1 /* ------------------------------------------------------------------ */ 2 /* decNumber package local type, tuning, and macro definitions */ 3 /* ------------------------------------------------------------------ */ 4 /* Copyright (c) IBM Corporation, 2000-2010. All rights reserved. */ 5 /* */ 6 /* This software is made available under the terms of the */ 7 /* ICU License -- ICU 1.8.1 and later. */ 8 /* */ 9 /* The description and User's Guide ("The decNumber C Library") for */ 10 /* this software is called decNumber.pdf. This document is */ 11 /* available, together with arithmetic and format specifications, */ 12 /* testcases, and Web links, on the General Decimal Arithmetic page. */ 13 /* */ 14 /* Please send comments, suggestions, and corrections to the author: */ 15 /* mfc@uk.ibm.com */ 16 /* Mike Cowlishaw, IBM Fellow */ 17 /* IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK */ 18 /* ------------------------------------------------------------------ */ 19 /* This header file is included by all modules in the decNumber */ 20 /* library, and contains local type definitions, tuning parameters, */ 21 /* etc. It should not need to be used by application programs. */ 22 /* decNumber.h or one of decDouble (etc.) must be included first. */ 23 /* ------------------------------------------------------------------ */ 24 25 #if !defined(DECNUMBERLOC) 26 #define DECNUMBERLOC 27 #define DECVERSION "decNumber 3.61" /* Package Version [16 max.] */ 28 #define DECNLAUTHOR "Mike Cowlishaw" /* Who to blame */ 29 30 #include <stdlib.h> /* for abs */ 31 #include <string.h> /* for memset, strcpy */ 32 33 /* Conditional code flag -- set this to match hardware platform */ 34 #if !defined(DECLITEND) 35 #define DECLITEND 1 /* 1=little-endian, 0=big-endian */ 36 #endif 37 38 /* Conditional code flag -- set this to 1 for best performance */ 39 #if !defined(DECUSE64) 40 #define DECUSE64 1 /* 1=use int64s, 0=int32 & smaller only */ 41 #endif 42 43 /* Conditional check flags -- set these to 0 for best performance */ 44 #if !defined(DECCHECK) 45 #define DECCHECK 0 /* 1 to enable robust checking */ 46 #endif 47 #if !defined(DECALLOC) 48 #define DECALLOC 0 /* 1 to enable memory accounting */ 49 #endif 50 #if !defined(DECTRACE) 51 #define DECTRACE 0 /* 1 to trace certain internals, etc. */ 52 #endif 53 54 /* Tuning parameter for decNumber (arbitrary precision) module */ 55 #if !defined(DECBUFFER) 56 #define DECBUFFER 36 /* Size basis for local buffers. This */ 57 /* should be a common maximum precision */ 58 /* rounded up to a multiple of 4; must */ 59 /* be zero or positive. */ 60 #endif 61 62 /* ---------------------------------------------------------------- */ 63 /* Definitions for all modules (general-purpose) */ 64 /* ---------------------------------------------------------------- */ 65 66 /* Local names for common types -- for safety, decNumber modules do */ 67 /* not use int or long directly. */ 68 #define Flag uint8_t 69 #define Byte int8_t 70 #define uByte uint8_t 71 #define Short int16_t 72 #define uShort uint16_t 73 #define Int int32_t 74 #define uInt uint32_t 75 #define Unit decNumberUnit 76 #if DECUSE64 77 #define Long int64_t 78 #define uLong uint64_t 79 #endif 80 81 /* Development-use definitions */ 82 typedef long int LI; /* for printf arguments only */ 83 #define DECNOINT 0 /* 1 to check no internal use of 'int' */ 84 /* or stdint types */ 85 #if DECNOINT 86 /* if these interfere with your C includes, do not set DECNOINT */ 87 #define int ? /* enable to ensure that plain C 'int' */ 88 #define long ?? /* .. or 'long' types are not used */ 89 #endif 90 91 /* Shared lookup tables */ 92 extern const uByte DECSTICKYTAB[10]; /* re-round digits if sticky */ 93 extern const uInt DECPOWERS[10]; /* powers of ten table */ 94 /* The following are