1 //===- InstructionSimplify.cpp - Fold instruction operands ----------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements routines for folding instructions into simpler forms
11 // that do not require creating new instructions. This does constant folding
12 // ("add i32 1, 1" -> "2") but can also handle non-constant operands, either
13 // returning a constant ("and i32 %x, 0" -> "0") or an already existing value
14 // ("and i32 %x, %x" -> "%x"). All operands are assumed to have already been
15 // simplified: This is usually true and assuming it simplifies the logic (if
16 // they have not been simplified then results are correct but maybe suboptimal).
17 //
18 //===----------------------------------------------------------------------===//
19
20 #define DEBUG_TYPE "instsimplify"
21 #include "llvm/GlobalAlias.h"
22 #include "llvm/Operator.h"
23 #include "llvm/ADT/Statistic.h"
24 #include "llvm/ADT/SetVector.h"
25 #include "llvm/Analysis/InstructionSimplify.h"
26 #include "llvm/Analysis/AliasAnalysis.h"
27 #include "llvm/Analysis/ConstantFolding.h"
28 #include "llvm/Analysis/Dominators.h"
29 #include "llvm/Analysis/ValueTracking.h"
30 #include "llvm/Support/ConstantRange.h"
31 #include "llvm/Support/GetElementPtrTypeIterator.h"
32 #include "llvm/Support/PatternMatch.h"
33 #include "llvm/Support/ValueHandle.h"
34 #include "llvm/Target/TargetData.h"
35 using namespace llvm;
36 using namespace llvm::PatternMatch;
37
38 enum { RecursionLimit = 3 };
39
40 STATISTIC(NumExpand, "Number of expansions");
41 STATISTIC(NumFactor , "Number of factorizations");
42 STATISTIC(NumReassoc, "Number of reassociations");
43
44 struct Query {
45 const TargetData *TD;
46 const TargetLibraryInfo *TLI;
47 const DominatorTree *DT;
48
QueryQuery49 Query(const TargetData *td, const TargetLibraryInfo *tli,
50 const DominatorTree *dt) : TD(td), TLI(tli), DT(dt) {}
51 };
52
53 static Value *SimplifyAndInst(Value *, Value *, const Query &, unsigned);
54 static Value *SimplifyBinOp(unsigned, Value *, Value *, const Query &,
55 unsigned);
56 static Value *SimplifyCmpInst(unsigned, Value *, Value *, const Query &,
57 unsigned);
58 static Value *SimplifyOrInst(Value *, Value *, const Query &, unsigned);
59 static Value *SimplifyXorInst(Value *, Value *, const Query &, unsigned);
60 static Value *SimplifyTruncInst(Value *, Type *, const Query &, unsigned);
61
62 /// getFalse - For a boolean type, or a vector of boolean type, return false, or
63 /// a vector with every element false, as appropriate for the type.
getFalse(Type * Ty)64 static Constant *getFalse(Type *Ty) {
65 assert(Ty->getScalarType()->isIntegerTy(1) &&
66 "Expected i1 type or a vector of i1!");
67 return Constant::getNullValue(Ty);
68 }
69
70 /// getTrue - For a boolean type, or a vector of boolean type, return true, or
71 /// a vector with every element true, as appropriate for the type.
getTrue(Type * Ty)72 static Constant *getTrue(Type *Ty) {
73 assert(Ty->getScalarType()->isIntegerTy(1) &&
74 "Expected i1 type or a vector of i1!");
75 return Constant::getAllOnesValue(Ty);
76 }
77
78 /// isSameCompare - Is V equivalent to the comparison "LHS Pred RHS"?
isSameCompare(Value * V,CmpInst::Predicate Pred,Value * LHS,Value * RHS)79 static bool isSameCompare(Value *V, CmpInst::Predicate Pred, Value *LHS,
80 Value *RHS) {
81 CmpInst *Cmp = dyn_cast<CmpInst>(V);
82 if (!Cmp)
83 return false;
84 CmpInst::Predicate CPred = Cmp->getPredicate();
85 Value *CLHS = Cmp->getOperand(0), *CRHS = Cmp->getOperand(1);
86 if (CPred == Pred && CLHS == LHS && CRHS == RHS)
87 return true;
88 return CPred == CmpInst::getSwappedPredicate(Pred) && CLHS == RHS &&
89 CRHS == LHS;
90 }
91
92 /// ValueDominatesPHI - Does the given value dominate the specified phi node?
