultPropertyDeathTest, GetTestProperty) {
1674 TestResult test_result;
1675 TestProperty property_1("key_1", "1");
1676 TestProperty property_2("key_2", "2");
1677 TestProperty property_3("key_3", "3");
1678 TestResultAccessor::RecordProperty(&test_result, property_1);
1679 TestResultAccessor::RecordProperty(&test_result, property_2);
1680 TestResultAccessor::RecordProperty(&test_result, property_3);
1681
1682 const TestProperty& fetched_property_1 = test_result.GetTestProperty(0);
1683 const TestProperty& fetched_property_2 = test_result.GetTestProperty(1);
1684 const TestProperty& fetched_property_3 = test_result.GetTestProperty(2);
1685
1686 EXPECT_STREQ("key_1", fetched_property_1.key());
1687 EXPECT_STREQ("1", fetched_property_1.value());
1688
1689 EXPECT_STREQ("key_2", fetched_property_2.key());
1690 EXPECT_STREQ("2", fetched_property_2.value());
1691
1692 EXPECT_STREQ("key_3", fetched_property_3.key());
1693 EXPECT_STREQ("3", fetched_property_3.value());
1694
1695 EXPECT_DEATH_IF_SUPPORTED(test_result.GetTestProperty(3), "");
1696 EXPECT_DEATH_IF_SUPPORTED(test_result.GetTestProperty(-1), "");
1697 }
1698
1699 // When a property using a reserved key is supplied to this function, it tests
1700 // that a non-fatal failure is added, a fatal failure is not added, and that the
1701 // property is not recorded.
ExpectNonFatalFailureRecordingPropertyWithReservedKey(const char * key)1702 void ExpectNonFatalFailureRecordingPropertyWithReservedKey(const char* key) {
1703 TestResult test_result;
1704 TestProperty property(key, "1");
1705 EXPECT_NONFATAL_FAILURE(
1706 TestResultAccessor::RecordProperty(&test_result, property),
1707 "Reserved key");
1708 ASSERT_EQ(0, test_result.test_property_count()) << "Not recorded";
1709 }
1710
1711 // Attempting to recording a property with the Reserved literal "name"
1712 // should add a non-fatal failure and the property should not be recorded.
TEST(TestResultPropertyTest,AddFailureWhenUsingReservedKeyCalledName)1713 TEST(TestResultPropertyTest, AddFailureWhenUsingReservedKeyCalledName) {
1714 ExpectNonFatalFailureRecordingPropertyWithReservedKey("name");
1715 }
1716
1717 // Attempting to recording a property with the Reserved literal "status"
1718 // should add a non-fatal failure and the property should not be recorded.
TEST(TestResultPropertyTest,AddFailureWhenUsingReservedKeyCalledStatus)1719 TEST(TestResultPropertyTest, AddFailureWhenUsingReservedKeyCalledStatus) {
1720 ExpectNonFatalFailureRecordingPropertyWithReservedKey("status");
1721 }
1722
1723 // Attempting to recording a property with the Reserved literal "time"
1724 // should add a non-fatal failure and the property should not be recorded.
TEST(TestResultPropertyTest,AddFailureWhenUsingReservedKeyCalledTime)1725 TEST(TestResultPropertyTest, AddFailureWhenUsingReservedKeyCalledTime) {
1726 ExpectNonFatalFailureRecordingPropertyWithReservedKey("time");
1727 }
1728
1729 // Attempting to recording a property with the Reserved literal "classname"
1730 // should add a non-fatal failure and the property should not be recorded.
TEST(TestResultPropertyTest,AddFailureWhenUsingReservedKeyCalledClassname)1731 TEST(TestResultPropertyTest, AddFailureWhenUsingReservedKeyCalledClassname) {
1732 ExpectNonFatalFailureRecordingPropertyWithReservedKey("classname");
1733 }
1734
1735 // Tests that GTestFlagSaver works on Windows and Mac.
1736
1737 class GTestFlagSaverTest : public Test {
1738 protected:
1739 // Saves the Google Test flags such that we can restore them later, and
1740 // then sets them to their default values. This will be called
1741 // before the first test in this test case is run.
SetUpTestCase()1742 static void SetUpTestCase() {
1743 saver_ = new GTestFlagSaver;
1744
1745 GTEST_FLAG(also_run_disabled_tests) = false;
1746 GTEST_FLAG(break_on_failure) = false;
1747 GTEST_FLAG(catch_exceptions) = false;
1748 GTEST_FLAG(death_test_use_fork) = false;
1749 GTEST_FLAG(color) = "auto";
1750 GTEST_FLAG(filter) = "";
1751 GTEST_FLAG(list_tests) = false;
1752 GTEST_FLAG(output) = "";
1753 GTEST_FLAG(print_time) = true;
1754 GTEST_FLAG(random_seed) = 0;
1755 GTEST_FLAG(repeat) = 1;
1756 GTEST_FLAG(shuffle) = false;
1757 GTEST_FLAG(stack_trace_depth) = kMaxStackTraceDepth;
1758 GTEST_FLAG(stream_result_to) = "";
1759 GTEST_FLAG(throw_on_failure) = false;
1760 }
1761
1762 // Restores the Google Test flags that the tests have modified. This will
1763 // be called after the last test in this test case is run.
TearDownTestCase()1764 static void TearDownTestCase() {
1765 delete saver_;
1766 saver_ = NULL;
1767 }
1768
1769 // Verifies that the Google Test flags have their default values, and then
1770 // modifies each of them.
VerifyAndModifyFlags()1771 void VerifyAndModifyFlags() {
1772 EXPECT_FALSE(GTEST_FLAG(also_run_disabled_tests));
1773 EXPECT_FALSE(GTEST_FLAG(break_on_failure));
1774 EXPECT_FALSE(GTEST_FLAG(catch_exceptions));
1775 EXPECT_STREQ("auto", GTEST_FLAG(color).c_str());
1776 EXPECT_FALSE(GTEST_FLAG(death_test_use_fork));
1777 EXPECT_STREQ("", GTEST_FLAG(filter).c_str());
1778 EXPECT_FALSE(GTEST_FLAG(list_tests));
1779 EXPECT_STREQ("", GTEST_FLAG(output).c_str());
1780 EXPECT_TRUE(GTEST_FLAG(print_time));
1781 EXPECT_EQ(0, GTEST_FLAG(random_seed));
1782 EXPECT_EQ(1, GTEST_FLAG(repeat));
1783 EXPECT_FALSE(GTEST_FLAG(shuffle));
1784 EXPECT_EQ(kMaxStackTraceDepth, GTEST_FLAG(stack_trace_depth));
1785 EXPECT_STREQ("", GTEST_FLAG(stream_result_to).c_str());
1786 EXPECT_FALSE(GTEST_FLAG(throw_on_failure));
1787
1788 GTEST_FLAG(also_run_disabled_tests) = true;
1789 GTEST_FLAG(break_on_failure) = true;
1790 GTEST_FLAG(catch_exceptions) = true;
1791 GTEST_FLAG(color) = "no";
1792 GTEST_FLAG(death_test_use_fork) = true;
1793 GTEST_FLAG(filter) = "abc";
1794 GTEST_FLAG(list_tests) = true;
1795 GTEST_FLAG(output) = "xml:foo.xml";
1796 GTEST_FLAG(print_time) = false;
1797 GTEST_FLAG(random_seed) = 1;
1798 GTEST_FLAG(repeat) = 100;
1799 GTEST_FLAG(shuffle) = true;
1800 GTEST_FLAG(stack_trace_depth) = 1;
1801 GTEST_FLAG(stream_result_to) = "localhost:1234";
1802 GTEST_FLAG(throw_on_failure) = true;
1803 }
1804 private:
1805 // For saving Google Test flags during this test case.
1806 static GTestFlagSaver* saver_;
1807 };
1808
1809 GTestFlagSaver* GTestFlagSaverTest::saver_ = NULL;
1810
1811 // Google Test doesn't guarantee the order of tests. The following two
1812 // tests are designed to work regardless of their order.
1813
1814 // Modifies the Google Test flags in the test body.
TEST_F(GTestFlagSaverTest,ModifyGTestFlags)1815 TEST_F(GTestFlagSaverTest, ModifyGTestFlags) {
1816 VerifyAndModifyFlags();
1817 }
1818
1819 // Verifies that the Google Test flags in the body of the previous test were
1820 // restored to their original values.
TEST_F(GTestFlagSaverTest,VerifyGTestFlags)1821 TEST_F(GTestFlagSaverTest, VerifyGTestFlags) {
1822 VerifyAndModifyFlags();
1823 }
1824
1825 // Sets an environment variable with the given name to the given
1826 // value. If the value argument is "", unsets the environment
1827 // variable. The caller must ensure that both arguments are not NULL.
SetEnv(const char * name,const char * value)1828 static void SetEnv(const char* name, const char* value) {
1829 #if GTEST_OS_WINDOWS_MOBILE
1830 // Environment variables are not supported on Windows CE.
1831 return;
1832 #elif defined(__BORLANDC__) || defined(__SunOS_5_8) || defined(__SunOS_5_9)
1833 // C++Builder's putenv only stores a pointer to its parameter; we have to
1834 // ensure that the string remains valid as long as it might be needed.
1835 // We use an std::map to do so.
1836 static std::map<String, String*> added_env;
1837
1838 // Because putenv stores a pointer to the string buffer, we can't delete the
1839 // previous string (if present) until after it's replaced.
1840 String *prev_env = NULL;
1841 if (added_env.find(name) != added_env.end()) {
1842 prev_env = added_env[name];
1843 }
1844 added_env[name] = new String((Message() << name << "=" << value).GetString());
1845
1846 // The standard signature of putenv accepts a 'char*' argument. Other
1847 // implementations, like C++Builder's, accept a 'const char*'.
1848 // We cast away the 'const' since that would work for both variants.
1849 putenv(const_cast<char*>(added_env[name]->c_str()));
1850 delete prev_env;
1851 #elif GTEST_OS_WINDOWS // If we are on Windows proper.
1852 _putenv((Message() << name << "=" << value).GetString().c_str());
1853 #else
1854 if (*value == '\0') {
1855 unsetenv(name);
1856 } else {
1857 setenv(name, value, 1);
1858 }
1859 #endif // GTEST_OS_WINDOWS_MOBILE
1860 }
1861
1862 #if !GTEST_OS_WINDOWS_MOBILE
1863 // Environment variables are not supported on Windows CE.
1864
1865 using testing::internal::Int32FromGTestEnv;
1866
1867 // Tests Int32FromGTestEnv().
1868
1869 // Tests that Int32FromGTestEnv() returns the default value when the
1870 // environment variable is not set.
TEST(Int32FromGTestEnvTest,ReturnsDefaultWhenVariableIsNotSet)1871 TEST(Int32FromGTestEnvTest, ReturnsDefaultWhenVariableIsNotSet) {
1872 SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "");
1873 EXPECT_EQ(10, Int32FromGTestEnv("temp", 10));
1874 }
1875
1876 // Tests that Int32FromGTestEnv() returns the default value when the
1877 // environment variable overflows as an Int32.
TEST(Int32FromGTestEnvTest,ReturnsDefaultWhenValueOverflows)1878 TEST(Int32FromGTestEnvTest, ReturnsDefaultWhenValueOverflows) {
1879 printf("(expecting 2 warnings)\n");
1880
1881 SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "12345678987654321");
1882 EXPECT_EQ(20, Int32FromGTestEnv("temp", 20));
1883
1884 SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "-12345678987654321");
1885 EXPECT_EQ(30, Int32FromGTestEnv("temp", 30));
1886 }
1887
1888 // Tests that Int32FromGTestEnv() returns the default value when the
1889 // environment variable does not represent a valid decimal integer.
TEST(Int32FromGTestEnvTest,ReturnsDefaultWhenValueIsInvalid)1890 TEST(Int32FromGTestEnvTest, ReturnsDefaultWhenValueIsInvalid) {
1891 printf("(expecting 2 warnings)\n");
1892
1893 SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "A1");
1894 EXPECT_EQ(40, Int32FromGTestEnv("temp", 40));
1895
1896 SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "12X");
1897 EXPECT_EQ(50, Int32FromGTestEnv("temp", 50));
1898 }
1899
1900 // Tests that Int32FromGTestEnv() parses and returns the value of the
1901 // environment variable when it represents a valid decimal integer in
1902 // the range of an Int32.
TEST(Int32FromGTestEnvTest,ParsesAndReturnsValidValue)1903 TEST(Int32FromGTestEnvTest, ParsesAndReturnsValidValue) {
1904 SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "123");
1905 EXPECT_EQ(123, Int32FromGTestEnv("temp", 0));
1906
1907 SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "-321");
1908 EXPECT_EQ(-321, Int32FromGTestEnv("temp", 0));
1909 }
1910 #endif // !GTEST_OS_WINDOWS_MOBILE
1911
1912 // Tests ParseInt32Flag().
1913
1914 // Tests that ParseInt32Flag() returns false and doesn't change the
1915 // output value when the flag has wrong format
TEST(ParseInt32FlagTest,ReturnsFalseForInvalidFlag)1916 TEST(ParseInt32FlagTest, ReturnsFalseForInvalidFlag) {
1917 Int32 value = 123;
1918 EXPECT_FALSE(ParseInt32Flag("--a=100", "b", &value));
1919 EXPECT_EQ(123, value);
1920
1921 EXPECT_FALSE(ParseInt32Flag("a=100", "a", &value));
1922 EXPECT_EQ(123, value);
1923 }
1924
1925 // Tests that ParseInt32Flag() returns false and doesn't change the
1926 // output value when the flag overflows as an Int32.
TEST(ParseInt32FlagTest,ReturnsDefaultWhenValueOverflows)1927 TEST(ParseInt32FlagTest, ReturnsDefaultWhenValueOverflows) {
1928 printf("(expecting 2 warnings)\n");
1929
1930 Int32 value = 123;
1931 EXPECT_FALSE(ParseInt32Flag("--abc=12345678987654321", "abc", &value));
1932 EXPECT_EQ(123, value);
1933
1934 EXPECT_FALSE(ParseInt32Flag("--abc=-12345678987654321", "abc", &value));
1935 EXPECT_EQ(123, value);
1936 }
1937
1938 // Tests that ParseInt32Flag() returns false and doesn't change the
1939 // output value when the flag does not represent a valid decimal
1940 // integer.
TEST(ParseInt32FlagTest,ReturnsDefaultWhenValueIsInvalid)1941 TEST(ParseInt32FlagTest, ReturnsDefaultWhenValueIsInvalid) {
1942 printf("(expecting 2 warnings)\n");
1943
1944 Int32 value = 123;
1945 EXPECT_FALSE(ParseInt32Flag("--abc=A1", "abc", &value));
1946 EXPECT_EQ(123, value);
1947
1948 EXPECT_FALSE(ParseInt32Flag("--abc=12X", "abc", &value));
1949 EXPECT_EQ(123, value);
1950 }
1951
1952 // Tests that ParseInt32Flag() parses the value of the flag and
1953 // returns true when the flag represents a valid decimal integer in
1954 // the range of an Int32.
TEST(ParseInt32FlagTest,ParsesAndReturnsValidValue)1955 TEST(ParseInt32FlagTest, ParsesAndReturnsValidValue) {
1956 Int32 value = 123;
1957 EXPECT_TRUE(ParseInt32Flag("--" GTEST_FLAG_PREFIX_ "abc=456", "abc", &value));
1958 EXPECT_EQ(456, value);
1959
1960 EXPECT_TRUE(ParseInt32Flag("--" GTEST_FLAG_PREFIX_ "abc=-789",
1961 "abc", &value));
1962 EXPECT_EQ(-789, value);
1963 }
1964
1965 // Tests that Int32FromEnvOrDie() parses the value of the var or
1966 // returns the correct default.
1967 // Environment variables are not supported on Windows CE.
1968 #if !GTEST_OS_WINDOWS_MOBILE
TEST(Int32FromEnvOrDieTest,ParsesAndReturnsValidValue)1969 TEST(Int32FromEnvOrDieTest, ParsesAndReturnsValidValue) {
1970 EXPECT_EQ(333, Int32FromEnvOrDie(GTEST_FLAG_PREFIX_UPPER_ "UnsetVar", 333));
1971 SetEnv(GTEST_FLAG_PREFIX_UPPER_ "UnsetVar", "123");
1972 EXPECT_EQ(123, Int32FromEnvOrDie(GTEST_FLAG_PREFIX_UPPER_ "UnsetVar", 333));
1973 SetEnv(GTEST_FLAG_PREFIX_UPPER_ "UnsetVar", "-123");
1974 EXPECT_EQ(-123, Int32FromEnvOrDie(GTEST_FLAG_PREFIX_UPPER_ "UnsetVar", 333));
1975 }
1976 #endif // !GTEST_OS_WINDOWS_MOBILE
1977
1978 // Tests that Int32FromEnvOrDie() aborts with an error message
1979 // if the variable is not an Int32.
TEST(Int32FromEnvOrDieDeathTest,AbortsOnFailure)1980 TEST(Int32FromEnvOrDieDeathTest, AbortsOnFailure) {
1981 SetEnv(GTEST_FLAG_PREFIX_UPPER_ "VAR", "xxx");
1982 EXPECT_DEATH_IF_SUPPORTED(
1983 Int32FromEnvOrDie(GTEST_FLAG_PREFIX_UPPER_ "VAR", 123),
1984 ".*");
1985 }
1986
1987 // Tests that Int32FromEnvOrDie() aborts with an error message
1988 // if the variable cannot be represnted by an Int32.
TEST(Int32FromEnvOrDieDeathTest,AbortsOnInt32Overflow)1989 TEST(Int32FromEnvOrDieDeathTest, AbortsOnInt32Overflow) {
1990 SetEnv(GTEST_FLAG_PREFIX_UPPER_ "VAR", "1234567891234567891234");
1991 EXPECT_DEATH_IF_SUPPORTED(
1992 Int32FromEnvOrDie(GTEST_FLAG_PREFIX_UPPER_ "VAR", 123),
1993 ".*");
1994 }
1995
1996 // Tests that ShouldRunTestOnShard() selects all tests
1997 // where there is 1 shard.
TEST(ShouldRunTestOnShardTest,IsPartitionWhenThereIsOneShard)1998 TEST(ShouldRunTestOnShardTest, IsPartitionWhenThereIsOneShard) {
1999 EXPECT_TRUE(ShouldRunTestOnShard(1, 0, 0));
2000 EXPECT_TRUE(ShouldRunTestOnShard(1, 0, 1));
2001 EXPECT_TRUE(ShouldRunTestOnShard(1, 0, 2));
2002 EXPECT_TRUE(ShouldRunTestOnShard(1, 0, 3));
2003 EXPECT_TRUE(ShouldRunTestOnShard(1, 0, 4));
2004 }
2005
2006 class ShouldShardTest : public testing::Test {
2007 protected:
SetUp()2008 virtual void SetUp() {
2009 index_var_ = GTEST_FLAG_PREFIX_UPPER_ "INDEX";
2010 total_var_ = GTEST_FLAG_PREFIX_UPPER_ "TOTAL";
2011 }
2012
TearDown()2013 virtual void TearDown() {
2014 SetEnv(index_var_, "");
2015 SetEnv(total_var_, "");
2016 }
2017
2018 const char* index_var_;
2019 const char* total_var_;
2020 };
2021
2022 // Tests that sharding is disabled if neither of the environment variables
2023 // are set.
TEST_F(ShouldShardTest,ReturnsFalseWhenNeitherEnvVarIsSet)2024 TEST_F(ShouldShardTest, ReturnsFalseWhenNeitherEnvVarIsSet) {
2025 SetEnv(index_var_, "");
2026 SetEnv(total_var_, "");
2027
2028 EXPECT_FALSE(ShouldShard(total_var_, index_var_, false));
2029 EXPECT_FALSE(ShouldShard(total_var_, index_var_, true));
2030 }
2031
2032 // Tests that sharding is not enabled if total_shards == 1.
TEST_F(ShouldShardTest,ReturnsFalseWhenTotalShardIsOne)2033 TEST_F(ShouldShardTest, ReturnsFalseWhenTotalShardIsOne) {
2034 SetEnv(index_var_, "0");
2035 SetEnv(total_var_, "1");
2036 EXPECT_FALSE(ShouldShard(total_var_, index_var_, false));
2037 EXPECT_FALSE(ShouldShard(total_var_, index_var_, true));
2038 }
2039
2040 // Tests that sharding is enabled if total_shards > 1 and
2041 // we are not in a death test subprocess.
2042 // Environment variables are not supported on Windows CE.
2043 #if !GTEST_OS_WINDOWS_MOBILE
TEST_F(ShouldShardTest,WorksWhenShardEnvVarsAreValid)2044 TEST_F(ShouldShardTest, WorksWhenShardEnvVarsAreValid) {
2045 SetEnv(index_var_, "4");
2046 SetEnv(total_var_, "22");
2047 EXPECT_TRUE(ShouldShard(total_var_, index_var_, false));
2048 EXPECT_FALSE(ShouldShard(total_var_, index_var_, true));
2049
2050 SetEnv(index_var_, "8");
2051 SetEnv(total_var_, "9");
2052 EXPECT_TRUE(ShouldShard(total_var_, index_var_, false));
2053 EXPECT_FALSE(ShouldShard(total_var_, index_var_, true));
2054
2055 SetEnv(index_var_, "0");
2056 SetEnv(total_var_, "9");
2057 EXPECT_TRUE(ShouldShard(total_var_, index_var_, false));
2058 EXPECT_FALSE(ShouldShard(total_var_, index_var_, true));
2059 }
2060 #endif // !GTEST_OS_WINDOWS_MOBILE
2061
2062 // Tests that we exit in error if the sharding values are not valid.
2063
2064 typedef ShouldShardTest ShouldShardDeathTest;
2065
TEST_F(ShouldShardDeathTest,AbortsWhenShardingEnvVarsAreInvalid)2066 TEST_F(ShouldShardDeathTest, AbortsWhenShardingEnvVarsAreInvalid) {
2067 SetEnv(index_var_, "4");
2068 SetEnv(total_var_, "4");
2069 EXPECT_DEATH_IF_SUPPORTED(ShouldShard(total_var_, index_var_, false), ".*");
2070
2071 SetEnv(index_var_, "4");
2072 SetEnv(total_var_, "-2");
2073 EXPECT_DEATH_IF_SUPPORTED(ShouldShard(total_var_, index_var_, false), ".*");
2074
2075 SetEnv(index_var_, "5");
2076 SetEnv(total_var_, "");
2077 EXPECT_DEATH_IF_SUPPORTED(ShouldShard(total_var_, index_var_, false), ".*");
2078
2079 SetEnv(index_var_, "");
2080 SetEnv(total_var_, "5");
2081 EXPECT_DEATH_IF_SUPPORTED(ShouldShard(total_var_, index_var_, false), ".*");
2082 }
2083
2084 // Tests that ShouldRunTestOnShard is a partition when 5
2085 // shards are used.
TEST(ShouldRunTestOnShardTest,IsPartitionWhenThereAreFiveShards)2086 TEST(ShouldRunTestOnShardTest, IsPartitionWhenThereAreFiveShards) {
2087 // Choose an arbitrary number of tests and shards.
2088 const int num_tests = 17;
2089 const int num_shards = 5;
2090
2091 // Check partitioning: each test should be on exactly 1 shard.
2092 for (int test_id = 0; test_id < num_tests; test_id++) {
2093 int prev_selected_shard_index = -1;
2094 for (int shard_index = 0; shard_index < num_shards; shard_index++) {
2095 if (ShouldRunTestOnShard(num_shards, shard_index, test_id)) {
2096 if (prev_selected_shard_index < 0) {
2097 prev_selected_shard_index = shard_index;
2098 } else {
2099 ADD_FAILURE() << "Shard " << prev_selected_shard_index << " and "
2100 << shard_index << " are both selected to run test " << test_id;
2101 }
2102 }
2103 }
2104 }
2105
2106 // Check balance: This is not required by the sharding protocol, but is a
2107 // desirable property for performance.
2108 for (int shard_index = 0; shard_index < num_shards; shard_index++) {
2109 int num_tests_on_shard = 0;
2110 for (int test_id = 0; test_id < num_tests; test_id++) {
2111 num_tests_on_shard +=
2112 ShouldRunTestOnShard(num_shards, shard_index, test_id);
2113 }
2114 EXPECT_GE(num_tests_on_shard, num_tests / num_shards);
2115 }
2116 }
2117
2118 // For the same reason we are not explicitly testing everything in the
2119 // Test class, there are no separate tests for the following classes
2120 // (except for some trivial cases):
2121 //
2122 // TestCase, UnitTest, UnitTestResultPrinter.
2123 //
2124 // Similarly, there are no separate tests for the following macros:
2125 //
2126 // TEST, TEST_F, RUN_ALL_TESTS
2127
TEST(UnitTestTest,CanGetOriginalWorkingDir)2128 TEST(UnitTestTest, CanGetOriginalWorkingDir) {
2129 ASSERT_TRUE(UnitTest::GetInstance()->original_working_dir() != NULL);
2130 EXPECT_STRNE(UnitTest::GetInstance()->original_working_dir(), "");
2131 }
2132
2133 // This group of tests is for predicate assertions (ASSERT_PRED*, etc)
2134 // of various arities. They do not attempt to be exhaustive. Rather,
2135 // view them as smoke tests that can be easily reviewed and verified.
2136 // A more complete set of tests for predicate assertions can be found
2137 // in gtest_pred_impl_unittest.cc.
2138
2139 // First, some predicates and predicate-formatters needed by the tests.
2140
2141 // Returns true iff the argument is an even number.
IsEven(int n)2142 bool IsEven(int n) {
2143 return (n % 2) == 0;
2144 }
2145
2146 // A functor that returns true iff the argument is an even number.
2147 struct IsEvenFunctor {
operator ()__anone22638560111::IsEvenFunctor2148 bool operator()(int n) { return IsEven(n); }
2149 };
2150
2151 // A predicate-formatter function that asserts the argument is an even
2152 // number.
AssertIsEven(const char * expr,int n)2153 AssertionResult AssertIsEven(const char* expr, int n) {
2154 if (IsEven(n)) {
2155 return AssertionSuccess();
2156 }
2157
2158 Message msg;
2159 msg << expr << " evaluates to " << n << ", which is not even.";
2160 return AssertionFailure(msg);
2161 }
2162
2163 // A predicate function that returns AssertionResult for use in
2164 // EXPECT/ASSERT_TRUE/FALSE.
ResultIsEven(int n)2165 AssertionResult ResultIsEven(int n) {
2166 if (IsEven(n))
2167 return AssertionSuccess() << n << " is even";
2168 else
2169 return AssertionFailure() << n << " is odd";
2170 }
2171
2172 // A predicate function that returns AssertionResult but gives no
2173 // explanation why it succeeds. Needed for testing that
2174 // EXPECT/ASSERT_FALSE handles such functions correctly.
ResultIsEvenNoExplanation(int n)2175 AssertionResult ResultIsEvenNoExplanation(int n) {
2176 if (IsEven(n))
2177 return AssertionSuccess();
2178 else
2179 return AssertionFailure() << n << " is odd";
2180 }
2181
2182 // A predicate-formatter functor that asserts the argument is an even
2183 // number.
2184 struct AssertIsEvenFunctor {
operator ()__anone22638560111::AssertIsEvenFunctor2185 AssertionResult operator()(const char* expr, int n) {
2186 return AssertIsEven(expr, n);
2187 }
2188 };
2189
2190 // Returns true iff the sum of the arguments is an even number.
SumIsEven2(int n1,int n2)2191 bool SumIsEven2(int n1, int n2) {
2192 return IsEven(n1 + n2);
2193 }
2194
2195 // A functor that returns true iff the sum of the arguments is an even
2196 // number.
2197 struct SumIsEven3Functor {
operator ()__anone22638560111::SumIsEven3Functor2198 bool operator()(int n1, int n2, int n3) {
2199 return IsEven(n1 + n2 + n3);
2200 }
2201 };
2202
2203 // A predicate-formatter function that asserts the sum of the
2204 // arguments is an even number.
AssertSumIsEven4(const char * e1,const char * e2,const char * e3,const char * e4,int n1,int n2,int n3,int n4)2205 AssertionResult AssertSumIsEven4(
2206 const char* e1, const char* e2, const char* e3, const char* e4,
2207 int n1, int n2, int n3, int n4) {
2208 const int sum = n1 + n2 + n3 + n4;
2209 if (IsEven(sum)) {
2210 return AssertionSuccess();
2211 }
2212
2213 Message msg;
2214 msg << e1 << " + " << e2 << " + " << e3 << " + " << e4
2215 << " (" << n1 << " + " << n2 << " + " << n3 << " + " << n4
2216 << ") evaluates to " << sum << ", which is not even.";
2217 return AssertionFailure(msg);
2218 }
2219
2220 // A predicate-formatter functor that asserts the sum of the arguments
2221 // is an even number.
2222 struct AssertSumIsEven5Functor {
operator ()__anone22638560111::AssertSumIsEven5Functor2223 AssertionResult operator()(
2224 const char* e1, const char* e2, const char* e3, const char* e4,
2225 const char* e5, int n1, int n2, int n3, int n4, int n5) {
2226 const int sum = n1 + n2 + n3 + n4 + n5;
2227 if (IsEven(sum)) {
2228 return AssertionSuccess();
2229 }
2230
2231 Message msg;
2232 msg << e1 << " + " << e2 << " + " << e3 << " + " << e4 << " + " << e5
2233 << " ("
2234 << n1 << " + " << n2 << " + " << n3 << " + " << n4 << " + " << n5
2235 << ") evaluates to " << sum << ", which is not even.";
2236 return AssertionFailure(msg);
2237 }
2238 };
2239
2240
2241 // Tests unary predicate assertions.
2242
2243 // Tests unary predicate assertions that don't use a custom formatter.
TEST(Pred1Test,WithoutFormat)2244 TEST(Pred1Test, WithoutFormat) {
2245 // Success cases.
2246 EXPECT_PRED1(IsEvenFunctor(), 2) << "This failure is UNEXPECTED!";
2247 ASSERT_PRED1(IsEven, 4);
2248
2249 // Failure cases.
2250 EXPECT_NONFATAL_FAILURE({ // NOLINT
2251 EXPECT_PRED1(IsEven, 5) << "This failure is expected.";
2252 }, "This failure is expected.");
2253 EXPECT_FATAL_FAILURE(ASSERT_PRED1(IsEvenFunctor(), 5),
2254 "evaluates to false");
2255 }
2256
2257 // Tests unary predicate assertions that use a custom formatter.
TEST(Pred1Test,WithFormat)2258 TEST(Pred1Test, WithFormat) {
2259 // Success cases.
2260 EXPECT_PRED_FORMAT1(AssertIsEven, 2);
2261 ASSERT_PRED_FORMAT1(AssertIsEvenFunctor(), 4)
2262 << "This failure is UNEXPECTED!";
2263
2264 // Failure cases.
2265 const int n = 5;
2266 EXPECT_NONFATAL_FAILURE(EXPECT_PRED_FORMAT1(AssertIsEvenFunctor(), n),
2267 "n evaluates to 5, which is not even.");
2268 EXPECT_FATAL_FAILURE({ // NOLINT
2269 ASSERT_PRED_FORMAT1(AssertIsEven, 5) << "This failure is expected.";
2270 }, "This failure is expected.");
2271 }
2272
2273 // Tests that unary predicate assertions evaluates their arguments
2274 // exactly once.
TEST(Pred1Test,SingleEvaluationOnFailure)2275 TEST(Pred1Test, SingleEvaluationOnFailure) {
2276 // A success case.
2277 static int n = 0;
2278 EXPECT_PRED1(IsEven, n++);
2279 EXPECT_EQ(1, n) << "The argument is not evaluated exactly once.";
2280
2281 // A failure case.
2282 EXPECT_FATAL_FAILURE({ // NOLINT
2283 ASSERT_PRED_FORMAT1(AssertIsEvenFunctor(), n++)
2284 << "This failure is expected.";
2285 }, "This failure is expected.");
2286 EXPECT_EQ(2, n) << "The argument is not evaluated exactly once.";
2287 }
2288
2289
2290 // Tests predicate assertions whose arity is >= 2.
2291
2292 // Tests predicate assertions that don't use a custom formatter.
TEST(PredTest,WithoutFormat)2293 TEST(PredTest, WithoutFormat) {
2294 // Success cases.
2295 ASSERT_PRED2(SumIsEven2, 2, 4) << "This failure is UNEXPECTED!";
2296 EXPECT_PRED3(SumIsEven3Functor(), 4, 6, 8);
2297
2298 // Failure cases.
2299 const int n1 = 1;
2300 const int n2 = 2;
2301 EXPECT_NONFATAL_FAILURE({ // NOLINT
2302 EXPECT_PRED2(SumIsEven2, n1, n2) << "This failure is expected.";
2303 }, "This failure is expected.");
2304 EXPECT_FATAL_FAILURE({ // NOLINT
2305 ASSERT_PRED3(SumIsEven3Functor(), 1, 2, 4);
2306 }, "evaluates to false");
2307 }
2308
2309 // Tests predicate assertions that use a custom formatter.
TEST(PredTest,WithFormat)2310 TEST(PredTest, WithFormat) {
2311 // Success cases.
2312 ASSERT_PRED_FORMAT4(AssertSumIsEven4, 4, 6, 8, 10) <<
2313 "This failure is UNEXPECTED!";
2314 EXPECT_PRED_FORMAT5(AssertSumIsEven5Functor(), 2, 4, 6, 8, 10);
2315
2316 // Failure cases.
