1<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" 2 "http://www.w3.org/TR/html4/strict.dtd"> 3<html> 4<head> 5 <meta http-equiv="Content-Type" content="text/html; charset=utf-8"> 6 <title>Writing an LLVM Pass</title> 7 <link rel="stylesheet" href="_static/llvm.css" type="text/css"> 8</head> 9<body> 10 11<h1> 12 Writing an LLVM Pass 13</h1> 14 15<ol> 16 <li><a href="#introduction">Introduction - What is a pass?</a></li> 17 <li><a href="#quickstart">Quick Start - Writing hello world</a> 18 <ul> 19 <li><a href="#makefile">Setting up the build environment</a></li> 20 <li><a href="#basiccode">Basic code required</a></li> 21 <li><a href="#running">Running a pass with <tt>opt</tt></a></li> 22 </ul></li> 23 <li><a href="#passtype">Pass classes and requirements</a> 24 <ul> 25 <li><a href="#ImmutablePass">The <tt>ImmutablePass</tt> class</a></li> 26 <li><a href="#ModulePass">The <tt>ModulePass</tt> class</a> 27 <ul> 28 <li><a href="#runOnModule">The <tt>runOnModule</tt> method</a></li> 29 </ul></li> 30 <li><a href="#CallGraphSCCPass">The <tt>CallGraphSCCPass</tt> class</a> 31 <ul> 32 <li><a href="#doInitialization_scc">The <tt>doInitialization(CallGraph 33 &)</tt> method</a></li> 34 <li><a href="#runOnSCC">The <tt>runOnSCC</tt> method</a></li> 35 <li><a href="#doFinalization_scc">The <tt>doFinalization(CallGraph 36 &)</tt> method</a></li> 37 </ul></li> 38 <li><a href="#FunctionPass">The <tt>FunctionPass</tt> class</a> 39 <ul> 40 <li><a href="#doInitialization_mod">The <tt>doInitialization(Module 41 &)</tt> method</a></li> 42 <li><a href="#runOnFunction">The <tt>runOnFunction</tt> method</a></li> 43 <li><a href="#doFinalization_mod">The <tt>doFinalization(Module 44 &)</tt> method</a></li> 45 </ul></li> 46 <li><a href="#LoopPass">The <tt>LoopPass</tt> class</a> 47 <ul> 48 <li><a href="#doInitialization_loop">The <tt>doInitialization(Loop *, 49 LPPassManager &)</tt> method</a></li> 50 <li><a href="#runOnLoop">The <tt>runOnLoop</tt> method</a></li> 51 <li><a href="#doFinalization_loop">The <tt>doFinalization() 52 </tt> method</a></li> 53 </ul></li> 54 <li><a href="#RegionPass">The <tt>RegionPass</tt> class</a> 55 <ul> 56 <li><a href="#doInitialization_region">The <tt>doInitialization(Region *, 57 RGPassManager &)</tt> method</a></li> 58 <li><a href="#runOnRegion">The <tt>runOnRegion</tt> method</a></li> 59 <li><a href="#doFinalization_region">The <tt>doFinalization() 60 </tt> method</a></li> 61 </ul></li> 62 <li><a href="#BasicBlockPass">The <tt>BasicBlockPass</tt> class</a> 63 <ul> 64 <li><a href="#doInitialization_fn">The <tt>doInitialization(Function 65 &)</tt> method</a></li> 66 <li><a href="#runOnBasicBlock">The <tt>runOnBasicBlock</tt> 67 method</a></li> 68 <li><a href="#doFinalization_fn">The <tt>doFinalization(Function 69 &)</tt> method</a></li> 70 </ul></li> 71 <li><a href="#MachineFunctionPass">The <tt>MachineFunctionPass</tt> 72 class</a> 73 <ul> 74 <li><a href="#runOnMachineFunction">The 75 <tt>runOnMachineFunction(MachineFunction &)</tt> method</a></li> 76 </ul></li> 77 </ul> 78 <li><a href="#registration">Pass Registration</a> 79 <ul> 80 <li><a href="#print">The <tt>print</tt> method</a></li> 81 </ul></li> 82 <li><a href="#interaction">Specifying interactions between passes</a> 83 <ul> 84 <li><a href="#getAnalysisUsage">The <tt>getAnalysisUsage</tt> 85 method</a></li> 86 <li><a href="#AU::addRequired">The <tt>AnalysisUsage::addRequired<></tt> and <tt>AnalysisUsage::addRequiredTransitive<></tt> methods</a></li> 87 <li><a href="#AU::addPreserved">The <tt>AnalysisUsage::addPreserved<></tt> method</a></li> 88 <li><a href="#AU::examples">Example implementations of <tt>getAnalysisUsage</tt></a></li> 89 <li><a href="#getAnalysis">The <tt>getAnalysis<></tt> and 90<tt>getAnalysisIfAvailable<></tt> methods</a></li> 91 </ul></li> 92 <li><a href="#analysisgroup">Implementing Analysis Groups</a> 93 <ul> 94 <li><a href="#agconcepts">Analysis Group Concepts</a></li> 95 <li><a href="#registerag">Using <tt>RegisterAnalysisGroup</tt></a></li> 96 </ul></li> 97 <li><a href="#passStatistics">Pass Statistics</a> 98 <li><a href="#passmanager">What PassManager does</a> 99 <ul> 100 <li><a href="#releaseMemory">The <tt>releaseMemory</tt> method</a></li> 101 </ul></li> 102 <li><a href="#registering">Registering dynamically loaded passes</a> 103 <ul> 104 <li><a href="#registering_existing">Using existing registries</a></li> 105 <li><a href="#registering_new">Creating new registries</a></li> 106 </ul></li> 107 <li><a href="#debughints">Using GDB with dynamically loaded passes</a> 108 <ul> 109 <li><a href="#breakpoint">Setting a breakpoint in your pass</a></li> 110 <li><a href="#debugmisc">Miscellaneous Problems</a></li> 111 </ul></li> 112 <li><a href="#future">Future extensions planned</a> 113 <ul> 114 <li><a href="#SMP">Multithreaded LLVM</a></li> 115 </ul></li> 116</ol> 117 118<div class="doc_author"> 119 <p>Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a> and 120 <a href="mailto:jlaskey@mac.com">Jim Laskey</a></p> 121</div> 122 123<!-- *********************************************************************** --> 124<h2> 125 <a name="introduction">Introduction - What is a pass?</a> 126</h2> 127<!-- *********************************************************************** --> 128 129<div> 130 131<p>The LLVM Pass Framework is an important part of the LLVM system, because LLVM 132passes are where most of the interesting parts of the compiler exist. Passes 133perform the transformations and optimizations that make up the compiler, they 134build the analysis results that are used by these transformations, and they are, 135above all, a structuring technique for compiler code.</p> 136 137<p>All LLVM passes are subclasses of the <tt><a 138href="http://llvm.org/doxygen/classllvm_1_1Pass.html">Pass</a></tt> 139class, which implement functionality by overriding virtual methods inherited 140from <tt>Pass</tt>. Depending on how your pass works, you should inherit from 141the <tt><a href="#ModulePass">ModulePass</a></tt>, <tt><a 142href="#CallGraphSCCPass">CallGraphSCCPass</a></tt>, <tt><a 143href="#FunctionPass">FunctionPass</a></tt>, or <tt><a 144href="#LoopPass">LoopPass</a></tt>, or <tt><a 145href="#RegionPass">RegionPass</a></tt>, or <tt><a 146href="#BasicBlockPass">BasicBlockPass</a></tt> classes, which gives the system 147more information about what your pass does, and how it can be combined with 148other passes. One of the main features of the LLVM Pass Framework is that it 149schedules passes to run in an efficient way based on the constraints that your 150pass meets (which are indicated by which class they derive from).</p> 151 152<p>We start by showing you how to construct a pass, everything from setting up 153the code, to compiling, loading, and executing it. After the basics are down, 154more advanced features are discussed.</p> 155 156</div> 157 158<!-- *********************************************************************** --> 159<h2> 160 <a name="quickstart">Quick Start - Writing hello world</a> 161</h2> 162<!-- *********************************************************************** --> 163 164<div> 165 166<p>Here we describe how to write the "hello world" of passes. The "Hello" pass 167is designed to simply print out the name of non-external functions that exist in 168the program being compiled. It does not modify the program at all, it just 169inspects it. The source code and files for this pass are available in the LLVM 170source tree in the <tt>lib/Transforms/Hello</tt> directory.</p> 171 172<!-- ======================================================================= --> 173<h3> 174 <a name="makefile">Setting up the build environment</a> 175</h3> 176 177<div> 178 179 <p>First, configure and build LLVM. This needs to be done directly inside the 180 LLVM source tree rather than in a separate objects directory. 181 Next, you need to create a new directory somewhere in the LLVM source 182 base. For this example, we'll assume that you made 183 <tt>lib/Transforms/Hello</tt>. Finally, you must set up a build script 184 (Makefile) that will compile the source code for the new pass. To do this, 185 copy the following into <tt>Makefile</tt>:</p> 186 <hr> 187 188<div class="doc_code"><pre> 189# Makefile for hello pass 190 191# Path to top level of LLVM hierarchy 192LEVEL = ../../.. 193 194# Name of the library to build 195LIBRARYNAME = Hello 196 197# Make the shared library become a loadable module so the tools can 198# dlopen/dlsym on the resulting library. 199LOADABLE_MODULE = 1 200 201# Include the makefile implementation stuff 202include $(LEVEL)/Makefile.common 203</pre></div> 204 205<p>This makefile specifies that all of the <tt>.cpp</tt> files in the current 206directory are to be compiled and linked together into a shared object 207<tt>$(LEVEL)/Debug+Asserts/lib/Hello.so</tt> that can be dynamically loaded by 208the <tt>opt</tt> or <tt>bugpoint</tt> tools via their <tt>-load</tt> options. 209If your operating system uses a suffix other than .so (such as windows or 210Mac OS/X), the appropriate extension will be used.</p> 211 212<p>If you are used CMake to build LLVM, see 213<a href="CMake.html#passdev">Developing an LLVM pass with CMake</a>.</p> 214 215<p>Now that we have the build scripts set up, we just need to write the code for 216the pass itself.</p> 217 218</div> 219 220<!-- ======================================================================= --> 221<h3> 222 <a name="basiccode">Basic code required</a> 223</h3> 224 225<div> 226 227<p>Now that we have a way to compile our new pass, we just have to write it. 228Start out with:</p> 229 230<div class="doc_code"> 231<pre> 232<b>#include</b> "<a href="http://llvm.org/doxygen/Pass_8h-source.html">llvm/Pass.h</a>" 233<b>#include</b> "<a href="http://llvm.org/doxygen/Function_8h-source.html">llvm/Function.h</a>" 234<b>#include</b> "<a href="http://llvm.org/doxygen/raw__ostream_8h.html">llvm/Support/raw_ostream.h</a>" 235</pre> 236</div> 237 238<p>Which are needed because we are writing a <tt><a 239href="http://llvm.org/doxygen/classllvm_1_1Pass.html">Pass</a></tt>, 240we are operating on <tt><a 241href="http://llvm.org/doxygen/classllvm_1_1Function.html">Function</a></tt>'s, 242and we will be doing some printing.