ValueDominatesPHI(Value * V,PHINode * P,const DominatorTree * DT)93 static bool ValueDominatesPHI(Value *V, PHINode *P, const DominatorTree *DT) {
94 Instruction *I = dyn_cast<Instruction>(V);
95 if (!I)
96 // Arguments and constants dominate all instructions.
97 return true;
98
99 // If we are processing instructions (and/or basic blocks) that have not been
100 // fully added to a function, the parent nodes may still be null. Simply
101 // return the conservative answer in these cases.
102 if (!I->getParent() || !P->getParent() || !I->getParent()->getParent())
103 return false;
104
105 // If we have a DominatorTree then do a precise test.
106 if (DT) {
107 if (!DT->isReachableFromEntry(P->getParent()))
108 return true;
109 if (!DT->isReachableFromEntry(I->getParent()))
110 return false;
111 return DT->dominates(I, P);
112 }
113
114 // Otherwise, if the instruction is in the entry block, and is not an invoke,
115 // then it obviously dominates all phi nodes.
116 if (I->getParent() == &I->getParent()->getParent()->getEntryBlock() &&
117 !isa<InvokeInst>(I))
118 return true;
119
120 return false;
121 }
122
123 /// ExpandBinOp - Simplify "A op (B op' C)" by distributing op over op', turning
124 /// it into "(A op B) op' (A op C)". Here "op" is given by Opcode and "op'" is
125 /// given by OpcodeToExpand, while "A" corresponds to LHS and "B op' C" to RHS.
126 /// Also performs the transform "(A op' B) op C" -> "(A op C) op' (B op C)".
127 /// Returns the simplified value, or null if no simplification was performed.
ExpandBinOp(unsigned Opcode,Value * LHS,Value * RHS,unsigned OpcToExpand,const Query & Q,unsigned MaxRecurse)128 static Value *ExpandBinOp(unsigned Opcode, Value *LHS, Value *RHS,
129 unsigned OpcToExpand, const Query &Q,
130 unsigned MaxRecurse) {
131 Instruction::BinaryOps OpcodeToExpand = (Instruction::BinaryOps)OpcToExpand;
132 // Recursion is always used, so bail out at once if we already hit the limit.
133 if (!MaxRecurse--)
134 return 0;
135
136 // Check whether the expression has the form "(A op' B) op C".
137 if (BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS))
138 if (Op0->getOpcode() == OpcodeToExpand) {
139 // It does! Try turning it into "(A op C) op' (B op C)".
140 Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS;
141 // Do "A op C" and "B op C" both simplify?
142 if (Value *L = SimplifyBinOp(Opcode, A, C, Q, MaxRecurse))
143 if (Value *R = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) {
144 // They do! Return "L op' R" if it simplifies or is already available.
145 // If "L op' R" equals "A op' B" then "L op' R" is just the LHS.
146 if ((L == A && R == B) || (Instruction::isCommutative(OpcodeToExpand)
147 && L == B && R == A)) {
148 ++NumExpand;
149 return LHS;
150 }
151 // Otherwise return "L op' R" if it simplifies.
152 if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse)) {
153 ++NumExpand;
154 return V;
155 }
156 }
157 }
158
159 // Check whether the expression has the form "A op (B op' C)".
160 if (BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS))
161 if (Op1->getOpcode() == OpcodeToExpand) {
162 // It does! Try turning it into "(A op B) op' (A op C)".
163 Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1);
164 // Do "A op B" and "A op C" both simplify?
165 if (Value *L = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse))
166 if (Value *R = SimplifyBinOp(Opcode, A, C, Q, MaxRecurse)) {
167 // They do! Return "L op' R" if it simplifies or is already available.
168 // If "L op' R" equals "B op' C" then "L op' R" is just the RHS.
169 if ((L == B && R == C) || (Instruction::isCommutative(OpcodeToExpand)
170 && L == C && R == B)) {
171 ++NumExpand;
172 return RHS;
173 }
174 // Otherwise return "L op' R" if it simplifies.
175 if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse)) {
176 ++NumExpand;
177 return V;
178 }
179 }
180 }
181
182 return 0;
183 }
184
185 /// FactorizeBinOp - Simplify "LHS Opcode RHS" by factorizing out a common term
186 /// using the operation OpCodeToExtract. For example, when Opcode is Add and
187 /// OpCodeToExtract is Mul then this tries to turn "(A*B)+(A*C)" into "A*(B+C)".
188 /// Returns the simplified value, or null if no simplification was performed.