2317 const int n1 = 1;
2318 const int n2 = 2;
2319 const int n3 = 4;
2320 const int n4 = 6;
2321 EXPECT_NONFATAL_FAILURE({ // NOLINT
2322 EXPECT_PRED_FORMAT4(AssertSumIsEven4, n1, n2, n3, n4);
2323 }, "evaluates to 13, which is not even.");
2324 EXPECT_FATAL_FAILURE({ // NOLINT
2325 ASSERT_PRED_FORMAT5(AssertSumIsEven5Functor(), 1, 2, 4, 6, 8)
2326 << "This failure is expected.";
2327 }, "This failure is expected.");
2328 }
2329
2330 // Tests that predicate assertions evaluates their arguments
2331 // exactly once.
TEST(PredTest,SingleEvaluationOnFailure)2332 TEST(PredTest, SingleEvaluationOnFailure) {
2333 // A success case.
2334 int n1 = 0;
2335 int n2 = 0;
2336 EXPECT_PRED2(SumIsEven2, n1++, n2++);
2337 EXPECT_EQ(1, n1) << "Argument 1 is not evaluated exactly once.";
2338 EXPECT_EQ(1, n2) << "Argument 2 is not evaluated exactly once.";
2339
2340 // Another success case.
2341 n1 = n2 = 0;
2342 int n3 = 0;
2343 int n4 = 0;
2344 int n5 = 0;
2345 ASSERT_PRED_FORMAT5(AssertSumIsEven5Functor(),
2346 n1++, n2++, n3++, n4++, n5++)
2347 << "This failure is UNEXPECTED!";
2348 EXPECT_EQ(1, n1) << "Argument 1 is not evaluated exactly once.";
2349 EXPECT_EQ(1, n2) << "Argument 2 is not evaluated exactly once.";
2350 EXPECT_EQ(1, n3) << "Argument 3 is not evaluated exactly once.";
2351 EXPECT_EQ(1, n4) << "Argument 4 is not evaluated exactly once.";
2352 EXPECT_EQ(1, n5) << "Argument 5 is not evaluated exactly once.";
2353
2354 // A failure case.
2355 n1 = n2 = n3 = 0;
2356 EXPECT_NONFATAL_FAILURE({ // NOLINT
2357 EXPECT_PRED3(SumIsEven3Functor(), ++n1, n2++, n3++)
2358 << "This failure is expected.";
2359 }, "This failure is expected.");
2360 EXPECT_EQ(1, n1) << "Argument 1 is not evaluated exactly once.";
2361 EXPECT_EQ(1, n2) << "Argument 2 is not evaluated exactly once.";
2362 EXPECT_EQ(1, n3) << "Argument 3 is not evaluated exactly once.";
2363
2364 // Another failure case.
2365 n1 = n2 = n3 = n4 = 0;
2366 EXPECT_NONFATAL_FAILURE({ // NOLINT
2367 EXPECT_PRED_FORMAT4(AssertSumIsEven4, ++n1, n2++, n3++, n4++);
2368 }, "evaluates to 1, which is not even.");
2369 EXPECT_EQ(1, n1) << "Argument 1 is not evaluated exactly once.";
2370 EXPECT_EQ(1, n2) << "Argument 2 is not evaluated exactly once.";
2371 EXPECT_EQ(1, n3) << "Argument 3 is not evaluated exactly once.";
2372 EXPECT_EQ(1, n4) << "Argument 4 is not evaluated exactly once.";
2373 }
2374
2375
2376 // Some helper functions for testing using overloaded/template
2377 // functions with ASSERT_PREDn and EXPECT_PREDn.
2378
IsPositive(double x)2379 bool IsPositive(double x) {
2380 return x > 0;
2381 }
2382
2383 template <typename T>
IsNegative(T x)2384 bool IsNegative(T x) {
2385 return x < 0;
2386 }
2387
2388 template <typename T1, typename T2>
GreaterThan(T1 x1,T2 x2)2389 bool GreaterThan(T1 x1, T2 x2) {
2390 return x1 > x2;
2391 }
2392
2393 // Tests that overloaded functions can be used in *_PRED* as long as
2394 // their types are explicitly specified.
TEST(PredicateAssertionTest,AcceptsOverloadedFunction)2395 TEST(PredicateAssertionTest, AcceptsOverloadedFunction) {
2396 // C++Builder requires C-style casts rather than static_cast.
2397 EXPECT_PRED1((bool (*)(int))(IsPositive), 5); // NOLINT
2398 ASSERT_PRED1((bool (*)(double))(IsPositive), 6.0); // NOLINT
2399 }
2400
2401 // Tests that template functions can be used in *_PRED* as long as
2402 // their types are explicitly specified.
TEST(PredicateAssertionTest,AcceptsTemplateFunction)2403 TEST(PredicateAssertionTest, AcceptsTemplateFunction) {
2404 EXPECT_PRED1(IsNegative<int>, -5);
2405 // Makes sure that we can handle templates with more than one
2406 // parameter.
2407 ASSERT_PRED2((GreaterThan<int, int>), 5, 0);
2408 }
2409
2410
2411 // Some helper functions for testing using overloaded/template
2412 // functions with ASSERT_PRED_FORMATn and EXPECT_PRED_FORMATn.
2413
IsPositiveFormat(const char *,int n)2414 AssertionResult IsPositiveFormat(const char* /* expr */, int n) {
2415 return n > 0 ? AssertionSuccess() :
2416 AssertionFailure(Message() << "Failure");
2417 }
2418
IsPositiveFormat(const char *,double x)2419 AssertionResult IsPositiveFormat(const char* /* expr */, double x) {
2420 return x > 0 ? AssertionSuccess() :
2421 AssertionFailure(Message() << "Failure");
2422 }
2423
2424 template <typename T>
IsNegativeFormat(const char *,T x)2425 AssertionResult IsNegativeFormat(const char* /* expr */, T x) {
2426 return x < 0 ? AssertionSuccess() :
2427 AssertionFailure(Message() << "Failure");
2428 }
2429
2430 template <typename T1, typename T2>
EqualsFormat(const char *,const char *,const T1 & x1,const T2 & x2)2431 AssertionResult EqualsFormat(const char* /* expr1 */, const char* /* expr2 */,
2432 const T1& x1, const T2& x2) {
2433 return x1 == x2 ? AssertionSuccess() :
2434 AssertionFailure(Message() << "Failure");
2435 }
2436
2437 // Tests that overloaded functions can be used in *_PRED_FORMAT*
2438 // without explicitly specifying their types.
TEST(PredicateFormatAssertionTest,AcceptsOverloadedFunction)2439 TEST(PredicateFormatAssertionTest, AcceptsOverloadedFunction) {
2440 EXPECT_PRED_FORMAT1(IsPositiveFormat, 5);
2441 ASSERT_PRED_FORMAT1(IsPositiveFormat, 6.0);
2442 }
2443
2444 // Tests that template functions can be used in *_PRED_FORMAT* without
2445 // explicitly specifying their types.
TEST(PredicateFormatAssertionTest,AcceptsTemplateFunction)2446 TEST(PredicateFormatAssertionTest, AcceptsTemplateFunction) {
2447 EXPECT_PRED_FORMAT1(IsNegativeFormat, -5);
2448 ASSERT_PRED_FORMAT2(EqualsFormat, 3, 3);
2449 }
2450
2451
2452 // Tests string assertions.
2453
2454 // Tests ASSERT_STREQ with non-NULL arguments.
TEST(StringAssertionTest,ASSERT_STREQ)2455 TEST(StringAssertionTest, ASSERT_STREQ) {
2456 const char * const p1 = "good";
2457 ASSERT_STREQ(p1, p1);
2458
2459 // Let p2 have the same content as p1, but be at a different address.
2460 const char p2[] = "good";
2461 ASSERT_STREQ(p1, p2);
2462
2463 EXPECT_FATAL_FAILURE(ASSERT_STREQ("bad", "good"),
2464 "Expected: \"bad\"");
2465 }
2466
2467 // Tests ASSERT_STREQ with NULL arguments.
TEST(StringAssertionTest,ASSERT_STREQ_Null)2468 TEST(StringAssertionTest, ASSERT_STREQ_Null) {
2469 ASSERT_STREQ(static_cast<const char *>(NULL), NULL);
2470 EXPECT_FATAL_FAILURE(ASSERT_STREQ(NULL, "non-null"),
2471 "non-null");
2472 }
2473
2474 // Tests ASSERT_STREQ with NULL arguments.
TEST(StringAssertionTest,ASSERT_STREQ_Null2)2475 TEST(StringAssertionTest, ASSERT_STREQ_Null2) {
2476 EXPECT_FATAL_FAILURE(ASSERT_STREQ("non-null", NULL),
2477 "non-null");
2478 }
2479
2480 // Tests ASSERT_STRNE.
TEST(StringAssertionTest,ASSERT_STRNE)2481 TEST(StringAssertionTest, ASSERT_STRNE) {
2482 ASSERT_STRNE("hi", "Hi");
2483 ASSERT_STRNE("Hi", NULL);
2484 ASSERT_STRNE(NULL, "Hi");
2485 ASSERT_STRNE("", NULL);
2486 ASSERT_STRNE(NULL, "");
2487 ASSERT_STRNE("", "Hi");
2488 ASSERT_STRNE("Hi", "");
2489 EXPECT_FATAL_FAILURE(ASSERT_STRNE("Hi", "Hi"),
2490 "\"Hi\" vs \"Hi\"");
2491 }
2492
2493 // Tests ASSERT_STRCASEEQ.
TEST(StringAssertionTest,ASSERT_STRCASEEQ)2494 TEST(StringAssertionTest, ASSERT_STRCASEEQ) {
2495 ASSERT_STRCASEEQ("hi", "Hi");
2496 ASSERT_STRCASEEQ(static_cast<const char *>(NULL), NULL);
2497
2498 ASSERT_STRCASEEQ("", "");
2499 EXPECT_FATAL_FAILURE(ASSERT_STRCASEEQ("Hi", "hi2"),
2500 "(ignoring case)");
2501 }
2502
2503 // Tests ASSERT_STRCASENE.
TEST(StringAssertionTest,ASSERT_STRCASENE)2504 TEST(StringAssertionTest, ASSERT_STRCASENE) {
2505 ASSERT_STRCASENE("hi1", "Hi2");
2506 ASSERT_STRCASENE("Hi", NULL);
2507 ASSERT_STRCASENE(NULL, "Hi");
2508 ASSERT_STRCASENE("", NULL);
2509 ASSERT_STRCASENE(NULL, "");
2510 ASSERT_STRCASENE("", "Hi");
2511 ASSERT_STRCASENE("Hi", "");
2512 EXPECT_FATAL_FAILURE(ASSERT_STRCASENE("Hi", "hi"),
2513 "(ignoring case)");
2514 }
2515
2516 // Tests *_STREQ on wide strings.
TEST(StringAssertionTest,STREQ_Wide)2517 TEST(StringAssertionTest, STREQ_Wide) {
2518 // NULL strings.
2519 ASSERT_STREQ(static_cast<const wchar_t *>(NULL), NULL);
2520
2521 // Empty strings.
2522 ASSERT_STREQ(L"", L"");
2523
2524 // Non-null vs NULL.
2525 EXPECT_NONFATAL_FAILURE(EXPECT_STREQ(L"non-null", NULL),
2526 "non-null");
2527
2528 // Equal strings.
2529 EXPECT_STREQ(L"Hi", L"Hi");
2530
2531 // Unequal strings.
2532 EXPECT_NONFATAL_FAILURE(EXPECT_STREQ(L"abc", L"Abc"),
2533 "Abc");
2534
2535 // Strings containing wide characters.
2536 EXPECT_NONFATAL_FAILURE(EXPECT_STREQ(L"abc\x8119", L"abc\x8120"),
2537 "abc");
2538 }
2539
2540 // Tests *_STRNE on wide strings.
TEST(StringAssertionTest,STRNE_Wide)2541 TEST(StringAssertionTest, STRNE_Wide) {
2542 // NULL strings.
2543 EXPECT_NONFATAL_FAILURE({ // NOLINT
2544 EXPECT_STRNE(static_cast<const wchar_t *>(NULL), NULL);
2545 }, "");
2546
2547 // Empty strings.
2548 EXPECT_NONFATAL_FAILURE(EXPECT_STRNE(L"", L""),
2549 "L\"\"");
2550
2551 // Non-null vs NULL.
2552 ASSERT_STRNE(L"non-null", NULL);
2553
2554 // Equal strings.
2555 EXPECT_NONFATAL_FAILURE(EXPECT_STRNE(L"Hi", L"Hi"),
2556 "L\"Hi\"");
2557
2558 // Unequal strings.
2559 EXPECT_STRNE(L"abc", L"Abc");
2560
2561 // Strings containing wide characters.
2562 EXPECT_NONFATAL_FAILURE(EXPECT_STRNE(L"abc\x8119", L"abc\x8119"),
2563 "abc");
2564 }
2565
2566 // Tests for ::testing::IsSubstring().
2567
2568 // Tests that IsSubstring() returns the correct result when the input
2569 // argument type is const char*.
TEST(IsSubstringTest,ReturnsCorrectResultForCString)2570 TEST(IsSubstringTest, ReturnsCorrectResultForCString) {
2571 EXPECT_FALSE(IsSubstring("", "", NULL, "a"));
2572 EXPECT_FALSE(IsSubstring("", "", "b", NULL));
2573 EXPECT_FALSE(IsSubstring("", "", "needle", "haystack"));
2574
2575 EXPECT_TRUE(IsSubstring("", "", static_cast<const char*>(NULL), NULL));
2576 EXPECT_TRUE(IsSubstring("", "", "needle", "two needles"));
2577 }
2578
2579 // Tests that IsSubstring() returns the correct result when the input
2580 // argument type is const wchar_t*.
TEST(IsSubstringTest,ReturnsCorrectResultForWideCString)2581 TEST(IsSubstringTest, ReturnsCorrectResultForWideCString) {
2582 EXPECT_FALSE(IsSubstring("", "", kNull, L"a"));
2583 EXPECT_FALSE(IsSubstring("", "", L"b", kNull));
2584 EXPECT_FALSE(IsSubstring("", "", L"needle", L"haystack"));
2585
2586 EXPECT_TRUE(IsSubstring("", "", static_cast<const wchar_t*>(NULL), NULL));
2587 EXPECT_TRUE(IsSubstring("", "", L"needle", L"two needles"));
2588 }
2589
2590 // Tests that IsSubstring() generates the correct message when the input
2591 // argument type is const char*.
TEST(IsSubstringTest,GeneratesCorrectMessageForCString)2592 TEST(IsSubstringTest, GeneratesCorrectMessageForCString) {
2593 EXPECT_STREQ("Value of: needle_expr\n"
2594 " Actual: \"needle\"\n"
2595 "Expected: a substring of haystack_expr\n"
2596 "Which is: \"haystack\"",
2597 IsSubstring("needle_expr", "haystack_expr",
2598 "needle", "haystack").failure_message());
2599 }
2600
2601 // Tests that IsSubstring returns the correct result when the input
2602 // argument type is ::std::string.
TEST(IsSubstringTest,ReturnsCorrectResultsForStdString)2603 TEST(IsSubstringTest, ReturnsCorrectResultsForStdString) {
2604 EXPECT_TRUE(IsSubstring("", "", std::string("hello"), "ahellob"));
2605 EXPECT_FALSE(IsSubstring("", "", "hello", std::string("world")));
2606 }
2607
2608 #if GTEST_HAS_STD_WSTRING
2609 // Tests that IsSubstring returns the correct result when the input
2610 // argument type is ::std::wstring.
TEST(IsSubstringTest,ReturnsCorrectResultForStdWstring)2611 TEST(IsSubstringTest, ReturnsCorrectResultForStdWstring) {
2612 EXPECT_TRUE(IsSubstring("", "", ::std::wstring(L"needle"), L"two needles"));
2613 EXPECT_FALSE(IsSubstring("", "", L"needle", ::std::wstring(L"haystack")));
2614 }
2615
2616 // Tests that IsSubstring() generates the correct message when the input
2617 // argument type is ::std::wstring.
TEST(IsSubstringTest,GeneratesCorrectMessageForWstring)2618 TEST(IsSubstringTest, GeneratesCorrectMessageForWstring) {
2619 EXPECT_STREQ("Value of: needle_expr\n"
2620 " Actual: L\"needle\"\n"
2621 "Expected: a substring of haystack_expr\n"
2622 "Which is: L\"haystack\"",
2623 IsSubstring(
2624 "needle_expr", "haystack_expr",
2625 ::std::wstring(L"needle"), L"haystack").failure_message());
2626 }
2627
2628 #endif // GTEST_HAS_STD_WSTRING
2629
2630 // Tests for ::testing::IsNotSubstring().
2631
2632 // Tests that IsNotSubstring() returns the correct result when the input
2633 // argument type is const char*.
TEST(IsNotSubstringTest,ReturnsCorrectResultForCString)2634 TEST(IsNotSubstringTest, ReturnsCorrectResultForCString) {
2635 EXPECT_TRUE(IsNotSubstring("", "", "needle", "haystack"));
2636 EXPECT_FALSE(IsNotSubstring("", "", "needle", "two needles"));
2637 }
2638
2639 // Tests that IsNotSubstring() returns the correct result when the input
2640 // argument type is const wchar_t*.
TEST(IsNotSubstringTest,ReturnsCorrectResultForWideCString)2641 TEST(IsNotSubstringTest, ReturnsCorrectResultForWideCString) {
2642 EXPECT_TRUE(IsNotSubstring("", "", L"needle", L"haystack"));
2643 EXPECT_FALSE(IsNotSubstring("", "", L"needle", L"two needles"));
2644 }
2645
2646 // Tests that IsNotSubstring() generates the correct message when the input
2647 // argument type is const wchar_t*.
TEST(IsNotSubstringTest,GeneratesCorrectMessageForWideCString)2648 TEST(IsNotSubstringTest, GeneratesCorrectMessageForWideCString) {
2649 EXPECT_STREQ("Value of: needle_expr\n"
2650 " Actual: L\"needle\"\n"
2651 "Expected: not a substring of haystack_expr\n"
2652 "Which is: L\"two needles\"",
2653 IsNotSubstring(
2654 "needle_expr", "haystack_expr",
2655 L"needle", L"two needles").failure_message());
2656 }
2657
2658 // Tests that IsNotSubstring returns the correct result when the input
2659 // argument type is ::std::string.
TEST(IsNotSubstringTest,ReturnsCorrectResultsForStdString)2660 TEST(IsNotSubstringTest, ReturnsCorrectResultsForStdString) {
2661 EXPECT_FALSE(IsNotSubstring("", "", std::string("hello"), "ahellob"));
2662 EXPECT_TRUE(IsNotSubstring("", "", "hello", std::string("world")));
2663 }
2664
2665 // Tests that IsNotSubstring() generates the correct message when the input
2666 // argument type is ::std::string.
TEST(IsNotSubstringTest,GeneratesCorrectMessageForStdString)2667 TEST(IsNotSubstringTest, GeneratesCorrectMessageForStdString) {
2668 EXPECT_STREQ("Value of: needle_expr\n"
2669 " Actual: \"needle\"\n"
2670 "Expected: not a substring of haystack_expr\n"
2671 "Which is: \"two needles\"",
2672 IsNotSubstring(
2673 "needle_expr", "haystack_expr",
2674 ::std::string("needle"), "two needles").failure_message());
2675 }
2676
2677 #if GTEST_HAS_STD_WSTRING
2678
2679 // Tests that IsNotSubstring returns the correct result when the input
2680 // argument type is ::std::wstring.
TEST(IsNotSubstringTest,ReturnsCorrectResultForStdWstring)2681 TEST(IsNotSubstringTest, ReturnsCorrectResultForStdWstring) {
2682 EXPECT_FALSE(
2683 IsNotSubstring("", "", ::std::wstring(L"needle"), L"two needles"));
2684 EXPECT_TRUE(IsNotSubstring("", "", L"needle", ::std::wstring(L"haystack")));
2685 }
2686
2687 #endif // GTEST_HAS_STD_WSTRING
2688
2689 // Tests floating-point assertions.
2690
2691 template <typename RawType>
2692 class FloatingPointTest : public Test {
2693 protected:
2694
2695 // Pre-calculated numbers to be used by the tests.
2696 struct TestValues {
2697 RawType close_to_positive_zero;
2698 RawType close_to_negative_zero;
2699 RawType further_from_negative_zero;
2700
2701 RawType close_to_one;
2702 RawType further_from_one;
2703
2704 RawType infinity;
2705 RawType close_to_infinity;
2706 RawType further_from_infinity;
2707
2708 RawType nan1;
2709 RawType nan2;
2710 };
2711
2712 typedef typename testing::internal::FloatingPoint<RawType> Floating;
2713 typedef typename Floating::Bits Bits;
2714
SetUp()2715 virtual void SetUp() {
2716 const size_t max_ulps = Floating::kMaxUlps;
2717
2718 // The bits that represent 0.0.
2719 const Bits zero_bits = Floating(0).bits();
2720
2721 // Makes some numbers close to 0.0.
2722 values_.close_to_positive_zero = Floating::ReinterpretBits(
2723 zero_bits + max_ulps/2);
2724 values_.close_to_negative_zero = -Floating::ReinterpretBits(
2725 zero_bits + max_ulps - max_ulps/2);
2726 values_.further_from_negative_zero = -Floating::ReinterpretBits(
2727 zero_bits + max_ulps + 1 - max_ulps/2);
2728
2729 // The bits that represent 1.0.
2730 const Bits one_bits = Floating(1).bits();
2731
2732 // Makes some numbers close to 1.0.
2733 values_.close_to_one = Floating::ReinterpretBits(one_bits + max_ulps);
2734 values_.further_from_one = Floating::ReinterpretBits(
2735 one_bits + max_ulps + 1);
2736
2737 // +infinity.
2738 values_.infinity = Floating::Infinity();
2739
2740 // The bits that represent +infinity.
2741 const Bits infinity_bits = Floating(values_.infinity).bits();
2742
2743 // Makes some numbers close to infinity.
2744 values_.close_to_infinity = Floating::ReinterpretBits(
2745 infinity_bits - max_ulps);
2746 values_.further_from_infinity = Floating::ReinterpretBits(
2747 infinity_bits - max_ulps - 1);
2748
2749 // Makes some NAN's. Sets the most significant bit of the fraction so that
2750 // our NaN's are quiet; trying to process a signaling NaN would raise an
2751 // exception if our environment enables floating point exceptions.
2752 values_.nan1 = Floating::ReinterpretBits(Floating::kExponentBitMask
2753 | (static_cast<Bits>(1) << (Floating::kFractionBitCount - 1)) | 1);
2754 values_.nan2 = Floating::ReinterpretBits(Floating::kExponentBitMask
2755 | (static_cast<Bits>(1) << (Floating::kFractionBitCount - 1)) | 200);
2756 }
2757
TestSize()2758 void TestSize() {
2759 EXPECT_EQ(sizeof(RawType), sizeof(Bits));
2760 }
2761
2762 static TestValues values_;
2763 };
2764
2765 template <typename RawType>
2766 typename FloatingPointTest<RawType>::TestValues
2767 FloatingPointTest<RawType>::values_;
2768
2769 // Instantiates FloatingPointTest for testing *_FLOAT_EQ.
2770 typedef FloatingPointTest<float> FloatTest;
2771
2772 // Tests that the size of Float::Bits matches the size of float.
TEST_F(FloatTest,Size)2773 TEST_F(FloatTest, Size) {
2774 TestSize();
2775 }
2776
2777 // Tests comparing with +0 and -0.
TEST_F(FloatTest,Zeros)2778 TEST_F(FloatTest, Zeros) {
2779 EXPECT_FLOAT_EQ(0.0, -0.0);
2780 EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(-0.0, 1.0),
2781 "1.0");
2782 EXPECT_FATAL_FAILURE(ASSERT_FLOAT_EQ(0.0, 1.5),
2783 "1.5");
2784 }
2785
2786 // Tests comparing numbers close to 0.
2787 //
2788 // This ensures that *_FLOAT_EQ handles the sign correctly and no
2789 // overflow occurs when comparing numbers whose absolute value is very
2790 // small.
TEST_F(FloatTest,AlmostZeros)2791 TEST_F(FloatTest, AlmostZeros) {
2792 // In C++Builder, names within local classes (such as used by
2793 // EXPECT_FATAL_FAILURE) cannot be resolved against static members of the
2794 // scoping class. Use a static local alias as a workaround.
2795 // We use the assignment syntax since some compilers, like Sun Studio,
2796 // don't allow initializing references using construction syntax
2797 // (parentheses).
2798 static const FloatTest::TestValues& v = this->values_;
2799
2800 EXPECT_FLOAT_EQ(0.0, v.close_to_positive_zero);
2801 EXPECT_FLOAT_EQ(-0.0, v.close_to_negative_zero);
2802 EXPECT_FLOAT_EQ(v.close_to_positive_zero, v.close_to_negative_zero);
2803
2804 EXPECT_FATAL_FAILURE({ // NOLINT
2805 ASSERT_FLOAT_EQ(v.close_to_positive_zero,
2806 v.further_from_negative_zero);
2807 }, "v.further_from_negative_zero");
2808 }
2809
2810 // Tests comparing numbers close to each other.
TEST_F(FloatTest,SmallDiff)2811 TEST_F(FloatTest, SmallDiff) {
2812 EXPECT_FLOAT_EQ(1.0, values_.close_to_one);
2813 EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(1.0, values_.further_from_one),
2814 "values_.further_from_one");
2815 }
2816
2817 // Tests comparing numbers far apart.
TEST_F(FloatTest,LargeDiff)2818 TEST_F(FloatTest, LargeDiff) {
2819 EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(2.5, 3.0),
2820 "3.0");
2821 }
2822
2823 // Tests comparing with infinity.
2824 //
2825 // This ensures that no overflow occurs when comparing numbers whose
2826 // absolute value is very large.
TEST_F(FloatTest,Infinity)2827 TEST_F(FloatTest, Infinity) {
2828 EXPECT_FLOAT_EQ(values_.infinity, values_.close_to_infinity);
2829 EXPECT_FLOAT_EQ(-values_.infinity, -values_.close_to_infinity);
2830 #if !GTEST_OS_SYMBIAN
2831 // Nokia's STLport crashes if we try to output infinity or NaN.
2832 EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(values_.infinity, -values_.infinity),
2833 "-values_.infinity");
2834
2835 // This is interesting as the representations of infinity and nan1
2836 // are only 1 DLP apart.
2837 EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(values_.infinity, values_.nan1),
2838 "values_.nan1");
2839 #endif // !GTEST_OS_SYMBIAN
2840 }
2841
2842 // Tests that comparing with NAN always returns false.
TEST_F(FloatTest,NaN)2843 TEST_F(FloatTest, NaN) {
2844 #if !GTEST_OS_SYMBIAN
2845 // Nokia's STLport crashes if we try to output infinity or NaN.
2846
2847 // In C++Builder, names within local classes (such as used by
2848 // EXPECT_FATAL_FAILURE) cannot be resolved against static members of the
2849 // scoping class. Use a static local alias as a workaround.
2850 // We use the assignment syntax since some compilers, like Sun Studio,
2851 // don't allow initializing references using construction syntax
2852 // (parentheses).
2853 static const FloatTest::TestValues& v = this->values_;
2854
2855 EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(v.nan1, v.nan1),
2856 "v.nan1");
2857 EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(v.nan1, v.nan2),
2858 "v.nan2");
2859 EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(1.0, v.nan1),
2860 "v.nan1");
2861
2862 EXPECT_FATAL_FAILURE(ASSERT_FLOAT_EQ(v.nan1, v.infinity),
2863 "v.infinity");
2864 #endif // !GTEST_OS_SYMBIAN
2865 }
2866
2867 // Tests that *_FLOAT_EQ are reflexive.
TEST_F(FloatTest,Reflexive)2868 TEST_F(FloatTest, Reflexive) {
2869 EXPECT_FLOAT_EQ(0.0, 0.0);
2870 EXPECT_FLOAT_EQ(1.0, 1.0);
2871 ASSERT_FLOAT_EQ(values_.infinity, values_.infinity);
2872 }
2873
2874 // Tests that *_FLOAT_EQ are commutative.
TEST_F(FloatTest,Commutative)2875 TEST_F(FloatTest, Commutative) {
2876 // We already tested EXPECT_FLOAT_EQ(1.0, values_.close_to_one).
2877 EXPECT_FLOAT_EQ(values_.close_to_one, 1.0);
2878
2879 // We already tested EXPECT_FLOAT_EQ(1.0, values_.further_from_one).
2880 EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(values_.further_from_one, 1.0),
2881 "1.0");
2882 }
2883
2884 // Tests EXPECT_NEAR.
TEST_F(FloatTest,EXPECT_NEAR)2885 TEST_F(FloatTest, EXPECT_NEAR) {
2886 EXPECT_NEAR(-1.0f, -1.1f, 0.2f);
2887 EXPECT_NEAR(2.0f, 3.0f, 1.0f);
2888 EXPECT_NONFATAL_FAILURE(EXPECT_NEAR(1.0f,1.5f, 0.25f), // NOLINT
2889 "The difference between 1.0f and 1.5f is 0.5, "
2890 "which exceeds 0.25f");
2891 // To work around a bug in gcc 2.95.0, there is intentionally no
2892 // space after the first comma in the previous line.
2893 }
2894
2895 // Tests ASSERT_NEAR.
TEST_F(FloatTest,ASSERT_NEAR)2896 TEST_F(FloatTest, ASSERT_NEAR) {
2897 ASSERT_NEAR(-1.0f, -1.1f, 0.2f);
2898 ASSERT_NEAR(2.0f, 3.0f, 1.0f);
2899 EXPECT_FATAL_FAILURE(ASSERT_NEAR(1.0f,1.5f, 0.25f), // NOLINT
2900 "The difference between 1.0f and 1.5f is 0.5, "
2901 "which exceeds 0.25f");
2902 // To work around a bug in gcc 2.95.0, there is intentionally no
2903 // space after the first comma in the previous line.
2904 }
2905
2906 // Tests the cases where FloatLE() should succeed.
TEST_F(FloatTest,FloatLESucceeds)2907 TEST_F(FloatTest, FloatLESucceeds) {
2908 EXPECT_PRED_FORMAT2(FloatLE, 1.0f, 2.0f); // When val1 < val2,
2909 ASSERT_PRED_FORMAT2(FloatLE, 1.0f, 1.0f); // val1 == val2,
2910
2911 // or when val1 is greater than, but almost equals to, val2.
2912 EXPECT_PRED_FORMAT2(FloatLE, values_.close_to_positive_zero, 0.0f);
2913 }
2914
2915 // Tests the cases where FloatLE() should fail.
TEST_F(FloatTest,FloatLEFails)2916 TEST_F(FloatTest, FloatLEFails) {
2917 // When val1 is greater than val2 by a large margin,
2918 EXPECT_NONFATAL_FAILURE(EXPECT_PRED_FORMAT2(FloatLE, 2.0f, 1.0f),
2919 "(2.0f) <= (1.0f)");
2920
2921 // or by a small yet non-negligible margin,
2922 EXPECT_NONFATAL_FAILURE({ // NOLINT
2923 EXPECT_PRED_FORMAT2(FloatLE, values_.further_from_one, 1.0f);
2924 }, "(values_.further_from_one) <= (1.0f)");
2925
2926 #if !GTEST_OS_SYMBIAN && !defined(__BORLANDC__)
2927 // Nokia's STLport crashes if we try to output infinity or NaN.
2928 // C++Builder gives bad results for ordered comparisons involving NaNs
2929 // due to compiler bugs.
2930 EXPECT_NONFATAL_FAILURE({ // NOLINT
2931 EXPECT_PRED_FORMAT2(FloatLE, values_.nan1, values_.infinity);
2932 }, "(values_.nan1) <= (values_.infinity)");
2933 EXPECT_NONFATAL_FAILURE({ // NOLINT
2934 EXPECT_PRED_FORMAT2(FloatLE, -values_.infinity, values_.nan1);
2935 }, "(-values_.infinity) <= (values_.nan1)");
2936 EXPECT_FATAL_FAILURE({ // NOLINT
2937 ASSERT_PRED_FORMAT2(FloatLE, values_.nan1, values_.nan1);
2938 }, "(values_.nan1) <= (values_.nan1)");
2939 #endif // !GTEST_OS_SYMBIAN && !defined(__BORLANDC__)
2940 }
2941
2942 // Instantiates FloatingPointTest for testing *_DOUBLE_EQ.
2943 typedef FloatingPointTest<double> DoubleTest;
2944
2945 // Tests that the size of Double::Bits matches the size of double.
TEST_F(DoubleTest,Size)2946 TEST_F(DoubleTest, Size) {
2947 TestSize();
2948 }
2949
2950 // Tests comparing with +0 and -0.
TEST_F(DoubleTest,Zeros)2951 TEST_F(DoubleTest, Zeros) {
2952 EXPECT_DOUBLE_EQ(0.0, -0.0);
2953 EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(-0.0, 1.0),
2954 "1.0");
2955 EXPECT_FATAL_FAILURE(ASSERT_DOUBLE_EQ(0.0, 1.0),
2956 "1.0");
2957 }
2958
2959 // Tests comparing numbers close to 0.
2960 //
2961 // This ensures that *_DOUBLE_EQ handles the sign correctly and no
2962 // overflow occurs when comparing numbers whose absolute value is very
2963 // small.
TEST_F(DoubleTest,AlmostZeros)2964 TEST_F(DoubleTest, AlmostZeros) {
2965 // In C++Builder, names within local classes (such as used by
2966 // EXPECT_FATAL_FAILURE) cannot be resolved against static members of the
2967 // scoping class. Use a static local alias as a workaround.
