• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 #ifndef _I386_BITOPS_H
2 #define _I386_BITOPS_H
3 
4 /*
5  * Copyright 1992, Linus Torvalds.
6  */
7 
8 #ifndef _LINUX_BITOPS_H
9 #error only <linux/bitops.h> can be included directly
10 #endif
11 
12 #include <linux/compiler.h>
13 #include <asm/alternative.h>
14 
15 /*
16  * These have to be done with inline assembly: that way the bit-setting
17  * is guaranteed to be atomic. All bit operations return 0 if the bit
18  * was cleared before the operation and != 0 if it was not.
19  *
20  * bit 0 is the LSB of addr; bit 32 is the LSB of (addr+1).
21  */
22 
23 #define ADDR (*(volatile long *) addr)
24 
25 /**
26  * set_bit - Atomically set a bit in memory
27  * @nr: the bit to set
28  * @addr: the address to start counting from
29  *
30  * This function is atomic and may not be reordered.  See __set_bit()
31  * if you do not require the atomic guarantees.
32  *
33  * Note: there are no guarantees that this function will not be reordered
34  * on non x86 architectures, so if you are writing portable code,
35  * make sure not to rely on its reordering guarantees.
36  *
37  * Note that @nr may be almost arbitrarily large; this function is not
38  * restricted to acting on a single-word quantity.
39  */
set_bit(int nr,volatile unsigned long * addr)40 static inline void set_bit(int nr, volatile unsigned long * addr)
41 {
42 	__asm__ __volatile__( LOCK_PREFIX
43 		"btsl %1,%0"
44 		:"+m" (ADDR)
45 		:"Ir" (nr));
46 }
47 
48 /**
49  * __set_bit - Set a bit in memory
50  * @nr: the bit to set
51  * @addr: the address to start counting from
52  *
53  * Unlike set_bit(), this function is non-atomic and may be reordered.
54  * If it's called on the same region of memory simultaneously, the effect
55  * may be that only one operation succeeds.
56  */
__set_bit(int nr,volatile unsigned long * addr)57 static inline void __set_bit(int nr, volatile unsigned long * addr)
58 {
59 	__asm__(
60 		"btsl %1,%0"
61 		:"+m" (ADDR)
62 		:"Ir" (nr));
63 }
64 
65 /**
66  * clear_bit - Clears a bit in memory
67  * @nr: Bit to clear
68  * @addr: Address to start counting from
69  *
70  * clear_bit() is atomic and may not be reordered.  However, it does
71  * not contain a memory barrier, so if it is used for locking purposes,
72  * you should call smp_mb__before_clear_bit() and/or smp_mb__after_clear_bit()
73  * in order to ensure changes are visible on other processors.
74  */
clear_bit(int nr,volatile unsigned long * addr)75 static inline void clear_bit(int nr, volatile unsigned long * addr)
76 {
77 	__asm__ __volatile__( LOCK_PREFIX
78 		"btrl %1,%0"
79 		:"+m" (ADDR)
80 		:"Ir" (nr));
81 }
82 
83 /*
84  * clear_bit_unlock - Clears a bit in memory
85  * @nr: Bit to clear
86  * @addr: Address to start counting from
87  *
88  * clear_bit() is atomic and implies release semantics before the memory
89  * operation. It can be used for an unlock.
90  */
clear_bit_unlock(unsigned long nr,volatile unsigned long * addr)91 static inline void clear_bit_unlock(unsigned long nr, volatile unsigned long *addr)
92 {
93 	barrier();
94 	clear_bit(nr, addr);
95 }
96 
__clear_bit(int nr,volatile unsigned long * addr)97 static inline void __clear_bit(int nr, volatile unsigned long * addr)
98 {
99 	__asm__ __volatile__(
100 		"btrl %1,%0"
101 		:"+m" (ADDR)
102 		:"Ir" (nr));
103 }
104 
105 /*
106  * __clear_bit_unlock - Clears a bit in memory
107  * @nr: Bit to clear
108  * @addr: Address to start counting from
109  *
110  * __clear_bit() is non-atomic and implies release semantics before the memory
111  * operation. It can be used for an unlock if no other CPUs can concurrently
112  * modify other bits in the word.
113  *
114  * No memory barrier is required here, because x86 cannot reorder stores past
115  * older loads. Same principle as spin_unlock.