FactorizeBinOp(unsigned Opcode,Value * LHS,Value * RHS,unsigned OpcToExtract,const Query & Q,unsigned MaxRecurse)189 static Value *FactorizeBinOp(unsigned Opcode, Value *LHS, Value *RHS,
190 unsigned OpcToExtract, const Query &Q,
191 unsigned MaxRecurse) {
192 Instruction::BinaryOps OpcodeToExtract = (Instruction::BinaryOps)OpcToExtract;
193 // Recursion is always used, so bail out at once if we already hit the limit.
194 if (!MaxRecurse--)
195 return 0;
196
197 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
198 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
199
200 if (!Op0 || Op0->getOpcode() != OpcodeToExtract ||
201 !Op1 || Op1->getOpcode() != OpcodeToExtract)
202 return 0;
203
204 // The expression has the form "(A op' B) op (C op' D)".
205 Value *A = Op0->getOperand(0), *B = Op0->getOperand(1);
206 Value *C = Op1->getOperand(0), *D = Op1->getOperand(1);
207
208 // Use left distributivity, i.e. "X op' (Y op Z) = (X op' Y) op (X op' Z)".
209 // Does the instruction have the form "(A op' B) op (A op' D)" or, in the
210 // commutative case, "(A op' B) op (C op' A)"?
211 if (A == C || (Instruction::isCommutative(OpcodeToExtract) && A == D)) {
212 Value *DD = A == C ? D : C;
213 // Form "A op' (B op DD)" if it simplifies completely.
214 // Does "B op DD" simplify?
215 if (Value *V = SimplifyBinOp(Opcode, B, DD, Q, MaxRecurse)) {
216 // It does! Return "A op' V" if it simplifies or is already available.
217 // If V equals B then "A op' V" is just the LHS. If V equals DD then
218 // "A op' V" is just the RHS.
219 if (V == B || V == DD) {
220 ++NumFactor;
221 return V == B ? LHS : RHS;
222 }
223 // Otherwise return "A op' V" if it simplifies.
224 if (Value *W = SimplifyBinOp(OpcodeToExtract, A, V, Q, MaxRecurse)) {
225 ++NumFactor;
226 return W;
227 }
228 }
229 }
230
231 // Use right distributivity, i.e. "(X op Y) op' Z = (X op' Z) op (Y op' Z)".
232 // Does the instruction have the form "(A op' B) op (C op' B)" or, in the
233 // commutative case, "(A op' B) op (B op' D)"?
234 if (B == D || (Instruction::isCommutative(OpcodeToExtract) && B == C)) {
235 Value *CC = B == D ? C : D;
236 // Form "(A op CC) op' B" if it simplifies completely..
237 // Does "A op CC" simplify?
238 if (Value *V = SimplifyBinOp(Opcode, A, CC, Q, MaxRecurse)) {
239 // It does! Return "V op' B" if it simplifies or is already available.
240 // If V equals A then "V op' B" is just the LHS. If V equals CC then
241 // "V op' B" is just the RHS.
242 if (V == A || V == CC) {
243 ++NumFactor;
244 return V == A ? LHS : RHS;
245 }
246 // Otherwise return "V op' B" if it simplifies.
247 if (Value *W = SimplifyBinOp(OpcodeToExtract, V, B, Q, MaxRecurse)) {
248 ++NumFactor;
249 return W;
250 }
251 }
252 }
253
254 return 0;
255 }
256
257 /// SimplifyAssociativeBinOp - Generic simplifications for associative binary
258 /// operations. Returns the simpler value, or null if none was found.
SimplifyAssociativeBinOp(unsigned Opc,Value * LHS,Value * RHS,const Query & Q,unsigned MaxRecurse)259 static Value *SimplifyAssociativeBinOp(unsigned Opc, Value *LHS, Value *RHS,
260 const Query &Q, unsigned MaxRecurse) {
261 Instruction::BinaryOps Opcode = (Instruction::BinaryOps)Opc;
262 assert(Instruction::isAssociative(Opcode) && "Not an associative operation!");
263
264 // Recursion is always used, so bail out at once if we already hit the limit.
265 if (!MaxRecurse--)
266 return 0;
267
268 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
269 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
270
271 // Transform: "(A op B) op C" ==> "A op (B op C)" if it simplifies completely.
272 if (Op0 && Op0->getOpcode() == Opcode) {
273 Value *A = Op0->getOperand(0);
274 Value *B = Op0->getOperand(1);
275 Value *C = RHS;
276
277 // Does "B op C" simplify?
278 if (Value *V = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) {
279 // It does! Return "A op V" if it simplifies or is already available.
280 // If V equals B then "A op V" is just the LHS.