</p> 243 244<p>Next we have:</p> 245 246<div class="doc_code"> 247<pre> 248<b>using namespace llvm;</b> 249</pre> 250</div> 251 252<p>... which is required because the functions from the include files 253live in the llvm namespace.</p> 254 255<p>Next we have:</p> 256 257<div class="doc_code"> 258<pre> 259<b>namespace</b> { 260</pre> 261</div> 262 263<p>... which starts out an anonymous namespace. Anonymous namespaces are to C++ 264what the "<tt>static</tt>" keyword is to C (at global scope). It makes the 265things declared inside of the anonymous namespace visible only to the current 266file. If you're not familiar with them, consult a decent C++ book for more 267information.</p> 268 269<p>Next, we declare our pass itself:</p> 270 271<div class="doc_code"> 272<pre> 273 <b>struct</b> Hello : <b>public</b> <a href="#FunctionPass">FunctionPass</a> { 274</pre> 275</div> 276 277<p>This declares a "<tt>Hello</tt>" class that is a subclass of <tt><a 278href="http://llvm.org/doxygen/classllvm_1_1FunctionPass.html">FunctionPass</a></tt>. 279The different builtin pass subclasses are described in detail <a 280href="#passtype">later</a>, but for now, know that <a 281href="#FunctionPass"><tt>FunctionPass</tt></a>'s operate on a function at a 282time.</p> 283 284<div class="doc_code"> 285<pre> 286 static char ID; 287 Hello() : FunctionPass(ID) {} 288</pre> 289</div> 290 291<p>This declares pass identifier used by LLVM to identify pass. This allows LLVM 292to avoid using expensive C++ runtime information.</p> 293 294<div class="doc_code"> 295<pre> 296 <b>virtual bool</b> <a href="#runOnFunction">runOnFunction</a>(Function &F) { 297 errs() << "<i>Hello: </i>"; 298 errs().write_escaped(F.getName()) << "\n"; 299 <b>return false</b>; 300 } 301 }; <i>// end of struct Hello</i> 302} <i>// end of anonymous namespace</i> 303</pre> 304</div> 305 306<p>We declare a "<a href="#runOnFunction"><tt>runOnFunction</tt></a>" method, 307which overloads an abstract virtual method inherited from <a 308href="#FunctionPass"><tt>FunctionPass</tt></a>. This is where we are supposed 309to do our thing, so we just print out our message with the name of each 310function.</p> 311 312<div class="doc_code"> 313<pre> 314char Hello::ID = 0; 315</pre> 316</div> 317 318<p>We initialize pass ID here. LLVM uses ID's address to identify a pass, so 319initialization value is not important.</p> 320 321<div class="doc_code"> 322<pre> 323static RegisterPass<Hello> X("<i>hello</i>", "<i>Hello World Pass</i>", 324 false /* Only looks at CFG */, 325 false /* Analysis Pass */); 326</pre> 327</div> 328 329<p>Lastly, we <a href="#registration">register our class</a> <tt>Hello</tt>, 330giving it a command line argument "<tt>hello</tt>", and a name "<tt>Hello World 331Pass</tt>". The last two arguments describe its behavior: if a pass walks CFG 332without modifying it then the third argument is set to <tt>true</tt>; if a pass 333is an analysis pass, for example dominator tree pass, then <tt>true</tt> is 334supplied as the fourth argument.</p> 335 336<p>As a whole, the <tt>.cpp</tt> file looks like:</p> 337 338<div class="doc_code"> 339<pre> 340<b>#include</b> "<a href="http://llvm.org/doxygen/Pass_8h-source.html">llvm/Pass.h</a>" 341<b>#include</b> "<a href="http://llvm.org/doxygen/Function_8h-source.html">llvm/Function.h</a>" 342<b>#include</b> "<a href="http://llvm.org/doxygen/raw__ostream_8h.html">llvm/Support/raw_ostream.h</a>" 343 344<b>using namespace llvm;</b> 345 346<b>namespace</b> { 347 <b>struct Hello</b> : <b>public</b> <a href="#FunctionPass">FunctionPass</a> { 348 349 static char ID; 350 Hello() : FunctionPass(ID) {} 351 352 <b>virtual bool</b> <a href="#runOnFunction">runOnFunction</a>(Function &F) { 353 errs() << "<i>Hello: </i>"; 354 errs().write_escaped(F.getName()) << '\n'; 355 <b>return false</b>; 356 } 357 358 }; 359} 360 361char Hello::ID = 0; 362static RegisterPass<Hello> X("hello", "Hello World Pass", false, false); 363</pre> 364</div> 365 366<p>Now that it's all together, compile the file with a simple "<tt>gmake</tt>" 367command in the local directory and you should get a new file 368"<tt>Debug+Asserts/lib/Hello.so</tt>" under the top level directory of the LLVM 369source tree (not in the local directory). Note that everything in this file is 370contained in an anonymous namespace — this reflects the fact that passes 371are self contained units that do not need external interfaces (although they can 372have them) to be useful.</p> 373 374</div> 375 376<!-- ======================================================================= --> 377<h3> 378 <a name="running">Running a pass with <tt>opt</tt></a> 379</h3> 380 381<div> 382 383<p>Now that you have a brand new shiny shared object file, we can use the 384<tt>opt</tt> command to run an LLVM program through your pass. Because you 385registered your pass with <tt>RegisterPass</tt>, you will be able to 386use the <tt>opt</tt> tool to access it, once loaded.</p> 387 388<p>To test it, follow the example at the end of the <a 389href="GettingStarted.html">Getting Started Guide</a> to compile "Hello World" to 390LLVM. We can now run the bitcode file (<tt>hello.bc</tt>) for the program 391through our transformation like this (or course, any bitcode file will 392work):</p> 393 394<div class="doc_code"><pre> 395$ opt -load ../../../Debug+Asserts/lib/Hello.so -hello < hello.bc > /dev/null 396Hello: __main 397Hello: puts 398Hello: main 399</pre></div> 400 401<p>The '<tt>-load</tt>' option specifies that '<tt>opt</tt>' should load your 402pass as a shared object, which makes '<tt>-hello</tt>' a valid command line 403argument (which is one reason you need to <a href="#registration">register your 404pass</a>). Because the hello pass does not modify the program in any 405interesting way, we just throw away the result of <tt>opt</tt> (sending it to 406<tt>/dev/null</tt>).</p> 407 408<p>To see what happened to the other string you registered, try running 409<tt>opt</tt> with the <tt>-help</tt> option:</p> 410 411<div class="doc_code"><pre> 412$ opt -load ../../../Debug+Asserts/lib/Hello.so -help 413OVERVIEW: llvm .bc -> .bc modular optimizer 414 415USAGE: opt [options] <input bitcode> 416 417OPTIONS: 418 Optimizations available: 419... 420 -globalopt - Global Variable Optimizer 421 -globalsmodref-aa - Simple mod/ref analysis for globals 422 -gvn - Global Value Numbering 423 <b>-hello - Hello World Pass</b> 424 -indvars - Induction Variable Simplification 425 -inline - Function Integration/Inlining 426 -insert-edge-profiling - Insert instrumentation for edge profiling 427... 428</pre></div> 429 430<p>The pass name gets added as the information string for your pass, giving some 431documentation to users of <tt>opt</tt>. Now that you have a working pass, you 432would go ahead and make it do the cool transformations you want. Once you get 433it all working and tested, it may become useful to find out how fast your pass 434is. The <a href="#passManager"><tt>PassManager</tt></a> provides a nice command 435line option (<tt>--time-passes</tt>) that allows you to get information about 436the execution time of your pass along with the other passes you queue up. For 437example:</p> 438 439<div class="doc_code"><pre> 440$ opt -load ../../../Debug+Asserts/lib/Hello.so -hello -time-passes < hello.bc > /dev/null 441Hello: __main 442Hello: puts 443Hello: main 444=============================================================================== 445 ... Pass execution timing report ... 446=============================================================================== 447 Total Execution Time: 0.02 seconds (0.0479059 wall clock) 448 449 ---User Time--- --System Time-- --User+System-- ---Wall Time--- --- Pass Name --- 450 0.0100 (100.0%) 0.0000 ( 0.0%) 0.0100 ( 50.0%) 0.0402 ( 84.0%) Bitcode Writer 451 0.0000 ( 0.0%) 0.0100 (100.0%) 0.0100 ( 50.0%) 0.0031 ( 6.4%) Dominator Set Construction 452 0.0000 ( 0.0%) 0.0000 ( 0.0%) 0.0000 ( 0.0%) 0.0013 ( 2.7%) Module Verifier 453 <b> 0.0000 ( 0.0%) 0.0000 ( 0.0%) 0.0000 ( 0.0%) 0.0033 ( 6.9%) Hello World Pass</b> 454 0.0100 (100.0%) 0.0100 (100.0%) 0.0200 (100.0%) 0.0479 (100.0%) TOTAL 455</pre></div> 456 457<p>As you can see, our implementation above is pretty fast :). The additional 458passes listed are automatically inserted by the '<tt>opt</tt>' tool to verify 459that the LLVM emitted by your pass is still valid and well formed LLVM, which 460hasn't been broken somehow.</p> 461 462<p>Now that you have seen the basics of the mechanics behind passes, we can talk 463about some more details of how they work and how to use them.</p> 464 465</div> 466 467</div> 468 469<!-- *********************************************************************** --> 470<h2> 471 <a name="passtype">Pass classes and requirements</a> 472</h2> 473<!-- *********************************************************************** --> 474 475<div> 476 477<p>One of the first things that you should do when designing a new pass is to 478decide what class you should subclass for your pass. The <a 479href="#basiccode">Hello World</a> example uses the <tt><a 480href="#FunctionPass">FunctionPass</a></tt> class for its implementation, but we 481did not discuss why or when this should occur. Here we talk about the classes 482available, from the most general to the most specific.</p> 483 484<p>When choosing a superclass for your Pass, you should choose the <b>most 485specific</b> class possible, while still being able to meet the requirements 486listed. This gives the LLVM Pass Infrastructure information necessary to 487optimize how passes are run, so that the resultant compiler isn't unnecessarily 488slow.</p> 489 490<!