• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* $Id: dma.h,v 1.7 1992/12/14 00:29:34 root Exp root $
2  * linux/include/asm/dma.h: Defines for using and allocating dma channels.
3  * Written by Hennus Bergman, 1992.
4  * High DMA channel support & info by Hannu Savolainen
5  * and John Boyd, Nov. 1992.
6  */
7 
8 #ifndef _ASM_DMA_H
9 #define _ASM_DMA_H
10 
11 #include <linux/spinlock.h>	/* And spinlocks */
12 #include <asm/io.h>		/* need byte IO */
13 #include <linux/delay.h>
14 
15 
16 #ifdef HAVE_REALLY_SLOW_DMA_CONTROLLER
17 #define dma_outb	outb_p
18 #else
19 #define dma_outb	outb
20 #endif
21 
22 #define dma_inb		inb
23 
24 /*
25  * NOTES about DMA transfers:
26  *
27  *  controller 1: channels 0-3, byte operations, ports 00-1F
28  *  controller 2: channels 4-7, word operations, ports C0-DF
29  *
30  *  - ALL registers are 8 bits only, regardless of transfer size
31  *  - channel 4 is not used - cascades 1 into 2.
32  *  - channels 0-3 are byte - addresses/counts are for physical bytes
33  *  - channels 5-7 are word - addresses/counts are for physical words
34  *  - transfers must not cross physical 64K (0-3) or 128K (5-7) boundaries
35  *  - transfer count loaded to registers is 1 less than actual count
36  *  - controller 2 offsets are all even (2x offsets for controller 1)
37  *  - page registers for 5-7 don't use data bit 0, represent 128K pages
38  *  - page registers for 0-3 use bit 0, represent 64K pages
39  *
40  * DMA transfers are limited to the lower 16MB of _physical_ memory.
41  * Note that addresses loaded into registers must be _physical_ addresses,
42  * not logical addresses (which may differ if paging is active).
43  *
44  *  Address mapping for channels 0-3:
45  *
46  *   A23 ... A16 A15 ... A8  A7 ... A0    (Physical addresses)
47  *    |  ...  |   |  ... |   |  ... |
48  *    |  ...  |   |  ... |   |  ... |
49  *    |  ...  |   |  ... |   |  ... |
50  *   P7  ...  P0  A7 ... A0  A7 ... A0
51  * |    Page    | Addr MSB | Addr LSB |   (DMA registers)
52  *
53  *  Address mapping for channels 5-7:
54  *
55  *   A23 ... A17 A16 A15 ... A9 A8 A7 ... A1 A0    (Physical addresses)
56  *    |  ...  |   \   \   ... \  \  \  ... \  \
57  *    |  ...  |    \   \   ... \  \  \  ... \  (not used)
58  *    |  ...  |     \   \   ... \  \  \  ... \
59  *   P7  ...  P1 (0) A7 A6  ... A0 A7 A6 ... A0
60  * |      Page      |  Addr MSB   |  Addr LSB  |   (DMA registers)
61  *
62  * Again, channels 5-7 transfer _physical_ words (16 bits), so addresses
63  * and counts _must_ be word-aligned (the lowest address bit is _ignored_ at
64  * the hardware level, so odd-byte transfers aren't possible).
65  *
66  * Transfer count (_not # bytes_) is limited to 64K, represented as actual
67  * count - 1 : 64K => 0xFFFF, 1 => 0x0000.  Thus, count is always 1 or more,
68  * and up to 128K bytes may be transferred on channels 5-7 in one operation.