281 if (V == B) return LHS;
282 // Otherwise return "A op V" if it simplifies.
283 if (Value *W = SimplifyBinOp(Opcode, A, V, Q, MaxRecurse)) {
284 ++NumReassoc;
285 return W;
286 }
287 }
288 }
289
290 // Transform: "A op (B op C)" ==> "(A op B) op C" if it simplifies completely.
291 if (Op1 && Op1->getOpcode() == Opcode) {
292 Value *A = LHS;
293 Value *B = Op1->getOperand(0);
294 Value *C = Op1->getOperand(1);
295
296 // Does "A op B" simplify?
297 if (Value *V = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse)) {
298 // It does! Return "V op C" if it simplifies or is already available.
299 // If V equals B then "V op C" is just the RHS.
300 if (V == B) return RHS;
301 // Otherwise return "V op C" if it simplifies.
302 if (Value *W = SimplifyBinOp(Opcode, V, C, Q, MaxRecurse)) {
303 ++NumReassoc;
304 return W;
305 }
306 }
307 }
308
309 // The remaining transforms require commutativity as well as associativity.
310 if (!Instruction::isCommutative(Opcode))
311 return 0;
312
313 // Transform: "(A op B) op C" ==> "(C op A) op B" if it simplifies completely.
314 if (Op0 && Op0->getOpcode() == Opcode) {
315 Value *A = Op0->getOperand(0);
316 Value *B = Op0->getOperand(1);
317 Value *C = RHS;
318
319 // Does "C op A" simplify?
320 if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) {
321 // It does! Return "V op B" if it simplifies or is already available.
322 // If V equals A then "V op B" is just the LHS.
323 if (V == A) return LHS;
324 // Otherwise return "V op B" if it simplifies.
325 if (Value *W = SimplifyBinOp(Opcode, V, B, Q, MaxRecurse)) {
326 ++NumReassoc;
327 return W;
328 }
329 }
330 }
331
332 // Transform: "A op (B op C)" ==> "B op (C op A)" if it simplifies completely.
333 if (Op1 && Op1->getOpcode() == Opcode) {
334 Value *A = LHS;
335 Value *B = Op1->getOperand(0);
336 Value *C = Op1->getOperand(1);
337
338 // Does "C op A" simplify?
339 if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) {
340 // It does! Return "B op V" if it simplifies or is already available.
341 // If V equals C then "B op V" is just the RHS.
342 if (V == C) return RHS;
343 // Otherwise return "B op V" if it simplifies.
344 if (Value *W = SimplifyBinOp(Opcode, B, V, Q, MaxRecurse)) {
345 ++NumReassoc;
346 return W;
347 }
348 }
349 }
350
351 return 0;
352 }
353
354 /// ThreadBinOpOverSelect - In the case of a binary operation with a select
355 /// instruction as an operand, try to simplify the binop by seeing whether
356 /// evaluating it on both branches of the select results in the same value.
357 /// Returns the common value if so, otherwise returns null.
ThreadBinOpOverSelect(unsigned Opcode,Value * LHS,Value * RHS,const Query & Q,unsigned MaxRecurse)358 static Value *ThreadBinOpOverSelect(unsigned Opcode, Value *LHS, Value *RHS,
359 const Query &Q, unsigned MaxRecurse) {
360 // Recursion is always used, so bail out at once if we already hit the limit.
361 if (!MaxRecurse--)
362 return 0;
363
364 SelectInst *SI;
365 if (isa<SelectInst>(LHS)) {
366 SI = cast<SelectInst>(LHS);
367 } else {
368 assert(isa<SelectInst>(RHS) && "No select instruction operand!");
369 SI = cast<SelectInst>(RHS);
370 }
371
372 // Evaluate the BinOp on the true and false branches of the select.
373 Value *TV;
374 Value *FV;
375 if (SI == LHS) {
376 TV = SimplifyBinOp(Opcode, SI->getTrueValue(), RHS, Q, MaxRecurse);
377 FV = SimplifyBinOp(Opcode, SI->getFalseValue(), RHS, Q, MaxRecurse);
378 } else {
379 TV = SimplifyBinOp(Opcode, LHS, SI->getTrueValue(), Q, MaxRecurse);
380 FV = SimplifyBinOp(Opcode, LHS, SI->getFalseValue(), Q, MaxRecurse);
381 }
382
383 // If they simplified to the same value, then return the common value.
384 // If they both failed to simplify then return null.
385 if (TV == FV)
386 return TV;
387
388 // If one branch simplified to undef, return the other one.