-- ======================================================================= --> 491<h3> 492 <a name="ImmutablePass">The <tt>ImmutablePass</tt> class</a> 493</h3> 494 495<div> 496 497<p>The most plain and boring type of pass is the "<tt><a 498href="http://llvm.org/doxygen/classllvm_1_1ImmutablePass.html">ImmutablePass</a></tt>" 499class. This pass type is used for passes that do not have to be run, do not 500change state, and never need to be updated. This is not a normal type of 501transformation or analysis, but can provide information about the current 502compiler configuration.</p> 503 504<p>Although this pass class is very infrequently used, it is important for 505providing information about the current target machine being compiled for, and 506other static information that can affect the various transformations.</p> 507 508<p><tt>ImmutablePass</tt>es never invalidate other transformations, are never 509invalidated, and are never "run".</p> 510 511</div> 512 513<!-- ======================================================================= --> 514<h3> 515 <a name="ModulePass">The <tt>ModulePass</tt> class</a> 516</h3> 517 518<div> 519 520<p>The "<tt><a 521href="http://llvm.org/doxygen/classllvm_1_1ModulePass.html">ModulePass</a></tt>" 522class is the most general of all superclasses that you can use. Deriving from 523<tt>ModulePass</tt> indicates that your pass uses the entire program as a unit, 524referring to function bodies in no predictable order, or adding and removing 525functions. Because nothing is known about the behavior of <tt>ModulePass</tt> 526subclasses, no optimization can be done for their execution.</p> 527 528<p>A module pass can use function level passes (e.g. dominators) using 529the getAnalysis interface 530<tt>getAnalysis<DominatorTree>(llvm::Function *)</tt> to provide the 531function to retrieve analysis result for, if the function pass does not require 532any module or immutable passes. Note that this can only be done for functions for which the 533analysis ran, e.g. in the case of dominators you should only ask for the 534DominatorTree for function definitions, not declarations.</p> 535 536<p>To write a correct <tt>ModulePass</tt> subclass, derive from 537<tt>ModulePass</tt> and overload the <tt>runOnModule</tt> method with the 538following signature:</p> 539 540<!-- _______________________________________________________________________ --> 541<h4> 542 <a name="runOnModule">The <tt>runOnModule</tt> method</a> 543</h4> 544 545<div> 546 547<div class="doc_code"><pre> 548<b>virtual bool</b> runOnModule(Module &M) = 0; 549</pre></div> 550 551<p>The <tt>runOnModule</tt> method performs the interesting work of the pass. 552It should return true if the module was modified by the transformation and 553false otherwise.</p> 554 555</div> 556 557</div> 558 559<!-- ======================================================================= --> 560<h3> 561 <a name="CallGraphSCCPass">The <tt>CallGraphSCCPass</tt> class</a> 562</h3> 563 564<div> 565 566<p>The "<tt><a 567href="http://llvm.org/doxygen/classllvm_1_1CallGraphSCCPass.html">CallGraphSCCPass</a></tt>" 568is used by passes that need to traverse the program bottom-up on the call graph 569(callees before callers). Deriving from CallGraphSCCPass provides some 570mechanics for building and traversing the CallGraph, but also allows the system 571to optimize execution of CallGraphSCCPass's. If your pass meets the 572requirements outlined below, and doesn't meet the requirements of a <tt><a 573href="#FunctionPass">FunctionPass</a></tt> or <tt><a 574href="#BasicBlockPass">BasicBlockPass</a></tt>, you should derive from 575<tt>CallGraphSCCPass</tt>.</p> 576 577<p><b>TODO</b>: explain briefly what SCC, Tarjan's algo, and B-U mean.</p> 578 579<p>To be explicit, <tt>CallGraphSCCPass</tt> subclasses are:</p> 580 581<ol> 582 583<li>... <em>not allowed</em> to inspect or modify any <tt>Function</tt>s other 584than those in the current SCC and the direct callers and direct callees of the 585SCC.</li> 586 587<li>... <em>required</em> to preserve the current CallGraph object, updating it 588to reflect any changes made to the program.</li> 589 590<li>... <em>not allowed</em> to add or remove SCC's from the current Module, 591though they may change the contents of an SCC.</li> 592 593<li>... <em>allowed</em> to add or remove global variables from the current 594Module.</li> 595 596<li>... <em>allowed</em> to maintain state across invocations of 597 <a href="#runOnSCC"><tt>runOnSCC</tt></a> (including global data).</li> 598</ol> 599 600<p>Implementing a <tt>CallGraphSCCPass</tt> is slightly tricky in some cases 601because it has to handle SCCs with more than one node in it. All of the virtual 602methods described below should return true if they modified the program, or 603false if they didn't.</p> 604 605<!-- _______________________________________________________________________ --> 606<h4> 607 <a name="doInitialization_scc"> 608 The <tt>doInitialization(CallGraph &)</tt> method 609 </a> 610</h4> 611 612<div> 613 614<div class="doc_code"><pre> 615<b>virtual bool</b> doInitialization(CallGraph &CG); 616</pre></div> 617 618<p>The <tt>doIninitialize</tt> method is allowed to do most of the things that 619<tt>CallGraphSCCPass</tt>'s are not allowed to do. They can add and remove 620functions, get pointers to functions, etc. The <tt>doInitialization</tt> method 621is designed to do simple initialization type of stuff that does not depend on 622the SCCs being processed. The <tt>doInitialization</tt> method call is not 623scheduled to overlap with any other pass executions (thus it should be very 624fast).</p> 625 626</div> 627 628<!-- _______________________________________________________________________ --> 629<h4> 630 <a name="runOnSCC">The <tt>runOnSCC</tt> method</a> 631</h4> 632 633<div> 634 635<div class="doc_code"><pre> 636<b>virtual bool</b> runOnSCC(CallGraphSCC &SCC) = 0; 637</pre></div> 638 639<p>The <tt>runOnSCC</tt> method performs the interesting work of the pass, and 640should return true if the module was modified by the transformation, false 641otherwise.</p> 642 643</div> 644 645<!-- _______________________________________________________________________ --> 646<h4> 647 <a name="doFinalization_scc"> 648 The <tt>doFinalization(CallGraph &)</tt> method 649 </a> 650</h4> 651 652<div> 653 654<div class="doc_code"><pre> 655<b>virtual bool</b> doFinalization(CallGraph &CG); 656</pre></div> 657 658<p>The <tt>doFinalization</tt> method is an infrequently used method that is 659called when the pass framework has finished calling <a 660href="#runOnFunction"><tt>runOnFunction</tt></a> for every function in the 661program being compiled.</p> 662 663</div> 664 665</div> 666 667<!-- ======================================================================= --> 668<h3> 669 <a name="FunctionPass">The <tt>FunctionPass</tt> class</a> 670</h3> 671 672<div> 673 674<p>In contrast to <tt>ModulePass</tt> subclasses, <tt><a 675href="http://llvm.org/doxygen/classllvm_1_1Pass.html">FunctionPass</a></tt> 676subclasses do have a predictable, local behavior that can be expected by the 677system. All <tt>FunctionPass</tt> execute on each function in the program 678independent of all of the other functions in the program. 679<tt>FunctionPass</tt>'s do not require that they are executed in a particular 680order, and <tt>FunctionPass</tt>'s do not modify external functions.</p> 681 682<p>To be explicit, <tt>FunctionPass</tt> subclasses are not allowed to:</p> 683 684<ol> 685<li>Modify a Function other than the one currently being processed.</li> 686<li>Add or remove Function's from the current Module.</li> 687<li>Add or remove global variables from the current Module.</li> 688<li>Maintain state across invocations of 689 <a href="#runOnFunction"><tt>runOnFunction</tt></a> (including global data)</li> 690</ol> 691 692<p>Implementing a <tt>FunctionPass</tt> is usually straightforward (See the <a 693href="#basiccode">Hello World</a> pass for example). <tt>FunctionPass</tt>'s 694may overload three virtual methods to do their work. All of these methods 695should return true if they modified the program, or false if they didn't.</p> 696 697<!-- _______________________________________________________________________ --> 698<h4> 699 <a name="doInitialization_mod"> 700 The <tt>doInitialization(Module &)</tt> method 701 </a> 702</h4> 703 704<div> 705 706<div class="doc_code"><pre> 707<b>virtual bool</b> doInitialization(Module &M); 708</pre></div> 709 710<p>The <tt>doIninitialize</tt> method is allowed to do most of the things that 711<tt>FunctionPass</tt>'s are not allowed to do. They can add and remove 712functions, get pointers to functions, etc. The <tt>doInitialization</tt> method 713is designed to do simple initialization type of stuff that does not depend on 714the functions being processed. The <tt>doInitialization</tt> method call is not 715scheduled to overlap with any other pass executions (thus it should be very 716fast).</p> 717 718<p>A good example of how this method should be used is the <a 719href="http://llvm.org/doxygen/LowerAllocations_8cpp-source.html">LowerAllocations</a> 720pass. This pass converts <tt>malloc</tt> and <tt>free</tt> instructions into 721platform dependent <tt>malloc()</tt> and <tt>free()</tt> function calls. It 722uses the <tt>doInitialization</tt> method to get a reference to the malloc and 723free functions that it needs, adding prototypes to the module if necessary.</p> 724 725</div> 726 727<!-- _______________________________________________________________________ --> 728<h4> 729 <a name="runOnFunction">The <tt>runOnFunction</tt> method</a> 730</h4> 731 732<div> 733 734<div class="doc_code"><pre> 735<b>virtual bool</b> runOnFunction(Function &F) = 0; 736</pre></div><p> 737 738<p>The <tt>runOnFunction</tt> method must be implemented by your subclass to do 739the transformation or analysis work of your pass. As usual, a true value should 740be returned if the function is modified.</p> 741 742</div> 743 744<!-- _______________________________________________________________________ --> 745<h4> 746 <a name="doFinalization_mod"> 747 The <tt>doFinalization(Module &)</tt> method 748 </a> 749</h4> 750 751<div> 752 753<div class="doc_code"><pre> 754<b>virtual bool</b> doFinalization(Module &M); 755</pre></div> 756 757<p>The <tt>doFinalization</tt> method is an infrequently used method that is 758called when the pass framework has finished calling <a 759href="#runOnFunction"><tt>runOnFunction</tt></a> for every function in the 760program being compiled.