included from decDPD.h */ 95 extern const uShort DPD2BIN[1024]; /* DPD -> 0-999 */ 96 extern const uShort BIN2DPD[1000]; /* 0-999 -> DPD */ 97 extern const uInt DPD2BINK[1024]; /* DPD -> 0-999000 */ 98 extern const uInt DPD2BINM[1024]; /* DPD -> 0-999000000 */ 99 extern const uByte DPD2BCD8[4096]; /* DPD -> ddd + len */ 100 extern const uByte BIN2BCD8[4000]; /* 0-999 -> ddd + len */ 101 extern const uShort BCD2DPD[2458]; /* 0-0x999 -> DPD (0x999=2457)*/ 102 103 /* LONGMUL32HI -- set w=(u*v)>>32, where w, u, and v are uInts */ 104 /* (that is, sets w to be the high-order word of the 64-bit result; */ 105 /* the low-order word is simply u*v.) */ 106 /* This version is derived from Knuth via Hacker's Delight; */ 107 /* it seems to optimize better than some others tried */ 108 #define LONGMUL32HI(w, u, v) { \ 109 uInt u0, u1, v0, v1, w0, w1, w2, t; \ 110 u0=u & 0xffff; u1=u>>16; \ 111 v0=v & 0xffff; v1=v>>16; \ 112 w0=u0*v0; \ 113 t=u1*v0 + (w0>>16); \ 114 w1=t & 0xffff; w2=t>>16; \ 115 w1=u0*v1 + w1; \ 116 (w)=u1*v1 + w2 + (w1>>16);} 117 118 /* ROUNDUP -- round an integer up to a multiple of n */ 119 #define ROUNDUP(i, n) ((((i)+(n)-1)/n)*n) 120 #define ROUNDUP4(i) (((i)+3)&~3) /* special for n=4 */ 121 122 /* ROUNDDOWN -- round an integer down to a multiple of n */ 123 #define ROUNDDOWN(i, n) (((i)/n)*n) 124 #define ROUNDDOWN4(i) ((i)&~3) /* special for n=4 */ 125 126 /* References to multi-byte sequences under different sizes; these */ 127 /* require locally declared variables, but do not violate strict */ 128 /* aliasing or alignment (as did the UINTAT simple cast to uInt). */ 129 /* Variables needed are uswork, uiwork, etc. [so do not use at same */ 130 /* level in an expression, e.g., UBTOUI(x)==UBTOUI(y) may fail]. */ 131 132 /* Return a uInt, etc., from bytes starting at a char* or uByte* */ 133 #define UBTOUS(b) (memcpy((void *)&uswork, b, 2), uswork) 134 #define UBTOUI(b) (memcpy((void *)&uiwork, b, 4), uiwork) 135 136 /* Store a uInt, etc., into bytes starting at a char* or uByte*. */ 137 /* Returns i, evaluated, for convenience; has to use uiwork because */ 138 /* i may be an expression. */ 139 #define UBFROMUS(b, i) (uswork=(i), memcpy(b, (void *)&uswork, 2), uswork) 140 #define UBFROMUI(b, i) (uiwork=(i), memcpy(b, (void *)&uiwork, 4), uiwork) 141 142 /* X10 and X100 -- multiply integer i by 10 or 100 */ 143 /* [shifts are usually faster than multiply; could be conditional] */ 144 #define X10(i) (((i)<<1)+((i)<<3)) 145 #define X100(i) (((i)<<2)+((i)<<5)+((i)<<6)) 146 147 /* MAXI and MINI -- general max & min (not in ANSI) for integers */ 148 #define MAXI(x,y) ((x)<(y)?(y):(x)) 149 #define MINI(x,y) ((x)>(y)?(y):(x)) 150 151 /* Useful constants */ 152 #define BILLION 1000000000 /* 10**9 */ 153 /* CHARMASK: 0x30303030 for ASCII/UTF8; 0xF0F0F0F0 for EBCDIC */ 154 #define CHARMASK ((((((((uInt)'0')<<8)+'0')<<8)+'0')<<8)+'0') 155 156 157 /* ---------------------------------------------------------------- */ 158 /* Definitions for arbitary-precision modules (only valid after */ 159 /* decNumber.h has been included) */ 160 /* ---------------------------------------------------------------- */ 161 162 /* Limits and constants */ 163 #define DECNUMMAXP 999999999 /* maximum precision code can handle */ 164 #define DECNUMMAXE 999999999 /* maximum adjusted exponent ditto */ 165 #define DECNUMMINE -999999999 /* minimum adjusted exponent ditto */ 166 #if (DECNUMMAXP != DEC_MAX_DIGITS) 167 #error Maximum digits mismatch 168 #endif 169 #if (DECNUMMAXE != DEC_MAX_EMAX) 170 #error Maximum exponent mismatch 171 #endif 172 #if (DECNUMMINE != DEC_MIN_EMIN) 173 #error Minimum exponent mismatch 174 #endif 175 176 /* Set DECDPUNMAX -- the maximum integer that fits in DECDPUN */ 177 /* digits, and D2UTABLE -- the initializer for the D2U table */ 