389 if (TV && isa<UndefValue>(TV))
390 return FV;
391 if (FV && isa<UndefValue>(FV))
392 return TV;
393
394 // If applying the operation did not change the true and false select values,
395 // then the result of the binop is the select itself.
396 if (TV == SI->getTrueValue() && FV == SI->getFalseValue())
397 return SI;
398
399 // If one branch simplified and the other did not, and the simplified
400 // value is equal to the unsimplified one, return the simplified value.
401 // For example, select (cond, X, X & Z) & Z -> X & Z.
402 if ((FV && !TV) || (TV && !FV)) {
403 // Check that the simplified value has the form "X op Y" where "op" is the
404 // same as the original operation.
405 Instruction *Simplified = dyn_cast<Instruction>(FV ? FV : TV);
406 if (Simplified && Simplified->getOpcode() == Opcode) {
407 // The value that didn't simplify is "UnsimplifiedLHS op UnsimplifiedRHS".
408 // We already know that "op" is the same as for the simplified value. See
409 // if the operands match too. If so, return the simplified value.
410 Value *UnsimplifiedBranch = FV ? SI->getTrueValue() : SI->getFalseValue();
411 Value *UnsimplifiedLHS = SI == LHS ? UnsimplifiedBranch : LHS;
412 Value *UnsimplifiedRHS = SI == LHS ? RHS : UnsimplifiedBranch;
413 if (Simplified->getOperand(0) == UnsimplifiedLHS &&
414 Simplified->getOperand(1) == UnsimplifiedRHS)
415 return Simplified;
416 if (Simplified->isCommutative() &&
417 Simplified->getOperand(1) == UnsimplifiedLHS &&
418 Simplified->getOperand(0) == UnsimplifiedRHS)
419 return Simplified;
420 }
421 }
422
423 return 0;
424 }
425
426 /// ThreadCmpOverSelect - In the case of a comparison with a select instruction,
427 /// try to simplify the comparison by seeing whether both branches of the select
428 /// result in the same value. Returns the common value if so, otherwise returns
429 /// null.
ThreadCmpOverSelect(CmpInst::Predicate Pred,Value * LHS,Value * RHS,const Query & Q,unsigned MaxRecurse)430 static Value *ThreadCmpOverSelect(CmpInst::Predicate Pred, Value *LHS,
431 Value *RHS, const Query &Q,
432 unsigned MaxRecurse) {
433 // Recursion is always used, so bail out at once if we already hit the limit.
434 if (!MaxRecurse--)
435 return 0;
436
437 // Make sure the select is on the LHS.
438 if (!isa<SelectInst>(LHS)) {
439 std::swap(LHS, RHS);
440 Pred = CmpInst::getSwappedPredicate(Pred);
441 }
442 assert(isa<SelectInst>(LHS) && "Not comparing with a select instruction!");
443 SelectInst *SI = cast<SelectInst>(LHS);
444 Value *Cond = SI->getCondition();
445 Value *TV = SI->getTrueValue();
446 Value *FV = SI->getFalseValue();
447
448 // Now that we have "cmp select(Cond, TV, FV), RHS", analyse it.
449 // Does "cmp TV, RHS" simplify?
450 Value *TCmp = SimplifyCmpInst(Pred, TV, RHS, Q, MaxRecurse);
451 if (TCmp == Cond) {
452 // It not only simplified, it simplified to the select condition. Replace
453 // it with 'true'.
454 TCmp = getTrue(Cond->getType());
455 } else if (!TCmp) {
456 // It didn't simplify. However if "cmp TV, RHS" is equal to the select
457 // condition then we can replace it with 'true'. Otherwise give up.
458 if (!isSameCompare(Cond, Pred, TV, RHS))
459 return 0;
460 TCmp = getTrue(Cond->getType());
461 }
462
463 // Does "cmp FV, RHS" simplify?
464 Value *FCmp = SimplifyCmpInst(Pred, FV, RHS, Q, MaxRecurse);
465 if (FCmp == Cond) {
466 // It not only simplified, it simplified to the select condition. Replace
467 // it with 'false'.
468 FCmp = getFalse(Cond->getType());
469 } else if (!FCmp) {
470 // It didn't simplify. However if "cmp FV, RHS" is equal to the select
471 // condition then we can replace it with 'false'. Otherwise give up.
472 if (!isSameCompare(Cond, Pred, FV, RHS))
473 return 0;
474 FCmp = getFalse(Cond->getType());
475 }
476
477 // If both sides simplified to the same value, then use it as the result of
478 // the original comparison.