</p> 761 762</div> 763 764</div> 765 766<!-- ======================================================================= --> 767<h3> 768 <a name="LoopPass">The <tt>LoopPass</tt> class </a> 769</h3> 770 771<div> 772 773<p> All <tt>LoopPass</tt> execute on each loop in the function independent of 774all of the other loops in the function. <tt>LoopPass</tt> processes loops in 775loop nest order such that outer most loop is processed last. </p> 776 777<p> <tt>LoopPass</tt> subclasses are allowed to update loop nest using 778<tt>LPPassManager</tt> interface. Implementing a loop pass is usually 779straightforward. <tt>LoopPass</tt>'s may overload three virtual methods to 780do their work. All these methods should return true if they modified the 781program, or false if they didn't. </p> 782 783<!-- _______________________________________________________________________ --> 784<h4> 785 <a name="doInitialization_loop"> 786 The <tt>doInitialization(Loop *,LPPassManager &)</tt> method 787 </a> 788</h4> 789 790<div> 791 792<div class="doc_code"><pre> 793<b>virtual bool</b> doInitialization(Loop *, LPPassManager &LPM); 794</pre></div> 795 796<p>The <tt>doInitialization</tt> method is designed to do simple initialization 797type of stuff that does not depend on the functions being processed. The 798<tt>doInitialization</tt> method call is not scheduled to overlap with any 799other pass executions (thus it should be very fast). LPPassManager 800interface should be used to access Function or Module level analysis 801information.</p> 802 803</div> 804 805 806<!-- _______________________________________________________________________ --> 807<h4> 808 <a name="runOnLoop">The <tt>runOnLoop</tt> method</a> 809</h4> 810 811<div> 812 813<div class="doc_code"><pre> 814<b>virtual bool</b> runOnLoop(Loop *, LPPassManager &LPM) = 0; 815</pre></div><p> 816 817<p>The <tt>runOnLoop</tt> method must be implemented by your subclass to do 818the transformation or analysis work of your pass. As usual, a true value should 819be returned if the function is modified. <tt>LPPassManager</tt> interface 820should be used to update loop nest.</p> 821 822</div> 823 824<!-- _______________________________________________________________________ --> 825<h4> 826 <a name="doFinalization_loop">The <tt>doFinalization()</tt> method</a> 827</h4> 828 829<div> 830 831<div class="doc_code"><pre> 832<b>virtual bool</b> doFinalization(); 833</pre></div> 834 835<p>The <tt>doFinalization</tt> method is an infrequently used method that is 836called when the pass framework has finished calling <a 837href="#runOnLoop"><tt>runOnLoop</tt></a> for every loop in the 838program being compiled. </p> 839 840</div> 841 842</div> 843 844<!-- ======================================================================= --> 845<h3> 846 <a name="RegionPass">The <tt>RegionPass</tt> class </a> 847</h3> 848 849<div> 850 851<p> <tt>RegionPass</tt> is similar to <a href="#LoopPass"><tt>LoopPass</tt></a>, 852but executes on each single entry single exit region in the function. 853<tt>RegionPass</tt> processes regions in nested order such that the outer most 854region is processed last. </p> 855 856<p> <tt>RegionPass</tt> subclasses are allowed to update the region tree by using 857the <tt>RGPassManager</tt> interface. You may overload three virtual methods of 858<tt>RegionPass</tt> to implement your own region pass. All these 859methods should return true if they modified the program, or false if they didn not. 860</p> 861 862<!-- _______________________________________________________________________ --> 863<h4> 864 <a name="doInitialization_region"> 865 The <tt>doInitialization(Region *, RGPassManager &)</tt> method 866 </a> 867</h4> 868 869<div> 870 871<div class="doc_code"><pre> 872<b>virtual bool</b> doInitialization(Region *, RGPassManager &RGM); 873</pre></div> 874 875<p>The <tt>doInitialization</tt> method is designed to do simple initialization 876type of stuff that does not depend on the functions being processed. The 877<tt>doInitialization</tt> method call is not scheduled to overlap with any 878other pass executions (thus it should be very fast). RPPassManager 879interface should be used to access Function or Module level analysis 880information.</p> 881 882</div> 883 884 885<!-- _______________________________________________________________________ --> 886<h4> 887 <a name="runOnRegion">The <tt>runOnRegion</tt> method</a> 888</h4> 889 890<div> 891 892<div class="doc_code"><pre> 893<b>virtual bool</b> runOnRegion(Region *, RGPassManager &RGM) = 0; 894</pre></div><p> 895 896<p>The <tt>runOnRegion</tt> method must be implemented by your subclass to do 897the transformation or analysis work of your pass. As usual, a true value should 898be returned if the region is modified. <tt>RGPassManager</tt> interface 899should be used to update region tree.</p> 900 901</div> 902 903<!-- _______________________________________________________________________ --> 904<h4> 905 <a name="doFinalization_region">The <tt>doFinalization()</tt> method</a> 906</h4> 907 908<div> 909 910<div class="doc_code"><pre> 911<b>virtual bool</b> doFinalization(); 912</pre></div> 913 914<p>The <tt>doFinalization</tt> method is an infrequently used method that is 915called when the pass framework has finished calling <a 916href="#runOnRegion"><tt>runOnRegion</tt></a> for every region in the 917program being compiled. </p> 918 919</div> 920 921</div> 922 923<!-- ======================================================================= --> 924<h3> 925 <a name="BasicBlockPass">The <tt>BasicBlockPass</tt> class</a> 926</h3> 927 928<div> 929 930<p><tt>BasicBlockPass</tt>'s are just like <a 931href="#FunctionPass"><tt>FunctionPass</tt></a>'s, except that they must limit 932their scope of inspection and modification to a single basic block at a time. 933As such, they are <b>not</b> allowed to do any of the following:</p> 934 935<ol> 936<li>Modify or inspect any basic blocks outside of the current one</li> 937<li>Maintain state across invocations of 938 <a href="#runOnBasicBlock"><tt>runOnBasicBlock</tt></a></li> 939<li>Modify the control flow graph (by altering terminator instructions)</li> 940<li>Any of the things forbidden for 941 <a href="#FunctionPass"><tt>FunctionPass</tt></a>es.</li> 942</ol> 943 944<p><tt>BasicBlockPass</tt>es are useful for traditional local and "peephole" 945optimizations. They may override the same <a 946href="#doInitialization_mod"><tt>doInitialization(Module &)</tt></a> and <a 947href="#doFinalization_mod"><tt>doFinalization(Module &)</tt></a> methods that <a 948href="#FunctionPass"><tt>FunctionPass</tt></a>'s have, but also have the following virtual methods that may also be implemented:</p> 949 950<!-- _______________________________________________________________________ --> 951<h4> 952 <a name="doInitialization_fn"> 953 The <tt>doInitialization(Function &)</tt> method 954 </a> 955</h4> 956 957<div> 958 959<div class="doc_code"><pre> 960<b>virtual bool</b> doInitialization(Function &F); 961</pre></div> 962 963<p>The <tt>doIninitialize</tt> method is allowed to do most of the things that 964<tt>BasicBlockPass</tt>'s are not allowed to do, but that 965<tt>FunctionPass</tt>'s can. The <tt>doInitialization</tt> method is designed 966to do simple initialization that does not depend on the 967BasicBlocks being processed. The <tt>doInitialization</tt> method call is not 968scheduled to overlap with any other pass executions (thus it should be very 969fast).</p> 970 971</div> 972 973<!-- _______________________________________________________________________ --> 974<h4> 975 <a name="runOnBasicBlock">The <tt>runOnBasicBlock</tt> method</a> 976</h4> 977 978<div> 979 980<div class="doc_code"><pre> 981<b>virtual bool</b> runOnBasicBlock(BasicBlock &BB) = 0; 982</pre></div> 983 984<p>Override this function to do the work of the <tt>BasicBlockPass</tt>. This 985function is not allowed to inspect or modify basic blocks other than the 986parameter, and are not allowed to modify the CFG. A true value must be returned 987if the basic block is modified.</p> 988 989</div> 990 991<!-- _______________________________________________________________________ --> 992<h4> 993 <a name="doFinalization_fn"> 994 The <tt>doFinalization(Function &)</tt> method 995 </a> 996</h4> 997 998<div> 999 1000<div class="doc_code"><pre> 1001<b>virtual bool</b> doFinalization(Function &F); 1002</pre></div> 1003 1004<p>The <tt>doFinalization</tt> method is an infrequently used method that is 1005called when the pass framework has finished calling <a 1006href="#runOnBasicBlock"><tt>runOnBasicBlock</tt></a> for every BasicBlock in the 1007program being compiled. This can be used to perform per-function 1008finalization.</p> 1009 1010</div> 1011 1012</div> 1013 1014<!-- ======================================================================= --> 1015<h3> 1016 <a name="MachineFunctionPass">The <tt>MachineFunctionPass</tt> class</a> 1017</h3> 1018 1019<div> 1020 1021<p>A <tt>MachineFunctionPass</tt> is a part of the LLVM code generator that 1022executes on the machine-dependent representation of each LLVM function in the 1023program.</p> 1024 1025<p>Code generator passes are registered and initialized specially by 1026<tt>TargetMachine::addPassesToEmitFile</tt> and similar routines, so they 1027cannot generally be run from the <tt>opt</tt> or <tt>bugpoint</tt> 1028commands.</p> 1029 1030<p>A <tt>MachineFunctionPass</tt> is also a <tt>FunctionPass</tt>, so all 1031the restrictions that apply to a <tt>FunctionPass</tt> also apply to it. 1032<tt>MachineFunctionPass</tt>es also have additional restrictions. In particular, 1033<tt>MachineFunctionPass</tt>es are not allowed to do any of the following:</p> 1034 1035<ol> 1036<li>Modify or create any LLVM IR Instructions, BasicBlocks, Arguments, 1037 Functions, GlobalVariables, GlobalAliases, or Modules.