178 #if DECDPUN==1 179 #define DECDPUNMAX 9 180 #define D2UTABLE {0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17, \ 181 18,19,20,21,22,23,24,25,26,27,28,29,30,31,32, \ 182 33,34,35,36,37,38,39,40,41,42,43,44,45,46,47, \ 183 48,49} 184 #elif DECDPUN==2 185 #define DECDPUNMAX 99 186 #define D2UTABLE {0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10, \ 187 11,11,12,12,13,13,14,14,15,15,16,16,17,17,18, \ 188 18,19,19,20,20,21,21,22,22,23,23,24,24,25} 189 #elif DECDPUN==3 190 #define DECDPUNMAX 999 191 #define D2UTABLE {0,1,1,1,2,2,2,3,3,3,4,4,4,5,5,5,6,6,6,7,7,7, \ 192 8,8,8,9,9,9,10,10,10,11,11,11,12,12,12,13,13, \ 193 13,14,14,14,15,15,15,16,16,16,17} 194 #elif DECDPUN==4 195 #define DECDPUNMAX 9999 196 #define D2UTABLE {0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,6, \ 197 6,6,6,7,7,7,7,8,8,8,8,9,9,9,9,10,10,10,10,11, \ 198 11,11,11,12,12,12,12,13} 199 #elif DECDPUN==5 200 #define DECDPUNMAX 99999 201 #define D2UTABLE {0,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,4,4,4,4,4,5, \ 202 5,5,5,5,6,6,6,6,6,7,7,7,7,7,8,8,8,8,8,9,9,9, \ 203 9,9,10,10,10,10} 204 #elif DECDPUN==6 205 #define DECDPUNMAX 999999 206 #define D2UTABLE {0,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4, \ 207 4,4,4,5,5,5,5,5,5,6,6,6,6,6,6,7,7,7,7,7,7,8, \ 208 8,8,8,8,8,9} 209 #elif DECDPUN==7 210 #define DECDPUNMAX 9999999 211 #define D2UTABLE {0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3, \ 212 4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,6,6,7, \ 213 7,7,7,7,7,7} 214 #elif DECDPUN==8 215 #define DECDPUNMAX 99999999 216 #define D2UTABLE {0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3, \ 217 3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6, \ 218 6,6,6,6,6,7} 219 #elif DECDPUN==9 220 #define DECDPUNMAX 999999999 221 #define D2UTABLE {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3, \ 222 3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5, \ 223 5,5,6,6,6,6} 224 #elif defined(DECDPUN) 225 #error DECDPUN must be in the range 1-9 226 #endif 227 228 /* ----- Shared data (in decNumber.c) ----- */ 229 /* Public lookup table used by the D2U macro (see below) */ 230 #define DECMAXD2U 49 231 extern const uByte d2utable[DECMAXD2U+1]; 232 233 /* ----- Macros ----- */ 234 /* ISZERO -- return true if decNumber dn is a zero */ 235 /* [performance-critical in some situations] */ 236 #define ISZERO(dn) decNumberIsZero(dn) /* now just a local name */ 237 238 /* D2U -- return the number of Units needed to hold d digits */ 239 /* (runtime version, with table lookaside for small d) */ 240 #if DECDPUN==8 241 #define D2U(d) ((unsigned)((d)<=DECMAXD2U?d2utable[d]:((d)+7)>>3)) 242 #elif DECDPUN==4 243 #define D2U(d) ((unsigned)((d)<=DECMAXD2U?d2utable[d]:((d)+3)>>2)) 244 #else 245 #define D2U(d) ((d)<=DECMAXD2U?d2utable[d]:((d)+DECDPUN-1)/DECDPUN) 246 #endif 247 /* SD2U -- static D2U macro (for compile-time calculation) */ 248 #define SD2U(d) (((d)+DECDPUN-1)/DECDPUN) 249 250 /* MSUDIGITS -- returns digits in msu, from digits, calculated */ 251 /* using D2U */ 252 #define MSUDIGITS(d) ((d)-(D2U(d)-1)*DECDPUN) 253 254 /* D2N -- return the number of decNumber structs that would be */ 255 /* needed to contain that number of digits (and the initial */ 256 /* decNumber struct) safely. Note that one Unit is included in the */ 257 /* initial structure. Used for allocating space that is aligned on */ 258 /* a decNumber struct boundary. */ 259 #define D2N(d) \ 260 ((((SD2U(d)-1)*sizeof(Unit))+sizeof(decNumber)*2-1)/sizeof(decNumber)) 261 262 /* TODIGIT -- macro to remove the leading digit from the unsigned */ 263 /* integer u at column cut (counting from the right, LSD=0) and */ 264 /* place it as an ASCII character into the character pointed to by */ 265 /* c. Note that cut must be <= 9, and the maximum