2968 // We use the assignment syntax since some compilers, like Sun Studio,
2969 // don't allow initializing references using construction syntax
2970 // (parentheses).
2971 static const DoubleTest::TestValues& v = this->values_;
2972
2973 EXPECT_DOUBLE_EQ(0.0, v.close_to_positive_zero);
2974 EXPECT_DOUBLE_EQ(-0.0, v.close_to_negative_zero);
2975 EXPECT_DOUBLE_EQ(v.close_to_positive_zero, v.close_to_negative_zero);
2976
2977 EXPECT_FATAL_FAILURE({ // NOLINT
2978 ASSERT_DOUBLE_EQ(v.close_to_positive_zero,
2979 v.further_from_negative_zero);
2980 }, "v.further_from_negative_zero");
2981 }
2982
2983 // Tests comparing numbers close to each other.
TEST_F(DoubleTest,SmallDiff)2984 TEST_F(DoubleTest, SmallDiff) {
2985 EXPECT_DOUBLE_EQ(1.0, values_.close_to_one);
2986 EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(1.0, values_.further_from_one),
2987 "values_.further_from_one");
2988 }
2989
2990 // Tests comparing numbers far apart.
TEST_F(DoubleTest,LargeDiff)2991 TEST_F(DoubleTest, LargeDiff) {
2992 EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(2.0, 3.0),
2993 "3.0");
2994 }
2995
2996 // Tests comparing with infinity.
2997 //
2998 // This ensures that no overflow occurs when comparing numbers whose
2999 // absolute value is very large.
TEST_F(DoubleTest,Infinity)3000 TEST_F(DoubleTest, Infinity) {
3001 EXPECT_DOUBLE_EQ(values_.infinity, values_.close_to_infinity);
3002 EXPECT_DOUBLE_EQ(-values_.infinity, -values_.close_to_infinity);
3003 #if !GTEST_OS_SYMBIAN
3004 // Nokia's STLport crashes if we try to output infinity or NaN.
3005 EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(values_.infinity, -values_.infinity),
3006 "-values_.infinity");
3007
3008 // This is interesting as the representations of infinity_ and nan1_
3009 // are only 1 DLP apart.
3010 EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(values_.infinity, values_.nan1),
3011 "values_.nan1");
3012 #endif // !GTEST_OS_SYMBIAN
3013 }
3014
3015 // Tests that comparing with NAN always returns false.
TEST_F(DoubleTest,NaN)3016 TEST_F(DoubleTest, NaN) {
3017 #if !GTEST_OS_SYMBIAN
3018 // In C++Builder, names within local classes (such as used by
3019 // EXPECT_FATAL_FAILURE) cannot be resolved against static members of the
3020 // scoping class. Use a static local alias as a workaround.
3021 // We use the assignment syntax since some compilers, like Sun Studio,
3022 // don't allow initializing references using construction syntax
3023 // (parentheses).
3024 static const DoubleTest::TestValues& v = this->values_;
3025
3026 // Nokia's STLport crashes if we try to output infinity or NaN.
3027 EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(v.nan1, v.nan1),
3028 "v.nan1");
3029 EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(v.nan1, v.nan2), "v.nan2");
3030 EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(1.0, v.nan1), "v.nan1");
3031 EXPECT_FATAL_FAILURE(ASSERT_DOUBLE_EQ(v.nan1, v.infinity),
3032 "v.infinity");
3033 #endif // !GTEST_OS_SYMBIAN
3034 }
3035
3036 // Tests that *_DOUBLE_EQ are reflexive.
TEST_F(DoubleTest,Reflexive)3037 TEST_F(DoubleTest, Reflexive) {
3038 EXPECT_DOUBLE_EQ(0.0, 0.0);
3039 EXPECT_DOUBLE_EQ(1.0, 1.0);
3040 #if !GTEST_OS_SYMBIAN
3041 // Nokia's STLport crashes if we try to output infinity or NaN.
3042 ASSERT_DOUBLE_EQ(values_.infinity, values_.infinity);
3043 #endif // !GTEST_OS_SYMBIAN
3044 }
3045
3046 // Tests that *_DOUBLE_EQ are commutative.
TEST_F(DoubleTest,Commutative)3047 TEST_F(DoubleTest, Commutative) {
3048 // We already tested EXPECT_DOUBLE_EQ(1.0, values_.close_to_one).
3049 EXPECT_DOUBLE_EQ(values_.close_to_one, 1.0);
3050
3051 // We already tested EXPECT_DOUBLE_EQ(1.0, values_.further_from_one).
3052 EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(values_.further_from_one, 1.0),
3053 "1.0");
3054 }
3055
3056 // Tests EXPECT_NEAR.
TEST_F(DoubleTest,EXPECT_NEAR)3057 TEST_F(DoubleTest, EXPECT_NEAR) {
3058 EXPECT_NEAR(-1.0, -1.1, 0.2);
3059 EXPECT_NEAR(2.0, 3.0, 1.0);
3060 EXPECT_NONFATAL_FAILURE(EXPECT_NEAR(1.0, 1.5, 0.25), // NOLINT
3061 "The difference between 1.0 and 1.5 is 0.5, "
3062 "which exceeds 0.25");
3063 // To work around a bug in gcc 2.95.0, there is intentionally no
3064 // space after the first comma in the previous statement.
3065 }
3066
3067 // Tests ASSERT_NEAR.
TEST_F(DoubleTest,ASSERT_NEAR)3068 TEST_F(DoubleTest, ASSERT_NEAR) {
3069 ASSERT_NEAR(-1.0, -1.1, 0.2);
3070 ASSERT_NEAR(2.0, 3.0, 1.0);
3071 EXPECT_FATAL_FAILURE(ASSERT_NEAR(1.0, 1.5, 0.25), // NOLINT
3072 "The difference between 1.0 and 1.5 is 0.5, "
3073 "which exceeds 0.25");
3074 // To work around a bug in gcc 2.95.0, there is intentionally no
3075 // space after the first comma in the previous statement.
3076 }
3077
3078 // Tests the cases where DoubleLE() should succeed.
TEST_F(DoubleTest,DoubleLESucceeds)3079 TEST_F(DoubleTest, DoubleLESucceeds) {
3080 EXPECT_PRED_FORMAT2(DoubleLE, 1.0, 2.0); // When val1 < val2,
3081 ASSERT_PRED_FORMAT2(DoubleLE, 1.0, 1.0); // val1 == val2,
3082
3083 // or when val1 is greater than, but almost equals to, val2.
3084 EXPECT_PRED_FORMAT2(DoubleLE, values_.close_to_positive_zero, 0.0);
3085 }
3086
3087 // Tests the cases where DoubleLE() should fail.
TEST_F(DoubleTest,DoubleLEFails)3088 TEST_F(DoubleTest, DoubleLEFails) {
3089 // When val1 is greater than val2 by a large margin,
3090 EXPECT_NONFATAL_FAILURE(EXPECT_PRED_FORMAT2(DoubleLE, 2.0, 1.0),
3091 "(2.0) <= (1.0)");
3092
3093 // or by a small yet non-negligible margin,
3094 EXPECT_NONFATAL_FAILURE({ // NOLINT
3095 EXPECT_PRED_FORMAT2(DoubleLE, values_.further_from_one, 1.0);
3096 }, "(values_.further_from_one) <= (1.0)");
3097
3098 #if !GTEST_OS_SYMBIAN && !defined(__BORLANDC__)
3099 // Nokia's STLport crashes if we try to output infinity or NaN.
3100 // C++Builder gives bad results for ordered comparisons involving NaNs
3101 // due to compiler bugs.
3102 EXPECT_NONFATAL_FAILURE({ // NOLINT
3103 EXPECT_PRED_FORMAT2(DoubleLE, values_.nan1, values_.infinity);
3104 }, "(values_.nan1) <= (values_.infinity)");
3105 EXPECT_NONFATAL_FAILURE({ // NOLINT
3106 EXPECT_PRED_FORMAT2(DoubleLE, -values_.infinity, values_.nan1);
3107 }, " (-values_.infinity) <= (values_.nan1)");
3108 EXPECT_FATAL_FAILURE({ // NOLINT
3109 ASSERT_PRED_FORMAT2(DoubleLE, values_.nan1, values_.nan1);
3110 }, "(values_.nan1) <= (values_.nan1)");
3111 #endif // !GTEST_OS_SYMBIAN && !defined(__BORLANDC__)
3112 }
3113
3114
3115 // Verifies that a test or test case whose name starts with DISABLED_ is
3116 // not run.
3117
3118 // A test whose name starts with DISABLED_.
3119 // Should not run.
TEST(DisabledTest,DISABLED_TestShouldNotRun)3120 TEST(DisabledTest, DISABLED_TestShouldNotRun) {
3121 FAIL() << "Unexpected failure: Disabled test should not be run.";
3122 }
3123
3124 // A test whose name does not start with DISABLED_.
3125 // Should run.
TEST(DisabledTest,NotDISABLED_TestShouldRun)3126 TEST(DisabledTest, NotDISABLED_TestShouldRun) {
3127 EXPECT_EQ(1, 1);
3128 }
3129
3130 // A test case whose name starts with DISABLED_.
3131 // Should not run.
TEST(DISABLED_TestCase,TestShouldNotRun)3132 TEST(DISABLED_TestCase, TestShouldNotRun) {
3133 FAIL() << "Unexpected failure: Test in disabled test case should not be run.";
3134 }
3135
3136 // A test case and test whose names start with DISABLED_.
3137 // Should not run.
TEST(DISABLED_TestCase,DISABLED_TestShouldNotRun)3138 TEST(DISABLED_TestCase, DISABLED_TestShouldNotRun) {
3139 FAIL() << "Unexpected failure: Test in disabled test case should not be run.";
3140 }
3141
3142 // Check that when all tests in a test case are disabled, SetupTestCase() and
3143 // TearDownTestCase() are not called.
3144 class DisabledTestsTest : public Test {
3145 protected:
SetUpTestCase()3146 static void SetUpTestCase() {
3147 FAIL() << "Unexpected failure: All tests disabled in test case. "
3148 "SetupTestCase() should not be called.";
3149 }
3150
TearDownTestCase()3151 static void TearDownTestCase() {
3152 FAIL() << "Unexpected failure: All tests disabled in test case. "
3153 "TearDownTestCase() should not be called.";
3154 }
3155 };
3156
TEST_F(DisabledTestsTest,DISABLED_TestShouldNotRun_1)3157 TEST_F(DisabledTestsTest, DISABLED_TestShouldNotRun_1) {
3158 FAIL() << "Unexpected failure: Disabled test should not be run.";
3159 }
3160
TEST_F(DisabledTestsTest,DISABLED_TestShouldNotRun_2)3161 TEST_F(DisabledTestsTest, DISABLED_TestShouldNotRun_2) {
3162 FAIL() << "Unexpected failure: Disabled test should not be run.";
3163 }
3164
3165 // Tests that disabled typed tests aren't run.
3166
3167 #if GTEST_HAS_TYPED_TEST
3168
3169 template <typename T>
3170 class TypedTest : public Test {
3171 };
3172
3173 typedef testing::Types<int, double> NumericTypes;
3174 TYPED_TEST_CASE(TypedTest, NumericTypes);
3175
TYPED_TEST(TypedTest,DISABLED_ShouldNotRun)3176 TYPED_TEST(TypedTest, DISABLED_ShouldNotRun) {
3177 FAIL() << "Unexpected failure: Disabled typed test should not run.";
3178 }
3179
3180 template <typename T>
3181 class DISABLED_TypedTest : public Test {
3182 };
3183
3184 TYPED_TEST_CASE(DISABLED_TypedTest, NumericTypes);
3185
TYPED_TEST(DISABLED_TypedTest,ShouldNotRun)3186 TYPED_TEST(DISABLED_TypedTest, ShouldNotRun) {
3187 FAIL() << "Unexpected failure: Disabled typed test should not run.";
3188 }
3189
3190 #endif // GTEST_HAS_TYPED_TEST
3191
3192 // Tests that disabled type-parameterized tests aren't run.
3193
3194 #if GTEST_HAS_TYPED_TEST_P
3195
3196 template <typename T>
3197 class TypedTestP : public Test {
3198 };
3199
3200 TYPED_TEST_CASE_P(TypedTestP);
3201
TYPED_TEST_P(TypedTestP,DISABLED_ShouldNotRun)3202 TYPED_TEST_P(TypedTestP, DISABLED_ShouldNotRun) {
3203 FAIL() << "Unexpected failure: "
3204 << "Disabled type-parameterized test should not run.";
3205 }
3206
3207 REGISTER_TYPED_TEST_CASE_P(TypedTestP, DISABLED_ShouldNotRun);
3208
3209 INSTANTIATE_TYPED_TEST_CASE_P(My, TypedTestP, NumericTypes);
3210
3211 template <typename T>
3212 class DISABLED_TypedTestP : public Test {
3213 };
3214
3215 TYPED_TEST_CASE_P(DISABLED_TypedTestP);
3216
TYPED_TEST_P(DISABLED_TypedTestP,ShouldNotRun)3217 TYPED_TEST_P(DISABLED_TypedTestP, ShouldNotRun) {
3218 FAIL() << "Unexpected failure: "
3219 << "Disabled type-parameterized test should not run.";
3220 }
3221
3222 REGISTER_TYPED_TEST_CASE_P(DISABLED_TypedTestP, ShouldNotRun);
3223
3224 INSTANTIATE_TYPED_TEST_CASE_P(My, DISABLED_TypedTestP, NumericTypes);
3225
3226 #endif // GTEST_HAS_TYPED_TEST_P
3227
3228 // Tests that assertion macros evaluate their arguments exactly once.
3229
3230 class SingleEvaluationTest : public Test {
3231 public: // Must be public and not protected due to a bug in g++ 3.4.2.
3232 // This helper function is needed by the FailedASSERT_STREQ test
3233 // below. It's public to work around C++Builder's bug with scoping local
3234 // classes.
CompareAndIncrementCharPtrs()3235 static void CompareAndIncrementCharPtrs() {
3236 ASSERT_STREQ(p1_++, p2_++);
3237 }
3238
3239 // This helper function is needed by the FailedASSERT_NE test below. It's
3240 // public to work around C++Builder's bug with scoping local classes.
CompareAndIncrementInts()3241 static void CompareAndIncrementInts() {
3242 ASSERT_NE(a_++, b_++);
3243 }
3244
3245 protected:
SingleEvaluationTest()3246 SingleEvaluationTest() {
3247 p1_ = s1_;
3248 p2_ = s2_;
3249 a_ = 0;
3250 b_ = 0;
3251 }
3252
3253 static const char* const s1_;
3254 static const char* const s2_;
3255 static const char* p1_;
3256 static const char* p2_;
3257
3258 static int a_;
3259 static int b_;
3260 };
3261
3262 const char* const SingleEvaluationTest::s1_ = "01234";
3263 const char* const SingleEvaluationTest::s2_ = "abcde";
3264 const char* SingleEvaluationTest::p1_;
3265 const char* SingleEvaluationTest::p2_;
3266 int SingleEvaluationTest::a_;
3267 int SingleEvaluationTest::b_;
3268
3269 // Tests that when ASSERT_STREQ fails, it evaluates its arguments
3270 // exactly once.
TEST_F(SingleEvaluationTest,FailedASSERT_STREQ)3271 TEST_F(SingleEvaluationTest, FailedASSERT_STREQ) {
3272 EXPECT_FATAL_FAILURE(SingleEvaluationTest::CompareAndIncrementCharPtrs(),
3273 "p2_++");
3274 EXPECT_EQ(s1_ + 1, p1_);
3275 EXPECT_EQ(s2_ + 1, p2_);
3276 }
3277
3278 // Tests that string assertion arguments are evaluated exactly once.
TEST_F(SingleEvaluationTest,ASSERT_STR)3279 TEST_F(SingleEvaluationTest, ASSERT_STR) {
3280 // successful EXPECT_STRNE
3281 EXPECT_STRNE(p1_++, p2_++);
3282 EXPECT_EQ(s1_ + 1, p1_);
3283 EXPECT_EQ(s2_ + 1, p2_);
3284
3285 // failed EXPECT_STRCASEEQ
3286 EXPECT_NONFATAL_FAILURE(EXPECT_STRCASEEQ(p1_++, p2_++),
3287 "ignoring case");
3288 EXPECT_EQ(s1_ + 2, p1_);
3289 EXPECT_EQ(s2_ + 2, p2_);
3290 }
3291
3292 // Tests that when ASSERT_NE fails, it evaluates its arguments exactly
3293 // once.
TEST_F(SingleEvaluationTest,FailedASSERT_NE)3294 TEST_F(SingleEvaluationTest, FailedASSERT_NE) {
3295 EXPECT_FATAL_FAILURE(SingleEvaluationTest::CompareAndIncrementInts(),
3296 "(a_++) != (b_++)");
3297 EXPECT_EQ(1, a_);
3298 EXPECT_EQ(1, b_);
3299 }
3300
3301 // Tests that assertion arguments are evaluated exactly once.
TEST_F(SingleEvaluationTest,OtherCases)3302 TEST_F(SingleEvaluationTest, OtherCases) {
3303 // successful EXPECT_TRUE
3304 EXPECT_TRUE(0 == a_++); // NOLINT
3305 EXPECT_EQ(1, a_);
3306
3307 // failed EXPECT_TRUE
3308 EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(-1 == a_++), "-1 == a_++");
3309 EXPECT_EQ(2, a_);
3310
3311 // successful EXPECT_GT
3312 EXPECT_GT(a_++, b_++);
3313 EXPECT_EQ(3, a_);
3314 EXPECT_EQ(1, b_);
3315
3316 // failed EXPECT_LT
3317 EXPECT_NONFATAL_FAILURE(EXPECT_LT(a_++, b_++), "(a_++) < (b_++)");
3318 EXPECT_EQ(4, a_);
3319 EXPECT_EQ(2, b_);
3320
3321 // successful ASSERT_TRUE
3322 ASSERT_TRUE(0 < a_++); // NOLINT
3323 EXPECT_EQ(5, a_);
3324
3325 // successful ASSERT_GT
3326 ASSERT_GT(a_++, b_++);
3327 EXPECT_EQ(6, a_);
3328 EXPECT_EQ(3, b_);
3329 }
3330
3331 #if GTEST_HAS_EXCEPTIONS
3332
ThrowAnInteger()3333 void ThrowAnInteger() {
3334 throw 1;
3335 }
3336
3337 // Tests that assertion arguments are evaluated exactly once.
TEST_F(SingleEvaluationTest,ExceptionTests)3338 TEST_F(SingleEvaluationTest, ExceptionTests) {
3339 // successful EXPECT_THROW
3340 EXPECT_THROW({ // NOLINT
3341 a_++;
3342 ThrowAnInteger();
3343 }, int);
3344 EXPECT_EQ(1, a_);
3345
3346 // failed EXPECT_THROW, throws different
3347 EXPECT_NONFATAL_FAILURE(EXPECT_THROW({ // NOLINT
3348 a_++;
3349 ThrowAnInteger();
3350 }, bool), "throws a different type");
3351 EXPECT_EQ(2, a_);
3352
3353 // failed EXPECT_THROW, throws nothing
3354 EXPECT_NONFATAL_FAILURE(EXPECT_THROW(a_++, bool), "throws nothing");
3355 EXPECT_EQ(3, a_);
3356
3357 // successful EXPECT_NO_THROW
3358 EXPECT_NO_THROW(a_++);
3359 EXPECT_EQ(4, a_);
3360
3361 // failed EXPECT_NO_THROW
3362 EXPECT_NONFATAL_FAILURE(EXPECT_NO_THROW({ // NOLINT
3363 a_++;
3364 ThrowAnInteger();
3365 }), "it throws");
3366 EXPECT_EQ(5, a_);
3367
3368 // successful EXPECT_ANY_THROW
3369 EXPECT_ANY_THROW({ // NOLINT
3370 a_++;
3371 ThrowAnInteger();
3372 });
3373 EXPECT_EQ(6, a_);
3374
3375 // failed EXPECT_ANY_THROW
3376 EXPECT_NONFATAL_FAILURE(EXPECT_ANY_THROW(a_++), "it doesn't");
3377 EXPECT_EQ(7, a_);
3378 }
3379
3380 #endif // GTEST_HAS_EXCEPTIONS
3381
3382 // Tests {ASSERT|EXPECT}_NO_FATAL_FAILURE.
3383 class NoFatalFailureTest : public Test {
3384 protected:
Succeeds()3385 void Succeeds() {}
FailsNonFatal()3386 void FailsNonFatal() {
3387 ADD_FAILURE() << "some non-fatal failure";
3388 }
Fails()3389 void Fails() {
3390 FAIL() << "some fatal failure";
3391 }
3392
DoAssertNoFatalFailureOnFails()3393 void DoAssertNoFatalFailureOnFails() {
3394 ASSERT_NO_FATAL_FAILURE(Fails());
3395 ADD_FAILURE() << "shold not reach here.";
3396 }
3397
DoExpectNoFatalFailureOnFails()3398 void DoExpectNoFatalFailureOnFails() {
3399 EXPECT_NO_FATAL_FAILURE(Fails());
3400 ADD_FAILURE() << "other failure";
3401 }
3402 };
3403
TEST_F(NoFatalFailureTest,NoFailure)3404 TEST_F(NoFatalFailureTest, NoFailure) {
3405 EXPECT_NO_FATAL_FAILURE(Succeeds());
3406 ASSERT_NO_FATAL_FAILURE(Succeeds());
3407 }
3408
TEST_F(NoFatalFailureTest,NonFatalIsNoFailure)3409 TEST_F(NoFatalFailureTest, NonFatalIsNoFailure) {
3410 EXPECT_NONFATAL_FAILURE(
3411 EXPECT_NO_FATAL_FAILURE(FailsNonFatal()),
3412 "some non-fatal failure");
3413 EXPECT_NONFATAL_FAILURE(
3414 ASSERT_NO_FATAL_FAILURE(FailsNonFatal()),
3415 "some non-fatal failure");
3416 }
3417
TEST_F(NoFatalFailureTest,AssertNoFatalFailureOnFatalFailure)3418 TEST_F(NoFatalFailureTest, AssertNoFatalFailureOnFatalFailure) {
3419 TestPartResultArray gtest_failures;
3420 {
3421 ScopedFakeTestPartResultReporter gtest_reporter(>est_failures);
3422 DoAssertNoFatalFailureOnFails();
3423 }
3424 ASSERT_EQ(2, gtest_failures.size());
3425 EXPECT_EQ(TestPartResult::kFatalFailure,
3426 gtest_failures.GetTestPartResult(0).type());
3427 EXPECT_EQ(TestPartResult::kFatalFailure,
3428 gtest_failures.GetTestPartResult(1).type());
3429 EXPECT_PRED_FORMAT2(testing::IsSubstring, "some fatal failure",
3430 gtest_failures.GetTestPartResult(0).message());
3431 EXPECT_PRED_FORMAT2(testing::IsSubstring, "it does",
3432 gtest_failures.GetTestPartResult(1).message());
3433 }
3434
TEST_F(NoFatalFailureTest,ExpectNoFatalFailureOnFatalFailure)3435 TEST_F(NoFatalFailureTest, ExpectNoFatalFailureOnFatalFailure) {
3436 TestPartResultArray gtest_failures;
3437 {
3438 ScopedFakeTestPartResultReporter gtest_reporter(>est_failures);
3439 DoExpectNoFatalFailureOnFails();
3440 }
3441 ASSERT_EQ(3, gtest_failures.size());
3442 EXPECT_EQ(TestPartResult::kFatalFailure,
3443 gtest_failures.GetTestPartResult(0).type());
3444 EXPECT_EQ(TestPartResult::kNonFatalFailure,
3445 gtest_failures.GetTestPartResult(1).type());
3446 EXPECT_EQ(TestPartResult::kNonFatalFailure,
3447 gtest_failures.GetTestPartResult(2).type());
3448 EXPECT_PRED_FORMAT2(testing::IsSubstring, "some fatal failure",
3449 gtest_failures.GetTestPartResult(0).message());
3450 EXPECT_PRED_FORMAT2(testing::IsSubstring, "it does",
3451 gtest_failures.GetTestPartResult(1).message());
3452 EXPECT_PRED_FORMAT2(testing::IsSubstring, "other failure",
3453 gtest_failures.GetTestPartResult(2).message());
3454 }
3455
TEST_F(NoFatalFailureTest,MessageIsStreamable)3456 TEST_F(NoFatalFailureTest, MessageIsStreamable) {
3457 TestPartResultArray gtest_failures;
3458 {
3459 ScopedFakeTestPartResultReporter gtest_reporter(>est_failures);
3460 EXPECT_NO_FATAL_FAILURE(FAIL() << "foo") << "my message";
3461 }
3462 ASSERT_EQ(2, gtest_failures.size());
3463 EXPECT_EQ(TestPartResult::kNonFatalFailure,
3464 gtest_failures.GetTestPartResult(0).type());
3465 EXPECT_EQ(TestPartResult::kNonFatalFailure,
3466 gtest_failures.GetTestPartResult(1).type());
3467 EXPECT_PRED_FORMAT2(testing::IsSubstring, "foo",
3468 gtest_failures.GetTestPartResult(0).message());
3469 EXPECT_PRED_FORMAT2(testing::IsSubstring, "my message",
3470 gtest_failures.GetTestPartResult(1).message());
3471 }
3472
3473 // Tests non-string assertions.
3474
3475 // Tests EqFailure(), used for implementing *EQ* assertions.
TEST(AssertionTest,EqFailure)3476 TEST(AssertionTest, EqFailure) {
3477 const String foo_val("5"), bar_val("6");
3478 const String msg1(
3479 EqFailure("foo", "bar", foo_val, bar_val, false)
3480 .failure_message());
3481 EXPECT_STREQ(
3482 "Value of: bar\n"
3483 " Actual: 6\n"
3484 "Expected: foo\n"
3485 "Which is: 5",
3486 msg1.c_str());
3487
3488 const String msg2(
3489 EqFailure("foo", "6", foo_val, bar_val, false)
3490 .failure_message());
3491 EXPECT_STREQ(
3492 "Value of: 6\n"
3493 "Expected: foo\n"
3494 "Which is: 5",
3495 msg2.c_str());
3496
3497 const String msg3(
3498 EqFailure("5", "bar", foo_val, bar_val, false)
3499 .failure_message());
3500 EXPECT_STREQ(
3501 "Value of: bar\n"
3502 " Actual: 6\n"
3503 "Expected: 5",
3504 msg3.c_str());
3505
3506 const String msg4(
3507 EqFailure("5", "6", foo_val, bar_val, false).failure_message());
3508 EXPECT_STREQ(
3509 "Value of: 6\n"
3510 "Expected: 5",
3511 msg4.c_str());
3512
3513 const String msg5(
3514 EqFailure("foo", "bar",
3515 String("\"x\""), String("\"y\""),
3516 true).failure_message());
3517 EXPECT_STREQ(
3518 "Value of: bar\n"
3519 " Actual: \"y\"\n"
3520 "Expected: foo (ignoring case)\n"
3521 "Which is: \"x\"",
3522 msg5.c_str());
3523 }
3524
3525 // Tests AppendUserMessage(), used for implementing the *EQ* macros.
TEST(AssertionTest,AppendUserMessage)3526 TEST(AssertionTest, AppendUserMessage) {
3527 const String foo("foo");
3528
3529 Message msg;
3530 EXPECT_STREQ("foo",
3531 AppendUserMessage(foo, msg).c_str());
3532
3533 msg << "bar";
3534 EXPECT_STREQ("foo\nbar",
3535 AppendUserMessage(foo, msg).c_str());
3536 }
3537
3538 #ifdef __BORLANDC__
3539 // Silences warnings: "Condition is always true", "Unreachable code"
3540 # pragma option push -w-ccc -w-rch
3541 #endif
3542
3543 // Tests ASSERT_TRUE.
TEST(AssertionTest,ASSERT_TRUE)3544 TEST(AssertionTest, ASSERT_TRUE) {
3545 ASSERT_TRUE(2 > 1); // NOLINT
3546 EXPECT_FATAL_FAILURE(ASSERT_TRUE(2 < 1),
3547 "2 < 1");
3548 }
3549
3550 // Tests ASSERT_TRUE(predicate) for predicates returning AssertionResult.
TEST(AssertionTest,AssertTrueWithAssertionResult)3551 TEST(AssertionTest, AssertTrueWithAssertionResult) {
3552 ASSERT_TRUE(ResultIsEven(2));
3553 #ifndef __BORLANDC__
3554 // ICE's in C++Builder.
3555 EXPECT_FATAL_FAILURE(ASSERT_TRUE(ResultIsEven(3)),
3556 "Value of: ResultIsEven(3)\n"
3557 " Actual: false (3 is odd)\n"
3558 "Expected: true");
3559 #endif
3560 ASSERT_TRUE(ResultIsEvenNoExplanation(2));
3561 EXPECT_FATAL_FAILURE(ASSERT_TRUE(ResultIsEvenNoExplanation(3)),
3562 "Value of: ResultIsEvenNoExplanation(3)\n"
3563 " Actual: false (3 is odd)\n"
3564 "Expected: true");
3565 }
3566
3567 // Tests ASSERT_FALSE.
TEST(AssertionTest,ASSERT_FALSE)3568 TEST(AssertionTest, ASSERT_FALSE) {
3569 ASSERT_FALSE(2 < 1); // NOLINT
3570 EXPECT_FATAL_FAILURE(ASSERT_FALSE(2 > 1),
3571 "Value of: 2 > 1\n"
3572 " Actual: true\n"
3573 "Expected: false");
3574 }
3575
3576 // Tests ASSERT_FALSE(predicate) for predicates returning AssertionResult.
TEST(AssertionTest,AssertFalseWithAssertionResult)3577 TEST(AssertionTest, AssertFalseWithAssertionResult) {
3578 ASSERT_FALSE(ResultIsEven(3));
3579 #ifndef __BORLANDC__
3580 // ICE's in C++Builder.
3581 EXPECT_FATAL_FAILURE(ASSERT_FALSE(ResultIsEven(2)),
3582 "Value of: ResultIsEven(2)\n"
3583 " Actual: true (2 is even)\n"
3584 "Expected: false");
3585 #endif
3586 ASSERT_FALSE(ResultIsEvenNoExplanation(3));
3587 EXPECT_FATAL_FAILURE(ASSERT_FALSE(ResultIsEvenNoExplanation(2)),
3588 "Value of: ResultIsEvenNoExplanation(2)\n"
3589 " Actual: true\n"
3590 "Expected: false");
3591 }
3592
3593 #ifdef __BORLANDC__
3594 // Restores warnings after previous "#pragma option push" supressed them
3595 # pragma option pop
3596 #endif
3597
3598 // Tests using ASSERT_EQ on double values. The purpose is to make
3599 // sure that the specialization we did for integer and anonymous enums
3600 // isn't used for double arguments.
TEST(ExpectTest,ASSERT_EQ_Double)3601 TEST(ExpectTest, ASSERT_EQ_Double) {
3602 // A success.
3603 ASSERT_EQ(5.6, 5.6);
3604
3605 // A failure.
3606 EXPECT_FATAL_FAILURE(ASSERT_EQ(5.1, 5.2),
3607 "5.1");
3608 }
3609
3610 // Tests ASSERT_EQ.
TEST(AssertionTest,ASSERT_EQ)3611 TEST(AssertionTest, ASSERT_EQ) {
3612 ASSERT_EQ(5, 2 + 3);
3613 EXPECT_FATAL_FAILURE(ASSERT_EQ(5, 2*3),
3614 "Value of: 2*3\n"
3615 " Actual: 6\n"
3616 "Expected: 5");
3617 }
3618
3619 // Tests ASSERT_EQ(NULL, pointer).
3620 #if GTEST_CAN_COMPARE_NULL
TEST(AssertionTest,ASSERT_EQ_NULL)3621 TEST(AssertionTest, ASSERT_EQ_NULL) {
3622 // A success.
3623 const char* p = NULL;
3624 // Some older GCC versions may issue a spurious waring in this or the next
3625 // assertion statement. This warning should not be suppressed with
3626 // static_cast since the test verifies the ability to use bare NULL as the
3627 // expected parameter to the macro.
3628 ASSERT_EQ(NULL, p);
3629
3630 // A failure.
3631 static int n = 0;
3632 EXPECT_FATAL_FAILURE(ASSERT_EQ(NULL, &n),
3633 "Value of: &n\n");
3634 }
3635 #endif // GTEST_CAN_COMPARE_NULL
3636
3637 // Tests ASSERT_EQ(0, non_pointer). Since the literal 0 can be
3638 // treated as a null pointer by the compiler, we need to make sure
3639 // that ASSERT_EQ(0, non_pointer) isn't interpreted by Google Test as
3640 // ASSERT_EQ(static_cast<void*>(NULL), non_pointer).
TEST(ExpectTest,ASSERT_EQ_0)3641 TEST(ExpectTest, ASSERT_EQ_0) {
3642 int n = 0;
3643
3644 // A success.
3645 ASSERT_EQ(0, n);
3646
3647 // A failure.
3648 EXPECT_FATAL_FAILURE(ASSERT_EQ(0, 5.6),
3649 "Expected: 0");
3650 }
3651
3652 // Tests ASSERT_NE.
TEST(AssertionTest,ASSERT_NE)3653 TEST(AssertionTest, ASSERT_NE) {
3654 ASSERT_NE(6, 7);
3655 EXPECT_FATAL_FAILURE(ASSERT_NE('a', 'a'),
3656 "Expected: ('a') != ('a'), "
3657 "actual: 'a' (97, 0x61) vs 'a' (97, 0x61)");
3658 }
3659
3660 // Tests ASSERT_LE.