</li> 1038<li>Modify a MachineFunction other than the one currently being processed.</li> 1039<li>Maintain state across invocations of <a 1040href="#runOnMachineFunction"><tt>runOnMachineFunction</tt></a> (including global 1041data)</li> 1042</ol> 1043 1044<!-- _______________________________________________________________________ --> 1045<h4> 1046 <a name="runOnMachineFunction"> 1047 The <tt>runOnMachineFunction(MachineFunction &MF)</tt> method 1048 </a> 1049</h4> 1050 1051<div> 1052 1053<div class="doc_code"><pre> 1054<b>virtual bool</b> runOnMachineFunction(MachineFunction &MF) = 0; 1055</pre></div> 1056 1057<p><tt>runOnMachineFunction</tt> can be considered the main entry point of a 1058<tt>MachineFunctionPass</tt>; that is, you should override this method to do the 1059work of your <tt>MachineFunctionPass</tt>.</p> 1060 1061<p>The <tt>runOnMachineFunction</tt> method is called on every 1062<tt>MachineFunction</tt> in a <tt>Module</tt>, so that the 1063<tt>MachineFunctionPass</tt> may perform optimizations on the machine-dependent 1064representation of the function. If you want to get at the LLVM <tt>Function</tt> 1065for the <tt>MachineFunction</tt> you're working on, use 1066<tt>MachineFunction</tt>'s <tt>getFunction()</tt> accessor method -- but 1067remember, you may not modify the LLVM <tt>Function</tt> or its contents from a 1068<tt>MachineFunctionPass</tt>.</p> 1069 1070</div> 1071 1072</div> 1073 1074</div> 1075 1076<!-- *********************************************************************** --> 1077<h2> 1078 <a name="registration">Pass registration</a> 1079</h2> 1080<!-- *********************************************************************** --> 1081 1082<div> 1083 1084<p>In the <a href="#basiccode">Hello World</a> example pass we illustrated how 1085pass registration works, and discussed some of the reasons that it is used and 1086what it does. Here we discuss how and why passes are registered.</p> 1087 1088<p>As we saw above, passes are registered with the <b><tt>RegisterPass</tt></b> 1089template. The template parameter is the name of the pass that is to be used on 1090the command line to specify that the pass should be added to a program (for 1091example, with <tt>opt</tt> or <tt>bugpoint</tt>). The first argument is the 1092name of the pass, which is to be used for the <tt>-help</tt> output of 1093programs, as 1094well as for debug output generated by the <tt>--debug-pass</tt> option.</p> 1095 1096<p>If you want your pass to be easily dumpable, you should 1097implement the virtual <tt>print</tt> method:</p> 1098 1099<!-- _______________________________________________________________________ --> 1100<h4> 1101 <a name="print">The <tt>print</tt> method</a> 1102</h4> 1103 1104<div> 1105 1106<div class="doc_code"><pre> 1107<b>virtual void</b> print(std::ostream &O, <b>const</b> Module *M) <b>const</b>; 1108</pre></div> 1109 1110<p>The <tt>print</tt> method must be implemented by "analyses" in order to print 1111a human readable version of the analysis results. This is useful for debugging 1112an analysis itself, as well as for other people to figure out how an analysis 1113works. Use the <tt>opt -analyze</tt> argument to invoke this method.</p> 1114 1115<p>The <tt>llvm::OStream</tt> parameter specifies the stream to write the results on, 1116and the <tt>Module</tt> parameter gives a pointer to the top level module of the 1117program that has been analyzed. Note however that this pointer may be null in 1118certain circumstances (such as calling the <tt>Pass::dump()</tt> from a 1119debugger), so it should only be used to enhance debug output, it should not be 1120depended on.</p> 1121 1122</div> 1123 1124</div> 1125 1126<!-- *********************************************************************** --> 1127<h2> 1128 <a name="interaction">Specifying interactions between passes</a> 1129</h2> 1130<!-- *********************************************************************** --> 1131 1132<div> 1133 1134<p>One of the main responsibilities of the <tt>PassManager</tt> is to make sure 1135that passes interact with each other correctly. Because <tt>PassManager</tt> 1136tries to <a href="#passmanager">optimize the execution of passes</a> it must 1137know how the passes interact with each other and what dependencies exist between 1138the various passes. To track this, each pass can declare the set of passes that 1139are required to be executed before the current pass, and the passes which are 1140invalidated by the current pass.</p> 1141 1142<p>Typically this functionality is used to require that analysis results are 1143computed before your pass is run. Running arbitrary transformation passes can 1144invalidate the computed analysis results, which is what the invalidation set 1145specifies. If a pass does not implement the <tt><a 1146href="#getAnalysisUsage">getAnalysisUsage</a></tt> method, it defaults to not 1147having any prerequisite passes, and invalidating <b>all</b> other passes.</p> 1148 1149<!-- _______________________________________________________________________ --> 1150<h4> 1151 <a name="getAnalysisUsage">The <tt>getAnalysisUsage</tt> method</a> 1152</h4> 1153 1154<div> 1155 1156<div class="doc_code"><pre> 1157<b>virtual void</b> getAnalysisUsage(AnalysisUsage &Info) <b>const</b>; 1158</pre></div> 1159 1160<p>By implementing the <tt>getAnalysisUsage</tt> method, the required and 1161invalidated sets may be specified for your transformation. The implementation 1162should fill in the <tt><a 1163href="http://llvm.org/doxygen/classllvm_1_1AnalysisUsage.html">AnalysisUsage</a></tt> 1164object with information about which passes are required and not invalidated. To 1165do this, a pass may call any of the following methods on the AnalysisUsage 1166object:</p> 1167</div> 1168 1169<!-- _______________________________________________________________________ --> 1170<h4> 1171 <a name="AU::addRequired"> 1172 The <tt>AnalysisUsage::addRequired<></tt> 1173 and <tt>AnalysisUsage::addRequiredTransitive<></tt> methods 1174 </a> 1175</h4> 1176 1177<div> 1178<p> 1179If your pass requires a previous pass to be executed (an analysis for example), 1180it can use one of these methods to arrange for it to be run before your pass. 1181LLVM has many different types of analyses and passes that can be required, 1182spanning the range from <tt>DominatorSet</tt> to <tt>BreakCriticalEdges</tt>. 1183Requiring <tt>BreakCriticalEdges</tt>, for example, guarantees that there will 1184be no critical edges in the CFG when your pass has been run. 1185</p> 1186 1187<p> 1188Some analyses chain to other analyses to do their job. For example, an <a 1189href="AliasAnalysis.html">AliasAnalysis</a> implementation is required to <a 1190href="AliasAnalysis.html#chaining">chain</a> to other alias analysis passes. In 1191cases where analyses chain, the <tt>addRequiredTransitive</tt> method should be 1192used instead of the <tt>addRequired</tt> method. This informs the PassManager 1193that the transitively required pass should be alive as long as the requiring 1194pass is. 1195</p> 1196</div> 1197 1198<!-- _______________________________________________________________________ --> 1199<h4> 1200 <a name="AU::addPreserved"> 1201 The <tt>AnalysisUsage::addPreserved<></tt> method 1202 </a> 1203</h4> 1204 1205<div> 1206<p> 1207One of the jobs of the PassManager is to optimize how and when analyses are run. 1208In particular, it attempts to avoid recomputing data unless it needs to. For 1209this reason, passes are allowed to declare that they preserve (i.e., they don't 1210invalidate) an existing analysis if it's available. For example, a simple 1211constant folding pass would not modify the CFG, so it can't possibly affect the 1212results of dominator analysis. By default, all passes are assumed to invalidate 1213all others. 1214</p> 1215 1216<p> 1217The <tt>AnalysisUsage</tt> class provides several methods which are useful in 1218certain circumstances that are related to <tt>addPreserved</tt>. In particular, 1219the <tt>setPreservesAll</tt> method can be called to indicate that the pass does 1220not modify the LLVM program at all (which is true for analyses), and the 1221<tt>setPreservesCFG</tt> method can be used by transformations that change 1222instructions in the program but do not modify the CFG or terminator instructions 1223(note that this property is implicitly set for <a 1224href="#BasicBlockPass">BasicBlockPass</a>'s). 1225</p> 1226 1227<p> 1228<tt>addPreserved</tt> is particularly useful for transformations like 1229<tt>BreakCriticalEdges</tt>. This pass knows how to update a small set of loop 1230and dominator related analyses if they exist, so it can preserve them, despite 1231the fact that it hacks on the CFG. 1232</p> 1233</div> 1234 1235<!-- _______________________________________________________________________ --> 1236<h4> 1237 <a name="AU::examples"> 1238 Example implementations of <tt>getAnalysisUsage</tt> 1239 </a> 1240</h4> 1241 1242<div> 1243 1244<div class="doc_code"><pre> 1245<i>// This example modifies the program, but does not modify the CFG</i> 1246<b>void</b> <a href="http://llvm.org/doxygen/structLICM.html">LICM</a>::getAnalysisUsage(AnalysisUsage &AU) <b>const</b> { 1247 AU.setPreservesCFG(); 1248 AU.addRequired<<a href="http://llvm.org/doxygen/classllvm_1_1LoopInfo.html">LoopInfo</a>>(); 1249} 1250</pre></div> 1251 1252</div> 1253 1254<!-- _______________________________________________________________________ --> 1255<h4> 1256 <a name="getAnalysis"> 1257 The <tt>getAnalysis<></tt> and 1258 <tt>getAnalysisIfAvailable<></tt> methods 1259 </a> 1260</h4> 1261 1262<div> 1263 1264<p>The <tt>Pass::getAnalysis<></tt> method is automatically inherited by 1265your class, providing you with access to the passes that you declared that you 1266required with the <a href="#getAnalysisUsage"><tt>getAnalysisUsage</tt></a> 1267method. It takes a single template argument that specifies which pass class you 1268want, and returns a reference to that pass. For example:</p> 1269 1270<div class="doc_code"><pre> 1271bool LICM::runOnFunction(Function &F) { 1272 LoopInfo &LI = getAnalysis<LoopInfo>(); 1273 ... 