479 if (TCmp == FCmp)
480 return TCmp;
481
482 // The remaining cases only make sense if the select condition has the same
483 // type as the result of the comparison, so bail out if this is not so.
484 if (Cond->getType()->isVectorTy() != RHS->getType()->isVectorTy())
485 return 0;
486 // If the false value simplified to false, then the result of the compare
487 // is equal to "Cond && TCmp". This also catches the case when the false
488 // value simplified to false and the true value to true, returning "Cond".
489 if (match(FCmp, m_Zero()))
490 if (Value *V = SimplifyAndInst(Cond, TCmp, Q, MaxRecurse))
491 return V;
492 // If the true value simplified to true, then the result of the compare
493 // is equal to "Cond || FCmp".
494 if (match(TCmp, m_One()))
495 if (Value *V = SimplifyOrInst(Cond, FCmp, Q, MaxRecurse))
496 return V;
497 // Finally, if the false value simplified to true and the true value to
498 // false, then the result of the compare is equal to "!Cond".
499 if (match(FCmp, m_One()) && match(TCmp, m_Zero()))
500 if (Value *V =
501 SimplifyXorInst(Cond, Constant::getAllOnesValue(Cond->getType()),
502 Q, MaxRecurse))
503 return V;
504
505 return 0;
506 }
507
508 /// ThreadBinOpOverPHI - In the case of a binary operation with an operand that
509 /// is a PHI instruction, try to simplify the binop by seeing whether evaluating
510 /// it on the incoming phi values yields the same result for every value. If so
511 /// returns the common value, otherwise returns null.
ThreadBinOpOverPHI(unsigned Opcode,Value * LHS,Value * RHS,const Query & Q,unsigned MaxRecurse)512 static Value *ThreadBinOpOverPHI(unsigned Opcode, Value *LHS, Value *RHS,
513 const Query &Q, unsigned MaxRecurse) {
514 // Recursion is always used, so bail out at once if we already hit the limit.
515 if (!MaxRecurse--)
516 return 0;
517
518 PHINode *PI;
519 if (isa<PHINode>(LHS)) {
520 PI = cast<PHINode>(LHS);
521 // Bail out if RHS and the phi may be mutually interdependent due to a loop.
522 if (!ValueDominatesPHI(RHS, PI, Q.DT))
523 return 0;
524 } else {
525 assert(isa<PHINode>(RHS) && "No PHI instruction operand!");
526 PI = cast<PHINode>(RHS);
527 // Bail out if LHS and the phi may be mutually interdependent due to a loop.
528 if (!ValueDominatesPHI(LHS, PI, Q.DT))
529 return 0;
530 }
531
532 // Evaluate the BinOp on the incoming phi values.
533 Value *CommonValue = 0;
534 for (unsigned i = 0, e = PI->getNumIncomingValues(); i != e; ++i) {
535 Value *Incoming = PI->getIncomingValue(i);
536 // If the incoming value is the phi node itself, it can safely be skipped.
537 if (Incoming == PI) continue;
538 Value *V = PI == LHS ?
539 SimplifyBinOp(Opcode, Incoming, RHS, Q, MaxRecurse) :
540 SimplifyBinOp(Opcode, LHS, Incoming, Q, MaxRecurse);
541 // If the operation failed to simplify, or simplified to a different value
542 // to previously, then give up.
543 if (!V || (CommonValue && V != CommonValue))
544 return 0;
545 CommonValue = V;
546 }
547
548 return CommonValue;
549 }
550
551 /// ThreadCmpOverPHI - In the case of a comparison with a PHI instruction, try
552 /// try to simplify the comparison by seeing whether comparing with all of the
553 /// incoming phi values yields the same result every time. If so returns the
554 /// common result, otherwise returns null.
ThreadCmpOverPHI(CmpInst::Predicate Pred,Value * LHS,Value * RHS,const Query & Q,unsigned MaxRecurse)555 static Value *ThreadCmpOverPHI(CmpInst::Predicate Pred, Value *LHS, Value *RHS,
556 const Query &Q, unsigned MaxRecurse) {
557 // Recursion is always used, so bail out at once if we already hit the limit.
558 if (!MaxRecurse--)
559 return 0;
560
561 // Make sure the phi is on the LHS.
562 if (!isa<PHINode>(LHS)) {
563 std::swap(LHS, RHS);
564 Pred = CmpInst::getSwappedPredicate(Pred);
565 }
566 assert(isa<PHINode>(LHS) && "Not comparing with a phi instruction!");
567 PHINode *PI = cast<PHINode>(LHS);
568
569 // Bail out if RHS and the phi may be mutually interdependent due to a loop.