TEST(AssertionTest,ASSERT_LE)3661 TEST(AssertionTest, ASSERT_LE) {
3662 ASSERT_LE(2, 3);
3663 ASSERT_LE(2, 2);
3664 EXPECT_FATAL_FAILURE(ASSERT_LE(2, 0),
3665 "Expected: (2) <= (0), actual: 2 vs 0");
3666 }
3667
3668 // Tests ASSERT_LT.
TEST(AssertionTest,ASSERT_LT)3669 TEST(AssertionTest, ASSERT_LT) {
3670 ASSERT_LT(2, 3);
3671 EXPECT_FATAL_FAILURE(ASSERT_LT(2, 2),
3672 "Expected: (2) < (2), actual: 2 vs 2");
3673 }
3674
3675 // Tests ASSERT_GE.
TEST(AssertionTest,ASSERT_GE)3676 TEST(AssertionTest, ASSERT_GE) {
3677 ASSERT_GE(2, 1);
3678 ASSERT_GE(2, 2);
3679 EXPECT_FATAL_FAILURE(ASSERT_GE(2, 3),
3680 "Expected: (2) >= (3), actual: 2 vs 3");
3681 }
3682
3683 // Tests ASSERT_GT.
TEST(AssertionTest,ASSERT_GT)3684 TEST(AssertionTest, ASSERT_GT) {
3685 ASSERT_GT(2, 1);
3686 EXPECT_FATAL_FAILURE(ASSERT_GT(2, 2),
3687 "Expected: (2) > (2), actual: 2 vs 2");
3688 }
3689
3690 #if GTEST_HAS_EXCEPTIONS
3691
ThrowNothing()3692 void ThrowNothing() {}
3693
3694 // Tests ASSERT_THROW.
TEST(AssertionTest,ASSERT_THROW)3695 TEST(AssertionTest, ASSERT_THROW) {
3696 ASSERT_THROW(ThrowAnInteger(), int);
3697
3698 # ifndef __BORLANDC__
3699
3700 // ICE's in C++Builder 2007 and 2009.
3701 EXPECT_FATAL_FAILURE(
3702 ASSERT_THROW(ThrowAnInteger(), bool),
3703 "Expected: ThrowAnInteger() throws an exception of type bool.\n"
3704 " Actual: it throws a different type.");
3705 # endif
3706
3707 EXPECT_FATAL_FAILURE(
3708 ASSERT_THROW(ThrowNothing(), bool),
3709 "Expected: ThrowNothing() throws an exception of type bool.\n"
3710 " Actual: it throws nothing.");
3711 }
3712
3713 // Tests ASSERT_NO_THROW.
TEST(AssertionTest,ASSERT_NO_THROW)3714 TEST(AssertionTest, ASSERT_NO_THROW) {
3715 ASSERT_NO_THROW(ThrowNothing());
3716 EXPECT_FATAL_FAILURE(ASSERT_NO_THROW(ThrowAnInteger()),
3717 "Expected: ThrowAnInteger() doesn't throw an exception."
3718 "\n Actual: it throws.");
3719 }
3720
3721 // Tests ASSERT_ANY_THROW.
TEST(AssertionTest,ASSERT_ANY_THROW)3722 TEST(AssertionTest, ASSERT_ANY_THROW) {
3723 ASSERT_ANY_THROW(ThrowAnInteger());
3724 EXPECT_FATAL_FAILURE(
3725 ASSERT_ANY_THROW(ThrowNothing()),
3726 "Expected: ThrowNothing() throws an exception.\n"
3727 " Actual: it doesn't.");
3728 }
3729
3730 #endif // GTEST_HAS_EXCEPTIONS
3731
3732 // Makes sure we deal with the precedence of <<. This test should
3733 // compile.
TEST(AssertionTest,AssertPrecedence)3734 TEST(AssertionTest, AssertPrecedence) {
3735 ASSERT_EQ(1 < 2, true);
3736 bool false_value = false;
3737 ASSERT_EQ(true && false_value, false);
3738 }
3739
3740 // A subroutine used by the following test.
TestEq1(int x)3741 void TestEq1(int x) {
3742 ASSERT_EQ(1, x);
3743 }
3744
3745 // Tests calling a test subroutine that's not part of a fixture.
TEST(AssertionTest,NonFixtureSubroutine)3746 TEST(AssertionTest, NonFixtureSubroutine) {
3747 EXPECT_FATAL_FAILURE(TestEq1(2),
3748 "Value of: x");
3749 }
3750
3751 // An uncopyable class.
3752 class Uncopyable {
3753 public:
Uncopyable(int a_value)3754 explicit Uncopyable(int a_value) : value_(a_value) {}
3755
value() const3756 int value() const { return value_; }
operator ==(const Uncopyable & rhs) const3757 bool operator==(const Uncopyable& rhs) const {
3758 return value() == rhs.value();
3759 }
3760 private:
3761 // This constructor deliberately has no implementation, as we don't
3762 // want this class to be copyable.
3763 Uncopyable(const Uncopyable&); // NOLINT
3764
3765 int value_;
3766 };
3767
operator <<(::std::ostream & os,const Uncopyable & value)3768 ::std::ostream& operator<<(::std::ostream& os, const Uncopyable& value) {
3769 return os << value.value();
3770 }
3771
3772
IsPositiveUncopyable(const Uncopyable & x)3773 bool IsPositiveUncopyable(const Uncopyable& x) {
3774 return x.value() > 0;
3775 }
3776
3777 // A subroutine used by the following test.
TestAssertNonPositive()3778 void TestAssertNonPositive() {
3779 Uncopyable y(-1);
3780 ASSERT_PRED1(IsPositiveUncopyable, y);
3781 }
3782 // A subroutine used by the following test.
TestAssertEqualsUncopyable()3783 void TestAssertEqualsUncopyable() {
3784 Uncopyable x(5);
3785 Uncopyable y(-1);
3786 ASSERT_EQ(x, y);
3787 }
3788
3789 // Tests that uncopyable objects can be used in assertions.
TEST(AssertionTest,AssertWorksWithUncopyableObject)3790 TEST(AssertionTest, AssertWorksWithUncopyableObject) {
3791 Uncopyable x(5);
3792 ASSERT_PRED1(IsPositiveUncopyable, x);
3793 ASSERT_EQ(x, x);
3794 EXPECT_FATAL_FAILURE(TestAssertNonPositive(),
3795 "IsPositiveUncopyable(y) evaluates to false, where\ny evaluates to -1");
3796 EXPECT_FATAL_FAILURE(TestAssertEqualsUncopyable(),
3797 "Value of: y\n Actual: -1\nExpected: x\nWhich is: 5");
3798 }
3799
3800 // Tests that uncopyable objects can be used in expects.
TEST(AssertionTest,ExpectWorksWithUncopyableObject)3801 TEST(AssertionTest, ExpectWorksWithUncopyableObject) {
3802 Uncopyable x(5);
3803 EXPECT_PRED1(IsPositiveUncopyable, x);
3804 Uncopyable y(-1);
3805 EXPECT_NONFATAL_FAILURE(EXPECT_PRED1(IsPositiveUncopyable, y),
3806 "IsPositiveUncopyable(y) evaluates to false, where\ny evaluates to -1");
3807 EXPECT_EQ(x, x);
3808 EXPECT_NONFATAL_FAILURE(EXPECT_EQ(x, y),
3809 "Value of: y\n Actual: -1\nExpected: x\nWhich is: 5");
3810 }
3811
3812 enum NamedEnum {
3813 kE1 = 0,
3814 kE2 = 1
3815 };
3816
TEST(AssertionTest,NamedEnum)3817 TEST(AssertionTest, NamedEnum) {
3818 EXPECT_EQ(kE1, kE1);
3819 EXPECT_LT(kE1, kE2);
3820 EXPECT_NONFATAL_FAILURE(EXPECT_EQ(kE1, kE2), "Which is: 0");
3821 EXPECT_NONFATAL_FAILURE(EXPECT_EQ(kE1, kE2), "Actual: 1");
3822 }
3823
3824 // The version of gcc used in XCode 2.2 has a bug and doesn't allow
3825 // anonymous enums in assertions. Therefore the following test is not
3826 // done on Mac.
3827 // Sun Studio and HP aCC also reject this code.
3828 #if !GTEST_OS_MAC && !defined(__SUNPRO_CC) && !defined(__HP_aCC)
3829
3830 // Tests using assertions with anonymous enums.
3831 enum {
3832 kCaseA = -1,
3833
3834 # if GTEST_OS_LINUX
3835
3836 // We want to test the case where the size of the anonymous enum is
3837 // larger than sizeof(int), to make sure our implementation of the
3838 // assertions doesn't truncate the enums. However, MSVC
3839 // (incorrectly) doesn't allow an enum value to exceed the range of
3840 // an int, so this has to be conditionally compiled.
3841 //
3842 // On Linux, kCaseB and kCaseA have the same value when truncated to
3843 // int size. We want to test whether this will confuse the
3844 // assertions.
3845 kCaseB = testing::internal::kMaxBiggestInt,
3846
3847 # else
3848
3849 kCaseB = INT_MAX,
3850
3851 # endif // GTEST_OS_LINUX
3852
3853 kCaseC = 42
3854 };
3855
TEST(AssertionTest,AnonymousEnum)3856 TEST(AssertionTest, AnonymousEnum) {
3857 # if GTEST_OS_LINUX
3858
3859 EXPECT_EQ(static_cast<int>(kCaseA), static_cast<int>(kCaseB));
3860
3861 # endif // GTEST_OS_LINUX
3862
3863 EXPECT_EQ(kCaseA, kCaseA);
3864 EXPECT_NE(kCaseA, kCaseB);
3865 EXPECT_LT(kCaseA, kCaseB);
3866 EXPECT_LE(kCaseA, kCaseB);
3867 EXPECT_GT(kCaseB, kCaseA);
3868 EXPECT_GE(kCaseA, kCaseA);
3869 EXPECT_NONFATAL_FAILURE(EXPECT_GE(kCaseA, kCaseB),
3870 "(kCaseA) >= (kCaseB)");
3871 EXPECT_NONFATAL_FAILURE(EXPECT_GE(kCaseA, kCaseC),
3872 "-1 vs 42");
3873
3874 ASSERT_EQ(kCaseA, kCaseA);
3875 ASSERT_NE(kCaseA, kCaseB);
3876 ASSERT_LT(kCaseA, kCaseB);
3877 ASSERT_LE(kCaseA, kCaseB);
3878 ASSERT_GT(kCaseB, kCaseA);
3879 ASSERT_GE(kCaseA, kCaseA);
3880
3881 # ifndef __BORLANDC__
3882
3883 // ICE's in C++Builder.
3884 EXPECT_FATAL_FAILURE(ASSERT_EQ(kCaseA, kCaseB),
3885 "Value of: kCaseB");
3886 EXPECT_FATAL_FAILURE(ASSERT_EQ(kCaseA, kCaseC),
3887 "Actual: 42");
3888 # endif
3889
3890 EXPECT_FATAL_FAILURE(ASSERT_EQ(kCaseA, kCaseC),
3891 "Which is: -1");
3892 }
3893
3894 #endif // !GTEST_OS_MAC && !defined(__SUNPRO_CC)
3895
3896 #if GTEST_OS_WINDOWS
3897
UnexpectedHRESULTFailure()3898 static HRESULT UnexpectedHRESULTFailure() {
3899 return E_UNEXPECTED;
3900 }
3901
OkHRESULTSuccess()3902 static HRESULT OkHRESULTSuccess() {
3903 return S_OK;
3904 }
3905
FalseHRESULTSuccess()3906 static HRESULT FalseHRESULTSuccess() {
3907 return S_FALSE;
3908 }
3909
3910 // HRESULT assertion tests test both zero and non-zero
3911 // success codes as well as failure message for each.
3912 //
3913 // Windows CE doesn't support message texts.
TEST(HRESULTAssertionTest,EXPECT_HRESULT_SUCCEEDED)3914 TEST(HRESULTAssertionTest, EXPECT_HRESULT_SUCCEEDED) {
3915 EXPECT_HRESULT_SUCCEEDED(S_OK);
3916 EXPECT_HRESULT_SUCCEEDED(S_FALSE);
3917
3918 EXPECT_NONFATAL_FAILURE(EXPECT_HRESULT_SUCCEEDED(UnexpectedHRESULTFailure()),
3919 "Expected: (UnexpectedHRESULTFailure()) succeeds.\n"
3920 " Actual: 0x8000FFFF");
3921 }
3922
TEST(HRESULTAssertionTest,ASSERT_HRESULT_SUCCEEDED)3923 TEST(HRESULTAssertionTest, ASSERT_HRESULT_SUCCEEDED) {
3924 ASSERT_HRESULT_SUCCEEDED(S_OK);
3925 ASSERT_HRESULT_SUCCEEDED(S_FALSE);
3926
3927 EXPECT_FATAL_FAILURE(ASSERT_HRESULT_SUCCEEDED(UnexpectedHRESULTFailure()),
3928 "Expected: (UnexpectedHRESULTFailure()) succeeds.\n"
3929 " Actual: 0x8000FFFF");
3930 }
3931
TEST(HRESULTAssertionTest,EXPECT_HRESULT_FAILED)3932 TEST(HRESULTAssertionTest, EXPECT_HRESULT_FAILED) {
3933 EXPECT_HRESULT_FAILED(E_UNEXPECTED);
3934
3935 EXPECT_NONFATAL_FAILURE(EXPECT_HRESULT_FAILED(OkHRESULTSuccess()),
3936 "Expected: (OkHRESULTSuccess()) fails.\n"
3937 " Actual: 0x00000000");
3938 EXPECT_NONFATAL_FAILURE(EXPECT_HRESULT_FAILED(FalseHRESULTSuccess()),
3939 "Expected: (FalseHRESULTSuccess()) fails.\n"
3940 " Actual: 0x00000001");
3941 }
3942
TEST(HRESULTAssertionTest,ASSERT_HRESULT_FAILED)3943 TEST(HRESULTAssertionTest, ASSERT_HRESULT_FAILED) {
3944 ASSERT_HRESULT_FAILED(E_UNEXPECTED);
3945
3946 # ifndef __BORLANDC__
3947
3948 // ICE's in C++Builder 2007 and 2009.
3949 EXPECT_FATAL_FAILURE(ASSERT_HRESULT_FAILED(OkHRESULTSuccess()),
3950 "Expected: (OkHRESULTSuccess()) fails.\n"
3951 " Actual: 0x00000000");
3952 # endif
3953
3954 EXPECT_FATAL_FAILURE(ASSERT_HRESULT_FAILED(FalseHRESULTSuccess()),
3955 "Expected: (FalseHRESULTSuccess()) fails.\n"
3956 " Actual: 0x00000001");
3957 }
3958
3959 // Tests that streaming to the HRESULT macros works.
TEST(HRESULTAssertionTest,Streaming)3960 TEST(HRESULTAssertionTest, Streaming) {
3961 EXPECT_HRESULT_SUCCEEDED(S_OK) << "unexpected failure";
3962 ASSERT_HRESULT_SUCCEEDED(S_OK) << "unexpected failure";
3963 EXPECT_HRESULT_FAILED(E_UNEXPECTED) << "unexpected failure";
3964 ASSERT_HRESULT_FAILED(E_UNEXPECTED) << "unexpected failure";
3965
3966 EXPECT_NONFATAL_FAILURE(
3967 EXPECT_HRESULT_SUCCEEDED(E_UNEXPECTED) << "expected failure",
3968 "expected failure");
3969
3970 # ifndef __BORLANDC__
3971
3972 // ICE's in C++Builder 2007 and 2009.
3973 EXPECT_FATAL_FAILURE(
3974 ASSERT_HRESULT_SUCCEEDED(E_UNEXPECTED) << "expected failure",
3975 "expected failure");
3976 # endif
3977
3978 EXPECT_NONFATAL_FAILURE(
3979 EXPECT_HRESULT_FAILED(S_OK) << "expected failure",
3980 "expected failure");
3981
3982 EXPECT_FATAL_FAILURE(
3983 ASSERT_HRESULT_FAILED(S_OK) << "expected failure",
3984 "expected failure");
3985 }
3986
3987 #endif // GTEST_OS_WINDOWS
3988
3989 #ifdef __BORLANDC__
3990 // Silences warnings: "Condition is always true", "Unreachable code"
3991 # pragma option push -w-ccc -w-rch
3992 #endif
3993
3994 // Tests that the assertion macros behave like single statements.
TEST(AssertionSyntaxTest,BasicAssertionsBehavesLikeSingleStatement)3995 TEST(AssertionSyntaxTest, BasicAssertionsBehavesLikeSingleStatement) {
3996 if (AlwaysFalse())
3997 ASSERT_TRUE(false) << "This should never be executed; "
3998 "It's a compilation test only.";
3999
4000 if (AlwaysTrue())
4001 EXPECT_FALSE(false);
4002 else
4003 ; // NOLINT
4004
4005 if (AlwaysFalse())
4006 ASSERT_LT(1, 3);
4007
4008 if (AlwaysFalse())
4009 ; // NOLINT
4010 else
4011 EXPECT_GT(3, 2) << "";
4012 }
4013
4014 #if GTEST_HAS_EXCEPTIONS
4015 // Tests that the compiler will not complain about unreachable code in the
4016 // EXPECT_THROW/EXPECT_ANY_THROW/EXPECT_NO_THROW macros.
TEST(ExpectThrowTest,DoesNotGenerateUnreachableCodeWarning)4017 TEST(ExpectThrowTest, DoesNotGenerateUnreachableCodeWarning) {
4018 int n = 0;
4019
4020 EXPECT_THROW(throw 1, int);
4021 EXPECT_NONFATAL_FAILURE(EXPECT_THROW(n++, int), "");
4022 EXPECT_NONFATAL_FAILURE(EXPECT_THROW(throw 1, const char*), "");
4023 EXPECT_NO_THROW(n++);
4024 EXPECT_NONFATAL_FAILURE(EXPECT_NO_THROW(throw 1), "");
4025 EXPECT_ANY_THROW(throw 1);
4026 EXPECT_NONFATAL_FAILURE(EXPECT_ANY_THROW(n++), "");
4027 }
4028
TEST(AssertionSyntaxTest,ExceptionAssertionsBehavesLikeSingleStatement)4029 TEST(AssertionSyntaxTest, ExceptionAssertionsBehavesLikeSingleStatement) {
4030 if (AlwaysFalse())
4031 EXPECT_THROW(ThrowNothing(), bool);
4032
4033 if (AlwaysTrue())
4034 EXPECT_THROW(ThrowAnInteger(), int);
4035 else
4036 ; // NOLINT
4037
4038 if (AlwaysFalse())
4039 EXPECT_NO_THROW(ThrowAnInteger());
4040
4041 if (AlwaysTrue())
4042 EXPECT_NO_THROW(ThrowNothing());
4043 else
4044 ; // NOLINT
4045
4046 if (AlwaysFalse())
4047 EXPECT_ANY_THROW(ThrowNothing());
4048
4049 if (AlwaysTrue())
4050 EXPECT_ANY_THROW(ThrowAnInteger());
4051 else
4052 ; // NOLINT
4053 }
4054 #endif // GTEST_HAS_EXCEPTIONS
4055
TEST(AssertionSyntaxTest,NoFatalFailureAssertionsBehavesLikeSingleStatement)4056 TEST(AssertionSyntaxTest, NoFatalFailureAssertionsBehavesLikeSingleStatement) {
4057 if (AlwaysFalse())
4058 EXPECT_NO_FATAL_FAILURE(FAIL()) << "This should never be executed. "
4059 << "It's a compilation test only.";
4060 else
4061 ; // NOLINT
4062
4063 if (AlwaysFalse())
4064 ASSERT_NO_FATAL_FAILURE(FAIL()) << "";
4065 else
4066 ; // NOLINT
4067
4068 if (AlwaysTrue())
4069 EXPECT_NO_FATAL_FAILURE(SUCCEED());
4070 else
4071 ; // NOLINT
4072
4073 if (AlwaysFalse())
4074 ; // NOLINT
4075 else
4076 ASSERT_NO_FATAL_FAILURE(SUCCEED());
4077 }
4078
4079 // Tests that the assertion macros work well with switch statements.
TEST(AssertionSyntaxTest,WorksWithSwitch)4080 TEST(AssertionSyntaxTest, WorksWithSwitch) {
4081 switch (0) {
4082 case 1:
4083 break;
4084 default:
4085 ASSERT_TRUE(true);
4086 }
4087
4088 switch (0)
4089 case 0:
4090 EXPECT_FALSE(false) << "EXPECT_FALSE failed in switch case";
4091
4092 // Binary assertions are implemented using a different code path
4093 // than the Boolean assertions. Hence we test them separately.
4094 switch (0) {
4095 case 1:
4096 default:
4097 ASSERT_EQ(1, 1) << "ASSERT_EQ failed in default switch handler";
4098 }
4099
4100 switch (0)
4101 case 0:
4102 EXPECT_NE(1, 2);
4103 }
4104
4105 #if GTEST_HAS_EXCEPTIONS
4106
ThrowAString()4107 void ThrowAString() {
4108 throw "String";
4109 }
4110
4111 // Test that the exception assertion macros compile and work with const
4112 // type qualifier.
TEST(AssertionSyntaxTest,WorksWithConst)4113 TEST(AssertionSyntaxTest, WorksWithConst) {
4114 ASSERT_THROW(ThrowAString(), const char*);
4115
4116 EXPECT_THROW(ThrowAString(), const char*);
4117 }
4118
4119 #endif // GTEST_HAS_EXCEPTIONS
4120
4121 } // namespace
4122
4123 namespace testing {
4124
4125 // Tests that Google Test tracks SUCCEED*.
TEST(SuccessfulAssertionTest,SUCCEED)4126 TEST(SuccessfulAssertionTest, SUCCEED) {
4127 SUCCEED();
4128 SUCCEED() << "OK";
4129 EXPECT_EQ(2, GetUnitTestImpl()->current_test_result()->total_part_count());
4130 }
4131
4132 // Tests that Google Test doesn't track successful EXPECT_*.
TEST(SuccessfulAssertionTest,EXPECT)4133 TEST(SuccessfulAssertionTest, EXPECT) {
4134 EXPECT_TRUE(true);
4135 EXPECT_EQ(0, GetUnitTestImpl()->current_test_result()->total_part_count());
4136 }
4137
4138 // Tests that Google Test doesn't track successful EXPECT_STR*.
TEST(SuccessfulAssertionTest,EXPECT_STR)4139 TEST(SuccessfulAssertionTest, EXPECT_STR) {
4140 EXPECT_STREQ("", "");
4141 EXPECT_EQ(0, GetUnitTestImpl()->current_test_result()->total_part_count());
4142 }
4143
4144 // Tests that Google Test doesn't track successful ASSERT_*.
TEST(SuccessfulAssertionTest,ASSERT)4145 TEST(SuccessfulAssertionTest, ASSERT) {
4146 ASSERT_TRUE(true);
4147 EXPECT_EQ(0, GetUnitTestImpl()->current_test_result()->total_part_count());
4148 }
4149
4150 // Tests that Google Test doesn't track successful ASSERT_STR*.
TEST(SuccessfulAssertionTest,ASSERT_STR)4151 TEST(SuccessfulAssertionTest, ASSERT_STR) {
4152 ASSERT_STREQ("", "");
4153 EXPECT_EQ(0, GetUnitTestImpl()->current_test_result()->total_part_count());
4154 }
4155
4156 } // namespace testing
4157
4158 namespace {
4159
4160 // Tests EXPECT_TRUE.
TEST(ExpectTest,EXPECT_TRUE)4161 TEST(ExpectTest, EXPECT_TRUE) {
4162 EXPECT_TRUE(2 > 1); // NOLINT
4163 EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(2 < 1),
4164 "Value of: 2 < 1\n"
4165 " Actual: false\n"
4166 "Expected: true");
4167 EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(2 > 3),
4168 "2 > 3");
4169 }
4170
4171 // Tests EXPECT_TRUE(predicate) for predicates returning AssertionResult.
TEST(ExpectTest,ExpectTrueWithAssertionResult)4172 TEST(ExpectTest, ExpectTrueWithAssertionResult) {
4173 EXPECT_TRUE(ResultIsEven(2));
4174 EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(ResultIsEven(3)),
4175 "Value of: ResultIsEven(3)\n"
4176 " Actual: false (3 is odd)\n"
4177 "Expected: true");
4178 EXPECT_TRUE(ResultIsEvenNoExplanation(2));
4179 EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(ResultIsEvenNoExplanation(3)),
4180 "Value of: ResultIsEvenNoExplanation(3)\n"
4181 " Actual: false (3 is odd)\n"
4182 "Expected: true");
4183 }
4184
4185 // Tests EXPECT_FALSE.
TEST(ExpectTest,EXPECT_FALSE)4186 TEST(ExpectTest, EXPECT_FALSE) {
4187 EXPECT_FALSE(2 < 1); // NOLINT
4188 EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(2 > 1),
4189 "Value of: 2 > 1\n"
4190 " Actual: true\n"
4191 "Expected: false");
4192 EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(2 < 3),
4193 "2 < 3");
4194 }
4195
4196 // Tests EXPECT_FALSE(predicate) for predicates returning AssertionResult.
TEST(ExpectTest,ExpectFalseWithAssertionResult)4197 TEST(ExpectTest, ExpectFalseWithAssertionResult) {
4198 EXPECT_FALSE(ResultIsEven(3));
4199 EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(ResultIsEven(2)),
4200 "Value of: ResultIsEven(2)\n"
4201 " Actual: true (2 is even)\n"
4202 "Expected: false");
4203 EXPECT_FALSE(ResultIsEvenNoExplanation(3));
4204 EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(ResultIsEvenNoExplanation(2)),
4205 "Value of: ResultIsEvenNoExplanation(2)\n"
4206 " Actual: true\n"
4207 "Expected: false");
4208 }
4209
4210 #ifdef __BORLANDC__
4211 // Restores warnings after previous "#pragma option push" supressed them
4212 # pragma option pop
4213 #endif
4214
4215 // Tests EXPECT_EQ.
TEST(ExpectTest,EXPECT_EQ)4216 TEST(ExpectTest, EXPECT_EQ) {
4217 EXPECT_EQ(5, 2 + 3);
4218 EXPECT_NONFATAL_FAILURE(EXPECT_EQ(5, 2*3),
4219 "Value of: 2*3\n"
4220 " Actual: 6\n"
4221 "Expected: 5");
4222 EXPECT_NONFATAL_FAILURE(EXPECT_EQ(5, 2 - 3),
4223 "2 - 3");
4224 }
4225
4226 // Tests using EXPECT_EQ on double values. The purpose is to make
4227 // sure that the specialization we did for integer and anonymous enums
4228 // isn't used for double arguments.
TEST(ExpectTest,EXPECT_EQ_Double)4229 TEST(ExpectTest, EXPECT_EQ_Double) {
4230 // A success.
4231 EXPECT_EQ(5.6, 5.6);
4232
4233 // A failure.
4234 EXPECT_NONFATAL_FAILURE(EXPECT_EQ(5.1, 5.2),
4235 "5.1");
4236 }
4237
4238 #if GTEST_CAN_COMPARE_NULL
4239 // Tests EXPECT_EQ(NULL, pointer).
TEST(ExpectTest,EXPECT_EQ_NULL)4240 TEST(ExpectTest, EXPECT_EQ_NULL) {
4241 // A success.
4242 const char* p = NULL;
4243 // Some older GCC versions may issue a spurious warning in this or the next
4244 // assertion statement. This warning should not be suppressed with
4245 // static_cast since the test verifies the ability to use bare NULL as the
4246 // expected parameter to the macro.
4247 EXPECT_EQ(NULL, p);
4248
4249 // A failure.
4250 int n = 0;
4251 EXPECT_NONFATAL_FAILURE(EXPECT_EQ(NULL, &n),
4252 "Value of: &n\n");
4253 }
4254 #endif // GTEST_CAN_COMPARE_NULL
4255
4256 // Tests EXPECT_EQ(0, non_pointer). Since the literal 0 can be
4257 // treated as a null pointer by the compiler, we need to make sure
4258 // that EXPECT_EQ(0, non_pointer) isn't interpreted by Google Test as
4259 // EXPECT_EQ(static_cast<void*>(NULL), non_pointer).
TEST(ExpectTest,EXPECT_EQ_0)4260 TEST(ExpectTest, EXPECT_EQ_0) {
4261 int n = 0;
4262
4263 // A success.
4264 EXPECT_EQ(0, n);
4265
4266 // A failure.
4267 EXPECT_NONFATAL_FAILURE(EXPECT_EQ(0, 5.6),
4268 "Expected: 0");
4269 }
4270
4271 // Tests EXPECT_NE.
TEST(ExpectTest,EXPECT_NE)4272 TEST(ExpectTest, EXPECT_NE) {
4273 EXPECT_NE(6, 7);
4274
4275 EXPECT_NONFATAL_FAILURE(EXPECT_NE('a', 'a'),
4276 "Expected: ('a') != ('a'), "
4277 "actual: 'a' (97, 0x61) vs 'a' (97, 0x61)");
4278 EXPECT_NONFATAL_FAILURE(EXPECT_NE(2, 2),
4279 "2");
4280 char* const p0 = NULL;
4281 EXPECT_NONFATAL_FAILURE(EXPECT_NE(p0, p0),
4282 "p0");
4283 // Only way to get the Nokia compiler to compile the cast
4284 // is to have a separate void* variable first. Putting
4285 // the two casts on the same line doesn't work, neither does
4286 // a direct C-style to char*.
4287 void* pv1 = (void*)0x1234; // NOLINT
4288 char* const p1 = reinterpret_cast<char*>(pv1);
4289 EXPECT_NONFATAL_FAILURE(EXPECT_NE(p1, p1),
4290 "p1");
4291 }
4292
4293 // Tests EXPECT_LE.
TEST(ExpectTest,EXPECT_LE)4294 TEST(ExpectTest, EXPECT_LE) {
4295 EXPECT_LE(2, 3);
4296 EXPECT_LE(2, 2);
4297 EXPECT_NONFATAL_FAILURE(EXPECT_LE(2, 0),
4298 "Expected: (2) <= (0), actual: 2 vs 0");
4299 EXPECT_NONFATAL_FAILURE(EXPECT_LE(1.1, 0.9),
4300 "(1.1) <= (0.9)");
4301 }
4302
4303 // Tests EXPECT_LT.
TEST(ExpectTest,EXPECT_LT)4304 TEST(ExpectTest, EXPECT_LT) {
4305 EXPECT_LT(2, 3);
4306 EXPECT_NONFATAL_FAILURE(EXPECT_LT(2, 2),
4307 "Expected: (2) < (2), actual: 2 vs 2");
4308 EXPECT_NONFATAL_FAILURE(EXPECT_LT(2, 1),
4309 "(2) < (1)");
4310 }
4311
4312 // Tests EXPECT_GE.
TEST(ExpectTest,EXPECT_GE)4313 TEST(ExpectTest, EXPECT_GE) {
4314 EXPECT_GE(2, 1);
4315 EXPECT_GE(2, 2);
4316 EXPECT_NONFATAL_FAILURE(EXPECT_GE(2, 3),
4317 "Expected: (2) >= (3), actual: 2 vs 3");
4318 EXPECT_NONFATAL_FAILURE(EXPECT_GE(0.9, 1.1),
4319 "(0.9) >= (1.1)");
4320 }
4321
4322 // Tests EXPECT_GT.
TEST(ExpectTest,EXPECT_GT)4323 TEST(ExpectTest, EXPECT_GT) {
4324 EXPECT_GT(2, 1);
4325 EXPECT_NONFATAL_FAILURE(EXPECT_GT(2, 2),
4326 "Expected: (2) > (2), actual: 2 vs 2");
4327 EXPECT_NONFATAL_FAILURE(EXPECT_GT(2, 3),
4328 "(2) > (3)");
4329 }
4330
4331 #if GTEST_HAS_EXCEPTIONS
4332
4333 // Tests EXPECT_THROW.
TEST(ExpectTest,EXPECT_THROW)4334 TEST(ExpectTest, EXPECT_THROW) {
4335 EXPECT_THROW(ThrowAnInteger(), int);
4336 EXPECT_NONFATAL_FAILURE(EXPECT_THROW(ThrowAnInteger(), bool),
4337 "Expected: ThrowAnInteger() throws an exception of "
4338 "type bool.\n Actual: it throws a different type.");
4339 EXPECT_NONFATAL_FAILURE(
4340 EXPECT_THROW(ThrowNothing(), bool),
4341 "Expected: ThrowNothing() throws an exception of type bool.\n"
4342 " Actual: it throws nothing.");
4343 }
4344
4345 // Tests EXPECT_NO_THROW.
TEST(ExpectTest,EXPECT_NO_THROW)4346 TEST(ExpectTest, EXPECT_NO_THROW) {
4347 EXPECT_NO_THROW(ThrowNothing());
4348 EXPECT_NONFATAL_FAILURE(EXPECT_NO_THROW(ThrowAnInteger()),
4349 "Expected: ThrowAnInteger() doesn't throw an "
4350 "exception.\n Actual: it throws.");
4351 }
4352
4353 // Tests EXPECT_ANY_THROW.