1274} 1275</pre></div> 1276 1277<p>This method call returns a reference to the pass desired. You may get a 1278runtime assertion failure if you attempt to get an analysis that you did not 1279declare as required in your <a 1280href="#getAnalysisUsage"><tt>getAnalysisUsage</tt></a> implementation. This 1281method can be called by your <tt>run*</tt> method implementation, or by any 1282other local method invoked by your <tt>run*</tt> method. 1283 1284A module level pass can use function level analysis info using this interface. 1285For example:</p> 1286 1287<div class="doc_code"><pre> 1288bool ModuleLevelPass::runOnModule(Module &M) { 1289 ... 1290 DominatorTree &DT = getAnalysis<DominatorTree>(Func); 1291 ... 1292} 1293</pre></div> 1294 1295<p>In above example, runOnFunction for DominatorTree is called by pass manager 1296before returning a reference to the desired pass.</p> 1297 1298<p> 1299If your pass is capable of updating analyses if they exist (e.g., 1300<tt>BreakCriticalEdges</tt>, as described above), you can use the 1301<tt>getAnalysisIfAvailable</tt> method, which returns a pointer to the analysis 1302if it is active. For example:</p> 1303 1304<div class="doc_code"><pre> 1305... 1306if (DominatorSet *DS = getAnalysisIfAvailable<DominatorSet>()) { 1307 <i>// A DominatorSet is active. This code will update it.</i> 1308} 1309... 1310</pre></div> 1311 1312</div> 1313 1314</div> 1315 1316<!-- *********************************************************************** --> 1317<h2> 1318 <a name="analysisgroup">Implementing Analysis Groups</a> 1319</h2> 1320<!-- *********************************************************************** --> 1321 1322<div> 1323 1324<p>Now that we understand the basics of how passes are defined, how they are 1325used, and how they are required from other passes, it's time to get a little bit 1326fancier. All of the pass relationships that we have seen so far are very 1327simple: one pass depends on one other specific pass to be run before it can run. 1328For many applications, this is great, for others, more flexibility is 1329required.</p> 1330 1331<p>In particular, some analyses are defined such that there is a single simple 1332interface to the analysis results, but multiple ways of calculating them. 1333Consider alias analysis for example. The most trivial alias analysis returns 1334"may alias" for any alias query. The most sophisticated analysis a 1335flow-sensitive, context-sensitive interprocedural analysis that can take a 1336significant amount of time to execute (and obviously, there is a lot of room 1337between these two extremes for other implementations). To cleanly support 1338situations like this, the LLVM Pass Infrastructure supports the notion of 1339Analysis Groups.</p> 1340 1341<!-- _______________________________________________________________________ --> 1342<h4> 1343 <a name="agconcepts">Analysis Group Concepts</a> 1344</h4> 1345 1346<div> 1347 1348<p>An Analysis Group is a single simple interface that may be implemented by 1349multiple different passes. Analysis Groups can be given human readable names 1350just like passes, but unlike passes, they need not derive from the <tt>Pass</tt> 1351class. An analysis group may have one or more implementations, one of which is 1352the "default" implementation.</p> 1353 1354<p>Analysis groups are used by client passes just like other passes are: the 1355<tt>AnalysisUsage::addRequired()</tt> and <tt>Pass::getAnalysis()</tt> methods. 1356In order to resolve this requirement, the <a href="#passmanager">PassManager</a> 1357scans the available passes to see if any implementations of the analysis group 1358are available. If none is available, the default implementation is created for 1359the pass to use. All standard rules for <A href="#interaction">interaction 1360between passes</a> still apply.</p> 1361 1362<p>Although <a href="#registration">Pass Registration</a> is optional for normal 1363passes, all analysis group implementations must be registered, and must use the 1364<A href="#registerag"><tt>INITIALIZE_AG_PASS</tt></a> template to join the 1365implementation pool. Also, a default implementation of the interface 1366<b>must</b> be registered with <A 1367href="#registerag"><tt>RegisterAnalysisGroup</tt></a>.</p> 1368 1369<p>As a concrete example of an Analysis Group in action, consider the <a 1370href="http://llvm.org/doxygen/classllvm_1_1AliasAnalysis.html">AliasAnalysis</a> 1371analysis group. The default implementation of the alias analysis interface (the 1372<tt><a 1373href="http://llvm.org/doxygen/structBasicAliasAnalysis.html">basicaa</a></tt> 1374pass) just does a few simple checks that don't require significant analysis to 1375compute (such as: two different globals can never alias each other, etc). 1376Passes that use the <tt><a 1377href="http://llvm.org/doxygen/classllvm_1_1AliasAnalysis.html">AliasAnalysis</a></tt> 1378interface (for example the <tt><a 1379href="http://llvm.org/doxygen/structGCSE.html">gcse</a></tt> pass), do 1380not care which implementation of alias analysis is actually provided, they just 1381use the designated interface.</p> 1382 1383<p>From the user's perspective, commands work just like normal. Issuing the 1384command '<tt>opt -gcse ...</tt>' will cause the <tt>basicaa</tt> class to be 1385instantiated and added to the pass sequence. Issuing the command '<tt>opt 1386-somefancyaa -gcse ...</tt>' will cause the <tt>gcse</tt> pass to use the 1387<tt>somefancyaa</tt> alias analysis (which doesn't actually exist, it's just a 1388hypothetical example) instead.</p> 1389 1390</div> 1391 1392<!-- _______________________________________________________________________ --> 1393<h4> 1394 <a name="registerag">Using <tt>RegisterAnalysisGroup</tt></a> 1395</h4> 1396 1397<div> 1398 1399<p>The <tt>RegisterAnalysisGroup</tt> template is used to register the analysis 1400group itself, while the <tt>INITIALIZE_AG_PASS</tt> is used to add pass 1401implementations to the analysis group. First, 1402an analysis group should be registered, with a human readable name 1403provided for it. 1404Unlike registration of passes, there is no command line argument to be specified 1405for the Analysis Group Interface itself, because it is "abstract":</p> 1406 1407<div class="doc_code"><pre> 1408<b>static</b> RegisterAnalysisGroup<<a href="http://llvm.org/doxygen/classllvm_1_1AliasAnalysis.html">AliasAnalysis</a>> A("<i>Alias Analysis</i>"); 1409</pre></div> 1410 1411<p>Once the analysis is registered, passes can declare that they are valid 1412implementations of the interface by using the following code:</p> 1413 1414<div class="doc_code"><pre> 1415<b>namespace</b> { 1416 //<i> Declare that we implement the AliasAnalysis interface</i> 1417 INITIALIZE_AG_PASS(FancyAA, <a href="http://llvm.org/doxygen/classllvm_1_1AliasAnalysis.html">AliasAnalysis</a>, "<i>somefancyaa</i>", 1418 "<i>A more complex alias analysis implementation</i>", 1419 false, // <i>Is CFG Only?</i> 1420 true, // <i>Is Analysis?</i> 1421 false); // <i>Is default Analysis Group implementation?</i> 1422} 1423</pre></div> 1424 1425<p>This just shows a class <tt>FancyAA</tt> that 1426uses the <tt>INITIALIZE_AG_PASS</tt> macro both to register and 1427to "join" the <tt><a href="http://llvm.org/doxygen/classllvm_1_1AliasAnalysis.html">AliasAnalysis</a></tt> 1428analysis group. Every implementation of an analysis group should join using 1429this macro.</p> 1430 1431<div class="doc_code"><pre> 1432<b>namespace</b> { 1433 //<i> Declare that we implement the AliasAnalysis interface</i> 1434 INITIALIZE_AG_PASS(BasicAA, <a href="http://llvm.org/doxygen/classllvm_1_1AliasAnalysis.html">AliasAnalysis</a>, "<i>basicaa</i>", 1435 "<i>Basic Alias Analysis (default AA impl)</i>", 1436 false, // <i>Is CFG Only?</i> 1437 true, // <i>Is Analysis?</i> 1438 true); // <i>Is default Analysis Group implementation?</i> 1439} 1440</pre></div> 1441 1442<p>Here we show how the default implementation is specified (using the final 1443argument to the <tt>INITIALIZE_AG_PASS</tt> template). There must be exactly 1444one default implementation available at all times for an Analysis Group to be 1445used. Only default implementation can derive from <tt>ImmutablePass</tt>. 1446Here we declare that the 1447 <tt><a href="http://llvm.org/doxygen/structBasicAliasAnalysis.html">BasicAliasAnalysis</a></tt> 1448pass is the default implementation for the interface.</p> 1449 1450</div> 1451 1452</div> 1453 1454<!-- *********************************************************************** --> 1455<h2> 1456 <a name="passStatistics">Pass Statistics</a> 1457</h2> 1458<!-- *********************************************************************** --> 1459 1460<div> 1461<p>The <a 1462href="http://llvm.org/doxygen/Statistic_8h-source.html"><tt>Statistic</tt></a> 1463class is designed to be an easy way to expose various success 1464metrics from passes. These statistics are printed at the end of a 1465run, when the -stats command line option is enabled on the command 1466line. See the <a href="http://llvm.org/docs/ProgrammersManual.html#Statistic">Statistics section</a> in the Programmer's Manual for details. 1467 1468</div> 1469 1470 1471<!-- *********************************************************************** --> 1472<h2> 1473 <a name="passmanager">What PassManager does</a> 1474</h2> 1475<!-- *********************************************************************** --> 1476 1477<div> 1478 1479<p>The <a 1480href="http://llvm.org/doxygen/PassManager_8h-source.html"><tt>PassManager</tt></a> 1481<a 1482href="http://llvm.org/doxygen/classllvm_1_1PassManager.html">class</a> 1483takes a list of passes, ensures their <a href="#interaction">prerequisites</a> 1484are set up correctly, and then schedules passes to run efficiently. All of the 1485LLVM tools that run passes use the <tt>PassManager</tt> for execution of these 1486passes.