570 if (!ValueDominatesPHI(RHS, PI, Q.DT))
571 return 0;
572
573 // Evaluate the BinOp on the incoming phi values.
574 Value *CommonValue = 0;
575 for (unsigned i = 0, e = PI->getNumIncomingValues(); i != e; ++i) {
576 Value *Incoming = PI->getIncomingValue(i);
577 // If the incoming value is the phi node itself, it can safely be skipped.
578 if (Incoming == PI) continue;
579 Value *V = SimplifyCmpInst(Pred, Incoming, RHS, Q, MaxRecurse);
580 // If the operation failed to simplify, or simplified to a different value
581 // to previously, then give up.
582 if (!V || (CommonValue && V != CommonValue))
583 return 0;
584 CommonValue = V;
585 }
586
587 return CommonValue;
588 }
589
590 /// SimplifyAddInst - Given operands for an Add, see if we can
591 /// fold the result. If not, this returns null.
SimplifyAddInst(Value * Op0,Value * Op1,bool isNSW,bool isNUW,const Query & Q,unsigned MaxRecurse)592 static Value *SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
593 const Query &Q, unsigned MaxRecurse) {
594 if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
595 if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
596 Constant *Ops[] = { CLHS, CRHS };
597 return ConstantFoldInstOperands(Instruction::Add, CLHS->getType(), Ops,
598 Q.TD, Q.TLI);
599 }
600
601 // Canonicalize the constant to the RHS.
602 std::swap(Op0, Op1);
603 }
604
605 // X + undef -> undef
606 if (match(Op1, m_Undef()))
607 return Op1;
608
609 // X + 0 -> X
610 if (match(Op1, m_Zero()))
611 return Op0;
612
613 // X + (Y - X) -> Y
614 // (Y - X) + X -> Y
615 // Eg: X + -X -> 0
616 Value *Y = 0;
617 if (match(Op1, m_Sub(m_Value(Y), m_Specific(Op0))) ||
618 match(Op0, m_Sub(m_Value(Y), m_Specific(Op1))))
619 return Y;
620
621 // X + ~X -> -1 since ~X = -X-1
622 if (match(Op0, m_Not(m_Specific(Op1))) ||
623 match(Op1, m_Not(m_Specific(Op0))))
624 return Constant::getAllOnesValue(Op0->getType());
625
626 /// i1 add -> xor.
627 if (MaxRecurse && Op0->getType()->isIntegerTy(1))
628 if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1))
629 return V;
630
631 // Try some generic simplifications for associative operations.
632 if (Value *V = SimplifyAssociativeBinOp(Instruction::Add, Op0, Op1, Q,
633 MaxRecurse))
634 return V;
635
636 // Mul distributes over Add. Try some generic simplifications based on this.
637 if (Value *V = FactorizeBinOp(Instruction::Add, Op0, Op1, Instruction::Mul,
638 Q, MaxRecurse))
639 return V;
640
641 // Threading Add over selects and phi nodes is pointless, so don't bother.
642 // Threading over the select in "A + select(cond, B, C)" means evaluating
643 // "A+B" and "A+C" and seeing if they are equal; but they are equal if and
644 // only if B and C are equal. If B and C are equal then (since we assume
645 // that operands have already been simplified) "select(cond, B, C)" should
646 // have been simplified to the common value of B and C already. Analysing
647 // "A+B" and "A+C" thus gains nothing, but costs compile time. Similarly
648 // for threading over phi nodes.
649
650 return 0;
651 }
652
SimplifyAddInst(Value * Op0,Value * Op1,bool isNSW,bool isNUW,const TargetData * TD,const TargetLibraryInfo * TLI,const DominatorTree * DT)653 Value *llvm::SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
654 const TargetData *TD, const TargetLibraryInfo *TLI,
655 const DominatorTree *DT) {
656 return ::SimplifyAddInst(Op0, Op1, isNSW, isNUW, Query (TD, TLI, DT),
657 RecursionLimit);
658 }
659
660 /// \brief Accumulate the constant integer offset a GEP represents.