value for u is */ 266 /* 2,000,000,000 (as is needed for negative exponents of */ 267 /* subnormals). The unsigned integer pow is used as a temporary */ 268 /* variable. */ 269 #define TODIGIT(u, cut, c, pow) { \ 270 *(c)='0'; \ 271 pow=DECPOWERS[cut]*2; \ 272 if ((u)>pow) { \ 273 pow*=4; \ 274 if ((u)>=pow) {(u)-=pow; *(c)+=8;} \ 275 pow/=2; \ 276 if ((u)>=pow) {(u)-=pow; *(c)+=4;} \ 277 pow/=2; \ 278 } \ 279 if ((u)>=pow) {(u)-=pow; *(c)+=2;} \ 280 pow/=2; \ 281 if ((u)>=pow) {(u)-=pow; *(c)+=1;} \ 282 } 283 284 /* ---------------------------------------------------------------- */ 285 /* Definitions for fixed-precision modules (only valid after */ 286 /* decSingle.h, decDouble.h, or decQuad.h has been included) */ 287 /* ---------------------------------------------------------------- */ 288 289 /* bcdnum -- a structure describing a format-independent finite */ 290 /* number, whose coefficient is a string of bcd8 uBytes */ 291 typedef struct { 292 uByte *msd; /* -> most significant digit */ 293 uByte *lsd; /* -> least ditto */ 294 uInt sign; /* 0=positive, DECFLOAT_Sign=negative */ 295 Int exponent; /* Unadjusted signed exponent (q), or */ 296 /* DECFLOAT_NaN etc. for a special */ 297 } bcdnum; 298 299 /* Test if exponent or bcdnum exponent must be a special, etc. */ 300 #define EXPISSPECIAL(exp) ((exp)>=DECFLOAT_MinSp) 301 #define EXPISINF(exp) (exp==DECFLOAT_Inf) 302 #define EXPISNAN(exp) (exp==DECFLOAT_qNaN || exp==DECFLOAT_sNaN) 303 #define NUMISSPECIAL(num) (EXPISSPECIAL((num)->exponent)) 304 305 /* Refer to a 32-bit word or byte in a decFloat (df) by big-endian */ 306 /* (array) notation (the 0 word or byte contains the sign bit), */ 307 /* automatically adjusting for endianness; similarly address a word */ 308 /* in the next-wider format (decFloatWider, or dfw) */ 309 #define DECWORDS (DECBYTES/4) 310 #define DECWWORDS (DECWBYTES/4) 311 #if DECLITEND 312 #define DFBYTE(df, off) ((df)->bytes[DECBYTES-1-(off)]) 313 #define DFWORD(df, off) ((df)->words[DECWORDS-1-(off)]) 314 #define DFWWORD(dfw, off) ((dfw)->words[DECWWORDS-1-(off)]) 315 #else 316 #define DFBYTE(df, off) ((df)->bytes[off]) 317 #define DFWORD(df, off) ((df)->words[off]) 318 #define DFWWORD(dfw, off) ((dfw)->words[off]) 319 #endif 320 321 /* Tests for sign or specials, directly on DECFLOATs */ 322 #define DFISSIGNED(df) (DFWORD(df, 0)&0x80000000) 323 #define DFISSPECIAL(df) ((DFWORD(df, 0)&0x78000000)==0x78000000) 324 #define DFISINF(df) ((DFWORD(df, 0)&0x7c000000)==0x78000000) 325 #define DFISNAN(df) ((DFWORD(df, 0)&0x7c000000)==0x7c000000) 326 #define DFISQNAN(df) ((DFWORD(df, 0)&0x7e000000)==0x7c000000) 327 #define DFISSNAN(df) ((DFWORD(df, 0)&0x7e000000)==0x7e000000) 328 329 /* Shared lookup tables */ 330 extern const uInt DECCOMBMSD[64]; /* Combination field -> MSD */ 331 extern const uInt DECCOMBFROM[48]; /* exp+msd -> Combination */ 332 333 /* Private generic (utility) routine */ 334 #if DECCHECK || DECTRACE 335 extern void decShowNum(const bcdnum *, const char *); 336 #endif 337 338 /* Format-dependent macros and constants */ 339 #if defined(DECPMAX) 340 341 /* Useful constants */ 342 #define DECPMAX9 (ROUNDUP(DECPMAX, 9)/9) /* 'Pmax' in 10**9s */ 343 /* Top words for a zero */ 344 #define SINGLEZERO 0x22500000 345 #define DOUBLEZERO 0x22380000 346 #define QUADZERO 0x22080000 347 /* [ZEROWORD is defined to be one of these in the DFISZERO macro] */ 348 349 /* Format-dependent common tests: */ 350 /* DFISZERO -- test for (any) zero */ 351 /* DFISCCZERO -- test for coefficient continuation being zero */ 352 /* DFISCC01 -- test for coefficient contains only 0s and 1s */ 353 /* DFISINT -- test for finite and exponent q=0 */ 354 /* DFISUINT01 -- test for sign=0, finite, exponent q=0, and */ 355 /* MSD=0 or 1 */ 356 /* ZEROWORD is also defined here. */ 357 /* In DFISZERO the first test checks the least-significant word */ 358 /* (most likely to be non-zero); the penultimate tests MSD and */ 359 /* DPDs in the signword, and the final test excludes specials and */ 360 /* MSD>7. DFISINT similarly has to allow for the two forms of */ 361 /* MSD codes. DFISUINT01 only has to allow for one form of MSD */ 362 /* code. */ 363 #if DECPMAX==7 364 #define ZEROWORD SINGLEZERO 365 /* [test macros not needed except for Zero] */ 366 #define DFISZERO(df) ((DFWORD(df, 0)&0x1c0fffff)==0 \ 367 && (DFWORD(df, 0)&0x60000000)!