</p> 1487 1488<p>The <tt>PassManager</tt> does two main things to try to reduce the execution 1489time of a series of passes:</p> 1490 1491<ol> 1492<li><b>Share analysis results</b> - The PassManager attempts to avoid 1493recomputing analysis results as much as possible. This means keeping track of 1494which analyses are available already, which analyses get invalidated, and which 1495analyses are needed to be run for a pass. An important part of work is that the 1496<tt>PassManager</tt> tracks the exact lifetime of all analysis results, allowing 1497it to <a href="#releaseMemory">free memory</a> allocated to holding analysis 1498results as soon as they are no longer needed.</li> 1499 1500<li><b>Pipeline the execution of passes on the program</b> - The 1501<tt>PassManager</tt> attempts to get better cache and memory usage behavior out 1502of a series of passes by pipelining the passes together. This means that, given 1503a series of consecutive <a href="#FunctionPass"><tt>FunctionPass</tt></a>'s, it 1504will execute all of the <a href="#FunctionPass"><tt>FunctionPass</tt></a>'s on 1505the first function, then all of the <a 1506href="#FunctionPass"><tt>FunctionPass</tt></a>es on the second function, 1507etc... until the entire program has been run through the passes. 1508 1509<p>This improves the cache behavior of the compiler, because it is only touching 1510the LLVM program representation for a single function at a time, instead of 1511traversing the entire program. It reduces the memory consumption of compiler, 1512because, for example, only one <a 1513href="http://llvm.org/doxygen/classllvm_1_1DominatorSet.html"><tt>DominatorSet</tt></a> 1514needs to be calculated at a time. This also makes it possible to implement 1515some <a 1516href="#SMP">interesting enhancements</a> in the future.</p></li> 1517 1518</ol> 1519 1520<p>The effectiveness of the <tt>PassManager</tt> is influenced directly by how 1521much information it has about the behaviors of the passes it is scheduling. For 1522example, the "preserved" set is intentionally conservative in the face of an 1523unimplemented <a href="#getAnalysisUsage"><tt>getAnalysisUsage</tt></a> method. 1524Not implementing when it should be implemented will have the effect of not 1525allowing any analysis results to live across the execution of your pass.</p> 1526 1527<p>The <tt>PassManager</tt> class exposes a <tt>--debug-pass</tt> command line 1528options that is useful for debugging pass execution, seeing how things work, and 1529diagnosing when you should be preserving more analyses than you currently are 1530(To get information about all of the variants of the <tt>--debug-pass</tt> 1531option, just type '<tt>opt -help-hidden</tt>').</p> 1532 1533<p>By using the <tt>--debug-pass=Structure</tt> option, for example, we can see 1534how our <a href="#basiccode">Hello World</a> pass interacts with other passes. 1535Lets try it out with the <tt>gcse</tt> and <tt>licm</tt> passes:</p> 1536 1537<div class="doc_code"><pre> 1538$ opt -load ../../../Debug+Asserts/lib/Hello.so -gcse -licm --debug-pass=Structure < hello.bc > /dev/null 1539Module Pass Manager 1540 Function Pass Manager 1541 Dominator Set Construction 1542 Immediate Dominators Construction 1543 Global Common Subexpression Elimination 1544-- Immediate Dominators Construction 1545-- Global Common Subexpression Elimination 1546 Natural Loop Construction 1547 Loop Invariant Code Motion 1548-- Natural Loop Construction 1549-- Loop Invariant Code Motion 1550 Module Verifier 1551-- Dominator Set Construction 1552-- Module Verifier 1553 Bitcode Writer 1554--Bitcode Writer 1555</pre></div> 1556 1557<p>This output shows us when passes are constructed and when the analysis 1558results are known to be dead (prefixed with '<tt>--</tt>'). Here we see that 1559GCSE uses dominator and immediate dominator information to do its job. The LICM 1560pass uses natural loop information, which uses dominator sets, but not immediate 1561dominators. Because immediate dominators are no longer useful after the GCSE 1562pass, it is immediately destroyed. The dominator sets are then reused to 1563compute natural loop information, which is then used by the LICM pass.</p> 1564 1565<p>After the LICM pass, the module verifier runs (which is automatically added 1566by the '<tt>opt</tt>' tool), which uses the dominator set to check that the 1567resultant LLVM code is well formed. After it finishes, the dominator set 1568information is destroyed, after being computed once, and shared by three 1569passes.</p> 1570 1571<p>Lets see how this changes when we run the <a href="#basiccode">Hello 1572World</a> pass in between the two passes:</p> 1573 1574<div class="doc_code"><pre> 1575$ opt -load ../../../Debug+Asserts/lib/Hello.so -gcse -hello -licm --debug-pass=Structure < hello.bc > /dev/null 1576Module Pass Manager 1577 Function Pass Manager 1578 Dominator Set Construction 1579 Immediate Dominators Construction 1580 Global Common Subexpression Elimination 1581<b>-- Dominator Set Construction</b> 1582-- Immediate Dominators Construction 1583-- Global Common Subexpression Elimination 1584<b> Hello World Pass 1585-- Hello World Pass 1586 Dominator Set Construction</b> 1587 Natural Loop Construction 1588 Loop Invariant Code Motion 1589-- Natural Loop Construction 1590-- Loop Invariant Code Motion 1591 Module Verifier 1592-- Dominator Set Construction 1593-- Module Verifier 1594 Bitcode Writer 1595--Bitcode Writer 1596Hello: __main 1597Hello: puts 1598Hello: main 1599</pre></div> 1600 1601<p>Here we see that the <a href="#basiccode">Hello World</a> pass has killed the 1602Dominator Set pass, even though it doesn't modify the code at all! To fix this, 1603we need to add the following <a 1604href="#getAnalysisUsage"><tt>getAnalysisUsage</tt></a> method to our pass:</p> 1605 1606<div class="doc_code"><pre> 1607<i>// We don't modify the program, so we preserve all analyses</i> 1608<b>virtual void</b> getAnalysisUsage(AnalysisUsage &AU) <b>const</b> { 1609 AU.setPreservesAll(); 1610} 1611</pre></div> 1612 1613<p>Now when we run our pass, we get this output:</p> 1614 1615<div class="doc_code"><pre> 1616$ opt -load ../../../Debug+Asserts/lib/Hello.so -gcse -hello -licm --debug-pass=Structure < hello.bc > /dev/null 1617Pass Arguments: -gcse -hello -licm 1618Module Pass Manager 1619 Function Pass Manager 1620 Dominator Set Construction 1621 Immediate Dominators Construction 1622 Global Common Subexpression Elimination 1623-- Immediate Dominators Construction 1624-- Global Common Subexpression Elimination 1625 Hello World Pass 1626-- Hello World Pass 1627 Natural Loop Construction 1628 Loop Invariant Code Motion 1629-- Loop Invariant Code Motion 1630-- Natural Loop Construction 1631 Module Verifier 1632-- Dominator Set Construction 1633-- Module Verifier 1634 Bitcode Writer 1635--Bitcode Writer 1636Hello: __main 1637Hello: puts 1638Hello: main 1639</pre></div> 1640 1641<p>Which shows that we don't accidentally invalidate dominator information 1642anymore, and therefore do not have to compute it twice.</p> 1643 1644<!-- _______________________________________________________________________ --> 1645<h4> 1646 <a name="releaseMemory">The <tt>releaseMemory</tt> method</a> 1647</h4> 1648 1649<div> 1650 1651<div class="doc_code"><pre> 1652 <b>virtual void</b> releaseMemory(); 1653</pre></div> 1654 1655<p>The <tt>PassManager</tt> automatically determines when to compute analysis 1656results, and how long to keep them around for. Because the lifetime of the pass 1657object itself is effectively the entire duration of the compilation process, we 1658need some way to free analysis results when they are no longer useful. The 1659<tt>releaseMemory</tt> virtual method is the way to do this.</p> 1660 1661<p>If you are writing an analysis or any other pass that retains a significant 1662amount of state (for use by another pass which "requires" your pass and uses the 1663<a href="#getAnalysis">getAnalysis</a> method) you should implement 1664<tt>releaseMemory</tt> to, well, release the memory allocated to maintain this 1665internal state. This method is called after the <tt>run*</tt> method for the 1666class, before the next call of <tt>run*</tt> in your pass.</p> 1667 1668</div> 1669 1670</div> 1671 1672<!-- *********************************************************************** --> 1673<h2> 1674 <a name="registering">Registering dynamically loaded passes</a> 1675</h2> 1676<!-- *********************************************************************** --> 1677 1678<div> 1679 1680<p><i>Size matters</i> when constructing production quality tools using llvm, 1681both for the purposes of distribution, and for regulating the resident code size 1682when running on the target system. Therefore, it becomes desirable to 1683selectively use some passes, while omitting others and maintain the flexibility 1684to change configurations later on. You want to be able to do all this, and, 1685provide feedback to the user. This is where pass registration comes into 1686play.</p> 1687 1688<p>The fundamental mechanisms for pass registration are the 1689<tt>MachinePassRegistry</tt> class and subclasses of 1690<tt>MachinePassRegistryNode</tt>.</p> 1691 1692<p>An instance of <tt>MachinePassRegistry</tt> is used to maintain a list of 1693<tt>MachinePassRegistryNode</tt> objects. This instance maintains the list and 1694communicates additions and deletions to the command line interface.</p> 1695 1696<p>An instance of <tt>MachinePassRegistryNode</tt> subclass is used to maintain 1697information provided about a particular pass. This information includes the 1698command line name, the command help string and the address of the function used 1699to create an instance of the pass. A global static constructor of one of these 1700instances <i>registers</i> with a corresponding <tt>MachinePassRegistry</tt>, 1701the static destructor <i>unregisters</i>. Thus a pass that is statically linked 1702in the tool will be registered at start up. A dynamically loaded pass will 1703register on load and unregister at unload.</p> 1704 1705<!