116  */
__clear_bit_unlock(unsigned long nr,volatile unsigned long * addr)117 static inline void __clear_bit_unlock(unsigned long nr, volatile unsigned long *addr)
118 {
119 	barrier();
120 	__clear_bit(nr, addr);
121 }
122 
123 #define smp_mb__before_clear_bit()	barrier()
124 #define smp_mb__after_clear_bit()	barrier()
125 
126 /**
127  * __change_bit - Toggle a bit in memory
128  * @nr: the bit to change
129  * @addr: the address to start counting from
130  *
131  * Unlike change_bit(), this function is non-atomic and may be reordered.
132  * If it's called on the same region of memory simultaneously, the effect
133  * may be that only one operation succeeds.
134  */
__change_bit(int nr,volatile unsigned long * addr)135 static inline void __change_bit(int nr, volatile unsigned long * addr)
136 {
137 	__asm__ __volatile__(
138 		"btcl %1,%0"
139 		:"+m" (ADDR)
140 		:"Ir" (nr));
141 }
142 
143 /**
144  * change_bit - Toggle a bit in memory
145  * @nr: Bit to change
146  * @addr: Address to start counting from
147  *
148  * change_bit() is atomic and may not be reordered. It may be
149  * reordered on other architectures than x86.
150  * Note that @nr may be almost arbitrarily large; this function is not
151  * restricted to acting on a single-word quantity.
152  */
change_bit(int nr,volatile unsigned long * addr)153 static inline void change_bit(int nr, volatile unsigned long * addr)
154 {
155 	__asm__ __volatile__( LOCK_PREFIX
156 		"btcl %1,%0"
157 		:"+m" (ADDR)
158 		:"Ir" (nr));
159 }
160 
161 /**
162  * test_and_set_bit - Set a bit and return its old value
163  * @nr: Bit to set
164  * @addr: Address to count from
165  *
166  * This operation is atomic and cannot be reordered.
167  * It may be reordered on other architectures than x86.
168  * It also implies a memory barrier.
169  */
test_and_set_bit(int nr,volatile unsigned long * addr)170 static inline int test_and_set_bit(int nr, volatile unsigned long * addr)
171 {
172 	int oldbit;
173 
174 	__asm__ __volatile__( LOCK_PREFIX
175 		"btsl %2,%1\n\tsbbl %0,%0"
176 		:"=r" (oldbit),"+m" (ADDR)
177 		:"Ir" (nr) : "memory");
178 	return oldbit;
179 }
180 
181 /**
182  * test_and_set_bit_lock - Set a bit and return its old value for lock
183  * @nr: Bit to set
184  * @addr: Address to count from
185  *
186  * This is the same as test_and_set_bit on x86.
187  */
test_and_set_bit_lock(int nr,volatile unsigned long * addr)188 static inline int test_and_set_bit_lock(int nr, volatile unsigned long *addr)
189 {
190 	return test_and_set_bit(nr, addr);
191 }
192 
193 /**
194  * __test_and_set_bit - Set a bit and return its old value
195  * @nr: Bit to set
196  * @addr: Address to count from
197  *
198  * This operation is non-atomic and can be reordered.
199  * If two examples of this operation race, one can appear to succeed
200  * but actually fail.  You must protect multiple accesses with a lock.
201  */
__test_and_set_bit(int nr,volatile unsigned long * addr)202 static inline int __test_and_set_bit(int nr, volatile unsigned long * addr)
203 {
204 	int oldbit;
205 
206 	__asm__(
207 		"btsl %2,%1\n\tsbbl %0,%0"
208 		:"=r" (oldbit),"+m" (ADDR)
209 		:"Ir" (nr));
210 	return oldbit;
211 }
212 
213 /**
214  * test_and_clear_bit - Clear a bit and return its old value
215  * @nr: Bit to clear
216  * @addr: Address to count from
217  *
218  * This operation is atomic and cannot be reordered.
219  * It can be reorderdered on other architectures other than x86.
220  * It also implies a memory barrier.
221  */
test_and_clear_bit(int nr,volatile unsigned long * addr)222 static inline int test_and_clear_bit(int nr, volatile unsigned long * addr)
223 {
224 	int oldbit;
225 
226 	__asm__ __volatile__( LOCK_PREFIX
227 		"btrl %2,%1\n\tsbbl %0,%0"
228 		:"=r" (oldbit),"+m" (ADDR)
229 		:"Ir" (nr) : "memory");
230 	return oldbit;
231 }
232 
233 /**
234  * __test_and_clear_bit - Clear a bit and return its old value
235  * @nr: Bit to clear
236  * @addr: Address to count from
237  *
238  * This operation is non-atomic and can be reordered.