69  *
70  */
71 
72 #define MAX_DMA_CHANNELS	8
73 
74 /* The maximum address that we can perform a DMA transfer to on this platform */
75 #define MAX_DMA_ADDRESS      (PAGE_OFFSET+0x1000000)
76 
77 /* 8237 DMA controllers */
78 #define IO_DMA1_BASE	0x00	/* 8 bit slave DMA, channels 0..3 */
79 #define IO_DMA2_BASE	0xC0	/* 16 bit master DMA, ch 4(=slave input)..7 */
80 
81 /* DMA controller registers */
82 #define DMA1_CMD_REG		0x08	/* command register (w) */
83 #define DMA1_STAT_REG		0x08	/* status register (r) */
84 #define DMA1_REQ_REG            0x09    /* request register (w) */
85 #define DMA1_MASK_REG		0x0A	/* single-channel mask (w) */
86 #define DMA1_MODE_REG		0x0B	/* mode register (w) */
87 #define DMA1_CLEAR_FF_REG	0x0C	/* clear pointer flip-flop (w) */
88 #define DMA1_TEMP_REG           0x0D    /* Temporary Register (r) */
89 #define DMA1_RESET_REG		0x0D	/* Master Clear (w) */
90 #define DMA1_CLR_MASK_REG       0x0E    /* Clear Mask */
91 #define DMA1_MASK_ALL_REG       0x0F    /* all-channels mask (w) */
92 
93 #define DMA2_CMD_REG		0xD0	/* command register (w) */
94 #define DMA2_STAT_REG		0xD0	/* status register (r) */
95 #define DMA2_REQ_REG            0xD2    /* request register (w) */
96 #define DMA2_MASK_REG		0xD4	/* single-channel mask (w) */
97 #define DMA2_MODE_REG		0xD6	/* mode register (w) */
98 #define DMA2_CLEAR_FF_REG	0xD8	/* clear pointer flip-flop (w) */
99 #define DMA2_TEMP_REG           0xDA    /* Temporary Register (r) */
100 #define DMA2_RESET_REG		0xDA	/* Master Clear (w) */
101 #define DMA2_CLR_MASK_REG       0xDC    /* Clear Mask */
102 #define DMA2_MASK_ALL_REG       0xDE    /* all-channels mask (w) */
103 
104 #define DMA_ADDR_0              0x00    /* DMA address registers */
105 #define DMA_ADDR_1              0x02
106 #define DMA_ADDR_2              0x04
107 #define DMA_ADDR_3              0x06
108 #define DMA_ADDR_4              0xC0
109 #define DMA_ADDR_5              0xC4
110 #define DMA_ADDR_6              0xC8
111 #define DMA_ADDR_7              0xCC
112 
113 #define DMA_CNT_0               0x01    /* DMA count registers */
114 #define DMA_CNT_1               0x03
115 #define DMA_CNT_2               0x05
116 #define DMA_CNT_3               0x07
117 #define DMA_CNT_4               0xC2
118 #define DMA_CNT_5               0xC6
119 #define DMA_CNT_6               0xCA
120 #define DMA_CNT_7               0xCE
121 
122 #define DMA_PAGE_0              0x87    /* DMA page registers */
123 #define DMA_PAGE_1              0x83
124 #define DMA_PAGE_2              0x81
125 #define DMA_PAGE_3              0x82
126 #define DMA_PAGE_5              0x8B
127 #define DMA_PAGE_6              0x89
128 #define DMA_PAGE_7              0x8A
129 
130 #define DMA_MODE_READ	0x44	/* I/O to memory, no autoinit, increment, single mode */
131 #define DMA_MODE_WRITE	0x48	/* memory to I/O, no autoinit, increment, single mode */
132 #define DMA_MODE_CASCADE 0xC0   /* pass thru DREQ->HRQ, DACK<-HLDA only */
133 
134 #define DMA_AUTOINIT	0x10
135 
136 
137 extern spinlock_t  dma_spin_lock;
138 
claim_dma_lock(void)139 static __inline__ unsigned long claim_dma_lock(void)
140 {
141 	unsigned long flags;
142 	spin_lock_irqsave(&dma_spin_lock, flags);
143 	return flags;
144 }
145 
release_dma_lock(unsigned long flags)146 static __inline__ void release_dma_lock(unsigned long flags)
147 {
148 	spin_unlock_irqrestore(&dma_spin_lock, flags);
149 }
150 
151 /* enable/disable a specific DMA channel */
enable_dma(unsigned int dmanr)152 static __inline__ void enable_dma(unsigned int dmanr)
153 {
154 	if (dmanr<=3)
155 		dma_outb(dmanr,  DMA1_MASK_REG);
156 	else
157 		dma_outb(dmanr & 3,  DMA2_MASK_REG);
158 }
159 
disable_dma(unsigned int dmanr)160 static __inline__ void disable_dma(unsigned int dmanr)
161 {
162 	if (dmanr<=3)
163 		dma_outb(dmanr | 4,  DMA1_MASK_REG);
164 	else
165 		dma_outb((dmanr & 3) | 4,  DMA2_MASK_REG);
166 }
167 
168 /* Clear the 'DMA Pointer Flip Flop'.
169  * Write 0 for LSB/MSB, 1 for MSB/LSB access.
170  * Use this once to initialize the FF to a known state.
171  * After that, keep track of it. :-)
172  * --- In order to do that, the DMA routines below should ---
173  * --- only be used while holding the DMA lock ! ---
174  */
clear_dma_ff(unsigned int dmanr)175 static __inline__ void clear_dma_ff(unsigned int dmanr)
176 {
177 	if (dmanr<=3)
178 		dma_outb(0,  DMA1_CLEAR_FF_REG);
179 	else
180 		dma_outb(0,  DMA2_CLEAR_FF_REG);
181 }
182 
183 /* set mode (above) for a specific DMA channel */
set_dma_mode(unsigned int dmanr,char mode)184 static __inline__ void set_dma_mode(unsigned int dmanr, char mode)
185 {
186 	if (dmanr<=3)
187 		dma_outb(mode | dmanr,  DMA1_MODE_REG);
188 	else
189 		dma_outb(mode | (dmanr&3),  DMA2_MODE_REG);
190 }
191 
192 /* Set only the page register bits of the transfer address.