=0x60000000) 368 #elif DECPMAX==16 369 #define ZEROWORD DOUBLEZERO 370 #define DFISZERO(df) ((DFWORD(df, 1)==0 \ 371 && (DFWORD(df, 0)&0x1c03ffff)==0 \ 372 && (DFWORD(df, 0)&0x60000000)!=0x60000000)) 373 #define DFISINT(df) ((DFWORD(df, 0)&0x63fc0000)==0x22380000 \ 374 ||(DFWORD(df, 0)&0x7bfc0000)==0x6a380000) 375 #define DFISUINT01(df) ((DFWORD(df, 0)&0xfbfc0000)==0x22380000) 376 #define DFISCCZERO(df) (DFWORD(df, 1)==0 \ 377 && (DFWORD(df, 0)&0x0003ffff)==0) 378 #define DFISCC01(df) ((DFWORD(df, 0)&~0xfffc9124)==0 \ 379 && (DFWORD(df, 1)&~0x49124491)==0) 380 #elif DECPMAX==34 381 #define ZEROWORD QUADZERO 382 #define DFISZERO(df) ((DFWORD(df, 3)==0 \ 383 && DFWORD(df, 2)==0 \ 384 && DFWORD(df, 1)==0 \ 385 && (DFWORD(df, 0)&0x1c003fff)==0 \ 386 && (DFWORD(df, 0)&0x60000000)!=0x60000000)) 387 #define DFISINT(df) ((DFWORD(df, 0)&0x63ffc000)==0x22080000 \ 388 ||(DFWORD(df, 0)&0x7bffc000)==0x6a080000) 389 #define DFISUINT01(df) ((DFWORD(df, 0)&0xfbffc000)==0x22080000) 390 #define DFISCCZERO(df) (DFWORD(df, 3)==0 \ 391 && DFWORD(df, 2)==0 \ 392 && DFWORD(df, 1)==0 \ 393 && (DFWORD(df, 0)&0x00003fff)==0) 394 395 #define DFISCC01(df) ((DFWORD(df, 0)&~0xffffc912)==0 \ 396 && (DFWORD(df, 1)&~0x44912449)==0 \ 397 && (DFWORD(df, 2)&~0x12449124)==0 \ 398 && (DFWORD(df, 3)&~0x49124491)==0) 399 #endif 400 401 /* Macros to test if a certain 10 bits of a uInt or pair of uInts */ 402 /* are a canonical declet [higher or lower bits are ignored]. */ 403 /* declet is at offset 0 (from the right) in a uInt: */ 404 #define CANONDPD(dpd) (((dpd)&0x300)==0 || ((dpd)&0x6e)!=0x6e) 405 /* declet is at offset k (a multiple of 2) in a uInt: */ 406 #define CANONDPDOFF(dpd, k) (((dpd)&(0x300<<(k)))==0 \ 407 || ((dpd)&(((uInt)0x6e)<<(k)))!=(((uInt)0x6e)<<(k))) 408 /* declet is at offset k (a multiple of 2) in a pair of uInts: */ 409 /* [the top 2 bits will always be in the more-significant uInt] */ 410 #define CANONDPDTWO(hi, lo, k) (((hi)&(0x300>>(32-(k))))==0 \ 411 || ((hi)&(0x6e>>(32-(k))))!=(0x6e>>(32-(k))) \ 412 || ((lo)&(((uInt)0x6e)<<(k)))!=(((uInt)0x6e)<<(k))) 413 414 /* Macro to test whether a full-length (length DECPMAX) BCD8 */ 415 /* coefficient, starting at uByte u, is all zeros */ 416 /* Test just the LSWord first, then the remainder as a sequence */ 417 /* of tests in order to avoid same-level use of UBTOUI */ 418 #if DECPMAX==7 419 #define ISCOEFFZERO(u) ( \ 420 UBTOUI((u)+DECPMAX-4)==0 \ 421 && UBTOUS((u)+DECPMAX-6)==0 \ 422 && *(u)==0) 423 #elif DECPMAX==16 424 #define ISCOEFFZERO(u) ( \ 425 UBTOUI((u)+DECPMAX-4)==0 \ 426 && UBTOUI((u)+DECPMAX-8)==0 \ 427 && UBTOUI((u)+DECPMAX-12)==0 \ 428 && UBTOUI(u)==0) 429 #elif DECPMAX==34 430 #define ISCOEFFZERO(u) ( \ 431 UBTOUI((u)+DECPMAX-4)==0 \ 432 && UBTOUI((u)+DECPMAX-8)==0 \ 433 && UBTOUI((u)+DECPMAX-12)==0 \ 434 && UBTOUI((u)+DECPMAX-16)==0 \ 435 && UBTOUI((u)+DECPMAX-20)==0 \ 436 && UBTOUI((u)+DECPMAX-24)==0 \ 437 && UBTOUI((u)+DECPMAX-28)==0 \ 438 && UBTOUI((u)+DECPMAX-32)==0 \ 439 && UBTOUS(u)==0) 440 #endif 441 442 /* Macros and masks for the exponent continuation field and MSD */ 443 /* Get the exponent continuation from a decFloat *df as an Int */ 444 #define GETECON(df) ((Int)((DFWORD((df), 0)&0x03ffffff)>>(32-6-DECECONL))) 445 /* Ditto, from the