TEST(ExpectTest,EXPECT_ANY_THROW)4354 TEST(ExpectTest, EXPECT_ANY_THROW) {
4355 EXPECT_ANY_THROW(ThrowAnInteger());
4356 EXPECT_NONFATAL_FAILURE(
4357 EXPECT_ANY_THROW(ThrowNothing()),
4358 "Expected: ThrowNothing() throws an exception.\n"
4359 " Actual: it doesn't.");
4360 }
4361
4362 #endif // GTEST_HAS_EXCEPTIONS
4363
4364 // Make sure we deal with the precedence of <<.
TEST(ExpectTest,ExpectPrecedence)4365 TEST(ExpectTest, ExpectPrecedence) {
4366 EXPECT_EQ(1 < 2, true);
4367 EXPECT_NONFATAL_FAILURE(EXPECT_EQ(true, true && false),
4368 "Value of: true && false");
4369 }
4370
4371
4372 // Tests the StreamableToString() function.
4373
4374 // Tests using StreamableToString() on a scalar.
TEST(StreamableToStringTest,Scalar)4375 TEST(StreamableToStringTest, Scalar) {
4376 EXPECT_STREQ("5", StreamableToString(5).c_str());
4377 }
4378
4379 // Tests using StreamableToString() on a non-char pointer.
TEST(StreamableToStringTest,Pointer)4380 TEST(StreamableToStringTest, Pointer) {
4381 int n = 0;
4382 int* p = &n;
4383 EXPECT_STRNE("(null)", StreamableToString(p).c_str());
4384 }
4385
4386 // Tests using StreamableToString() on a NULL non-char pointer.
TEST(StreamableToStringTest,NullPointer)4387 TEST(StreamableToStringTest, NullPointer) {
4388 int* p = NULL;
4389 EXPECT_STREQ("(null)", StreamableToString(p).c_str());
4390 }
4391
4392 // Tests using StreamableToString() on a C string.
TEST(StreamableToStringTest,CString)4393 TEST(StreamableToStringTest, CString) {
4394 EXPECT_STREQ("Foo", StreamableToString("Foo").c_str());
4395 }
4396
4397 // Tests using StreamableToString() on a NULL C string.
TEST(StreamableToStringTest,NullCString)4398 TEST(StreamableToStringTest, NullCString) {
4399 char* p = NULL;
4400 EXPECT_STREQ("(null)", StreamableToString(p).c_str());
4401 }
4402
4403 // Tests using streamable values as assertion messages.
4404
4405 // Tests using std::string as an assertion message.
TEST(StreamableTest,string)4406 TEST(StreamableTest, string) {
4407 static const std::string str(
4408 "This failure message is a std::string, and is expected.");
4409 EXPECT_FATAL_FAILURE(FAIL() << str,
4410 str.c_str());
4411 }
4412
4413 // Tests that we can output strings containing embedded NULs.
4414 // Limited to Linux because we can only do this with std::string's.
TEST(StreamableTest,stringWithEmbeddedNUL)4415 TEST(StreamableTest, stringWithEmbeddedNUL) {
4416 static const char char_array_with_nul[] =
4417 "Here's a NUL\0 and some more string";
4418 static const std::string string_with_nul(char_array_with_nul,
4419 sizeof(char_array_with_nul)
4420 - 1); // drops the trailing NUL
4421 EXPECT_FATAL_FAILURE(FAIL() << string_with_nul,
4422 "Here's a NUL\\0 and some more string");
4423 }
4424
4425 // Tests that we can output a NUL char.
TEST(StreamableTest,NULChar)4426 TEST(StreamableTest, NULChar) {
4427 EXPECT_FATAL_FAILURE({ // NOLINT
4428 FAIL() << "A NUL" << '\0' << " and some more string";
4429 }, "A NUL\\0 and some more string");
4430 }
4431
4432 // Tests using int as an assertion message.
TEST(StreamableTest,int)4433 TEST(StreamableTest, int) {
4434 EXPECT_FATAL_FAILURE(FAIL() << 900913,
4435 "900913");
4436 }
4437
4438 // Tests using NULL char pointer as an assertion message.
4439 //
4440 // In MSVC, streaming a NULL char * causes access violation. Google Test
4441 // implemented a workaround (substituting "(null)" for NULL). This
4442 // tests whether the workaround works.
TEST(StreamableTest,NullCharPtr)4443 TEST(StreamableTest, NullCharPtr) {
4444 EXPECT_FATAL_FAILURE(FAIL() << static_cast<const char*>(NULL),
4445 "(null)");
4446 }
4447
4448 // Tests that basic IO manipulators (endl, ends, and flush) can be
4449 // streamed to testing::Message.
TEST(StreamableTest,BasicIoManip)4450 TEST(StreamableTest, BasicIoManip) {
4451 EXPECT_FATAL_FAILURE({ // NOLINT
4452 FAIL() << "Line 1." << std::endl
4453 << "A NUL char " << std::ends << std::flush << " in line 2.";
4454 }, "Line 1.\nA NUL char \\0 in line 2.");
4455 }
4456
4457 // Tests the macros that haven't been covered so far.
4458
AddFailureHelper(bool * aborted)4459 void AddFailureHelper(bool* aborted) {
4460 *aborted = true;
4461 ADD_FAILURE() << "Failure";
4462 *aborted = false;
4463 }
4464
4465 // Tests ADD_FAILURE.
TEST(MacroTest,ADD_FAILURE)4466 TEST(MacroTest, ADD_FAILURE) {
4467 bool aborted = true;
4468 EXPECT_NONFATAL_FAILURE(AddFailureHelper(&aborted),
4469 "Failure");
4470 EXPECT_FALSE(aborted);
4471 }
4472
4473 // Tests ADD_FAILURE_AT.
TEST(MacroTest,ADD_FAILURE_AT)4474 TEST(MacroTest, ADD_FAILURE_AT) {
4475 // Verifies that ADD_FAILURE_AT does generate a nonfatal failure and
4476 // the failure message contains the user-streamed part.
4477 EXPECT_NONFATAL_FAILURE(ADD_FAILURE_AT("foo.cc", 42) << "Wrong!", "Wrong!");
4478
4479 // Verifies that the user-streamed part is optional.
4480 EXPECT_NONFATAL_FAILURE(ADD_FAILURE_AT("foo.cc", 42), "Failed");
4481
4482 // Unfortunately, we cannot verify that the failure message contains
4483 // the right file path and line number the same way, as
4484 // EXPECT_NONFATAL_FAILURE() doesn't get to see the file path and
4485 // line number. Instead, we do that in gtest_output_test_.cc.
4486 }
4487
4488 // Tests FAIL.
TEST(MacroTest,FAIL)4489 TEST(MacroTest, FAIL) {
4490 EXPECT_FATAL_FAILURE(FAIL(),
4491 "Failed");
4492 EXPECT_FATAL_FAILURE(FAIL() << "Intentional failure.",
4493 "Intentional failure.");
4494 }
4495
4496 // Tests SUCCEED
TEST(MacroTest,SUCCEED)4497 TEST(MacroTest, SUCCEED) {
4498 SUCCEED();
4499 SUCCEED() << "Explicit success.";
4500 }
4501
4502
4503 // Tests for EXPECT_EQ() and ASSERT_EQ().
4504 //
4505 // These tests fail *intentionally*, s.t. the failure messages can be
4506 // generated and tested.
4507 //
4508 // We have different tests for different argument types.
4509
4510 // Tests using bool values in {EXPECT|ASSERT}_EQ.
TEST(EqAssertionTest,Bool)4511 TEST(EqAssertionTest, Bool) {
4512 EXPECT_EQ(true, true);
4513 EXPECT_FATAL_FAILURE({
4514 bool false_value = false;
4515 ASSERT_EQ(false_value, true);
4516 }, "Value of: true");
4517 }
4518
4519 // Tests using int values in {EXPECT|ASSERT}_EQ.
TEST(EqAssertionTest,Int)4520 TEST(EqAssertionTest, Int) {
4521 ASSERT_EQ(32, 32);
4522 EXPECT_NONFATAL_FAILURE(EXPECT_EQ(32, 33),
4523 "33");
4524 }
4525
4526 // Tests using time_t values in {EXPECT|ASSERT}_EQ.
TEST(EqAssertionTest,Time_T)4527 TEST(EqAssertionTest, Time_T) {
4528 EXPECT_EQ(static_cast<time_t>(0),
4529 static_cast<time_t>(0));
4530 EXPECT_FATAL_FAILURE(ASSERT_EQ(static_cast<time_t>(0),
4531 static_cast<time_t>(1234)),
4532 "1234");
4533 }
4534
4535 // Tests using char values in {EXPECT|ASSERT}_EQ.
TEST(EqAssertionTest,Char)4536 TEST(EqAssertionTest, Char) {
4537 ASSERT_EQ('z', 'z');
4538 const char ch = 'b';
4539 EXPECT_NONFATAL_FAILURE(EXPECT_EQ('\0', ch),
4540 "ch");
4541 EXPECT_NONFATAL_FAILURE(EXPECT_EQ('a', ch),
4542 "ch");
4543 }
4544
4545 // Tests using wchar_t values in {EXPECT|ASSERT}_EQ.
TEST(EqAssertionTest,WideChar)4546 TEST(EqAssertionTest, WideChar) {
4547 EXPECT_EQ(L'b', L'b');
4548
4549 EXPECT_NONFATAL_FAILURE(EXPECT_EQ(L'\0', L'x'),
4550 "Value of: L'x'\n"
4551 " Actual: L'x' (120, 0x78)\n"
4552 "Expected: L'\0'\n"
4553 "Which is: L'\0' (0, 0x0)");
4554
4555 static wchar_t wchar;
4556 wchar = L'b';
4557 EXPECT_NONFATAL_FAILURE(EXPECT_EQ(L'a', wchar),
4558 "wchar");
4559 wchar = 0x8119;
4560 EXPECT_FATAL_FAILURE(ASSERT_EQ(static_cast<wchar_t>(0x8120), wchar),
4561 "Value of: wchar");
4562 }
4563
4564 // Tests using ::std::string values in {EXPECT|ASSERT}_EQ.
TEST(EqAssertionTest,StdString)4565 TEST(EqAssertionTest, StdString) {
4566 // Compares a const char* to an std::string that has identical
4567 // content.
4568 ASSERT_EQ("Test", ::std::string("Test"));
4569
4570 // Compares two identical std::strings.
4571 static const ::std::string str1("A * in the middle");
4572 static const ::std::string str2(str1);
4573 EXPECT_EQ(str1, str2);
4574
4575 // Compares a const char* to an std::string that has different
4576 // content
4577 EXPECT_NONFATAL_FAILURE(EXPECT_EQ("Test", ::std::string("test")),
4578 "::std::string(\"test\")");
4579
4580 // Compares an std::string to a char* that has different content.
4581 char* const p1 = const_cast<char*>("foo");
4582 EXPECT_NONFATAL_FAILURE(EXPECT_EQ(::std::string("bar"), p1),
4583 "p1");
4584
4585 // Compares two std::strings that have different contents, one of
4586 // which having a NUL character in the middle. This should fail.
4587 static ::std::string str3(str1);
4588 str3.at(2) = '\0';
4589 EXPECT_FATAL_FAILURE(ASSERT_EQ(str1, str3),
4590 "Value of: str3\n"
4591 " Actual: \"A \\0 in the middle\"");
4592 }
4593
4594 #if GTEST_HAS_STD_WSTRING
4595
4596 // Tests using ::std::wstring values in {EXPECT|ASSERT}_EQ.
TEST(EqAssertionTest,StdWideString)4597 TEST(EqAssertionTest, StdWideString) {
4598 // Compares two identical std::wstrings.
4599 const ::std::wstring wstr1(L"A * in the middle");
4600 const ::std::wstring wstr2(wstr1);
4601 ASSERT_EQ(wstr1, wstr2);
4602
4603 // Compares an std::wstring to a const wchar_t* that has identical
4604 // content.
4605 const wchar_t kTestX8119[] = { 'T', 'e', 's', 't', 0x8119, '\0' };
4606 EXPECT_EQ(::std::wstring(kTestX8119), kTestX8119);
4607
4608 // Compares an std::wstring to a const wchar_t* that has different
4609 // content.
4610 const wchar_t kTestX8120[] = { 'T', 'e', 's', 't', 0x8120, '\0' };
4611 EXPECT_NONFATAL_FAILURE({ // NOLINT
4612 EXPECT_EQ(::std::wstring(kTestX8119), kTestX8120);
4613 }, "kTestX8120");
4614
4615 // Compares two std::wstrings that have different contents, one of
4616 // which having a NUL character in the middle.
4617 ::std::wstring wstr3(wstr1);
4618 wstr3.at(2) = L'\0';
4619 EXPECT_NONFATAL_FAILURE(EXPECT_EQ(wstr1, wstr3),
4620 "wstr3");
4621
4622 // Compares a wchar_t* to an std::wstring that has different
4623 // content.
4624 EXPECT_FATAL_FAILURE({ // NOLINT
4625 ASSERT_EQ(const_cast<wchar_t*>(L"foo"), ::std::wstring(L"bar"));
4626 }, "");
4627 }
4628
4629 #endif // GTEST_HAS_STD_WSTRING
4630
4631 #if GTEST_HAS_GLOBAL_STRING
4632 // Tests using ::string values in {EXPECT|ASSERT}_EQ.
TEST(EqAssertionTest,GlobalString)4633 TEST(EqAssertionTest, GlobalString) {
4634 // Compares a const char* to a ::string that has identical content.
4635 EXPECT_EQ("Test", ::string("Test"));
4636
4637 // Compares two identical ::strings.
4638 const ::string str1("A * in the middle");
4639 const ::string str2(str1);
4640 ASSERT_EQ(str1, str2);
4641
4642 // Compares a ::string to a const char* that has different content.
4643 EXPECT_NONFATAL_FAILURE(EXPECT_EQ(::string("Test"), "test"),
4644 "test");
4645
4646 // Compares two ::strings that have different contents, one of which
4647 // having a NUL character in the middle.
4648 ::string str3(str1);
4649 str3.at(2) = '\0';
4650 EXPECT_NONFATAL_FAILURE(EXPECT_EQ(str1, str3),
4651 "str3");
4652
4653 // Compares a ::string to a char* that has different content.
4654 EXPECT_FATAL_FAILURE({ // NOLINT
4655 ASSERT_EQ(::string("bar"), const_cast<char*>("foo"));
4656 }, "");
4657 }
4658
4659 #endif // GTEST_HAS_GLOBAL_STRING
4660
4661 #if GTEST_HAS_GLOBAL_WSTRING
4662
4663 // Tests using ::wstring values in {EXPECT|ASSERT}_EQ.
TEST(EqAssertionTest,GlobalWideString)4664 TEST(EqAssertionTest, GlobalWideString) {
4665 // Compares two identical ::wstrings.
4666 static const ::wstring wstr1(L"A * in the middle");
4667 static const ::wstring wstr2(wstr1);
4668 EXPECT_EQ(wstr1, wstr2);
4669
4670 // Compares a const wchar_t* to a ::wstring that has identical content.
4671 const wchar_t kTestX8119[] = { 'T', 'e', 's', 't', 0x8119, '\0' };
4672 ASSERT_EQ(kTestX8119, ::wstring(kTestX8119));
4673
4674 // Compares a const wchar_t* to a ::wstring that has different
4675 // content.
4676 const wchar_t kTestX8120[] = { 'T', 'e', 's', 't', 0x8120, '\0' };
4677 EXPECT_NONFATAL_FAILURE({ // NOLINT
4678 EXPECT_EQ(kTestX8120, ::wstring(kTestX8119));
4679 }, "Test\\x8119");
4680
4681 // Compares a wchar_t* to a ::wstring that has different content.
4682 wchar_t* const p1 = const_cast<wchar_t*>(L"foo");
4683 EXPECT_NONFATAL_FAILURE(EXPECT_EQ(p1, ::wstring(L"bar")),
4684 "bar");
4685
4686 // Compares two ::wstrings that have different contents, one of which
4687 // having a NUL character in the middle.
4688 static ::wstring wstr3;
4689 wstr3 = wstr1;
4690 wstr3.at(2) = L'\0';
4691 EXPECT_FATAL_FAILURE(ASSERT_EQ(wstr1, wstr3),
4692 "wstr3");
4693 }
4694
4695 #endif // GTEST_HAS_GLOBAL_WSTRING
4696
4697 // Tests using char pointers in {EXPECT|ASSERT}_EQ.
TEST(EqAssertionTest,CharPointer)4698 TEST(EqAssertionTest, CharPointer) {
4699 char* const p0 = NULL;
4700 // Only way to get the Nokia compiler to compile the cast
4701 // is to have a separate void* variable first. Putting
4702 // the two casts on the same line doesn't work, neither does
4703 // a direct C-style to char*.
4704 void* pv1 = (void*)0x1234; // NOLINT
4705 void* pv2 = (void*)0xABC0; // NOLINT
4706 char* const p1 = reinterpret_cast<char*>(pv1);
4707 char* const p2 = reinterpret_cast<char*>(pv2);
4708 ASSERT_EQ(p1, p1);
4709
4710 EXPECT_NONFATAL_FAILURE(EXPECT_EQ(p0, p2),
4711 "Value of: p2");
4712 EXPECT_NONFATAL_FAILURE(EXPECT_EQ(p1, p2),
4713 "p2");
4714 EXPECT_FATAL_FAILURE(ASSERT_EQ(reinterpret_cast<char*>(0x1234),
4715 reinterpret_cast<char*>(0xABC0)),
4716 "ABC0");
4717 }
4718
4719 // Tests using wchar_t pointers in {EXPECT|ASSERT}_EQ.
TEST(EqAssertionTest,WideCharPointer)4720 TEST(EqAssertionTest, WideCharPointer) {
4721 wchar_t* const p0 = NULL;
4722 // Only way to get the Nokia compiler to compile the cast
4723 // is to have a separate void* variable first. Putting
4724 // the two casts on the same line doesn't work, neither does
4725 // a direct C-style to char*.
4726 void* pv1 = (void*)0x1234; // NOLINT
4727 void* pv2 = (void*)0xABC0; // NOLINT
4728 wchar_t* const p1 = reinterpret_cast<wchar_t*>(pv1);
4729 wchar_t* const p2 = reinterpret_cast<wchar_t*>(pv2);
4730 EXPECT_EQ(p0, p0);
4731
4732 EXPECT_NONFATAL_FAILURE(EXPECT_EQ(p0, p2),
4733 "Value of: p2");
4734 EXPECT_NONFATAL_FAILURE(EXPECT_EQ(p1, p2),
4735 "p2");
4736 void* pv3 = (void*)0x1234; // NOLINT
4737 void* pv4 = (void*)0xABC0; // NOLINT
4738 const wchar_t* p3 = reinterpret_cast<const wchar_t*>(pv3);
4739 const wchar_t* p4 = reinterpret_cast<const wchar_t*>(pv4);
4740 EXPECT_NONFATAL_FAILURE(EXPECT_EQ(p3, p4),
4741 "p4");
4742 }
4743
4744 // Tests using other types of pointers in {EXPECT|ASSERT}_EQ.
TEST(EqAssertionTest,OtherPointer)4745 TEST(EqAssertionTest, OtherPointer) {
4746 ASSERT_EQ(static_cast<const int*>(NULL),
4747 static_cast<const int*>(NULL));
4748 EXPECT_FATAL_FAILURE(ASSERT_EQ(static_cast<const int*>(NULL),
4749 reinterpret_cast<const int*>(0x1234)),
4750 "0x1234");
4751 }
4752
4753 // A class that supports binary comparison operators but not streaming.
4754 class UnprintableChar {
4755 public:
UnprintableChar(char ch)4756 explicit UnprintableChar(char ch) : char_(ch) {}
4757
operator ==(const UnprintableChar & rhs) const4758 bool operator==(const UnprintableChar& rhs) const {
4759 return char_ == rhs.char_;
4760 }
operator !=(const UnprintableChar & rhs) const4761 bool operator!=(const UnprintableChar& rhs) const {
4762 return char_ != rhs.char_;
4763 }
operator <(const UnprintableChar & rhs) const4764 bool operator<(const UnprintableChar& rhs) const {
4765 return char_ < rhs.char_;
4766 }
operator <=(const UnprintableChar & rhs) const4767 bool operator<=(const UnprintableChar& rhs) const {
4768 return char_ <= rhs.char_;
4769 }
operator >(const UnprintableChar & rhs) const4770 bool operator>(const UnprintableChar& rhs) const {
4771 return char_ > rhs.char_;
4772 }
operator >=(const UnprintableChar & rhs) const4773 bool operator>=(const UnprintableChar& rhs) const {
4774 return char_ >= rhs.char_;
4775 }
4776
4777 private:
4778 char char_;
4779 };
4780
4781 // Tests that ASSERT_EQ() and friends don't require the arguments to
4782 // be printable.
TEST(ComparisonAssertionTest,AcceptsUnprintableArgs)4783 TEST(ComparisonAssertionTest, AcceptsUnprintableArgs) {
4784 const UnprintableChar x('x'), y('y');
4785 ASSERT_EQ(x, x);
4786 EXPECT_NE(x, y);
4787 ASSERT_LT(x, y);
4788 EXPECT_LE(x, y);
4789 ASSERT_GT(y, x);
4790 EXPECT_GE(x, x);
4791
4792 EXPECT_NONFATAL_FAILURE(EXPECT_EQ(x, y), "1-byte object <78>");
4793 EXPECT_NONFATAL_FAILURE(EXPECT_EQ(x, y), "1-byte object <79>");
4794 EXPECT_NONFATAL_FAILURE(EXPECT_LT(y, y), "1-byte object <79>");
4795 EXPECT_NONFATAL_FAILURE(EXPECT_GT(x, y), "1-byte object <78>");
4796 EXPECT_NONFATAL_FAILURE(EXPECT_GT(x, y), "1-byte object <79>");
4797
4798 // Code tested by EXPECT_FATAL_FAILURE cannot reference local
4799 // variables, so we have to write UnprintableChar('x') instead of x.
4800 #ifndef __BORLANDC__
4801 // ICE's in C++Builder.
4802 EXPECT_FATAL_FAILURE(ASSERT_NE(UnprintableChar('x'), UnprintableChar('x')),
4803 "1-byte object <78>");
4804 EXPECT_FATAL_FAILURE(ASSERT_LE(UnprintableChar('y'), UnprintableChar('x')),
4805 "1-byte object <78>");
4806 #endif
4807 EXPECT_FATAL_FAILURE(ASSERT_LE(UnprintableChar('y'), UnprintableChar('x')),
4808 "1-byte object <79>");
4809 EXPECT_FATAL_FAILURE(ASSERT_GE(UnprintableChar('x'), UnprintableChar('y')),
4810 "1-byte object <78>");
4811 EXPECT_FATAL_FAILURE(ASSERT_GE(UnprintableChar('x'), UnprintableChar('y')),
4812 "1-byte object <79>");
4813 }
4814
4815 // Tests the FRIEND_TEST macro.
4816
4817 // This class has a private member we want to test. We will test it
4818 // both in a TEST and in a TEST_F.
4819 class Foo {
4820 public:
Foo()4821 Foo() {}
4822
4823 private:
Bar() const4824 int Bar() const { return 1; }
4825
4826 // Declares the friend tests that can access the private member
4827 // Bar().
4828 FRIEND_TEST(FRIEND_TEST_Test, TEST);
4829 FRIEND_TEST(FRIEND_TEST_Test2, TEST_F);
4830 };
4831
4832 // Tests that the FRIEND_TEST declaration allows a TEST to access a
4833 // class's private members. This should compile.
TEST(FRIEND_TEST_Test,TEST)4834 TEST(FRIEND_TEST_Test, TEST) {
4835 ASSERT_EQ(1, Foo().Bar());
4836 }
4837
4838 // The fixture needed to test using FRIEND_TEST with TEST_F.
4839 class FRIEND_TEST_Test2 : public Test {
4840 protected:
4841 Foo foo;
4842 };
4843
4844 // Tests that the FRIEND_TEST declaration allows a TEST_F to access a
4845 // class's private members. This should compile.
TEST_F(FRIEND_TEST_Test2,TEST_F)4846 TEST_F(FRIEND_TEST_Test2, TEST_F) {
4847 ASSERT_EQ(1, foo.Bar());
4848 }
4849
4850 // Tests the life cycle of Test objects.
4851
4852 // The test fixture for testing the life cycle of Test objects.
4853 //
4854 // This class counts the number of live test objects that uses this
4855 // fixture.
4856 class TestLifeCycleTest : public Test {
4857 protected:
4858 // Constructor. Increments the number of test objects that uses
4859 // this fixture.
TestLifeCycleTest()4860 TestLifeCycleTest() { count_++; }
4861
4862 // Destructor. Decrements the number of test objects that uses this
4863 // fixture.
~TestLifeCycleTest()4864 ~TestLifeCycleTest() { count_--; }
4865
4866 // Returns the number of live test objects that uses this fixture.
count() const4867 int count() const { return count_; }
4868
4869 private:
4870 static int count_;
4871 };
4872
4873 int TestLifeCycleTest::count_ = 0;
4874
4875 // Tests the life cycle of test objects.
TEST_F(TestLifeCycleTest,Test1)4876 TEST_F(TestLifeCycleTest, Test1) {
4877 // There should be only one test object in this test case that's
4878 // currently alive.
4879 ASSERT_EQ(1, count());
4880 }
4881
4882 // Tests the life cycle of test objects.
TEST_F(TestLifeCycleTest,Test2)4883 TEST_F(TestLifeCycleTest, Test2) {
4884 // After Test1 is done and Test2 is started, there should still be
4885 // only one live test object, as the object for Test1 should've been
4886 // deleted.
4887 ASSERT_EQ(1, count());
4888 }
4889
4890 } // namespace
4891
4892 // Tests that the copy constructor works when it is NOT optimized away by
4893 // the compiler.
TEST(AssertionResultTest,CopyConstructorWorksWhenNotOptimied)4894 TEST(AssertionResultTest, CopyConstructorWorksWhenNotOptimied) {
4895 // Checks that the copy constructor doesn't try to dereference NULL pointers
4896 // in the source object.
4897 AssertionResult r1 = AssertionSuccess();
4898 AssertionResult r2 = r1;
4899 // The following line is added to prevent the compiler from optimizing
4900 // away the constructor call.
4901 r1 << "abc";
4902
4903 AssertionResult r3 = r1;
4904 EXPECT_EQ(static_cast<bool>(r3), static_cast<bool>(r1));
4905 EXPECT_STREQ("abc", r1.message());
4906 }
4907
4908 // Tests that AssertionSuccess and AssertionFailure construct
4909 // AssertionResult objects as expected.
TEST(AssertionResultTest,ConstructionWorks)4910 TEST(AssertionResultTest, ConstructionWorks) {
4911 AssertionResult r1 = AssertionSuccess();
4912 EXPECT_TRUE(r1);
4913 EXPECT_STREQ("", r1.message());
4914
4915 AssertionResult r2 = AssertionSuccess() << "abc";
4916 EXPECT_TRUE(r2);
4917 EXPECT_STREQ("abc", r2.message());
4918
4919 AssertionResult r3 = AssertionFailure();
4920 EXPECT_FALSE(r3);
4921 EXPECT_STREQ("", r3.message());
4922
4923 AssertionResult r4 = AssertionFailure() << "def";
4924 EXPECT_FALSE(r4);
4925 EXPECT_STREQ("def", r4.message());
4926
4927 AssertionResult r5 = AssertionFailure(Message() << "ghi");
4928 EXPECT_FALSE(r5);
4929 EXPECT_STREQ("ghi", r5.message());
4930 }
4931
4932 // Tests that the negation flips the predicate result but keeps the message.
TEST(AssertionResultTest,NegationWorks)4933 TEST(AssertionResultTest, NegationWorks) {
4934 AssertionResult r1 = AssertionSuccess() << "abc";
4935 EXPECT_FALSE(!r1);
4936 EXPECT_STREQ("abc", (!r1).message());
4937
4938 AssertionResult r2 = AssertionFailure() << "def";
4939 EXPECT_TRUE(!r2);
4940 EXPECT_STREQ("def", (!r2).message());
4941 }
4942
TEST(AssertionResultTest,StreamingWorks)4943 TEST(AssertionResultTest, StreamingWorks) {
4944 AssertionResult r = AssertionSuccess();
4945 r << "abc" << 'd' << 0 << true;
4946 EXPECT_STREQ("abcd0true", r.message());
4947 }
4948
TEST(AssertionResultTest,CanStreamOstreamManipulators)4949 TEST(AssertionResultTest, CanStreamOstreamManipulators) {
4950 AssertionResult r = AssertionSuccess();
4951 r << "Data" << std::endl << std::flush << std::ends << "Will be visible";
4952 EXPECT_STREQ("Data\n\\0Will be visible", r.message());
4953 }
4954
4955 // Tests streaming a user type whose definition and operator << are
4956 // both in the global namespace.
4957 class Base {
4958 public:
Base(int an_x)4959 explicit Base(int an_x) : x_(an_x) {}
x() const4960 int x() const { return x_; }
4961 private:
4962 int x_;
4963 };
operator <<(std::ostream & os,const Base & val)4964 std::ostream& operator<<(std::ostream& os,
4965 const Base& val) {
4966 return os << val.x();
4967 }
operator <<(std::ostream & os,const Base * pointer)4968 std::ostream& operator<<(std::ostream& os,
4969 const Base* pointer) {
4970 return os << "(" << pointer->x() << ")";
4971 }
4972
TEST(MessageTest,CanStreamUserTypeInGlobalNameSpace)4973 TEST(MessageTest, CanStreamUserTypeInGlobalNameSpace) {
4974 Message msg;
4975 Base a(1);
4976
4977 msg << a << &a; // Uses ::operator<<.
4978 EXPECT_STREQ("1(1)", msg.GetString().c_str());
4979 }
4980
4981 // Tests streaming a user type whose definition and operator<< are
4982 // both in an unnamed namespace.
4983 namespace {
4984 class MyTypeInUnnamedNameSpace : public Base {
4985 public:
MyTypeInUnnamedNameSpace(int an_x)4986 explicit MyTypeInUnnamedNameSpace(int an_x): Base(an_x) {}
4987 };
operator <<(std::ostream & os,const MyTypeInUnnamedNameSpace & val)4988 std::ostream& operator<<(std::ostream& os,
4989 const MyTypeInUnnamedNameSpace& val) {
4990 return os << val.x();
4991 }
operator <<(std::ostream & os,const MyTypeInUnnamedNameSpace * pointer)4992 std::ostream& operator<<(std::ostream& os,
4993 const MyTypeInUnnamedNameSpace* pointer) {
4994 return os << "(" << pointer->x() << ")";
4995 }
4996 } // namespace
4997
TEST(MessageTest,CanStreamUserTypeInUnnamedNameSpace)4998 TEST(MessageTest, CanStreamUserTypeInUnnamedNameSpace) {
4999 Message msg;
5000 MyTypeInUnnamedNameSpace a(1);
5001
5002 msg << a << &a; // Uses <unnamed_namespace>::operator<<.
5003 EXPECT_STREQ("1(1)", msg.GetString().c_str());
5004 }
5005
5006 // Tests streaming a user type whose definition and operator<< are
5007 // both in a user namespace.
5008 namespace namespace1 {
5009 class MyTypeInNameSpace1 : public Base {
5010 public:
MyTypeInNameSpace1(int an_x)5011 explicit MyTypeInNameSpace1(int an_x): Base(an_x) {}
5012 };
operator <<(std::ostream & os,const MyTypeInNameSpace1 & val)5013 std::ostream& operator<<(std::ostream& os,
5014 const MyTypeInNameSpace1& val) {
5015 return os << val.x();
5016 }
operator <<(std::ostream & os,const MyTypeInNameSpace1 * pointer)5017 std::ostream& operator<<(std::ostream& os,
5018 const MyTypeInNameSpace1* pointer) {
5019 return os << "(" << pointer->x() << ")";
5020 }
5021 } // namespace namespace1
5022
TEST(MessageTest,CanStreamUserTypeInUserNameSpace)5023 TEST(MessageTest, CanStreamUserTypeInUserNameSpace) {
5024 Message msg;
5025 namespace1::MyTypeInNameSpace1 a(1);
5026
5027 msg << a << &a; // Uses namespace1::operator<<.
5028 EXPECT_STREQ("1(1)", msg.GetString().c_str());
5029 }
5030
5031 // Tests streaming a user type whose definition is in a user namespace
5032 // but whose operator<< is in the global namespace.
5033 namespace namespace2 {
5034 class MyTypeInNameSpace2 : public ::Base {
5035 public:
MyTypeInNameSpace2(int an_x)5036 explicit MyTypeInNameSpace2(int an_x): Base(an_x) {}
5037 };
5038 } // namespace namespace2
operator <<(std::ostream & os,const namespace2::MyTypeInNameSpace2 & val)5039 std::ostream& operator<<(std::ostream& os,
5040 const namespace2::MyTypeInNameSpace2& val) {
5041 return os << val.x();
5042 }
operator <<(std::ostream & os,const namespace2::MyTypeInNameSpace2 * pointer)5043 std::ostream& operator<<(std::ostream& os,
5044 const namespace2::MyTypeInNameSpace2* pointer) {
5045 return os << "(" << pointer->x() << ")";
5046 }
5047
TEST(MessageTest,CanStreamUserTypeInUserNameSpaceWithStreamOperatorInGlobal)5048 TEST(MessageTest, CanStreamUserTypeInUserNameSpaceWithStreamOperatorInGlobal) {
5049 Message msg;
5050 namespace2::MyTypeInNameSpace2 a(1);
5051
5052 msg << a << &a; // Uses ::operator<<.
5053 EXPECT_STREQ("1(1)", msg.GetString().c_str());
5054 }
5055
5056 // Tests streaming NULL pointers to testing::Message.