239  * If two examples of this operation race, one can appear to succeed
240  * but actually fail.  You must protect multiple accesses with a lock.
241  */
__test_and_clear_bit(int nr,volatile unsigned long * addr)242 static inline int __test_and_clear_bit(int nr, volatile unsigned long *addr)
243 {
244 	int oldbit;
245 
246 	__asm__(
247 		"btrl %2,%1\n\tsbbl %0,%0"
248 		:"=r" (oldbit),"+m" (ADDR)
249 		:"Ir" (nr));
250 	return oldbit;
251 }
252 
253 /* WARNING: non atomic and it can be reordered! */
__test_and_change_bit(int nr,volatile unsigned long * addr)254 static inline int __test_and_change_bit(int nr, volatile unsigned long *addr)
255 {
256 	int oldbit;
257 
258 	__asm__ __volatile__(
259 		"btcl %2,%1\n\tsbbl %0,%0"
260 		:"=r" (oldbit),"+m" (ADDR)
261 		:"Ir" (nr) : "memory");
262 	return oldbit;
263 }
264 
265 /**
266  * test_and_change_bit - Change a bit and return its old value
267  * @nr: Bit to change
268  * @addr: Address to count from
269  *
270  * This operation is atomic and cannot be reordered.
271  * It also implies a memory barrier.
272  */
test_and_change_bit(int nr,volatile unsigned long * addr)273 static inline int test_and_change_bit(int nr, volatile unsigned long* addr)
274 {
275 	int oldbit;
276 
277 	__asm__ __volatile__( LOCK_PREFIX
278 		"btcl %2,%1\n\tsbbl %0,%0"
279 		:"=r" (oldbit),"+m" (ADDR)
280 		:"Ir" (nr) : "memory");
281 	return oldbit;
282 }
283 
284 #if 0 /* Fool kernel-doc since it doesn't do macros yet */
285 /**
286  * test_bit - Determine whether a bit is set
287  * @nr: bit number to test
288  * @addr: Address to start counting from
289  */
290 static int test_bit(int nr, const volatile void * addr);
291 #endif
292 
constant_test_bit(int nr,const volatile unsigned long * addr)293 static __always_inline int constant_test_bit(int nr, const volatile unsigned long *addr)
294 {
295 	return ((1UL << (nr & 31)) & (addr[nr >> 5])) != 0;
296 }
297 
variable_test_bit(int nr,const volatile unsigned long * addr)298 static inline int variable_test_bit(int nr, const volatile unsigned long * addr)
299 {
300 	int oldbit;
301 
302 	__asm__ __volatile__(
303 		"btl %2,%1\n\tsbbl %0,%0"
304 		:"=r" (oldbit)
305 		:"m" (ADDR),"Ir" (nr));
306 	return oldbit;
307 }
308 
309 #define test_bit(nr,addr) \
310 (__builtin_constant_p(nr) ? \
311  constant_test_bit((nr),(addr)) : \
312  variable_test_bit((nr),(addr)))
313 
314 #undef ADDR
315 
316 /**
317  * find_first_zero_bit - find the first zero bit in a memory region
318  * @addr: The address to start the search at
319  * @size: The maximum size to search
320  *
321  * Returns the bit-number of the first zero bit, not the number of the byte
322  * containing a bit.