-- _______________________________________________________________________ --> 1706<h3> 1707 <a name="registering_existing">Using existing registries</a> 1708</h3> 1709 1710<div> 1711 1712<p>There are predefined registries to track instruction scheduling 1713(<tt>RegisterScheduler</tt>) and register allocation (<tt>RegisterRegAlloc</tt>) 1714machine passes. Here we will describe how to <i>register</i> a register 1715allocator machine pass.</p> 1716 1717<p>Implement your register allocator machine pass. In your register allocator 1718<tt>.cpp</tt> file add the following include;</p> 1719 1720<div class="doc_code"><pre> 1721#include "llvm/CodeGen/RegAllocRegistry.h" 1722</pre></div> 1723 1724<p>Also in your register allocator .cpp file, define a creator function in the 1725form; </p> 1726 1727<div class="doc_code"><pre> 1728FunctionPass *createMyRegisterAllocator() { 1729 return new MyRegisterAllocator(); 1730} 1731</pre></div> 1732 1733<p>Note that the signature of this function should match the type of 1734<tt>RegisterRegAlloc::FunctionPassCtor</tt>. In the same file add the 1735"installing" declaration, in the form;</p> 1736 1737<div class="doc_code"><pre> 1738static RegisterRegAlloc myRegAlloc("myregalloc", 1739 "my register allocator help string", 1740 createMyRegisterAllocator); 1741</pre></div> 1742 1743<p>Note the two spaces prior to the help string produces a tidy result on the 1744-help query.</p> 1745 1746<div class="doc_code"><pre> 1747$ llc -help 1748 ... 1749 -regalloc - Register allocator to use (default=linearscan) 1750 =linearscan - linear scan register allocator 1751 =local - local register allocator 1752 =simple - simple register allocator 1753 =myregalloc - my register allocator help string 1754 ... 1755</pre></div> 1756 1757<p>And that's it. The user is now free to use <tt>-regalloc=myregalloc</tt> as 1758an option. Registering instruction schedulers is similar except use the 1759<tt>RegisterScheduler</tt> class. Note that the 1760<tt>RegisterScheduler::FunctionPassCtor</tt> is significantly different from 1761<tt>RegisterRegAlloc::FunctionPassCtor</tt>.</p> 1762 1763<p>To force the load/linking of your register allocator into the llc/lli tools, 1764add your creator function's global declaration to "Passes.h" and add a "pseudo" 1765call line to <tt>llvm/Codegen/LinkAllCodegenComponents.h</tt>.</p> 1766 1767</div> 1768 1769 1770<!-- _______________________________________________________________________ --> 1771<h3> 1772 <a name="registering_new">Creating new registries</a> 1773</h3> 1774 1775<div> 1776 1777<p>The easiest way to get started is to clone one of the existing registries; we 1778recommend <tt>llvm/CodeGen/RegAllocRegistry.h</tt>. The key things to modify 1779are the class name and the <tt>FunctionPassCtor</tt> type.</p> 1780 1781<p>Then you need to declare the registry. Example: if your pass registry is 1782<tt>RegisterMyPasses</tt> then define;</p> 1783 1784<div class="doc_code"><pre> 1785MachinePassRegistry RegisterMyPasses::Registry; 1786</pre></div> 1787 1788<p>And finally, declare the command line option for your passes. Example:</p> 1789 1790<div class="doc_code"><pre> 1791cl::opt<RegisterMyPasses::FunctionPassCtor, false, 1792 RegisterPassParser<RegisterMyPasses> > 1793MyPassOpt("mypass", 1794 cl::init(&createDefaultMyPass), 1795 cl::desc("my pass option help")); 1796</pre></div> 1797 1798<p>Here the command option is "mypass", with createDefaultMyPass as the default 1799creator.</p> 1800 1801</div> 1802 1803</div> 1804 1805<!-- *********************************************************************** --> 1806<h2> 1807 <a name="debughints">Using GDB with dynamically loaded passes</a> 1808</h2> 1809<!-- *********************************************************************** --> 1810 1811<div> 1812 1813<p>Unfortunately, using GDB with dynamically loaded passes is not as easy as it 1814should be. First of all, you can't set a breakpoint in a shared object that has 1815not been loaded yet, and second of all there are problems with inlined functions 1816in shared objects. Here are some suggestions to debugging your pass with 1817GDB.</p> 1818 1819<p>For sake of discussion, I'm going to assume that you are debugging a 1820transformation invoked by <tt>opt</tt>, although nothing described here depends 1821on that.</p> 1822 1823<!-- _______________________________________________________________________ --> 1824<h4> 1825 <a name="breakpoint">Setting a breakpoint in your pass</a> 1826</h4> 1827 1828<div> 1829 1830<p>First thing you do is start <tt>gdb</tt> on the <tt>opt</tt> process:</p> 1831 1832<div class="doc_code"><pre> 1833$ <b>gdb opt</b> 1834GNU gdb 5.0 1835Copyright 2000 Free Software Foundation, Inc. 1836GDB is free software, covered by the GNU General Public License, and you are 1837welcome to change it and/or distribute copies of it under certain conditions. 1838Type "show copying" to see the conditions. 1839There is absolutely no warranty for GDB. Type "show warranty" for details. 1840This GDB was configured as "sparc-sun-solaris2.6"... 1841(gdb) 1842</pre></div> 1843 1844<p>Note that <tt>opt</tt> has a lot of debugging information in it, so it takes 1845time to load. Be patient. Since we cannot set a breakpoint in our pass yet 1846(the shared object isn't loaded until runtime), we must execute the process, and 1847have it stop before it invokes our pass, but after it has loaded the shared 1848object. The most foolproof way of doing this is to set a breakpoint in 1849<tt>PassManager::run</tt> and then run the process with the arguments you 1850want:</p> 1851 1852<div class="doc_code"><pre> 1853(gdb) <b>break llvm::PassManager::run</b> 1854Breakpoint 1 at 0x2413bc: file Pass.cpp, line 70. 1855(gdb) <b>run test.bc -load $(LLVMTOP)/llvm/Debug+Asserts/lib/[libname].so -[passoption]</b> 1856Starting program: opt test.bc -load $(LLVMTOP)/llvm/Debug+Asserts/lib/[libname].so -[passoption] 1857Breakpoint 1, PassManager::run (this=0xffbef174, M=@0x70b298) at Pass.cpp:70 185870 bool PassManager::run(Module &M) { return PM->run(M); } 1859(gdb) 1860</pre></div> 1861 1862<p>Once the <tt>opt</tt> stops in the <tt>PassManager::run</tt> method you are 1863now free to set breakpoints in your pass so that you can trace through execution 1864or do other standard debugging stuff.</p> 1865 1866</div> 1867 1868<!-- _______________________________________________________________________ --> 1869<h4> 1870 <a name="debugmisc">Miscellaneous Problems</a> 1871</h4> 1872 1873<div> 1874 1875<p>Once you have the basics down, there are a couple of problems that GDB has, 1876some with solutions, some without.</p> 1877 1878<ul> 1879<li>Inline functions have bogus stack information. In general, GDB does a 1880pretty good job getting stack traces and stepping through inline functions. 1881When a pass is dynamically loaded however, it somehow completely loses this 1882capability. The only solution I know of is to de-inline a function (move it 1883from the body of a class to a .cpp file).</li> 1884 1885<li>Restarting the program breaks breakpoints. After following the information 1886above, you have succeeded in getting some breakpoints planted in your pass. Nex 1887thing you know, you restart the program (i.e., you type '<tt>run</tt>' again), 1888and you start getting errors about breakpoints being unsettable. The only way I 1889have found to "fix" this problem is to <tt>delete</tt> the breakpoints that are 1890already set in your pass, run the program, and re-set the breakpoints once 1891execution stops in <tt>PassManager::run</tt>.</li> 1892 1893</ul> 1894 1895<p>Hopefully these tips will help with common case debugging situations. If 1896you'd like to contribute some tips of your own, just contact <a 1897href="mailto:sabre@nondot.org">Chris</a>.</p> 1898 1899</div> 1900 1901</div> 1902 1903<!-- *********************************************************************** --> 1904<h2> 1905 <a name="future">Future extensions planned</a> 1906</h2> 1907<!-- *********************************************************************** --> 1908 1909<div> 1910 1911<p>Although the LLVM Pass Infrastructure is very capable as it stands, and does 1912some nifty stuff, there are things we'd like to add in the future. Here is 1913where we are going:</p> 1914 1915<!-- _______________________________________________________________________ --> 1916<h4> 1917 <a name="SMP">Multithreaded LLVM</a> 1918</h4> 1919 1920<div> 1921 1922<p>Multiple CPU machines are becoming more common and compilation can never be 1923fast enough: obviously we should allow for a multithreaded compiler. Because of 1924the semantics defined for passes above (specifically they cannot maintain state 1925across invocations of their <tt>run*</tt> methods), a nice clean way to 1926implement a multithreaded compiler would be for the <tt>PassManager</tt> class 1927to create multiple instances of each pass object, and allow the separate 1928instances to be hacking on different parts of the program at the same time.</p> 1929 1930<p>This implementation would prevent each of the passes from having to implement 1931multithreaded constructs, requiring only the LLVM core to have locking in a few 1932places (for global resources). Although this is a simple extension, we simply 1933haven't had time (or multiprocessor machines, thus a reason) to implement this. 1934Despite that, we have kept the LLVM passes SMP ready, and you should too.</p> 1935 1936</div> 1937 1938</div> 1939 1940<!-- *********************************************************************** --> 1941<hr> 1942<address> 1943 <a href="http://jigsaw.w3.org/css-validator/check/referer"><img 1944 src="http://jigsaw.w3.org/css-validator/images/vcss-blue" alt="Valid CSS"></a> 1945 <a href="http://validator.w3.org/check/referer"><img 1946 src="http://www.w3.org/Icons/valid-html401-blue" alt="Valid HTML 4.01"></a> 1947 1948 <a href="mailto:sabre@nondot.org">Chris Lattner</a><br> 1949 <a href="http://llvm.org/">The LLVM Compiler Infrastructure</a><br> 1950 Last modified: $Date$ 1951</address> 1952 1953</body> 1954</html> 1955