TEST(MessageTest,NullPointers)5057 TEST(MessageTest, NullPointers) {
5058 Message msg;
5059 char* const p1 = NULL;
5060 unsigned char* const p2 = NULL;
5061 int* p3 = NULL;
5062 double* p4 = NULL;
5063 bool* p5 = NULL;
5064 Message* p6 = NULL;
5065
5066 msg << p1 << p2 << p3 << p4 << p5 << p6;
5067 ASSERT_STREQ("(null)(null)(null)(null)(null)(null)",
5068 msg.GetString().c_str());
5069 }
5070
5071 // Tests streaming wide strings to testing::Message.
TEST(MessageTest,WideStrings)5072 TEST(MessageTest, WideStrings) {
5073 // Streams a NULL of type const wchar_t*.
5074 const wchar_t* const_wstr = NULL;
5075 EXPECT_STREQ("(null)",
5076 (Message() << const_wstr).GetString().c_str());
5077
5078 // Streams a NULL of type wchar_t*.
5079 wchar_t* wstr = NULL;
5080 EXPECT_STREQ("(null)",
5081 (Message() << wstr).GetString().c_str());
5082
5083 // Streams a non-NULL of type const wchar_t*.
5084 const_wstr = L"abc\x8119";
5085 EXPECT_STREQ("abc\xe8\x84\x99",
5086 (Message() << const_wstr).GetString().c_str());
5087
5088 // Streams a non-NULL of type wchar_t*.
5089 wstr = const_cast<wchar_t*>(const_wstr);
5090 EXPECT_STREQ("abc\xe8\x84\x99",
5091 (Message() << wstr).GetString().c_str());
5092 }
5093
5094
5095 // This line tests that we can define tests in the testing namespace.
5096 namespace testing {
5097
5098 // Tests the TestInfo class.
5099
5100 class TestInfoTest : public Test {
5101 protected:
GetTestInfo(const char * test_name)5102 static const TestInfo* GetTestInfo(const char* test_name) {
5103 const TestCase* const test_case = GetUnitTestImpl()->
5104 GetTestCase("TestInfoTest", "", NULL, NULL);
5105
5106 for (int i = 0; i < test_case->total_test_count(); ++i) {
5107 const TestInfo* const test_info = test_case->GetTestInfo(i);
5108 if (strcmp(test_name, test_info->name()) == 0)
5109 return test_info;
5110 }
5111 return NULL;
5112 }
5113
GetTestResult(const TestInfo * test_info)5114 static const TestResult* GetTestResult(
5115 const TestInfo* test_info) {
5116 return test_info->result();
5117 }
5118 };
5119
5120 // Tests TestInfo::test_case_name() and TestInfo::name().
TEST_F(TestInfoTest,Names)5121 TEST_F(TestInfoTest, Names) {
5122 const TestInfo* const test_info = GetTestInfo("Names");
5123
5124 ASSERT_STREQ("TestInfoTest", test_info->test_case_name());
5125 ASSERT_STREQ("Names", test_info->name());
5126 }
5127
5128 // Tests TestInfo::result().
TEST_F(TestInfoTest,result)5129 TEST_F(TestInfoTest, result) {
5130 const TestInfo* const test_info = GetTestInfo("result");
5131
5132 // Initially, there is no TestPartResult for this test.
5133 ASSERT_EQ(0, GetTestResult(test_info)->total_part_count());
5134
5135 // After the previous assertion, there is still none.
5136 ASSERT_EQ(0, GetTestResult(test_info)->total_part_count());
5137 }
5138
5139 // Tests setting up and tearing down a test case.
5140
5141 class SetUpTestCaseTest : public Test {
5142 protected:
5143 // This will be called once before the first test in this test case
5144 // is run.
SetUpTestCase()5145 static void SetUpTestCase() {
5146 printf("Setting up the test case . . .\n");
5147
5148 // Initializes some shared resource. In this simple example, we
5149 // just create a C string. More complex stuff can be done if
5150 // desired.
5151 shared_resource_ = "123";
5152
5153 // Increments the number of test cases that have been set up.
5154 counter_++;
5155
5156 // SetUpTestCase() should be called only once.
5157 EXPECT_EQ(1, counter_);
5158 }
5159
5160 // This will be called once after the last test in this test case is
5161 // run.
TearDownTestCase()5162 static void TearDownTestCase() {
5163 printf("Tearing down the test case . . .\n");
5164
5165 // Decrements the number of test cases that have been set up.
5166 counter_--;
5167
5168 // TearDownTestCase() should be called only once.
5169 EXPECT_EQ(0, counter_);
5170
5171 // Cleans up the shared resource.
5172 shared_resource_ = NULL;
5173 }
5174
5175 // This will be called before each test in this test case.
SetUp()5176 virtual void SetUp() {
5177 // SetUpTestCase() should be called only once, so counter_ should
5178 // always be 1.
5179 EXPECT_EQ(1, counter_);
5180 }
5181
5182 // Number of test cases that have been set up.
5183 static int counter_;
5184
5185 // Some resource to be shared by all tests in this test case.
5186 static const char* shared_resource_;
5187 };
5188
5189 int SetUpTestCaseTest::counter_ = 0;
5190 const char* SetUpTestCaseTest::shared_resource_ = NULL;
5191
5192 // A test that uses the shared resource.
TEST_F(SetUpTestCaseTest,Test1)5193 TEST_F(SetUpTestCaseTest, Test1) {
5194 EXPECT_STRNE(NULL, shared_resource_);
5195 }
5196
5197 // Another test that uses the shared resource.
TEST_F(SetUpTestCaseTest,Test2)5198 TEST_F(SetUpTestCaseTest, Test2) {
5199 EXPECT_STREQ("123", shared_resource_);
5200 }
5201
5202 // The InitGoogleTestTest test case tests testing::InitGoogleTest().
5203
5204 // The Flags struct stores a copy of all Google Test flags.
5205 struct Flags {
5206 // Constructs a Flags struct where each flag has its default value.
Flagstesting::Flags5207 Flags() : also_run_disabled_tests(false),
5208 break_on_failure(false),
5209 catch_exceptions(false),
5210 death_test_use_fork(false),
5211 filter(""),
5212 list_tests(false),
5213 output(""),
5214 print_time(true),
5215 random_seed(0),
5216 repeat(1),
5217 shuffle(false),
5218 stack_trace_depth(kMaxStackTraceDepth),
5219 stream_result_to(""),
5220 throw_on_failure(false) {}
5221
5222 // Factory methods.
5223
5224 // Creates a Flags struct where the gtest_also_run_disabled_tests flag has
5225 // the given value.
AlsoRunDisabledTeststesting::Flags5226 static Flags AlsoRunDisabledTests(bool also_run_disabled_tests) {
5227 Flags flags;
5228 flags.also_run_disabled_tests = also_run_disabled_tests;
5229 return flags;
5230 }
5231
5232 // Creates a Flags struct where the gtest_break_on_failure flag has
5233 // the given value.
BreakOnFailuretesting::Flags5234 static Flags BreakOnFailure(bool break_on_failure) {
5235 Flags flags;
5236 flags.break_on_failure = break_on_failure;
5237 return flags;
5238 }
5239
5240 // Creates a Flags struct where the gtest_catch_exceptions flag has
5241 // the given value.
CatchExceptionstesting::Flags5242 static Flags CatchExceptions(bool catch_exceptions) {
5243 Flags flags;
5244 flags.catch_exceptions = catch_exceptions;
5245 return flags;
5246 }
5247
5248 // Creates a Flags struct where the gtest_death_test_use_fork flag has
5249 // the given value.
DeathTestUseForktesting::Flags5250 static Flags DeathTestUseFork(bool death_test_use_fork) {
5251 Flags flags;
5252 flags.death_test_use_fork = death_test_use_fork;
5253 return flags;
5254 }
5255
5256 // Creates a Flags struct where the gtest_filter flag has the given
5257 // value.
Filtertesting::Flags5258 static Flags Filter(const char* filter) {
5259 Flags flags;
5260 flags.filter = filter;
5261 return flags;
5262 }
5263
5264 // Creates a Flags struct where the gtest_list_tests flag has the
5265 // given value.
ListTeststesting::Flags5266 static Flags ListTests(bool list_tests) {
5267 Flags flags;
5268 flags.list_tests = list_tests;
5269 return flags;
5270 }
5271
5272 // Creates a Flags struct where the gtest_output flag has the given
5273 // value.
Outputtesting::Flags5274 static Flags Output(const char* output) {
5275 Flags flags;
5276 flags.output = output;
5277 return flags;
5278 }
5279
5280 // Creates a Flags struct where the gtest_print_time flag has the given
5281 // value.
PrintTimetesting::Flags5282 static Flags PrintTime(bool print_time) {
5283 Flags flags;
5284 flags.print_time = print_time;
5285 return flags;
5286 }
5287
5288 // Creates a Flags struct where the gtest_random_seed flag has
5289 // the given value.
RandomSeedtesting::Flags5290 static Flags RandomSeed(Int32 random_seed) {
5291 Flags flags;
5292 flags.random_seed = random_seed;
5293 return flags;
5294 }
5295
5296 // Creates a Flags struct where the gtest_repeat flag has the given
5297 // value.
Repeattesting::Flags5298 static Flags Repeat(Int32 repeat) {
5299 Flags flags;
5300 flags.repeat = repeat;
5301 return flags;
5302 }
5303
5304 // Creates a Flags struct where the gtest_shuffle flag has
5305 // the given value.
Shuffletesting::Flags5306 static Flags Shuffle(bool shuffle) {
5307 Flags flags;
5308 flags.shuffle = shuffle;
5309 return flags;
5310 }
5311
5312 // Creates a Flags struct where the GTEST_FLAG(stack_trace_depth) flag has
5313 // the given value.
StackTraceDepthtesting::Flags5314 static Flags StackTraceDepth(Int32 stack_trace_depth) {
5315 Flags flags;
5316 flags.stack_trace_depth = stack_trace_depth;
5317 return flags;
5318 }
5319
5320 // Creates a Flags struct where the GTEST_FLAG(stream_result_to) flag has
5321 // the given value.
StreamResultTotesting::Flags5322 static Flags StreamResultTo(const char* stream_result_to) {
5323 Flags flags;
5324 flags.stream_result_to = stream_result_to;
5325 return flags;
5326 }
5327
5328 // Creates a Flags struct where the gtest_throw_on_failure flag has
5329 // the given value.
ThrowOnFailuretesting::Flags5330 static Flags ThrowOnFailure(bool throw_on_failure) {
5331 Flags flags;
5332 flags.throw_on_failure = throw_on_failure;
5333 return flags;
5334 }
5335
5336 // These fields store the flag values.
5337 bool also_run_disabled_tests;
5338 bool break_on_failure;
5339 bool catch_exceptions;
5340 bool death_test_use_fork;
5341 const char* filter;
5342 bool list_tests;
5343 const char* output;
5344 bool print_time;
5345 Int32 random_seed;
5346 Int32 repeat;
5347 bool shuffle;
5348 Int32 stack_trace_depth;
5349 const char* stream_result_to;
5350 bool throw_on_failure;
5351 };
5352
5353 // Fixture for testing InitGoogleTest().
5354 class InitGoogleTestTest : public Test {
5355 protected:
5356 // Clears the flags before each test.
SetUp()5357 virtual void SetUp() {
5358 GTEST_FLAG(also_run_disabled_tests) = false;
5359 GTEST_FLAG(break_on_failure) = false;
5360 GTEST_FLAG(catch_exceptions) = false;
5361 GTEST_FLAG(death_test_use_fork) = false;
5362 GTEST_FLAG(filter) = "";
5363 GTEST_FLAG(list_tests) = false;
5364 GTEST_FLAG(output) = "";
5365 GTEST_FLAG(print_time) = true;
5366 GTEST_FLAG(random_seed) = 0;
5367 GTEST_FLAG(repeat) = 1;
5368 GTEST_FLAG(shuffle) = false;
5369 GTEST_FLAG(stack_trace_depth) = kMaxStackTraceDepth;
5370 GTEST_FLAG(stream_result_to) = "";
5371 GTEST_FLAG(throw_on_failure) = false;
5372 }
5373
5374 // Asserts that two narrow or wide string arrays are equal.
5375 template <typename CharType>
AssertStringArrayEq(size_t size1,CharType ** array1,size_t size2,CharType ** array2)5376 static void AssertStringArrayEq(size_t size1, CharType** array1,
5377 size_t size2, CharType** array2) {
5378 ASSERT_EQ(size1, size2) << " Array sizes different.";
5379
5380 for (size_t i = 0; i != size1; i++) {
5381 ASSERT_STREQ(array1[i], array2[i]) << " where i == " << i;
5382 }
5383 }
5384
5385 // Verifies that the flag values match the expected values.
CheckFlags(const Flags & expected)5386 static void CheckFlags(const Flags& expected) {
5387 EXPECT_EQ(expected.also_run_disabled_tests,
5388 GTEST_FLAG(also_run_disabled_tests));
5389 EXPECT_EQ(expected.break_on_failure, GTEST_FLAG(break_on_failure));
5390 EXPECT_EQ(expected.catch_exceptions, GTEST_FLAG(catch_exceptions));
5391 EXPECT_EQ(expected.death_test_use_fork, GTEST_FLAG(death_test_use_fork));
5392 EXPECT_STREQ(expected.filter, GTEST_FLAG(filter).c_str());
5393 EXPECT_EQ(expected.list_tests, GTEST_FLAG(list_tests));
5394 EXPECT_STREQ(expected.output, GTEST_FLAG(output).c_str());
5395 EXPECT_EQ(expected.print_time, GTEST_FLAG(print_time));
5396 EXPECT_EQ(expected.random_seed, GTEST_FLAG(random_seed));
5397 EXPECT_EQ(expected.repeat, GTEST_FLAG(repeat));
5398 EXPECT_EQ(expected.shuffle, GTEST_FLAG(shuffle));
5399 EXPECT_EQ(expected.stack_trace_depth, GTEST_FLAG(stack_trace_depth));
5400 EXPECT_STREQ(expected.stream_result_to,
5401 GTEST_FLAG(stream_result_to).c_str());
5402 EXPECT_EQ(expected.throw_on_failure, GTEST_FLAG(throw_on_failure));
5403 }
5404
5405 // Parses a command line (specified by argc1 and argv1), then
5406 // verifies that the flag values are expected and that the
5407 // recognized flags are removed from the command line.
5408 template <typename CharType>
TestParsingFlags(int argc1,const CharType ** argv1,int argc2,const CharType ** argv2,const Flags & expected,bool should_print_help)5409 static void TestParsingFlags(int argc1, const CharType** argv1,
5410 int argc2, const CharType** argv2,
5411 const Flags& expected, bool should_print_help) {
5412 const bool saved_help_flag = ::testing::internal::g_help_flag;
5413 ::testing::internal::g_help_flag = false;
5414
5415 #if GTEST_HAS_STREAM_REDIRECTION
5416 CaptureStdout();
5417 #endif
5418
5419 // Parses the command line.
5420 internal::ParseGoogleTestFlagsOnly(&argc1, const_cast<CharType**>(argv1));
5421
5422 #if GTEST_HAS_STREAM_REDIRECTION
5423 const String captured_stdout = GetCapturedStdout();
5424 #endif
5425
5426 // Verifies the flag values.
5427 CheckFlags(expected);
5428
5429 // Verifies that the recognized flags are removed from the command
5430 // line.
5431 AssertStringArrayEq(argc1 + 1, argv1, argc2 + 1, argv2);
5432
5433 // ParseGoogleTestFlagsOnly should neither set g_help_flag nor print the
5434 // help message for the flags it recognizes.
5435 EXPECT_EQ(should_print_help, ::testing::internal::g_help_flag);
5436
5437 #if GTEST_HAS_STREAM_REDIRECTION
5438 const char* const expected_help_fragment =
5439 "This program contains tests written using";
5440 if (should_print_help) {
5441 EXPECT_PRED_FORMAT2(IsSubstring, expected_help_fragment, captured_stdout);
5442 } else {
5443 EXPECT_PRED_FORMAT2(IsNotSubstring,
5444 expected_help_fragment, captured_stdout);
5445 }
5446 #endif // GTEST_HAS_STREAM_REDIRECTION
5447
5448 ::testing::internal::g_help_flag = saved_help_flag;
5449 }
5450
5451 // This macro wraps TestParsingFlags s.t. the user doesn't need
5452 // to specify the array sizes.
5453
5454 #define GTEST_TEST_PARSING_FLAGS_(argv1, argv2, expected, should_print_help) \
5455 TestParsingFlags(sizeof(argv1)/sizeof(*argv1) - 1, argv1, \
5456 sizeof(argv2)/sizeof(*argv2) - 1, argv2, \
5457 expected, should_print_help)
5458 };
5459
5460 // Tests parsing an empty command line.
TEST_F(InitGoogleTestTest,Empty)5461 TEST_F(InitGoogleTestTest, Empty) {
5462 const char* argv[] = {
5463 NULL
5464 };
5465
5466 const char* argv2[] = {
5467 NULL
5468 };
5469
5470 GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags(), false);
5471 }
5472
5473 // Tests parsing a command line that has no flag.
TEST_F(InitGoogleTestTest,NoFlag)5474 TEST_F(InitGoogleTestTest, NoFlag) {
5475 const char* argv[] = {
5476 "foo.exe",
5477 NULL
5478 };
5479
5480 const char* argv2[] = {
5481 "foo.exe",
5482 NULL
5483 };
5484
5485 GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags(), false);
5486 }
5487
5488 // Tests parsing a bad --gtest_filter flag.
TEST_F(InitGoogleTestTest,FilterBad)5489 TEST_F(InitGoogleTestTest, FilterBad) {
5490 const char* argv[] = {
5491 "foo.exe",
5492 "--gtest_filter",
5493 NULL
5494 };
5495
5496 const char* argv2[] = {
5497 "foo.exe",
5498 "--gtest_filter",
5499 NULL
5500 };
5501
5502 GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Filter(""), true);
5503 }
5504
5505 // Tests parsing an empty --gtest_filter flag.
TEST_F(InitGoogleTestTest,FilterEmpty)5506 TEST_F(InitGoogleTestTest, FilterEmpty) {
5507 const char* argv[] = {
5508 "foo.exe",
5509 "--gtest_filter=",
5510 NULL
5511 };
5512
5513 const char* argv2[] = {
5514 "foo.exe",
5515 NULL
5516 };
5517
5518 GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Filter(""), false);
5519 }
5520
5521 // Tests parsing a non-empty --gtest_filter flag.
TEST_F(InitGoogleTestTest,FilterNonEmpty)5522 TEST_F(InitGoogleTestTest, FilterNonEmpty) {
5523 const char* argv[] = {
5524 "foo.exe",
5525 "--gtest_filter=abc",
5526 NULL
5527 };
5528
5529 const char* argv2[] = {
5530 "foo.exe",
5531 NULL
5532 };
5533
5534 GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Filter("abc"), false);
5535 }
5536
5537 // Tests parsing --gtest_break_on_failure.
TEST_F(InitGoogleTestTest,BreakOnFailureWithoutValue)5538 TEST_F(InitGoogleTestTest, BreakOnFailureWithoutValue) {
5539 const char* argv[] = {
5540 "foo.exe",
5541 "--gtest_break_on_failure",
5542 NULL
5543 };
5544
5545 const char* argv2[] = {
5546 "foo.exe",
5547 NULL
5548 };
5549
5550 GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::BreakOnFailure(true), false);
5551 }
5552
5553 // Tests parsing --gtest_break_on_failure=0.
TEST_F(InitGoogleTestTest,BreakOnFailureFalse_0)5554 TEST_F(InitGoogleTestTest, BreakOnFailureFalse_0) {
5555 const char* argv[] = {
5556 "foo.exe",
5557 "--gtest_break_on_failure=0",
5558 NULL
5559 };
5560
5561 const char* argv2[] = {
5562 "foo.exe",
5563 NULL
5564 };
5565
5566 GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::BreakOnFailure(false), false);
5567 }
5568
5569 // Tests parsing --gtest_break_on_failure=f.
TEST_F(InitGoogleTestTest,BreakOnFailureFalse_f)5570 TEST_F(InitGoogleTestTest, BreakOnFailureFalse_f) {
5571 const char* argv[] = {
5572 "foo.exe",
5573 "--gtest_break_on_failure=f",
5574 NULL
5575 };
5576
5577 const char* argv2[] = {
5578 "foo.exe",
5579 NULL
5580 };
5581
5582 GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::BreakOnFailure(false), false);
5583 }
5584
5585 // Tests parsing --gtest_break_on_failure=F.
TEST_F(InitGoogleTestTest,BreakOnFailureFalse_F)5586 TEST_F(InitGoogleTestTest, BreakOnFailureFalse_F) {
5587 const char* argv[] = {
5588 "foo.exe",
5589 "--gtest_break_on_failure=F",
5590 NULL
5591 };
5592
5593 const char* argv2[] = {
5594 "foo.exe",
5595 NULL
5596 };
5597
5598 GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::BreakOnFailure(false), false);
5599 }
5600
5601 // Tests parsing a --gtest_break_on_failure flag that has a "true"
5602 // definition.
TEST_F(InitGoogleTestTest,BreakOnFailureTrue)5603 TEST_F(InitGoogleTestTest, BreakOnFailureTrue) {
5604 const char* argv[] = {
5605 "foo.exe",
5606 "--gtest_break_on_failure=1",
5607 NULL
5608 };
5609
5610 const char* argv2[] = {
5611 "foo.exe",
5612 NULL
5613 };
5614
5615 GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::BreakOnFailure(true), false);
5616 }
5617
5618 // Tests parsing --gtest_catch_exceptions.
TEST_F(InitGoogleTestTest,CatchExceptions)5619 TEST_F(InitGoogleTestTest, CatchExceptions) {
5620 const char* argv[] = {
5621 "foo.exe",
5622 "--gtest_catch_exceptions",
5623 NULL
5624 };
5625
5626 const char* argv2[] = {
5627 "foo.exe",
5628 NULL
5629 };
5630
5631 GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::CatchExceptions(true), false);
5632 }
5633
5634 // Tests parsing --gtest_death_test_use_fork.
TEST_F(InitGoogleTestTest,DeathTestUseFork)5635 TEST_F(InitGoogleTestTest, DeathTestUseFork) {
5636 const char* argv[] = {
5637 "foo.exe",
5638 "--gtest_death_test_use_fork",
5639 NULL
5640 };
5641
5642 const char* argv2[] = {
5643 "foo.exe",
5644 NULL
5645 };
5646
5647 GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::DeathTestUseFork(true), false);
5648 }
5649
5650 // Tests having the same flag twice with different values. The
5651 // expected behavior is that the one coming last takes precedence.
TEST_F(InitGoogleTestTest,DuplicatedFlags)5652 TEST_F(InitGoogleTestTest, DuplicatedFlags) {
5653 const char* argv[] = {
5654 "foo.exe",
5655 "--gtest_filter=a",
5656 "--gtest_filter=b",
5657 NULL
5658 };
5659
5660 const char* argv2[] = {
5661 "foo.exe",
5662 NULL
5663 };
5664
5665 GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Filter("b"), false);
5666 }
5667
5668 // Tests having an unrecognized flag on the command line.
TEST_F(InitGoogleTestTest,UnrecognizedFlag)5669 TEST_F(InitGoogleTestTest, UnrecognizedFlag) {
5670 const char* argv[] = {
5671 "foo.exe",
5672 "--gtest_break_on_failure",
5673 "bar", // Unrecognized by Google Test.
5674 "--gtest_filter=b",
5675 NULL
5676 };
5677
5678 const char* argv2[] = {
5679 "foo.exe",
5680 "bar",
5681 NULL
5682 };
5683
5684 Flags flags;
5685 flags.break_on_failure = true;
5686 flags.filter = "b";
5687 GTEST_TEST_PARSING_FLAGS_(argv, argv2, flags, false);
5688 }
5689
5690 // Tests having a --gtest_list_tests flag
TEST_F(InitGoogleTestTest,ListTestsFlag)5691 TEST_F(InitGoogleTestTest, ListTestsFlag) {
5692 const char* argv[] = {
5693 "foo.exe",
5694 "--gtest_list_tests",
5695 NULL
5696 };
5697
5698 const char* argv2[] = {
5699 "foo.exe",
5700 NULL
5701 };
5702
5703 GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ListTests(true), false);
5704 }
5705
5706 // Tests having a --gtest_list_tests flag with a "true" value
TEST_F(InitGoogleTestTest,ListTestsTrue)5707 TEST_F(InitGoogleTestTest, ListTestsTrue) {
5708 const char* argv[] = {
5709 "foo.exe",
5710 "--gtest_list_tests=1",
5711 NULL
5712 };
5713
5714 const char* argv2[] = {
5715 "foo.exe",
5716 NULL
5717 };
5718
5719 GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ListTests(true), false);
5720 }
5721
5722 // Tests having a --gtest_list_tests flag with a "false" value
TEST_F(InitGoogleTestTest,ListTestsFalse)5723 TEST_F(InitGoogleTestTest, ListTestsFalse) {
5724 const char* argv[] = {
5725 "foo.exe",
5726 "--gtest_list_tests=0",
5727 NULL
5728 };
5729
5730 const char* argv2[] = {
5731 "foo.exe",
5732 NULL
5733 };
5734
5735 GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ListTests(false), false);
5736 }
5737
5738 // Tests parsing --gtest_list_tests=f.
TEST_F(InitGoogleTestTest,ListTestsFalse_f)5739 TEST_F(InitGoogleTestTest, ListTestsFalse_f) {
5740 const char* argv[] = {
5741 "foo.exe",
5742 "--gtest_list_tests=f",
5743 NULL
5744 };
5745
5746 const char* argv2[] = {
5747 "foo.exe",
5748 NULL
5749 };
5750
5751 GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ListTests(false), false);
5752 }
5753
5754 // Tests parsing --gtest_list_tests=F.
TEST_F(InitGoogleTestTest,ListTestsFalse_F)5755 TEST_F(InitGoogleTestTest, ListTestsFalse_F) {
5756 const char* argv[] = {
5757 "foo.exe",
5758 "--gtest_list_tests=F",
5759 NULL
5760 };
5761
5762 const char* argv2[] = {
5763 "foo.exe",
5764 NULL
5765 };
5766
5767 GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ListTests(false), false);
5768 }
5769
5770 // Tests parsing --gtest_output (invalid).
TEST_F(InitGoogleTestTest,OutputEmpty)5771 TEST_F(InitGoogleTestTest, OutputEmpty) {
5772 const char* argv[] = {
5773 "foo.exe",
5774 "--gtest_output",
5775 NULL
5776 };
5777
5778 const char* argv2[] = {
5779 "foo.exe",
5780 "--gtest_output",
5781 NULL
5782 };
5783
5784 GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags(), true);
5785 }
5786
5787 // Tests parsing --gtest_output=xml
TEST_F(InitGoogleTestTest,OutputXml)5788 TEST_F(InitGoogleTestTest, OutputXml) {
5789 const char* argv[] = {
5790 "foo.exe",
5791 "--gtest_output=xml",
5792 NULL
5793 };
5794
5795 const char* argv2[] = {
5796 "foo.exe",
5797 NULL
5798 };
5799
5800 GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Output("xml"), false);
5801 }
5802
5803 // Tests parsing --gtest_output=xml:file
TEST_F(InitGoogleTestTest,OutputXmlFile)5804 TEST_F(InitGoogleTestTest, OutputXmlFile) {
5805 const char* argv[] = {
5806 "foo.exe",
5807 "--gtest_output=xml:file",
5808 NULL
5809 };
5810
5811 const char* argv2[] = {
5812 "foo.exe",
5813 NULL
5814 };
5815
5816 GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Output("xml:file"), false);
5817 }
5818
5819 // Tests parsing --gtest_output=xml:directory/path/
TEST_F(InitGoogleTestTest,OutputXmlDirectory)5820 TEST_F(InitGoogleTestTest, OutputXmlDirectory) {
5821 const char* argv[] = {
5822 "foo.exe",
5823 "--gtest_output=xml:directory/path/",
5824 NULL
5825 };
5826
5827 const char* argv2[] = {
5828 "foo.exe",
5829 NULL
5830 };
5831
5832 GTEST_TEST_PARSING_FLAGS_(argv, argv2,
5833 Flags::Output("xml:directory/path/"), false);
5834 }
5835
5836 // Tests having a --gtest_print_time flag
TEST_F(InitGoogleTestTest,PrintTimeFlag)5837 TEST_F(InitGoogleTestTest, PrintTimeFlag) {
5838 const char* argv[] = {
5839 "foo.exe",
5840 "--gtest_print_time",
5841 NULL
5842 };
5843
5844 const char* argv2[] = {
5845 "foo.exe",
5846 NULL
5847 };
5848
5849 GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::PrintTime(true), false);
5850 }
5851
5852 // Tests having a --gtest_print_time flag with a "true" value
TEST_F(InitGoogleTestTest,PrintTimeTrue)5853 TEST_F(InitGoogleTestTest, PrintTimeTrue) {
5854 const char* argv[] = {
5855 "foo.exe",
5856 "--gtest_print_time=1",
5857 NULL
5858 };
5859
5860 const char* argv2[] = {
5861 "foo.exe",
5862 NULL
5863 };
5864
5865 GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::PrintTime(true), false);
5866 }
5867
5868 // Tests having a --gtest_print_time flag with a "false" value
TEST_F(InitGoogleTestTest,PrintTimeFalse)5869 TEST_F(InitGoogleTestTest, PrintTimeFalse) {
5870 const char* argv[] = {
5871 "foo.exe",
5872 "--gtest_print_time=0",
5873 NULL
5874 };
5875
5876 const char* argv2[] = {
5877 "foo.exe",
5878 NULL
5879 };
5880
5881 GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::PrintTime(false), false);
5882 }
5883
5884 // Tests parsing --gtest_print_time=f.
TEST_F(InitGoogleTestTest,PrintTimeFalse_f)5885 TEST_F(InitGoogleTestTest, PrintTimeFalse_f) {
5886 const char* argv[] = {
5887 "foo.exe",
5888 "--gtest_print_time=f",
5889 NULL
5890 };
5891
5892 const char* argv2[] = {
5893 "foo.exe",
5894 NULL
5895 };
5896
5897 GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::PrintTime(false), false);
5898 }
5899
5900 // Tests parsing --gtest_print_time=F.
TEST_F(InitGoogleTestTest,PrintTimeFalse_F)5901 TEST_F(InitGoogleTestTest, PrintTimeFalse_F) {
5902 const char* argv[] = {
5903 "foo.exe",
5904 "--gtest_print_time=F",
5905 NULL
5906 };
5907
5908 const char* argv2[] = {
5909 "foo.exe",
5910 NULL
5911 };
5912
5913 GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::PrintTime(false), false);
5914 }
5915
5916 // Tests parsing --gtest_random_seed=number
TEST_F(InitGoogleTestTest,RandomSeed)5917 TEST_F(InitGoogleTestTest, RandomSeed) {
5918 const char* argv[] = {
5919 "foo.exe",
5920 "--gtest_random_seed=1000",
5921 NULL
5922 };
5923
5924 const char* argv2[] = {
5925 "foo.exe",
5926 NULL
5927 };
5928
5929 GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::RandomSeed(1000), false);
5930 }
5931
5932 // Tests parsing --gtest_repeat=number
TEST_F(InitGoogleTestTest,Repeat)5933 TEST_F(InitGoogleTestTest, Repeat) {
5934 const char* argv[] = {
5935 "foo.exe",
5936 "--gtest_repeat=1000",
5937 NULL
5938 };
5939
5940 const char* argv2[] = {
5941 "foo.exe",
5942 NULL
5943 };
5944
5945 GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Repeat(1000), false);
5946 }
5947
5948 // Tests having a --gtest_also_run_disabled_tests flag
TEST_F(InitGoogleTestTest,AlsoRunDisabledTestsFlag)5949 TEST_F(InitGoogleTestTest, AlsoRunDisabledTestsFlag) {
5950 const char* argv[] = {
5951 "foo.exe",
5952 "--gtest_also_run_disabled_tests",
5953 NULL
5954 };
5955
5956 const char* argv2[] = {
5957 "foo.exe",
5958 NULL
5959 };
5960
5961 GTEST_TEST_PARSING_FLAGS_(argv, argv2,
5962 Flags::AlsoRunDisabledTests(true), false);
5963 }
5964
5965 // Tests having a --gtest_also_run_disabled_tests flag with a "true" value
TEST_F(InitGoogleTestTest,AlsoRunDisabledTestsTrue)5966 TEST_F(InitGoogleTestTest, AlsoRunDisabledTestsTrue) {
5967 const char* argv[] = {
5968 "foo.exe",
5969 "--gtest_also_run_disabled_tests=1",
5970 NULL
5971 };
5972
5973 const char* argv2[] = {
5974 "foo.exe",
5975 NULL
5976 };
5977
5978 GTEST_TEST_PARSING_FLAGS_(argv, argv2,
5979 Flags::AlsoRunDisabledTests(true), false);
5980 }
5981
5982 // Tests having a --gtest_also_run_disabled_tests flag with a "false" value
TEST_F(InitGoogleTestTest,AlsoRunDisabledTestsFalse)5983 TEST_F(InitGoogleTestTest, AlsoRunDisabledTestsFalse) {
5984 const char* argv[] = {
5985 "foo.exe",
5986 "--gtest_also_run_disabled_tests=0",
5987 NULL
5988 };
5989
5990 const char* argv2[] = {
5991 "foo.exe",
5992 NULL
5993 };
5994
5995 GTEST_TEST_PARSING_FLAGS_(argv, argv2,
5996 Flags::AlsoRunDisabledTests(false), false);
5997 }
5998
5999 // Tests parsing --gtest_shuffle.