next-wider format */ 446 #define GETWECON(df) ((Int)((DFWWORD((df), 0)&0x03ffffff)>>(32-6-DECWECONL))) 447 /* Get the biased exponent similarly */ 448 #define GETEXP(df) ((Int)(DECCOMBEXP[DFWORD((df), 0)>>26]+GETECON(df))) 449 /* Get the unbiased exponent similarly */ 450 #define GETEXPUN(df) ((Int)GETEXP(df)-DECBIAS) 451 /* Get the MSD similarly (as uInt) */ 452 #define GETMSD(df) (DECCOMBMSD[DFWORD((df), 0)>>26]) 453 454 /* Compile-time computes of the exponent continuation field masks */ 455 /* full exponent continuation field: */ 456 #define ECONMASK ((0x03ffffff>>(32-6-DECECONL))<<(32-6-DECECONL)) 457 /* same, not including its first digit (the qNaN/sNaN selector): */ 458 #define ECONNANMASK ((0x01ffffff>>(32-6-DECECONL))<<(32-6-DECECONL)) 459 460 /* Macros to decode the coefficient in a finite decFloat *df into */ 461 /* a BCD string (uByte *bcdin) of length DECPMAX uBytes. */ 462 463 /* In-line sequence to convert least significant 10 bits of uInt */ 464 /* dpd to three BCD8 digits starting at uByte u. Note that an */ 465 /* extra byte is written to the right of the three digits because */ 466 /* four bytes are moved at a time for speed; the alternative */ 467 /* macro moves exactly three bytes (usually slower). */ 468 #define dpd2bcd8(u, dpd) memcpy(u, &DPD2BCD8[((dpd)&0x3ff)*4], 4) 469 #define dpd2bcd83(u, dpd) memcpy(u, &DPD2BCD8[((dpd)&0x3ff)*4], 3) 470 471 /* Decode the declets. After extracting each one, it is decoded */ 472 /* to BCD8 using a table lookup (also used for variable-length */ 473 /* decode). Each DPD decode is 3 bytes BCD8 plus a one-byte */ 474 /* length which is not used, here). Fixed-length 4-byte moves */ 475 /* are fast, however, almost everywhere, and so are used except */ 476 /* for the final three bytes (to avoid overrun). The code below */ 477 /* is 36 instructions for Doubles and about 70 for Quads, even */ 478 /* on IA32. */ 479 480 /* Two macros are defined for each format: */ 481 /* GETCOEFF extracts the coefficient of the current format */ 482 /* GETWCOEFF extracts the coefficient of the next-wider format. */ 483 /* The latter is a copy of the next-wider GETCOEFF using DFWWORD. */ 484 485 #if DECPMAX==7 486 #define GETCOEFF(df, bcd) { \ 487 uInt sourhi=DFWORD(df, 0); \ 488 *(bcd)=(uByte)DECCOMBMSD[sourhi>>26]; \ 489 dpd2bcd8(bcd+1, sourhi>>10); \ 490 dpd2bcd83(bcd+4, sourhi);} 491 #define GETWCOEFF(df, bcd) { \ 492 uInt sourhi=DFWWORD(df, 0); \ 493 uInt sourlo=DFWWORD(df, 1); \ 494 *(bcd)=(uByte)DECCOMBMSD[sourhi>>26]; \ 495 dpd2bcd8(bcd+1, sourhi>>8); \ 496 dpd2bcd8(bcd+4, (sourhi<<2) | (sourlo>>30)); \ 497 dpd2bcd8(bcd+7, sourlo>>20); \ 498 dpd2bcd8(bcd+10, sourlo>>10); \ 499 dpd2bcd83(bcd+13, sourlo);} 500 501 #elif DECPMAX==16 502 #define GETCOEFF(df, bcd) { \ 503 uInt sourhi=DFWORD(df, 0); \ 504 uInt sourlo=DFWORD(df, 1); \ 505 *(bcd)=(uByte)DECCOMBMSD[sourhi>>26]; \ 506 dpd2bcd8(bcd+1, sourhi>>8); \ 507 dpd2bcd8(bcd+4, (sourhi<<2) | (sourlo>>30)); \ 508 dpd2bcd8(bcd+7, sourlo>>20); \ 509 dpd2bcd8(bcd+10, sourlo>>10); \ 510 dpd2bcd83(bcd+13, sourlo);} 511 #define GETWCOEFF(df, bcd) { \ 512 uInt sourhi=DFWWORD(df, 0); \ 513 uInt sourmh=DFWWORD(df, 1); \ 514 uInt sourml=DFWWORD(df, 2); \ 515 uInt sourlo=DFWWORD(df, 3); \ 516 *(bcd)=(uByte)DECCOMBMSD[sourhi>>26]; \ 517 dpd2bcd8(bcd+1, sourhi>>4); \ 518 dpd2bcd8(bcd+4, ((sourhi)<<6) | (sourmh>>26)); \ 519 dpd2bcd8(bcd+7, sourmh>>16); \ 520 dpd2bcd8(bcd+10, sourmh>>6); \ 521 dpd2bcd8(bcd+13, ((sourmh)<<4) | (sourml>>28)); \ 522 dpd2bcd8(bcd+16, sourml>>18); \ 523 dpd2bcd8(bcd+19, sourml>>8); \ 524 dpd2bcd8(bcd+22, ((sourml)<<2) | (sourlo>>30)); \ 525 dpd2bcd8(bcd+25, sourlo>>20); \ 526 dpd2bcd8(bcd+28, sourlo>>10); \ 527 dpd2bcd83(bcd+31, sourlo);} 528 529 #elif DECPMAX==34 530 #define GETCOEFF(df, bcd) { \ 531 uInt sourhi=DFWORD(df, 0); \ 