193  * This is used for successive transfers when we know the contents of
194  * the lower 16 bits of the DMA current address register, but a 64k boundary
195  * may have been crossed.
196  */
set_dma_page(unsigned int dmanr,char pagenr)197 static __inline__ void set_dma_page(unsigned int dmanr, char pagenr)
198 {
199 	switch(dmanr) {
200 		case 0:
201 			dma_outb(pagenr, DMA_PAGE_0);
202 			break;
203 		case 1:
204 			dma_outb(pagenr, DMA_PAGE_1);
205 			break;
206 		case 2:
207 			dma_outb(pagenr, DMA_PAGE_2);
208 			break;
209 		case 3:
210 			dma_outb(pagenr, DMA_PAGE_3);
211 			break;
212 		case 5:
213 			dma_outb(pagenr & 0xfe, DMA_PAGE_5);
214 			break;
215 		case 6:
216 			dma_outb(pagenr & 0xfe, DMA_PAGE_6);
217 			break;
218 		case 7:
219 			dma_outb(pagenr & 0xfe, DMA_PAGE_7);
220 			break;
221 	}
222 }
223 
224 
225 /* Set transfer address & page bits for specific DMA channel.
226  * Assumes dma flipflop is clear.
227  */
set_dma_addr(unsigned int dmanr,unsigned int a)228 static __inline__ void set_dma_addr(unsigned int dmanr, unsigned int a)
229 {
230 	set_dma_page(dmanr, a>>16);
231 	if (dmanr <= 3)  {
232 	    dma_outb( a & 0xff, ((dmanr&3)<<1) + IO_DMA1_BASE );
233             dma_outb( (a>>8) & 0xff, ((dmanr&3)<<1) + IO_DMA1_BASE );
234 	}  else  {
235 	    dma_outb( (a>>1) & 0xff, ((dmanr&3)<<2) + IO_DMA2_BASE );
236 	    dma_outb( (a>>9) & 0xff, ((dmanr&3)<<2) + IO_DMA2_BASE );
237 	}
238 }
239 
240 
241 /* Set transfer size (max 64k for DMA0..3, 128k for DMA5..7) for
242  * a specific DMA channel.
243  * You must ensure the parameters are valid.
244  * NOTE: from a manual: "the number of transfers is one more
245  * than the initial word count"! This is taken into account.
246  * Assumes dma flip-flop is clear.
247  * NOTE 2: "count" represents _bytes_ and must be even for channels 5-7.
248  */
set_dma_count(unsigned int dmanr,unsigned int count)249 static __inline__ void set_dma_count(unsigned int dmanr, unsigned int count)
250 {
251         count--;
252 	if (dmanr <= 3)  {
253 	    dma_outb( count & 0xff, ((dmanr&3)<<1) + 1 + IO_DMA1_BASE );
254 	    dma_outb( (count>>8) & 0xff, ((dmanr&3)<<1) + 1 + IO_DMA1_BASE );
255         } else {
256 	    dma_outb( (count>>1) & 0xff, ((dmanr&3)<<2) + 2 + IO_DMA2_BASE );
257 	    dma_outb( (count>>9) & 0xff, ((dmanr&3)<<2) + 2 + IO_DMA2_BASE );
258         }
259 }
260 
261 
262 /* Get DMA residue count. After a DMA transfer, this
263  * should return zero. Reading this while a DMA transfer is
264  * still in progress will return unpredictable results.
265  * If called before the channel has been used, it may return 1.
266  * Otherwise, it returns the number of _bytes_ left to transfer.
267  *
268  * Assumes DMA flip-flop is clear.
269  */
get_dma_residue(unsigned int dmanr)270 static __inline__ int get_dma_residue(unsigned int dmanr)
271 {
272 	unsigned int io_port = (dmanr<=3)? ((dmanr&3)<<1) + 1 + IO_DMA1_BASE
273 					 : ((dmanr&3)<<2) + 2 + IO_DMA2_BASE;
274 
275 	/* using short to get 16-bit wrap around */
276 	unsigned short count;
277 
278 	count = 1 + dma_inb(io_port);
279 	count += dma_inb(io_port) << 8;
280 
281 	return (dmanr<=3)? count : (count<<1);
282 }
283 
284 
285 /* These are in kernel/dma.c: */
286 extern int request_dma(unsigned int dmanr, const char * device_id);	/* reserve a DMA channel */
287 extern void free_dma(unsigned int dmanr);	/* release it again */
288 
289 /* From PCI */
290 
291 #ifdef CONFIG_PCI
292 extern int isa_dma_bridge_buggy;
293 #else
294 #define isa_dma_bridge_buggy 	(0)
295 #endif
296 
297 #endif /* _ASM_DMA_H */
298