TEST_F(InitGoogleTestTest,ShuffleWithoutValue)6000 TEST_F(InitGoogleTestTest, ShuffleWithoutValue) {
6001 const char* argv[] = {
6002 "foo.exe",
6003 "--gtest_shuffle",
6004 NULL
6005 };
6006
6007 const char* argv2[] = {
6008 "foo.exe",
6009 NULL
6010 };
6011
6012 GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Shuffle(true), false);
6013 }
6014
6015 // Tests parsing --gtest_shuffle=0.
TEST_F(InitGoogleTestTest,ShuffleFalse_0)6016 TEST_F(InitGoogleTestTest, ShuffleFalse_0) {
6017 const char* argv[] = {
6018 "foo.exe",
6019 "--gtest_shuffle=0",
6020 NULL
6021 };
6022
6023 const char* argv2[] = {
6024 "foo.exe",
6025 NULL
6026 };
6027
6028 GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Shuffle(false), false);
6029 }
6030
6031 // Tests parsing a --gtest_shuffle flag that has a "true"
6032 // definition.
TEST_F(InitGoogleTestTest,ShuffleTrue)6033 TEST_F(InitGoogleTestTest, ShuffleTrue) {
6034 const char* argv[] = {
6035 "foo.exe",
6036 "--gtest_shuffle=1",
6037 NULL
6038 };
6039
6040 const char* argv2[] = {
6041 "foo.exe",
6042 NULL
6043 };
6044
6045 GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Shuffle(true), false);
6046 }
6047
6048 // Tests parsing --gtest_stack_trace_depth=number.
TEST_F(InitGoogleTestTest,StackTraceDepth)6049 TEST_F(InitGoogleTestTest, StackTraceDepth) {
6050 const char* argv[] = {
6051 "foo.exe",
6052 "--gtest_stack_trace_depth=5",
6053 NULL
6054 };
6055
6056 const char* argv2[] = {
6057 "foo.exe",
6058 NULL
6059 };
6060
6061 GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::StackTraceDepth(5), false);
6062 }
6063
TEST_F(InitGoogleTestTest,StreamResultTo)6064 TEST_F(InitGoogleTestTest, StreamResultTo) {
6065 const char* argv[] = {
6066 "foo.exe",
6067 "--gtest_stream_result_to=localhost:1234",
6068 NULL
6069 };
6070
6071 const char* argv2[] = {
6072 "foo.exe",
6073 NULL
6074 };
6075
6076 GTEST_TEST_PARSING_FLAGS_(
6077 argv, argv2, Flags::StreamResultTo("localhost:1234"), false);
6078 }
6079
6080 // Tests parsing --gtest_throw_on_failure.
TEST_F(InitGoogleTestTest,ThrowOnFailureWithoutValue)6081 TEST_F(InitGoogleTestTest, ThrowOnFailureWithoutValue) {
6082 const char* argv[] = {
6083 "foo.exe",
6084 "--gtest_throw_on_failure",
6085 NULL
6086 };
6087
6088 const char* argv2[] = {
6089 "foo.exe",
6090 NULL
6091 };
6092
6093 GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ThrowOnFailure(true), false);
6094 }
6095
6096 // Tests parsing --gtest_throw_on_failure=0.
TEST_F(InitGoogleTestTest,ThrowOnFailureFalse_0)6097 TEST_F(InitGoogleTestTest, ThrowOnFailureFalse_0) {
6098 const char* argv[] = {
6099 "foo.exe",
6100 "--gtest_throw_on_failure=0",
6101 NULL
6102 };
6103
6104 const char* argv2[] = {
6105 "foo.exe",
6106 NULL
6107 };
6108
6109 GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ThrowOnFailure(false), false);
6110 }
6111
6112 // Tests parsing a --gtest_throw_on_failure flag that has a "true"
6113 // definition.
TEST_F(InitGoogleTestTest,ThrowOnFailureTrue)6114 TEST_F(InitGoogleTestTest, ThrowOnFailureTrue) {
6115 const char* argv[] = {
6116 "foo.exe",
6117 "--gtest_throw_on_failure=1",
6118 NULL
6119 };
6120
6121 const char* argv2[] = {
6122 "foo.exe",
6123 NULL
6124 };
6125
6126 GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ThrowOnFailure(true), false);
6127 }
6128
6129 #if GTEST_OS_WINDOWS
6130 // Tests parsing wide strings.
TEST_F(InitGoogleTestTest,WideStrings)6131 TEST_F(InitGoogleTestTest, WideStrings) {
6132 const wchar_t* argv[] = {
6133 L"foo.exe",
6134 L"--gtest_filter=Foo*",
6135 L"--gtest_list_tests=1",
6136 L"--gtest_break_on_failure",
6137 L"--non_gtest_flag",
6138 NULL
6139 };
6140
6141 const wchar_t* argv2[] = {
6142 L"foo.exe",
6143 L"--non_gtest_flag",
6144 NULL
6145 };
6146
6147 Flags expected_flags;
6148 expected_flags.break_on_failure = true;
6149 expected_flags.filter = "Foo*";
6150 expected_flags.list_tests = true;
6151
6152 GTEST_TEST_PARSING_FLAGS_(argv, argv2, expected_flags, false);
6153 }
6154 #endif // GTEST_OS_WINDOWS
6155
6156 // Tests current_test_info() in UnitTest.
6157 class CurrentTestInfoTest : public Test {
6158 protected:
6159 // Tests that current_test_info() returns NULL before the first test in
6160 // the test case is run.
SetUpTestCase()6161 static void SetUpTestCase() {
6162 // There should be no tests running at this point.
6163 const TestInfo* test_info =
6164 UnitTest::GetInstance()->current_test_info();
6165 EXPECT_TRUE(test_info == NULL)
6166 << "There should be no tests running at this point.";
6167 }
6168
6169 // Tests that current_test_info() returns NULL after the last test in
6170 // the test case has run.
TearDownTestCase()6171 static void TearDownTestCase() {
6172 const TestInfo* test_info =
6173 UnitTest::GetInstance()->current_test_info();
6174 EXPECT_TRUE(test_info == NULL)
6175 << "There should be no tests running at this point.";
6176 }
6177 };
6178
6179 // Tests that current_test_info() returns TestInfo for currently running
6180 // test by checking the expected test name against the actual one.
TEST_F(CurrentTestInfoTest,WorksForFirstTestInATestCase)6181 TEST_F(CurrentTestInfoTest, WorksForFirstTestInATestCase) {
6182 const TestInfo* test_info =
6183 UnitTest::GetInstance()->current_test_info();
6184 ASSERT_TRUE(NULL != test_info)
6185 << "There is a test running so we should have a valid TestInfo.";
6186 EXPECT_STREQ("CurrentTestInfoTest", test_info->test_case_name())
6187 << "Expected the name of the currently running test case.";
6188 EXPECT_STREQ("WorksForFirstTestInATestCase", test_info->name())
6189 << "Expected the name of the currently running test.";
6190 }
6191
6192 // Tests that current_test_info() returns TestInfo for currently running
6193 // test by checking the expected test name against the actual one. We
6194 // use this test to see that the TestInfo object actually changed from
6195 // the previous invocation.
TEST_F(CurrentTestInfoTest,WorksForSecondTestInATestCase)6196 TEST_F(CurrentTestInfoTest, WorksForSecondTestInATestCase) {
6197 const TestInfo* test_info =
6198 UnitTest::GetInstance()->current_test_info();
6199 ASSERT_TRUE(NULL != test_info)
6200 << "There is a test running so we should have a valid TestInfo.";
6201 EXPECT_STREQ("CurrentTestInfoTest", test_info->test_case_name())
6202 << "Expected the name of the currently running test case.";
6203 EXPECT_STREQ("WorksForSecondTestInATestCase", test_info->name())
6204 << "Expected the name of the currently running test.";
6205 }
6206
6207 } // namespace testing
6208
6209 // These two lines test that we can define tests in a namespace that
6210 // has the name "testing" and is nested in another namespace.
6211 namespace my_namespace {
6212 namespace testing {
6213
6214 // Makes sure that TEST knows to use ::testing::Test instead of
6215 // ::my_namespace::testing::Test.
6216 class Test {};
6217
6218 // Makes sure that an assertion knows to use ::testing::Message instead of
6219 // ::my_namespace::testing::Message.
6220 class Message {};
6221
6222 // Makes sure that an assertion knows to use
6223 // ::testing::AssertionResult instead of
6224 // ::my_namespace::testing::AssertionResult.
6225 class AssertionResult {};
6226
6227 // Tests that an assertion that should succeed works as expected.
TEST(NestedTestingNamespaceTest,Success)6228 TEST(NestedTestingNamespaceTest, Success) {
6229 EXPECT_EQ(1, 1) << "This shouldn't fail.";
6230 }
6231
6232 // Tests that an assertion that should fail works as expected.
TEST(NestedTestingNamespaceTest,Failure)6233 TEST(NestedTestingNamespaceTest, Failure) {
6234 EXPECT_FATAL_FAILURE(FAIL() << "This failure is expected.",
6235 "This failure is expected.");
6236 }
6237
6238 } // namespace testing
6239 } // namespace my_namespace
6240
6241 // Tests that one can call superclass SetUp and TearDown methods--
6242 // that is, that they are not private.
6243 // No tests are based on this fixture; the test "passes" if it compiles
6244 // successfully.
6245 class ProtectedFixtureMethodsTest : public Test {
6246 protected:
SetUp()6247 virtual void SetUp() {
6248 Test::SetUp();
6249 }
TearDown()6250 virtual void TearDown() {
6251 Test::TearDown();
6252 }
6253 };
6254
6255 // StreamingAssertionsTest tests the streaming versions of a representative
6256 // sample of assertions.
TEST(StreamingAssertionsTest,Unconditional)6257 TEST(StreamingAssertionsTest, Unconditional) {
6258 SUCCEED() << "expected success";
6259 EXPECT_NONFATAL_FAILURE(ADD_FAILURE() << "expected failure",
6260 "expected failure");
6261 EXPECT_FATAL_FAILURE(FAIL() << "expected failure",
6262 "expected failure");
6263 }
6264
6265 #ifdef __BORLANDC__
6266 // Silences warnings: "Condition is always true", "Unreachable code"
6267 # pragma option push -w-ccc -w-rch
6268 #endif
6269
TEST(StreamingAssertionsTest,Truth)6270 TEST(StreamingAssertionsTest, Truth) {
6271 EXPECT_TRUE(true) << "unexpected failure";
6272 ASSERT_TRUE(true) << "unexpected failure";
6273 EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(false) << "expected failure",
6274 "expected failure");
6275 EXPECT_FATAL_FAILURE(ASSERT_TRUE(false) << "expected failure",
6276 "expected failure");
6277 }
6278
TEST(StreamingAssertionsTest,Truth2)6279 TEST(StreamingAssertionsTest, Truth2) {
6280 EXPECT_FALSE(false) << "unexpected failure";
6281 ASSERT_FALSE(false) << "unexpected failure";
6282 EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(true) << "expected failure",
6283 "expected failure");
6284 EXPECT_FATAL_FAILURE(ASSERT_FALSE(true) << "expected failure",
6285 "expected failure");
6286 }
6287
6288 #ifdef __BORLANDC__
6289 // Restores warnings after previous "#pragma option push" supressed them
6290 # pragma option pop
6291 #endif
6292
TEST(StreamingAssertionsTest,IntegerEquals)6293 TEST(StreamingAssertionsTest, IntegerEquals) {
6294 EXPECT_EQ(1, 1) << "unexpected failure";
6295 ASSERT_EQ(1, 1) << "unexpected failure";
6296 EXPECT_NONFATAL_FAILURE(EXPECT_EQ(1, 2) << "expected failure",
6297 "expected failure");
6298 EXPECT_FATAL_FAILURE(ASSERT_EQ(1, 2) << "expected failure",
6299 "expected failure");
6300 }
6301
TEST(StreamingAssertionsTest,IntegerLessThan)6302 TEST(StreamingAssertionsTest, IntegerLessThan) {
6303 EXPECT_LT(1, 2) << "unexpected failure";
6304 ASSERT_LT(1, 2) << "unexpected failure";
6305 EXPECT_NONFATAL_FAILURE(EXPECT_LT(2, 1) << "expected failure",
6306 "expected failure");
6307 EXPECT_FATAL_FAILURE(ASSERT_LT(2, 1) << "expected failure",
6308 "expected failure");
6309 }
6310
TEST(StreamingAssertionsTest,StringsEqual)6311 TEST(StreamingAssertionsTest, StringsEqual) {
6312 EXPECT_STREQ("foo", "foo") << "unexpected failure";
6313 ASSERT_STREQ("foo", "foo") << "unexpected failure";
6314 EXPECT_NONFATAL_FAILURE(EXPECT_STREQ("foo", "bar") << "expected failure",
6315 "expected failure");
6316 EXPECT_FATAL_FAILURE(ASSERT_STREQ("foo", "bar") << "expected failure",
6317 "expected failure");
6318 }
6319
TEST(StreamingAssertionsTest,StringsNotEqual)6320 TEST(StreamingAssertionsTest, StringsNotEqual) {
6321 EXPECT_STRNE("foo", "bar") << "unexpected failure";
6322 ASSERT_STRNE("foo", "bar") << "unexpected failure";
6323 EXPECT_NONFATAL_FAILURE(EXPECT_STRNE("foo", "foo") << "expected failure",
6324 "expected failure");
6325 EXPECT_FATAL_FAILURE(ASSERT_STRNE("foo", "foo") << "expected failure",
6326 "expected failure");
6327 }
6328
TEST(StreamingAssertionsTest,StringsEqualIgnoringCase)6329 TEST(StreamingAssertionsTest, StringsEqualIgnoringCase) {
6330 EXPECT_STRCASEEQ("foo", "FOO") << "unexpected failure";
6331 ASSERT_STRCASEEQ("foo", "FOO") << "unexpected failure";
6332 EXPECT_NONFATAL_FAILURE(EXPECT_STRCASEEQ("foo", "bar") << "expected failure",
6333 "expected failure");
6334 EXPECT_FATAL_FAILURE(ASSERT_STRCASEEQ("foo", "bar") << "expected failure",
6335 "expected failure");
6336 }
6337
TEST(StreamingAssertionsTest,StringNotEqualIgnoringCase)6338 TEST(StreamingAssertionsTest, StringNotEqualIgnoringCase) {
6339 EXPECT_STRCASENE("foo", "bar") << "unexpected failure";
6340 ASSERT_STRCASENE("foo", "bar") << "unexpected failure";
6341 EXPECT_NONFATAL_FAILURE(EXPECT_STRCASENE("foo", "FOO") << "expected failure",
6342 "expected failure");
6343 EXPECT_FATAL_FAILURE(ASSERT_STRCASENE("bar", "BAR") << "expected failure",
6344 "expected failure");
6345 }
6346
TEST(StreamingAssertionsTest,FloatingPointEquals)6347 TEST(StreamingAssertionsTest, FloatingPointEquals) {
6348 EXPECT_FLOAT_EQ(1.0, 1.0) << "unexpected failure";
6349 ASSERT_FLOAT_EQ(1.0, 1.0) << "unexpected failure";
6350 EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(0.0, 1.0) << "expected failure",
6351 "expected failure");
6352 EXPECT_FATAL_FAILURE(ASSERT_FLOAT_EQ(0.0, 1.0) << "expected failure",
6353 "expected failure");
6354 }
6355
6356 #if GTEST_HAS_EXCEPTIONS
6357
TEST(StreamingAssertionsTest,Throw)6358 TEST(StreamingAssertionsTest, Throw) {
6359 EXPECT_THROW(ThrowAnInteger(), int) << "unexpected failure";
6360 ASSERT_THROW(ThrowAnInteger(), int) << "unexpected failure";
6361 EXPECT_NONFATAL_FAILURE(EXPECT_THROW(ThrowAnInteger(), bool) <<
6362 "expected failure", "expected failure");
6363 EXPECT_FATAL_FAILURE(ASSERT_THROW(ThrowAnInteger(), bool) <<
6364 "expected failure", "expected failure");
6365 }
6366
TEST(StreamingAssertionsTest,NoThrow)6367 TEST(StreamingAssertionsTest, NoThrow) {
6368 EXPECT_NO_THROW(ThrowNothing()) << "unexpected failure";
6369 ASSERT_NO_THROW(ThrowNothing()) << "unexpected failure";
6370 EXPECT_NONFATAL_FAILURE(EXPECT_NO_THROW(ThrowAnInteger()) <<
6371 "expected failure", "expected failure");
6372 EXPECT_FATAL_FAILURE(ASSERT_NO_THROW(ThrowAnInteger()) <<
6373 "expected failure", "expected failure");
6374 }
6375
TEST(StreamingAssertionsTest,AnyThrow)6376 TEST(StreamingAssertionsTest, AnyThrow) {
6377 EXPECT_ANY_THROW(ThrowAnInteger()) << "unexpected failure";
6378 ASSERT_ANY_THROW(ThrowAnInteger()) << "unexpected failure";
6379 EXPECT_NONFATAL_FAILURE(EXPECT_ANY_THROW(ThrowNothing()) <<
6380 "expected failure", "expected failure");
6381 EXPECT_FATAL_FAILURE(ASSERT_ANY_THROW(ThrowNothing()) <<
6382 "expected failure", "expected failure");
6383 }
6384
6385 #endif // GTEST_HAS_EXCEPTIONS
6386
6387 // Tests that Google Test correctly decides whether to use colors in the output.
6388
TEST(ColoredOutputTest,UsesColorsWhenGTestColorFlagIsYes)6389 TEST(ColoredOutputTest, UsesColorsWhenGTestColorFlagIsYes) {
6390 GTEST_FLAG(color) = "yes";
6391
6392 SetEnv("TERM", "xterm"); // TERM supports colors.
6393 EXPECT_TRUE(ShouldUseColor(true)); // Stdout is a TTY.
6394 EXPECT_TRUE(ShouldUseColor(false)); // Stdout is not a TTY.
6395
6396 SetEnv("TERM", "dumb"); // TERM doesn't support colors.
6397 EXPECT_TRUE(ShouldUseColor(true)); // Stdout is a TTY.
6398 EXPECT_TRUE(ShouldUseColor(false)); // Stdout is not a TTY.
6399 }
6400
TEST(ColoredOutputTest,UsesColorsWhenGTestColorFlagIsAliasOfYes)6401 TEST(ColoredOutputTest, UsesColorsWhenGTestColorFlagIsAliasOfYes) {
6402 SetEnv("TERM", "dumb"); // TERM doesn't support colors.
6403
6404 GTEST_FLAG(color) = "True";
6405 EXPECT_TRUE(ShouldUseColor(false)); // Stdout is not a TTY.
6406
6407 GTEST_FLAG(color) = "t";
6408 EXPECT_TRUE(ShouldUseColor(false)); // Stdout is not a TTY.
6409
6410 GTEST_FLAG(color) = "1";
6411 EXPECT_TRUE(ShouldUseColor(false)); // Stdout is not a TTY.
6412 }
6413
TEST(ColoredOutputTest,UsesNoColorWhenGTestColorFlagIsNo)6414 TEST(ColoredOutputTest, UsesNoColorWhenGTestColorFlagIsNo) {
6415 GTEST_FLAG(color) = "no";
6416
6417 SetEnv("TERM", "xterm"); // TERM supports colors.
6418 EXPECT_FALSE(ShouldUseColor(true)); // Stdout is a TTY.
6419 EXPECT_FALSE(ShouldUseColor(false)); // Stdout is not a TTY.
6420
6421 SetEnv("TERM", "dumb"); // TERM doesn't support colors.
6422 EXPECT_FALSE(ShouldUseColor(true)); // Stdout is a TTY.
6423 EXPECT_FALSE(ShouldUseColor(false)); // Stdout is not a TTY.
6424 }
6425
TEST(ColoredOutputTest,UsesNoColorWhenGTestColorFlagIsInvalid)6426 TEST(ColoredOutputTest, UsesNoColorWhenGTestColorFlagIsInvalid) {
6427 SetEnv("TERM", "xterm"); // TERM supports colors.
6428
6429 GTEST_FLAG(color) = "F";
6430 EXPECT_FALSE(ShouldUseColor(true)); // Stdout is a TTY.
6431
6432 GTEST_FLAG(color) = "0";
6433 EXPECT_FALSE(ShouldUseColor(true)); // Stdout is a TTY.
6434
6435 GTEST_FLAG(color) = "unknown";
6436 EXPECT_FALSE(ShouldUseColor(true)); // Stdout is a TTY.
6437 }
6438
TEST(ColoredOutputTest,UsesColorsWhenStdoutIsTty)6439 TEST(ColoredOutputTest, UsesColorsWhenStdoutIsTty) {
6440 GTEST_FLAG(color) = "auto";
6441
6442 SetEnv("TERM", "xterm"); // TERM supports colors.
6443 EXPECT_FALSE(ShouldUseColor(false)); // Stdout is not a TTY.
6444 EXPECT_TRUE(ShouldUseColor(true)); // Stdout is a TTY.
6445 }
6446
TEST(ColoredOutputTest,UsesColorsWhenTermSupportsColors)6447 TEST(ColoredOutputTest, UsesColorsWhenTermSupportsColors) {
6448 GTEST_FLAG(color) = "auto";
6449
6450 #if GTEST_OS_WINDOWS
6451 // On Windows, we ignore the TERM variable as it's usually not set.
6452
6453 SetEnv("TERM", "dumb");
6454 EXPECT_TRUE(ShouldUseColor(true)); // Stdout is a TTY.
6455
6456 SetEnv("TERM", "");
6457 EXPECT_TRUE(ShouldUseColor(true)); // Stdout is a TTY.
6458
6459 SetEnv("TERM", "xterm");
6460 EXPECT_TRUE(ShouldUseColor(true)); // Stdout is a TTY.
6461 #else
6462 // On non-Windows platforms, we rely on TERM to determine if the
6463 // terminal supports colors.
6464
6465 SetEnv("TERM", "dumb"); // TERM doesn't support colors.
6466 EXPECT_FALSE(ShouldUseColor(true)); // Stdout is a TTY.
6467
6468 SetEnv("TERM", "emacs"); // TERM doesn't support colors.
6469 EXPECT_FALSE(ShouldUseColor(true)); // Stdout is a TTY.
6470
6471 SetEnv("TERM", "vt100"); // TERM doesn't support colors.
6472 EXPECT_FALSE(ShouldUseColor(true)); // Stdout is a TTY.
6473
6474 SetEnv("TERM", "xterm-mono"); // TERM doesn't support colors.
6475 EXPECT_FALSE(ShouldUseColor(true)); // Stdout is a TTY.
6476
6477 SetEnv("TERM", "xterm"); // TERM supports colors.
6478 EXPECT_TRUE(ShouldUseColor(true)); // Stdout is a TTY.
6479
6480 SetEnv("TERM", "xterm-color"); // TERM supports colors.
6481 EXPECT_TRUE(ShouldUseColor(true)); // Stdout is a TTY.
6482
6483 SetEnv("TERM", "xterm-256color"); // TERM supports colors.
6484 EXPECT_TRUE(ShouldUseColor(true)); // Stdout is a TTY.
6485
6486 SetEnv("TERM", "screen"); // TERM supports colors.
6487 EXPECT_TRUE(ShouldUseColor(true)); // Stdout is a TTY.
6488
6489 SetEnv("TERM", "linux"); // TERM supports colors.
6490 EXPECT_TRUE(ShouldUseColor(true)); // Stdout is a TTY.
6491
6492 SetEnv("TERM", "cygwin"); // TERM supports colors.
6493 EXPECT_TRUE(ShouldUseColor(true)); // Stdout is a TTY.
6494 #endif // GTEST_OS_WINDOWS
6495 }
6496
6497 // Verifies that StaticAssertTypeEq works in a namespace scope.
6498
6499 static bool dummy1 GTEST_ATTRIBUTE_UNUSED_ = StaticAssertTypeEq<bool, bool>();
6500 static bool dummy2 GTEST_ATTRIBUTE_UNUSED_ =
6501 StaticAssertTypeEq<const int, const int>();
6502
6503 // Verifies that StaticAssertTypeEq works in a class.
6504
6505 template <typename T>
6506 class StaticAssertTypeEqTestHelper {
6507 public:
StaticAssertTypeEqTestHelper()6508 StaticAssertTypeEqTestHelper() { StaticAssertTypeEq<bool, T>(); }
6509 };
6510
TEST(StaticAssertTypeEqTest,WorksInClass)6511 TEST(StaticAssertTypeEqTest, WorksInClass) {
6512 StaticAssertTypeEqTestHelper<bool>();
6513 }
6514
6515 // Verifies that StaticAssertTypeEq works inside a function.
6516
6517 typedef int IntAlias;
6518
TEST(StaticAssertTypeEqTest,CompilesForEqualTypes)6519 TEST(StaticAssertTypeEqTest, CompilesForEqualTypes) {
6520 StaticAssertTypeEq<int, IntAlias>();
6521 StaticAssertTypeEq<int*, IntAlias*>();
6522 }
6523
TEST(GetCurrentOsStackTraceExceptTopTest,ReturnsTheStackTrace)6524 TEST(GetCurrentOsStackTraceExceptTopTest, ReturnsTheStackTrace) {
6525 testing::UnitTest* const unit_test = testing::UnitTest::GetInstance();
6526
6527 // We don't have a stack walker in Google Test yet.
6528 EXPECT_STREQ("", GetCurrentOsStackTraceExceptTop(unit_test, 0).c_str());
6529 EXPECT_STREQ("", GetCurrentOsStackTraceExceptTop(unit_test, 1).c_str());
6530 }
6531
TEST(HasNonfatalFailureTest,ReturnsFalseWhenThereIsNoFailure)6532 TEST(HasNonfatalFailureTest, ReturnsFalseWhenThereIsNoFailure) {
6533 EXPECT_FALSE(HasNonfatalFailure());
6534 }
6535
FailFatally()6536 static void FailFatally() { FAIL(); }
6537
TEST(HasNonfatalFailureTest,ReturnsFalseWhenThereIsOnlyFatalFailure)6538 TEST(HasNonfatalFailureTest, ReturnsFalseWhenThereIsOnlyFatalFailure) {
6539 FailFatally();
6540 const bool has_nonfatal_failure = HasNonfatalFailure();
6541 ClearCurrentTestPartResults();
6542 EXPECT_FALSE(has_nonfatal_failure);
6543 }
6544
TEST(HasNonfatalFailureTest,ReturnsTrueWhenThereIsNonfatalFailure)6545 TEST(HasNonfatalFailureTest, ReturnsTrueWhenThereIsNonfatalFailure) {
6546 ADD_FAILURE();
6547 const bool has_nonfatal_failure = HasNonfatalFailure();
6548 ClearCurrentTestPartResults();
6549 EXPECT_TRUE(has_nonfatal_failure);
6550 }
6551
TEST(HasNonfatalFailureTest,ReturnsTrueWhenThereAreFatalAndNonfatalFailures)6552 TEST(HasNonfatalFailureTest, ReturnsTrueWhenThereAreFatalAndNonfatalFailures) {
6553 FailFatally();
6554 ADD_FAILURE();
6555 const bool has_nonfatal_failure = HasNonfatalFailure();
6556 ClearCurrentTestPartResults();
6557 EXPECT_TRUE(has_nonfatal_failure);
6558 }
6559
6560 // A wrapper for calling HasNonfatalFailure outside of a test body.
HasNonfatalFailureHelper()6561 static bool HasNonfatalFailureHelper() {
6562 return testing::Test::HasNonfatalFailure();
6563 }
6564
TEST(HasNonfatalFailureTest,WorksOutsideOfTestBody)6565 TEST(HasNonfatalFailureTest, WorksOutsideOfTestBody) {
6566 EXPECT_FALSE(HasNonfatalFailureHelper());
6567 }
6568
TEST(HasNonfatalFailureTest,WorksOutsideOfTestBody2)6569 TEST(HasNonfatalFailureTest, WorksOutsideOfTestBody2) {
6570 ADD_FAILURE();
6571 const bool has_nonfatal_failure = HasNonfatalFailureHelper();
6572 ClearCurrentTestPartResults();
6573 EXPECT_TRUE(has_nonfatal_failure);
6574 }
6575
TEST(HasFailureTest,ReturnsFalseWhenThereIsNoFailure)6576 TEST(HasFailureTest, ReturnsFalseWhenThereIsNoFailure) {
6577 EXPECT_FALSE(HasFailure());
6578 }
6579
TEST(HasFailureTest,ReturnsTrueWhenThereIsFatalFailure)6580 TEST(HasFailureTest, ReturnsTrueWhenThereIsFatalFailure) {
6581 FailFatally();
6582 const bool has_failure = HasFailure();
6583 ClearCurrentTestPartResults();
6584 EXPECT_TRUE(has_failure);
6585 }
6586
TEST(HasFailureTest,ReturnsTrueWhenThereIsNonfatalFailure)6587 TEST(HasFailureTest, ReturnsTrueWhenThereIsNonfatalFailure) {
6588 ADD_FAILURE();
6589 const bool has_failure = HasFailure();
6590 ClearCurrentTestPartResults();
6591 EXPECT_TRUE(has_failure);
6592 }
6593
TEST(HasFailureTest,ReturnsTrueWhenThereAreFatalAndNonfatalFailures)6594 TEST(HasFailureTest, ReturnsTrueWhenThereAreFatalAndNonfatalFailures) {
6595 FailFatally();
6596 ADD_FAILURE();
6597 const bool has_failure = HasFailure();
6598 ClearCurrentTestPartResults();
6599 EXPECT_TRUE(has_failure);
6600 }
6601
6602 // A wrapper for calling HasFailure outside of a test body.
HasFailureHelper()6603 static bool HasFailureHelper() { return testing::Test::HasFailure(); }
6604
TEST(HasFailureTest,WorksOutsideOfTestBody)6605 TEST(HasFailureTest, WorksOutsideOfTestBody) {
6606 EXPECT_FALSE(HasFailureHelper());
6607 }
6608
TEST(HasFailureTest,WorksOutsideOfTestBody2)6609 TEST(HasFailureTest, WorksOutsideOfTestBody2) {
6610 ADD_FAILURE();
6611 const bool has_failure = HasFailureHelper();
6612 ClearCurrentTestPartResults();
6613 EXPECT_TRUE(has_failure);
6614 }
6615
6616 class TestListener : public EmptyTestEventListener {
6617 public:
TestListener()6618 TestListener() : on_start_counter_(NULL), is_destroyed_(NULL) {}
TestListener(int * on_start_counter,bool * is_destroyed)6619 TestListener(int* on_start_counter, bool* is_destroyed)
6620 : on_start_counter_(on_start_counter),
6621 is_destroyed_(is_destroyed) {}
6622
~TestListener()6623 virtual ~TestListener() {
6624 if (is_destroyed_)
6625 *is_destroyed_ = true;
6626 }
6627
6628 protected:
OnTestProgramStart(const UnitTest &)6629 virtual void OnTestProgramStart(const UnitTest& /*unit_test*/) {
6630 if (on_start_counter_ != NULL)
6631 (*on_start_counter_)++;
6632 }
6633
6634 private:
6635 int* on_start_counter_;
6636 bool* is_destroyed_;
6637 };
6638
6639 // Tests the constructor.
TEST(TestEventListenersTest,ConstructionWorks)6640 TEST(TestEventListenersTest, ConstructionWorks) {
6641 TestEventListeners listeners;
6642
6643 EXPECT_TRUE(TestEventListenersAccessor::GetRepeater(&listeners) != NULL);
6644 EXPECT_TRUE(listeners.default_result_printer() == NULL);
6645 EXPECT_TRUE(listeners.default_xml_generator() == NULL);
6646 }
6647
6648 // Tests that the TestEventListeners destructor deletes all the listeners it
6649 // owns.
TEST(TestEventListenersTest,DestructionWorks)6650 TEST(TestEventListenersTest, DestructionWorks) {
6651 bool default_result_printer_is_destroyed = false;
6652 bool default_xml_printer_is_destroyed = false;
6653 bool extra_listener_is_destroyed = false;
6654 TestListener* default_result_printer = new TestListener(
6655 NULL, &default_result_printer_is_destroyed);
6656 TestListener* default_xml_printer = new TestListener(
6657 NULL, &default_xml_printer_is_destroyed);
6658 TestListener* extra_listener = new TestListener(
6659 NULL, &extra_listener_is_destroyed);
6660
6661 {
6662 TestEventListeners listeners;
6663 TestEventListenersAccessor::SetDefaultResultPrinter(&listeners,
6664 default_result_printer);
6665 TestEventListenersAccessor::SetDefaultXmlGenerator(&listeners,
6666 default_xml_printer);
6667 listeners.Append(extra_listener);
6668 }
6669 EXPECT_TRUE(default_result_printer_is_destroyed);
6670 EXPECT_TRUE(default_xml_printer_is_destroyed);
6671 EXPECT_TRUE(extra_listener_is_destroyed);
6672 }
6673
6674 // Tests that a listener Append'ed to a TestEventListeners list starts
6675 // receiving events.
TEST(TestEventListenersTest,Append)6676 TEST(TestEventListenersTest, Append) {
6677 int on_start_counter = 0;
6678 bool is_destroyed = false;
6679 TestListener* listener = new TestListener(&on_start_counter, &is_destroyed);
6680 {
6681 TestEventListeners listeners;
6682 listeners.Append(listener);
6683 TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart(
6684 *UnitTest::GetInstance());
6685 EXPECT_EQ(1, on_start_counter);
6686 }
6687 EXPECT_TRUE(is_destroyed);
6688 }
6689
6690 // Tests that listeners receive events in the order they were appended to
6691 // the list, except for *End requests, which must be received in the reverse
6692 // order.