323  */
find_first_zero_bit(const unsigned long * addr,unsigned size)324 static inline int find_first_zero_bit(const unsigned long *addr, unsigned size)
325 {
326 	int d0, d1, d2;
327 	int res;
328 
329 	if (!size)
330 		return 0;
331 	/* This looks at memory. Mark it volatile to tell gcc not to move it around */
332 	__asm__ __volatile__(
333 		"movl $-1,%%eax\n\t"
334 		"xorl %%edx,%%edx\n\t"
335 		"repe; scasl\n\t"
336 		"je 1f\n\t"
337 		"xorl -4(%%edi),%%eax\n\t"
338 		"subl $4,%%edi\n\t"
339 		"bsfl %%eax,%%edx\n"
340 		"1:\tsubl %%ebx,%%edi\n\t"
341 		"shll $3,%%edi\n\t"
342 		"addl %%edi,%%edx"
343 		:"=d" (res), "=&c" (d0), "=&D" (d1), "=&a" (d2)
344 		:"1" ((size + 31) >> 5), "2" (addr), "b" (addr) : "memory");
345 	return res;
346 }
347 
348 /**
349  * find_next_zero_bit - find the first zero bit in a memory region
350  * @addr: The address to base the search on
351  * @offset: The bitnumber to start searching at
352  * @size: The maximum size to search
353  */
354 int find_next_zero_bit(const unsigned long *addr, int size, int offset);
355 
356 /**
357  * __ffs - find first bit in word.
358  * @word: The word to search
359  *
360  * Undefined if no bit exists, so code should check against 0 first.
361  */
__ffs(unsigned long word)362 static inline unsigned long __ffs(unsigned long word)
363 {
364 	__asm__("bsfl %1,%0"
365 		:"=r" (word)
366 		:"rm" (word));
367 	return word;
368 }
369 
370 /**
371  * find_first_bit - find the first set bit in a memory region
372  * @addr: The address to start the search at
373  * @size: The maximum size to search
374  *
375  * Returns the bit-number of the first set bit, not the number of the byte
376  * containing a bit.
377  */
find_first_bit(const unsigned long * addr,unsigned size)378 static inline unsigned find_first_bit(const unsigned long *addr, unsigned size)
379 {
380 	unsigned x = 0;
381 
382 	while (x < size) {
383 		unsigned long val = *addr++;
384 		if (val)
385 			return __ffs(val) + x;
386 		x += (sizeof(*addr)<<3);
387 	}
388 	return x;
389 }
390 
391 /**
392  * find_next_bit - find the first set bit in a memory region
393  * @addr: The address to base the search on
394  * @offset: The bitnumber to start searching at
395  * @size: The maximum size to search
396  */
397 int find_next_bit(const unsigned long *addr, int size, int offset);
398 
399 /**
400  * ffz - find first zero in word.
401  * @word: The word to search
402  *
403  * Undefined if no zero exists, so code should check against ~0UL first.
404  */
ffz(unsigned long word)405 static inline unsigned long ffz(unsigned long word)
406 {
407 	__asm__("bsfl %1,%0"
408 		:"=r" (word)
409 		:"r" (~word));
410 	return word;
411 }
412 
413 #ifdef __KERNEL__
414 
415 #include <asm-generic/bitops/sched.h>
416 
417 /**
418  * ffs - find first bit set
419  * @x: the word to search
420  *
421  * This is defined the same way as
422  * the libc and compiler builtin ffs routines, therefore
423  * differs in spirit from the above ffz() (man ffs).
424  */
ffs(int x)425 static inline int ffs(int x)
426 {
427 	int r;
428 
429 	__asm__("bsfl %1,%0\n\t"
430 		"jnz 1f\n\t"
431 		"movl $-1,%0\n"
432 		"1:" : "=r" (r) : "rm" (x));
433 	return r+1;
434 }
435 
436 /**
437  * fls - find last bit set
438  * @x: the word to search
439  *
440  * This is defined the same way as ffs().
441  */
fls(int x)442 static inline int fls(int x)
443 {
444 	int r;
445 
446 	__asm__("bsrl %1,%0\n\t"
447 		"jnz 1f\n\t"
448 		"movl $-1,%0\n"
449 		"1:" : "=r" (r) : "rm" (x));
450 	return r+1;
451 }
452 
453 #include <asm-generic/bitops/hweight.h>
454 
455 #endif /* __KERNEL__ */
456 
457 #include <asm-generic/bitops/fls64.h>
458 
459 #ifdef __KERNEL__
460 
461 #include <asm-generic/bitops/ext2-non-atomic.h>
462 
463 #define ext2_set_bit_atomic(lock,nr,addr) \
464         test_and_set_bit((nr),(unsigned long*)addr)
465 #define ext2_clear_bit_atomic(lock,nr, addr) \
466 	        test_and_clear_bit((nr),(unsigned long*)addr)
467 
468 #include <asm-generic/bitops/minix.h>
469 
470 #endif /* __KERNEL__ */
471 
472 #endif /* _I386_BITOPS_H */
473