532 uInt sourmh=DFWORD(df, 1); \ 533 uInt sourml=DFWORD(df, 2); \ 534 uInt sourlo=DFWORD(df, 3); \ 535 *(bcd)=(uByte)DECCOMBMSD[sourhi>>26]; \ 536 dpd2bcd8(bcd+1, sourhi>>4); \ 537 dpd2bcd8(bcd+4, ((sourhi)<<6) | (sourmh>>26)); \ 538 dpd2bcd8(bcd+7, sourmh>>16); \ 539 dpd2bcd8(bcd+10, sourmh>>6); \ 540 dpd2bcd8(bcd+13, ((sourmh)<<4) | (sourml>>28)); \ 541 dpd2bcd8(bcd+16, sourml>>18); \ 542 dpd2bcd8(bcd+19, sourml>>8); \ 543 dpd2bcd8(bcd+22, ((sourml)<<2) | (sourlo>>30)); \ 544 dpd2bcd8(bcd+25, sourlo>>20); \ 545 dpd2bcd8(bcd+28, sourlo>>10); \ 546 dpd2bcd83(bcd+31, sourlo);} 547 548 #define GETWCOEFF(df, bcd) {??} /* [should never be used] */ 549 #endif 550 551 /* Macros to decode the coefficient in a finite decFloat *df into */ 552 /* a base-billion uInt array, with the least-significant */ 553 /* 0-999999999 'digit' at offset 0. */ 554 555 /* Decode the declets. After extracting each one, it is decoded */ 556 /* to binary using a table lookup. Three tables are used; one */ 557 /* the usual DPD to binary, the other two pre-multiplied by 1000 */ 558 /* and 1000000 to avoid multiplication during decode. These */ 559 /* tables can also be used for multiplying up the MSD as the DPD */ 560 /* code for 0 through 9 is the identity. */ 561 #define DPD2BIN0 DPD2BIN /* for prettier code */ 562 563 #if DECPMAX==7 564 #define GETCOEFFBILL(df, buf) { \ 565 uInt sourhi=DFWORD(df, 0); \ 566 (buf)[0]=DPD2BIN0[sourhi&0x3ff] \ 567 +DPD2BINK[(sourhi>>10)&0x3ff] \ 568 +DPD2BINM[DECCOMBMSD[sourhi>>26]];} 569 570 #elif DECPMAX==16 571 #define GETCOEFFBILL(df, buf) { \ 572 uInt sourhi, sourlo; \ 573 sourlo=DFWORD(df, 1); \ 574 (buf)[0]=DPD2BIN0[sourlo&0x3ff] \ 575 +DPD2BINK[(sourlo>>10)&0x3ff] \ 576 +DPD2BINM[(sourlo>>20)&0x3ff]; \ 577 sourhi=DFWORD(df, 0); \ 578 (buf)[1]=DPD2BIN0[((sourhi<<2) | (sourlo>>30))&0x3ff] \ 579 +DPD2BINK[(sourhi>>8)&0x3ff] \ 580 +DPD2BINM[DECCOMBMSD[sourhi>>26]];} 581 582 #elif DECPMAX==34 583 #define GETCOEFFBILL(df, buf) { \ 584 uInt sourhi, sourmh, sourml, sourlo; \ 585 sourlo=DFWORD(df, 3); \ 586 (buf)[0]=DPD2BIN0[sourlo&0x3ff] \ 587 +DPD2BINK[(sourlo>>10)&0x3ff] \ 588 +DPD2BINM[(sourlo>>20)&0x3ff]; \ 589 sourml=DFWORD(df, 2); \ 590 (buf)[1]=DPD2BIN0[((sourml<<2) | (sourlo>>30))&0x3ff] \ 591 +DPD2BINK[(sourml>>8)&0x3ff] \ 592 +DPD2BINM[(sourml>>18)&0x3ff]; \ 593 sourmh=DFWORD(df, 1); \ 594 (buf)[2]=DPD2BIN0[((sourmh<<4) | (sourml>>28))&0x3ff] \ 595 +DPD2BINK[(sourmh>>6)&0x3ff] \ 596 +DPD2BINM[(sourmh>>16)&0x3ff]; \ 597 sourhi=DFWORD(df, 0); \ 598 (buf)[3]=DPD2BIN0[((sourhi<<6) | (sourmh>>26))&0x3ff] \ 599 +DPD2BINK[(sourhi>>4)&0x3ff] \ 600 +DPD2BINM[DECCOMBMSD[sourhi>>26]];} 601 602 #endif 603 604 /* Macros to decode the coefficient in a finite decFloat *df into */ 605 /* a base-thousand uInt array (of size DECLETS+1, to allow for */ 606 /* the MSD), with the least-significant 0-999 'digit' at offset 0.*/ 607 608 /* Decode the declets. After extracting each one, it is decoded */ 609 /* to binary using a table lookup. */ 610 #if DECPMAX==7 611 #define GETCOEFFTHOU(df, buf) { \ 612 uInt sourhi=DFWORD(df, 0); \ 613 (buf)[0]=DPD2BIN[sourhi&0x3ff]; \ 614 (buf)[1]=DPD2BIN[(sourhi>>10)&0x3ff]; \ 615 (buf)[2]=DECCOMBMSD[sourhi>>26];} 616 617 #elif DECPMAX==16 618 #define GETCOEFFTHOU(df, buf) { \ 619 uInt sourhi, sourlo; \ 620 sourlo=DFWORD(df, 1); \ 621 (buf)[0]=DPD2BIN[sourlo&0x3ff]; \ 622 (buf)[1]=DPD2BIN[(sourlo>>10)&0x3ff]; \ 623 (buf)[2]=DPD2BIN[(sourlo>>20)&0x3ff]; \ 624 sourhi=DFWORD(df, 0); \ 625 (buf)[3]=DPD2BIN[((sourhi<<2) | (sourlo>>30))&0x3ff]; \ 626 (buf)[4]=DPD2BIN[(sourhi>>8)&0x3ff]; \ 627 (buf)[5]=DECCOMBMSD[sourhi>>26];} 628 629 #elif DECPMAX==34 630 #define GETCOEFFTHOU(df, buf) { \ 631 uInt sourhi, sourmh, sourml, sourlo; \ 632 sourlo=DFWORD(df, 3); \ 633 (buf)[0]=DPD2BIN[sourlo&0x3ff]; \ 634 (buf)[1]=DPD2BIN[(sourlo>>10)&0x3ff]; \ 635 (buf)[2]=DPD2BIN[(sourlo>>20)&0x3ff]; \ 636 sourml=DFWORD(df, 2); \ 637 (buf)[3]=DPD2BIN[((sourml<<2) | (sourlo>>30))&0x3ff]; \ 638 (buf)[4]=DPD2BIN[(sourml>>8)&0x3ff]; \ 639 (buf)[5]=DPD2BIN[(sourml>>18)&0x3ff]; \ 640 sourmh=DFWORD(df, 1); \ 641 (buf)[6]=DPD2BIN[((sourmh<<4) | (sourml>>28))&0x3ff]; \ 642 (buf)[7]=DPD2BIN[(sourmh>>6)&0x3ff]; \ 643 (buf)[8]=DPD2BIN[(sourmh>>16)&0x3ff]; \ 644 sourhi=DFWORD(df, 0); \ 645 (buf)[9]=DPD2BIN[((sourhi<<6) | (sourmh>>26))&0x3ff]; \ 646 (buf)[10]=DPD2BIN[(sourhi>>4)&0x3ff]; \ 647 (buf)[11]=DECCOMBMSD[sourhi>>26];} 648 #endif 649 650 651 /* Macros to decode the coefficient in a finite decFloat *df and */ 652 /* add to a base-thousand uInt array (as for GETCOEFFTHOU). */ 653 /* After the addition then most significant 'digit' in the array */ 654 /* might have a value larger then 10 (with a maximum of 19). */ 655 #if DECPMAX==7 656 #define ADDCOEFFTHOU(df, buf) { \ 657 uInt sourhi=DFWORD(df, 0); \ 658 (buf)[0]+=DPD2BIN[sourhi&0x3ff]; \ 659 if (buf[0]>999) {buf[0]-=1000; buf[1]++;} \ 660 (buf)[1]+=DPD2BIN[(sourhi>>10)&0x3ff]; \ 661 if (buf[1]>999) {buf[1]-=1000; buf[2]++;} \ 662 (buf)[2]+=DECCOMBMSD[sourhi>>26];} 663 664 #elif DECPMAX==16 665 #define ADDCOEFFTHOU(df, buf) { \ 666 uInt sourhi, sourlo; \ 667 sourlo=DFWORD(df, 1); \ 668 (buf)[0]+=DPD2BIN[sourlo&0x3ff]; \ 669 if (buf[0]>999) {buf[0]-=1000; buf[1]++;} \ 670 (buf)[1]+=DPD2BIN[(sourlo>>10)&0x3ff]; \ 671 if (buf[1]>999) {buf[1]-=1000; buf[2]++;} \ 672 (buf)[2]+=DPD2BIN[(sourlo>>20)&0x3ff]; \ 673 if (buf[2]>999) {buf[2]-=1000; buf[3]++;} \ 674 sourhi=DFWORD(df, 0); \ 675 (buf)[3]+=DPD2BIN[((sourhi<<2) | (sourlo>>30))&0x3ff]; \ 676 if (buf[3]>999) {buf[3]-=1000; buf[4]++;} \ 677 (buf)[4]+=DPD2BIN[(sourhi>>8)&0x3ff]; \ 678 if (buf[4]>999) {buf[4]-=1000; buf[5]++;} \ 679 (buf)[5]+=DECCOMBMSD[sourhi>>26];} 680 681 #elif DECPMAX==34 682 #define ADDCOEFFTHOU(df, buf) { \ 683 uInt sourhi, sourmh, sourml, sourlo; \ 684 sourlo=DFWORD(df, 3); \ 685 (buf)[0]+=DPD2BIN[sourlo&0x3ff]; \ 686 if (buf[0]>999) {buf[0]-=1000; buf[1]++;} \ 687 (buf)[1]+=DPD2BIN[(sourlo>>10)&0x3ff]; \ 688 if (buf[1]>999) {buf[1]-=1000; buf[2]++;} \ 689 (buf)[2]+=DPD2BIN[(sourlo>>20)&0x3ff]; \ 690 if (buf[2]>999) {buf[2]-=1000; buf[3]++;} \ 691 sourml=DFWORD(df, 2); \ 692 (buf)[3]+=DPD2BIN[((sourml<<2) | (sourlo>>30))&0x3ff]; \ 693 if (buf[3]>999) {buf[3]-=1000; buf[4]++;} \ 694 (buf)[4]+=DPD2BIN[(sourml>>8)&0x3ff]; \ 695 if (buf[4]>999) {buf[4]-=1000; buf[5]++;} \ 696 (buf)[5]+=DPD2BIN[(sourml>>18)&0x3ff]; \ 697 if (buf[5]>999) {buf[5]-=1000; buf[6]++;} \ 698 sourmh=DFWORD(df, 1); \ 699 (buf)[6]+=DPD2BIN[((sourmh<<4) | (sourml>>28))&0x3ff]; \ 700 if (buf[6]>999) {buf[6]-=1000; buf[7]++;} \ 701 (buf)[7]+=DPD2BIN[(sourmh>>6)&0x3ff]; \ 702 if (buf[7]>999) {buf[7]-=1000; buf[8]++;} \ 703 (buf)[8]+=DPD2BIN[(sourmh>>16)&0x3ff]; \ 704 if (buf[8]>999) {buf[8]-=1000; buf[9]++;} \ 705 sourhi=DFWORD(df, 0); \ 706 (buf)[9]+=DPD2BIN[((sourhi<<6) | (sourmh>>26))&0x3ff]; \ 707 if (buf[9]>999) {buf[9]-=1000; buf[10]++;} \ 708 (buf)[10]+=DPD2BIN[(sourhi>>4)&0x3ff]; \ 709 if (buf[10]>999) {buf[10]-=1000; buf[11]++;} \ 710 (buf)[11]+=DECCOMBMSD[sourhi>>26];} 711 #endif 712 713 714 /* Set a decFloat to the maximum positive finite number (Nmax) */ 715 #if DECPMAX==7 716 #define DFSETNMAX(df) \ 717 {DFWORD(df, 0)=0x77f3fcff;} 718 #elif DECPMAX==16 719 #define DFSETNMAX(df) \ 720 {DFWORD(df, 0)=0x77fcff3f; \ 721 DFWORD(df, 1)=0xcff3fcff;} 722 #elif DECPMAX==34 723 #define DFSETNMAX(df) \ 724 {DFWORD(df, 0)=0x77ffcff3; \ 725 DFWORD(df, 1)=0xfcff3fcf; \ 726 DFWORD(df, 2)=0xf3fcff3f; \ 727 DFWORD(df, 3)=0xcff3fcff;} 728 #endif 729 730 /* [end of format-dependent macros and constants] */ 731 #endif 732 733 #else 734 #error decNumberLocal included more than once 735 #endif 736