6693 class SequenceTestingListener : public EmptyTestEventListener {
6694 public:
SequenceTestingListener(std::vector<String> * vector,const char * id)6695 SequenceTestingListener(std::vector<String>* vector, const char* id)
6696 : vector_(vector), id_(id) {}
6697
6698 protected:
OnTestProgramStart(const UnitTest &)6699 virtual void OnTestProgramStart(const UnitTest& /*unit_test*/) {
6700 vector_->push_back(GetEventDescription("OnTestProgramStart"));
6701 }
6702
OnTestProgramEnd(const UnitTest &)6703 virtual void OnTestProgramEnd(const UnitTest& /*unit_test*/) {
6704 vector_->push_back(GetEventDescription("OnTestProgramEnd"));
6705 }
6706
OnTestIterationStart(const UnitTest &,int)6707 virtual void OnTestIterationStart(const UnitTest& /*unit_test*/,
6708 int /*iteration*/) {
6709 vector_->push_back(GetEventDescription("OnTestIterationStart"));
6710 }
6711
OnTestIterationEnd(const UnitTest &,int)6712 virtual void OnTestIterationEnd(const UnitTest& /*unit_test*/,
6713 int /*iteration*/) {
6714 vector_->push_back(GetEventDescription("OnTestIterationEnd"));
6715 }
6716
6717 private:
GetEventDescription(const char * method)6718 String GetEventDescription(const char* method) {
6719 Message message;
6720 message << id_ << "." << method;
6721 return message.GetString();
6722 }
6723
6724 std::vector<String>* vector_;
6725 const char* const id_;
6726
6727 GTEST_DISALLOW_COPY_AND_ASSIGN_(SequenceTestingListener);
6728 };
6729
TEST(EventListenerTest,AppendKeepsOrder)6730 TEST(EventListenerTest, AppendKeepsOrder) {
6731 std::vector<String> vec;
6732 TestEventListeners listeners;
6733 listeners.Append(new SequenceTestingListener(&vec, "1st"));
6734 listeners.Append(new SequenceTestingListener(&vec, "2nd"));
6735 listeners.Append(new SequenceTestingListener(&vec, "3rd"));
6736
6737 TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart(
6738 *UnitTest::GetInstance());
6739 ASSERT_EQ(3U, vec.size());
6740 EXPECT_STREQ("1st.OnTestProgramStart", vec[0].c_str());
6741 EXPECT_STREQ("2nd.OnTestProgramStart", vec[1].c_str());
6742 EXPECT_STREQ("3rd.OnTestProgramStart", vec[2].c_str());
6743
6744 vec.clear();
6745 TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramEnd(
6746 *UnitTest::GetInstance());
6747 ASSERT_EQ(3U, vec.size());
6748 EXPECT_STREQ("3rd.OnTestProgramEnd", vec[0].c_str());
6749 EXPECT_STREQ("2nd.OnTestProgramEnd", vec[1].c_str());
6750 EXPECT_STREQ("1st.OnTestProgramEnd", vec[2].c_str());
6751
6752 vec.clear();
6753 TestEventListenersAccessor::GetRepeater(&listeners)->OnTestIterationStart(
6754 *UnitTest::GetInstance(), 0);
6755 ASSERT_EQ(3U, vec.size());
6756 EXPECT_STREQ("1st.OnTestIterationStart", vec[0].c_str());
6757 EXPECT_STREQ("2nd.OnTestIterationStart", vec[1].c_str());
6758 EXPECT_STREQ("3rd.OnTestIterationStart", vec[2].c_str());
6759
6760 vec.clear();
6761 TestEventListenersAccessor::GetRepeater(&listeners)->OnTestIterationEnd(
6762 *UnitTest::GetInstance(), 0);
6763 ASSERT_EQ(3U, vec.size());
6764 EXPECT_STREQ("3rd.OnTestIterationEnd", vec[0].c_str());
6765 EXPECT_STREQ("2nd.OnTestIterationEnd", vec[1].c_str());
6766 EXPECT_STREQ("1st.OnTestIterationEnd", vec[2].c_str());
6767 }
6768
6769 // Tests that a listener removed from a TestEventListeners list stops receiving
6770 // events and is not deleted when the list is destroyed.
TEST(TestEventListenersTest,Release)6771 TEST(TestEventListenersTest, Release) {
6772 int on_start_counter = 0;
6773 bool is_destroyed = false;
6774 // Although Append passes the ownership of this object to the list,
6775 // the following calls release it, and we need to delete it before the
6776 // test ends.
6777 TestListener* listener = new TestListener(&on_start_counter, &is_destroyed);
6778 {
6779 TestEventListeners listeners;
6780 listeners.Append(listener);
6781 EXPECT_EQ(listener, listeners.Release(listener));
6782 TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart(
6783 *UnitTest::GetInstance());
6784 EXPECT_TRUE(listeners.Release(listener) == NULL);
6785 }
6786 EXPECT_EQ(0, on_start_counter);
6787 EXPECT_FALSE(is_destroyed);
6788 delete listener;
6789 }
6790
6791 // Tests that no events are forwarded when event forwarding is disabled.
TEST(EventListenerTest,SuppressEventForwarding)6792 TEST(EventListenerTest, SuppressEventForwarding) {
6793 int on_start_counter = 0;
6794 TestListener* listener = new TestListener(&on_start_counter, NULL);
6795
6796 TestEventListeners listeners;
6797 listeners.Append(listener);
6798 ASSERT_TRUE(TestEventListenersAccessor::EventForwardingEnabled(listeners));
6799 TestEventListenersAccessor::SuppressEventForwarding(&listeners);
6800 ASSERT_FALSE(TestEventListenersAccessor::EventForwardingEnabled(listeners));
6801 TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart(
6802 *UnitTest::GetInstance());
6803 EXPECT_EQ(0, on_start_counter);
6804 }
6805
6806 // Tests that events generated by Google Test are not forwarded in
6807 // death test subprocesses.
TEST(EventListenerDeathTest,EventsNotForwardedInDeathTestSubprecesses)6808 TEST(EventListenerDeathTest, EventsNotForwardedInDeathTestSubprecesses) {
6809 EXPECT_DEATH_IF_SUPPORTED({
6810 GTEST_CHECK_(TestEventListenersAccessor::EventForwardingEnabled(
6811 *GetUnitTestImpl()->listeners())) << "expected failure";},
6812 "expected failure");
6813 }
6814
6815 // Tests that a listener installed via SetDefaultResultPrinter() starts
6816 // receiving events and is returned via default_result_printer() and that
6817 // the previous default_result_printer is removed from the list and deleted.
TEST(EventListenerTest,default_result_printer)6818 TEST(EventListenerTest, default_result_printer) {
6819 int on_start_counter = 0;
6820 bool is_destroyed = false;
6821 TestListener* listener = new TestListener(&on_start_counter, &is_destroyed);
6822
6823 TestEventListeners listeners;
6824 TestEventListenersAccessor::SetDefaultResultPrinter(&listeners, listener);
6825
6826 EXPECT_EQ(listener, listeners.default_result_printer());
6827
6828 TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart(
6829 *UnitTest::GetInstance());
6830
6831 EXPECT_EQ(1, on_start_counter);
6832
6833 // Replacing default_result_printer with something else should remove it
6834 // from the list and destroy it.
6835 TestEventListenersAccessor::SetDefaultResultPrinter(&listeners, NULL);
6836
6837 EXPECT_TRUE(listeners.default_result_printer() == NULL);
6838 EXPECT_TRUE(is_destroyed);
6839
6840 // After broadcasting an event the counter is still the same, indicating
6841 // the listener is not in the list anymore.
6842 TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart(
6843 *UnitTest::GetInstance());
6844 EXPECT_EQ(1, on_start_counter);
6845 }
6846
6847 // Tests that the default_result_printer listener stops receiving events
6848 // when removed via Release and that is not owned by the list anymore.
TEST(EventListenerTest,RemovingDefaultResultPrinterWorks)6849 TEST(EventListenerTest, RemovingDefaultResultPrinterWorks) {
6850 int on_start_counter = 0;
6851 bool is_destroyed = false;
6852 // Although Append passes the ownership of this object to the list,
6853 // the following calls release it, and we need to delete it before the
6854 // test ends.
6855 TestListener* listener = new TestListener(&on_start_counter, &is_destroyed);
6856 {
6857 TestEventListeners listeners;
6858 TestEventListenersAccessor::SetDefaultResultPrinter(&listeners, listener);
6859
6860 EXPECT_EQ(listener, listeners.Release(listener));
6861 EXPECT_TRUE(listeners.default_result_printer() == NULL);
6862 EXPECT_FALSE(is_destroyed);
6863
6864 // Broadcasting events now should not affect default_result_printer.
6865 TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart(
6866 *UnitTest::GetInstance());
6867 EXPECT_EQ(0, on_start_counter);
6868 }
6869 // Destroying the list should not affect the listener now, too.
6870 EXPECT_FALSE(is_destroyed);
6871 delete listener;
6872 }
6873
6874 // Tests that a listener installed via SetDefaultXmlGenerator() starts
6875 // receiving events and is returned via default_xml_generator() and that
6876 // the previous default_xml_generator is removed from the list and deleted.
TEST(EventListenerTest,default_xml_generator)6877 TEST(EventListenerTest, default_xml_generator) {
6878 int on_start_counter = 0;
6879 bool is_destroyed = false;
6880 TestListener* listener = new TestListener(&on_start_counter, &is_destroyed);
6881
6882 TestEventListeners listeners;
6883 TestEventListenersAccessor::SetDefaultXmlGenerator(&listeners, listener);
6884
6885 EXPECT_EQ(listener, listeners.default_xml_generator());
6886
6887 TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart(
6888 *UnitTest::GetInstance());
6889
6890 EXPECT_EQ(1, on_start_counter);
6891
6892 // Replacing default_xml_generator with something else should remove it
6893 // from the list and destroy it.
6894 TestEventListenersAccessor::SetDefaultXmlGenerator(&listeners, NULL);
6895
6896 EXPECT_TRUE(listeners.default_xml_generator() == NULL);
6897 EXPECT_TRUE(is_destroyed);
6898
6899 // After broadcasting an event the counter is still the same, indicating
6900 // the listener is not in the list anymore.
6901 TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart(
6902 *UnitTest::GetInstance());
6903 EXPECT_EQ(1, on_start_counter);
6904 }
6905
6906 // Tests that the default_xml_generator listener stops receiving events
6907 // when removed via Release and that is not owned by the list anymore.
TEST(EventListenerTest,RemovingDefaultXmlGeneratorWorks)6908 TEST(EventListenerTest, RemovingDefaultXmlGeneratorWorks) {
6909 int on_start_counter = 0;
6910 bool is_destroyed = false;
6911 // Although Append passes the ownership of this object to the list,
6912 // the following calls release it, and we need to delete it before the
6913 // test ends.
6914 TestListener* listener = new TestListener(&on_start_counter, &is_destroyed);
6915 {
6916 TestEventListeners listeners;
6917 TestEventListenersAccessor::SetDefaultXmlGenerator(&listeners, listener);
6918
6919 EXPECT_EQ(listener, listeners.Release(listener));
6920 EXPECT_TRUE(listeners.default_xml_generator() == NULL);
6921 EXPECT_FALSE(is_destroyed);
6922
6923 // Broadcasting events now should not affect default_xml_generator.
6924 TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart(
6925 *UnitTest::GetInstance());
6926 EXPECT_EQ(0, on_start_counter);
6927 }
6928 // Destroying the list should not affect the listener now, too.
6929 EXPECT_FALSE(is_destroyed);
6930 delete listener;
6931 }
6932
6933 // Sanity tests to ensure that the alternative, verbose spellings of
6934 // some of the macros work. We don't test them thoroughly as that
6935 // would be quite involved. Since their implementations are
6936 // straightforward, and they are rarely used, we'll just rely on the
6937 // users to tell us when they are broken.
GTEST_TEST(AlternativeNameTest,Works)6938 GTEST_TEST(AlternativeNameTest, Works) { // GTEST_TEST is the same as TEST.
6939 GTEST_SUCCEED() << "OK"; // GTEST_SUCCEED is the same as SUCCEED.
6940
6941 // GTEST_FAIL is the same as FAIL.
6942 EXPECT_FATAL_FAILURE(GTEST_FAIL() << "An expected failure",
6943 "An expected failure");
6944
6945 // GTEST_ASSERT_XY is the same as ASSERT_XY.
6946
6947 GTEST_ASSERT_EQ(0, 0);
6948 EXPECT_FATAL_FAILURE(GTEST_ASSERT_EQ(0, 1) << "An expected failure",
6949 "An expected failure");
6950 EXPECT_FATAL_FAILURE(GTEST_ASSERT_EQ(1, 0) << "An expected failure",
6951 "An expected failure");
6952
6953 GTEST_ASSERT_NE(0, 1);
6954 GTEST_ASSERT_NE(1, 0);
6955 EXPECT_FATAL_FAILURE(GTEST_ASSERT_NE(0, 0) << "An expected failure",
6956 "An expected failure");
6957
6958 GTEST_ASSERT_LE(0, 0);
6959 GTEST_ASSERT_LE(0, 1);
6960 EXPECT_FATAL_FAILURE(GTEST_ASSERT_LE(1, 0) << "An expected failure",
6961 "An expected failure");
6962
6963 GTEST_ASSERT_LT(0, 1);
6964 EXPECT_FATAL_FAILURE(GTEST_ASSERT_LT(0, 0) << "An expected failure",
6965 "An expected failure");
6966 EXPECT_FATAL_FAILURE(GTEST_ASSERT_LT(1, 0) << "An expected failure",
6967 "An expected failure");
6968
6969 GTEST_ASSERT_GE(0, 0);
6970 GTEST_ASSERT_GE(1, 0);
6971 EXPECT_FATAL_FAILURE(GTEST_ASSERT_GE(0, 1) << "An expected failure",
6972 "An expected failure");
6973
6974 GTEST_ASSERT_GT(1, 0);
6975 EXPECT_FATAL_FAILURE(GTEST_ASSERT_GT(0, 1) << "An expected failure",
6976 "An expected failure");
6977 EXPECT_FATAL_FAILURE(GTEST_ASSERT_GT(1, 1) << "An expected failure",
6978 "An expected failure");
6979 }
6980
6981 // Tests for internal utilities necessary for implementation of the universal
6982 // printing.
6983 // TODO(vladl@google.com): Find a better home for them.
6984
6985 class ConversionHelperBase {};
6986 class ConversionHelperDerived : public ConversionHelperBase {};
6987
6988 // Tests that IsAProtocolMessage<T>::value is a compile-time constant.
TEST(IsAProtocolMessageTest,ValueIsCompileTimeConstant)6989 TEST(IsAProtocolMessageTest, ValueIsCompileTimeConstant) {
6990 GTEST_COMPILE_ASSERT_(IsAProtocolMessage<ProtocolMessage>::value,
6991 const_true);
6992 GTEST_COMPILE_ASSERT_(!IsAProtocolMessage<int>::value, const_false);
6993 }
6994
6995 // Tests that IsAProtocolMessage<T>::value is true when T is
6996 // proto2::Message or a sub-class of it.
TEST(IsAProtocolMessageTest,ValueIsTrueWhenTypeIsAProtocolMessage)6997 TEST(IsAProtocolMessageTest, ValueIsTrueWhenTypeIsAProtocolMessage) {
6998 EXPECT_TRUE(IsAProtocolMessage< ::proto2::Message>::value);
6999 EXPECT_TRUE(IsAProtocolMessage<ProtocolMessage>::value);
7000 }
7001
7002 // Tests that IsAProtocolMessage<T>::value is false when T is neither
7003 // ProtocolMessage nor a sub-class of it.
TEST(IsAProtocolMessageTest,ValueIsFalseWhenTypeIsNotAProtocolMessage)7004 TEST(IsAProtocolMessageTest, ValueIsFalseWhenTypeIsNotAProtocolMessage) {
7005 EXPECT_FALSE(IsAProtocolMessage<int>::value);
7006 EXPECT_FALSE(IsAProtocolMessage<const ConversionHelperBase>::value);
7007 }
7008
7009 // Tests that CompileAssertTypesEqual compiles when the type arguments are
7010 // equal.
TEST(CompileAssertTypesEqual,CompilesWhenTypesAreEqual)7011 TEST(CompileAssertTypesEqual, CompilesWhenTypesAreEqual) {
7012 CompileAssertTypesEqual<void, void>();
7013 CompileAssertTypesEqual<int*, int*>();
7014 }
7015
7016 // Tests that RemoveReference does not affect non-reference types.
TEST(RemoveReferenceTest,DoesNotAffectNonReferenceType)7017 TEST(RemoveReferenceTest, DoesNotAffectNonReferenceType) {
7018 CompileAssertTypesEqual<int, RemoveReference<int>::type>();
7019 CompileAssertTypesEqual<const char, RemoveReference<const char>::type>();
7020 }
7021
7022 // Tests that RemoveReference removes reference from reference types.
TEST(RemoveReferenceTest,RemovesReference)7023 TEST(RemoveReferenceTest, RemovesReference) {
7024 CompileAssertTypesEqual<int, RemoveReference<int&>::type>();
7025 CompileAssertTypesEqual<const char, RemoveReference<const char&>::type>();
7026 }
7027
7028 // Tests GTEST_REMOVE_REFERENCE_.
7029
7030 template <typename T1, typename T2>
TestGTestRemoveReference()7031 void TestGTestRemoveReference() {
7032 CompileAssertTypesEqual<T1, GTEST_REMOVE_REFERENCE_(T2)>();
7033 }
7034
TEST(RemoveReferenceTest,MacroVersion)7035 TEST(RemoveReferenceTest, MacroVersion) {
7036 TestGTestRemoveReference<int, int>();
7037 TestGTestRemoveReference<const char, const char&>();
7038 }
7039
7040
7041 // Tests that RemoveConst does not affect non-const types.
TEST(RemoveConstTest,DoesNotAffectNonConstType)7042 TEST(RemoveConstTest, DoesNotAffectNonConstType) {
7043 CompileAssertTypesEqual<int, RemoveConst<int>::type>();
7044 CompileAssertTypesEqual<char&, RemoveConst<char&>::type>();
7045 }
7046
7047 // Tests that RemoveConst removes const from const types.
TEST(RemoveConstTest,RemovesConst)7048 TEST(RemoveConstTest, RemovesConst) {
7049 CompileAssertTypesEqual<int, RemoveConst<const int>::type>();
7050 CompileAssertTypesEqual<char[2], RemoveConst<const char[2]>::type>();
7051 CompileAssertTypesEqual<char[2][3], RemoveConst<const char[2][3]>::type>();
7052 }
7053
7054 // Tests GTEST_REMOVE_CONST_.
7055
7056 template <typename T1, typename T2>
TestGTestRemoveConst()7057 void TestGTestRemoveConst() {
7058 CompileAssertTypesEqual<T1, GTEST_REMOVE_CONST_(T2)>();
7059 }
7060
TEST(RemoveConstTest,MacroVersion)7061 TEST(RemoveConstTest, MacroVersion) {
7062 TestGTestRemoveConst<int, int>();
7063 TestGTestRemoveConst<double&, double&>();
7064 TestGTestRemoveConst<char, const char>();
7065 }
7066
7067 // Tests GTEST_REMOVE_REFERENCE_AND_CONST_.
7068
7069 template <typename T1, typename T2>
TestGTestRemoveReferenceAndConst()7070 void TestGTestRemoveReferenceAndConst() {
7071 CompileAssertTypesEqual<T1, GTEST_REMOVE_REFERENCE_AND_CONST_(T2)>();
7072 }
7073
TEST(RemoveReferenceToConstTest,Works)7074 TEST(RemoveReferenceToConstTest, Works) {
7075 TestGTestRemoveReferenceAndConst<int, int>();
7076 TestGTestRemoveReferenceAndConst<double, double&>();
7077 TestGTestRemoveReferenceAndConst<char, const char>();
7078 TestGTestRemoveReferenceAndConst<char, const char&>();
7079 TestGTestRemoveReferenceAndConst<const char*, const char*>();
7080 }
7081
7082 // Tests that AddReference does not affect reference types.
TEST(AddReferenceTest,DoesNotAffectReferenceType)7083 TEST(AddReferenceTest, DoesNotAffectReferenceType) {
7084 CompileAssertTypesEqual<int&, AddReference<int&>::type>();
7085 CompileAssertTypesEqual<const char&, AddReference<const char&>::type>();
7086 }
7087
7088 // Tests that AddReference adds reference to non-reference types.
TEST(AddReferenceTest,AddsReference)7089 TEST(AddReferenceTest, AddsReference) {
7090 CompileAssertTypesEqual<int&, AddReference<int>::type>();
7091 CompileAssertTypesEqual<const char&, AddReference<const char>::type>();
7092 }
7093
7094 // Tests GTEST_ADD_REFERENCE_.
7095
7096 template <typename T1, typename T2>
TestGTestAddReference()7097 void TestGTestAddReference() {
7098 CompileAssertTypesEqual<T1, GTEST_ADD_REFERENCE_(T2)>();
7099 }
7100
TEST(AddReferenceTest,MacroVersion)7101 TEST(AddReferenceTest, MacroVersion) {
7102 TestGTestAddReference<int&, int>();
7103 TestGTestAddReference<const char&, const char&>();
7104 }
7105
7106 // Tests GTEST_REFERENCE_TO_CONST_.
7107
7108 template <typename T1, typename T2>
TestGTestReferenceToConst()7109 void TestGTestReferenceToConst() {
7110 CompileAssertTypesEqual<T1, GTEST_REFERENCE_TO_CONST_(T2)>();
7111 }
7112
TEST(GTestReferenceToConstTest,Works)7113 TEST(GTestReferenceToConstTest, Works) {
7114 TestGTestReferenceToConst<const char&, char>();
7115 TestGTestReferenceToConst<const int&, const int>();
7116 TestGTestReferenceToConst<const double&, double>();
7117 TestGTestReferenceToConst<const String&, const String&>();
7118 }
7119
7120 // Tests that ImplicitlyConvertible<T1, T2>::value is a compile-time constant.
TEST(ImplicitlyConvertibleTest,ValueIsCompileTimeConstant)7121 TEST(ImplicitlyConvertibleTest, ValueIsCompileTimeConstant) {
7122 GTEST_COMPILE_ASSERT_((ImplicitlyConvertible<int, int>::value), const_true);
7123 GTEST_COMPILE_ASSERT_((!ImplicitlyConvertible<void*, int*>::value),
7124 const_false);
7125 }
7126
7127 // Tests that ImplicitlyConvertible<T1, T2>::value is true when T1 can
7128 // be implicitly converted to T2.
TEST(ImplicitlyConvertibleTest,ValueIsTrueWhenConvertible)7129 TEST(ImplicitlyConvertibleTest, ValueIsTrueWhenConvertible) {
7130 EXPECT_TRUE((ImplicitlyConvertible<int, double>::value));
7131 EXPECT_TRUE((ImplicitlyConvertible<double, int>::value));
7132 EXPECT_TRUE((ImplicitlyConvertible<int*, void*>::value));
7133 EXPECT_TRUE((ImplicitlyConvertible<int*, const int*>::value));
7134 EXPECT_TRUE((ImplicitlyConvertible<ConversionHelperDerived&,
7135 const ConversionHelperBase&>::value));
7136 EXPECT_TRUE((ImplicitlyConvertible<const ConversionHelperBase,
7137 ConversionHelperBase>::value));
7138 }
7139
7140 // Tests that ImplicitlyConvertible<T1, T2>::value is false when T1
7141 // cannot be implicitly converted to T2.
TEST(ImplicitlyConvertibleTest,ValueIsFalseWhenNotConvertible)7142 TEST(ImplicitlyConvertibleTest, ValueIsFalseWhenNotConvertible) {
7143 EXPECT_FALSE((ImplicitlyConvertible<double, int*>::value));
7144 EXPECT_FALSE((ImplicitlyConvertible<void*, int*>::value));
7145 EXPECT_FALSE((ImplicitlyConvertible<const int*, int*>::value));
7146 EXPECT_FALSE((ImplicitlyConvertible<ConversionHelperBase&,
7147 ConversionHelperDerived&>::value));
7148 }
7149
7150 // Tests IsContainerTest.
7151
7152 class NonContainer {};
7153
TEST(IsContainerTestTest,WorksForNonContainer)7154 TEST(IsContainerTestTest, WorksForNonContainer) {
7155 EXPECT_EQ(sizeof(IsNotContainer), sizeof(IsContainerTest<int>(0)));
7156 EXPECT_EQ(sizeof(IsNotContainer), sizeof(IsContainerTest<char[5]>(0)));
7157 EXPECT_EQ(sizeof(IsNotContainer), sizeof(IsContainerTest<NonContainer>(0)));
7158 }
7159
TEST(IsContainerTestTest,WorksForContainer)7160 TEST(IsContainerTestTest, WorksForContainer) {
7161 EXPECT_EQ(sizeof(IsContainer),
7162 sizeof(IsContainerTest<std::vector<bool> >(0)));
7163 EXPECT_EQ(sizeof(IsContainer),
7164 sizeof(IsContainerTest<std::map<int, double> >(0)));
7165 }
7166
7167 // Tests ArrayEq().
7168
TEST(ArrayEqTest,WorksForDegeneratedArrays)7169 TEST(ArrayEqTest, WorksForDegeneratedArrays) {
7170 EXPECT_TRUE(ArrayEq(5, 5L));
7171 EXPECT_FALSE(ArrayEq('a', 0));
7172 }
7173
TEST(ArrayEqTest,WorksForOneDimensionalArrays)7174 TEST(ArrayEqTest, WorksForOneDimensionalArrays) {
7175 const int a[] = { 0, 1 };
7176 long b[] = { 0, 1 };
7177 EXPECT_TRUE(ArrayEq(a, b));
7178 EXPECT_TRUE(ArrayEq(a, 2, b));
7179
7180 b[0] = 2;
7181 EXPECT_FALSE(ArrayEq(a, b));
7182 EXPECT_FALSE(ArrayEq(a, 1, b));
7183 }
7184
TEST(ArrayEqTest,WorksForTwoDimensionalArrays)7185 TEST(ArrayEqTest, WorksForTwoDimensionalArrays) {
7186 const char a[][3] = { "hi", "lo" };
7187 const char b[][3] = { "hi", "lo" };
7188 const char c[][3] = { "hi", "li" };
7189
7190 EXPECT_TRUE(ArrayEq(a, b));
7191 EXPECT_TRUE(ArrayEq(a, 2, b));
7192
7193 EXPECT_FALSE(ArrayEq(a, c));
7194 EXPECT_FALSE(ArrayEq(a, 2, c));
7195 }
7196
7197 // Tests ArrayAwareFind().
7198
TEST(ArrayAwareFindTest,WorksForOneDimensionalArray)7199 TEST(ArrayAwareFindTest, WorksForOneDimensionalArray) {
7200 const char a[] = "hello";
7201 EXPECT_EQ(a + 4, ArrayAwareFind(a, a + 5, 'o'));
7202 EXPECT_EQ(a + 5, ArrayAwareFind(a, a + 5, 'x'));
7203 }
7204
TEST(ArrayAwareFindTest,WorksForTwoDimensionalArray)7205 TEST(ArrayAwareFindTest, WorksForTwoDimensionalArray) {
7206 int a[][2] = { { 0, 1 }, { 2, 3 }, { 4, 5 } };
7207 const int b[2] = { 2, 3 };
7208 EXPECT_EQ(a + 1, ArrayAwareFind(a, a + 3, b));
7209
7210 const int c[2] = { 6, 7 };
7211 EXPECT_EQ(a + 3, ArrayAwareFind(a, a + 3, c));
7212 }
7213
7214 // Tests CopyArray().
7215
TEST(CopyArrayTest,WorksForDegeneratedArrays)7216 TEST(CopyArrayTest, WorksForDegeneratedArrays) {
7217 int n = 0;
7218 CopyArray('a', &n);
7219 EXPECT_EQ('a', n);
7220 }
7221
TEST(CopyArrayTest,WorksForOneDimensionalArrays)7222 TEST(CopyArrayTest, WorksForOneDimensionalArrays) {
7223 const char a[3] = "hi";
7224 int b[3];
7225 #ifndef __BORLANDC__ // C++Builder cannot compile some array size deductions.
7226 CopyArray(a, &b);
7227 EXPECT_TRUE(ArrayEq(a, b));
7228 #endif
7229
7230 int c[3];
7231 CopyArray(a, 3, c);
7232 EXPECT_TRUE(ArrayEq(a, c));
7233 }
7234
TEST(CopyArrayTest,WorksForTwoDimensionalArrays)7235 TEST(CopyArrayTest, WorksForTwoDimensionalArrays) {
7236 const int a[2][3] = { { 0, 1, 2 }, { 3, 4, 5 } };
7237 int b[2][3];
7238 #ifndef __BORLANDC__ // C++Builder cannot compile some array size deductions.
7239 CopyArray(a, &b);
7240 EXPECT_TRUE(ArrayEq(a, b));
7241 #endif
7242
7243 int c[2][3];
7244 CopyArray(a, 2, c);
7245 EXPECT_TRUE(ArrayEq(a, c));
7246 }
7247
7248 // Tests NativeArray.
7249
TEST(NativeArrayTest,ConstructorFromArrayWorks)7250 TEST(NativeArrayTest, ConstructorFromArrayWorks) {
7251 const int a[3] = { 0, 1, 2 };
7252 NativeArray<int> na(a, 3, kReference);
7253 EXPECT_EQ(3U, na.size());
7254 EXPECT_EQ(a, na.begin());
7255 }
7256
TEST(NativeArrayTest,CreatesAndDeletesCopyOfArrayWhenAskedTo)7257 TEST(NativeArrayTest, CreatesAndDeletesCopyOfArrayWhenAskedTo) {
7258 typedef int Array[2];
7259 Array* a = new Array[1];
7260 (*a)[0] = 0;
7261 (*a)[1] = 1;
7262 NativeArray<int> na(*a, 2, kCopy);
7263 EXPECT_NE(*a, na.begin());
7264 delete[] a;
7265 EXPECT_EQ(0, na.begin()[0]);
7266 EXPECT_EQ(1, na.begin()[1]);
7267
7268 // We rely on the heap checker to verify that na deletes the copy of
7269 // array.
7270 }
7271
TEST(NativeArrayTest,TypeMembersAreCorrect)7272 TEST(NativeArrayTest, TypeMembersAreCorrect) {
7273 StaticAssertTypeEq<char, NativeArray<char>::value_type>();
7274 StaticAssertTypeEq<int[2], NativeArray<int[2]>::value_type>();
7275
7276 StaticAssertTypeEq<const char*, NativeArray<char>::const_iterator>();
7277 StaticAssertTypeEq<const bool(*)[2], NativeArray<bool[2]>::const_iterator>();
7278 }
7279
TEST(NativeArrayTest,MethodsWork)7280 TEST(NativeArrayTest, MethodsWork) {
7281 const int a[3] = { 0, 1, 2 };
7282 NativeArray<int> na(a, 3, kCopy);
7283 ASSERT_EQ(3U, na.size());
7284 EXPECT_EQ(3, na.end() - na.begin());
7285
7286 NativeArray<int>::const_iterator it = na.begin();
7287 EXPECT_EQ(0, *it);
7288 ++it;
7289 EXPECT_EQ(1, *it);
7290 it++;
7291 EXPECT_EQ(2, *it);
7292 ++it;
7293 EXPECT_EQ(na.end(), it);
7294
7295 EXPECT_TRUE(na == na);
7296
7297 NativeArray<int> na2(a, 3, kReference);
7298 EXPECT_TRUE(na == na2);
7299
7300 const int b1[3] = { 0, 1, 1 };
7301 const int b2[4] = { 0, 1, 2, 3 };
7302 EXPECT_FALSE(na == NativeArray<int>(b1, 3, kReference));
7303 EXPECT_FALSE(na == NativeArray<int>(b2, 4, kCopy));
7304 }
7305
TEST(NativeArrayTest,WorksForTwoDimensionalArray)7306 TEST(NativeArrayTest, WorksForTwoDimensionalArray) {
7307 const char a[2][3] = { "hi", "lo" };
7308 NativeArray<char[3]> na(a, 2, kReference);
7309 ASSERT_EQ(2U, na.size());
7310 EXPECT_EQ(a, na.begin());
7311 }
7312
7313 // Tests SkipPrefix().
7314
TEST(SkipPrefixTest,SkipsWhenPrefixMatches)7315 TEST(SkipPrefixTest, SkipsWhenPrefixMatches) {
7316 const char* const str = "hello";
7317
7318 const char* p = str;
7319 EXPECT_TRUE(SkipPrefix("", &p));
7320 EXPECT_EQ(str, p);
7321
7322 p = str;
7323 EXPECT_TRUE(SkipPrefix("hell", &p));
7324 EXPECT_EQ(str + 4, p);
7325 }
7326
TEST(SkipPrefixTest,DoesNotSkipWhenPrefixDoesNotMatch)7327 TEST(SkipPrefixTest, DoesNotSkipWhenPrefixDoesNotMatch) {
7328 const char* const str = "world";
7329
7330 const char* p = str;
7331 EXPECT_FALSE(SkipPrefix("W", &p));
7332 EXPECT_EQ(str, p);
7333
7334 p = str;
7335 EXPECT_FALSE(SkipPrefix("world!", &p));
7336 EXPECT_EQ(str, p);
7337 }
7338