661 ///
662 /// Given a getelementptr instruction/constantexpr, accumulate the constant
663 /// offset from the base pointer into the provided APInt 'Offset'. Returns true
664 /// if the GEP has all-constant indices. Returns false if any non-constant
665 /// index is encountered leaving the 'Offset' in an undefined state. The
666 /// 'Offset' APInt must be the bitwidth of the target's pointer size.
accumulateGEPOffset(const TargetData & TD,GEPOperator * GEP,APInt & Offset)667 static bool accumulateGEPOffset(const TargetData &TD, GEPOperator *GEP,
668 APInt &Offset) {
669 unsigned IntPtrWidth = TD.getPointerSizeInBits();
670 assert(IntPtrWidth == Offset.getBitWidth());
671
672 gep_type_iterator GTI = gep_type_begin(GEP);
673 for (User::op_iterator I = GEP->op_begin() + 1, E = GEP->op_end(); I != E;
674 ++I, ++GTI) {
675 ConstantInt *OpC = dyn_cast<ConstantInt>(*I);
676 if (!OpC) return false;
677 if (OpC->isZero()) continue;
678
679 // Handle a struct index, which adds its field offset to the pointer.
680 if (StructType *STy = dyn_cast<StructType>(*GTI)) {
681 unsigned ElementIdx = OpC->getZExtValue();
682 const StructLayout *SL = TD.getStructLayout(STy);
683 Offset += APInt(IntPtrWidth, SL->getElementOffset(ElementIdx));
684 continue;
685 }
686
687 APInt TypeSize(IntPtrWidth, TD.getTypeAllocSize(GTI.getIndexedType()));
688 Offset += OpC->getValue().sextOrTrunc(IntPtrWidth) * TypeSize;
689 }
690 return true;
691 }
692
693 /// \brief Compute the base pointer and cumulative constant offsets for V.
694 ///
695 /// This strips all constant offsets off of V, leaving it the base pointer, and
696 /// accumulates the total constant offset applied in the returned constant. It
697 /// returns 0 if V is not a pointer, and returns the constant '0' if there are
698 /// no constant offsets applied.
stripAndComputeConstantOffsets(const TargetData & TD,Value * & V)699 static Constant *stripAndComputeConstantOffsets(const TargetData &TD,
700 Value *&V) {
701 if (!V->getType()->isPointerTy())
702 return 0;
703
704 unsigned IntPtrWidth = TD.getPointerSizeInBits();
705 APInt Offset = APInt::getNullValue(IntPtrWidth);
706
707 // Even though we don't look through PHI nodes, we could be called on an
708 // instruction in an unreachable block, which may be on a cycle.
709 SmallPtrSet<Value *, 4> Visited;
710 Visited.insert(V);
711 do {
712 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
713 if (!GEP->isInBounds() || !accumulateGEPOffset(TD, GEP, Offset))
714 break;
715 V = GEP->getPointerOperand();
716 } else if (Operator::getOpcode(V) == Instruction::BitCast) {
717 V = cast<Operator>(V)->getOperand(0);
718 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
719 if (GA->mayBeOverridden())
720 break;
721 V = GA->getAliasee();
722 } else {
723 break;
724 }
725 assert(V->getType()->isPointerTy() && "Unexpected operand type!");
726 } while (Visited.insert(V));
727
728 Type *IntPtrTy = TD.getIntPtrType(V->getContext());
729 return ConstantInt::get(IntPtrTy, Offset);
730 }
731
732 /// \brief Compute the constant difference between two pointer values.
733 /// If the difference is not a constant, returns zero.
computePointerDifference(const TargetData & TD,Value * LHS,Value * RHS)734 static Constant *computePointerDifference(const TargetData &TD,
735 Value *LHS, Value *RHS) {
736 Constant *LHSOffset = stripAndComputeConstantOffsets(TD, LHS);
737 if (!LHSOffset)
738 return 0;
739 Constant *RHSOffset = stripAndComputeConstantOffsets(TD, RHS);
740 if (!RHSOffset)
741 return 0;
742
743 // If LHS and RHS are not related via constant offsets to the same base
744 // value, there is nothing we can do here.
745 if (LHS != RHS)
746 return 0;
747
748 // Otherwise, the difference of LHS - RHS can be computed as:
749 // LHS - RHS
750 // = (LHSOffset + Base) - (RHSOffset + Base)
751 // = LHSOffset - RHSOffset
752 return ConstantExpr::getSub(LHSOffset, RHSOffset);
753 }
754
755 /// SimplifySubInst - Given operands for a Sub, see if we can
756 /// fold the result. If not, this returns null.
SimplifySubInst(Value * Op0,Value * Op1,bool isNSW,bool isNUW,const Query & Q,unsigned MaxRecurse)757 static Value *SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
758 const Query &Q, unsigned MaxRecurse) {
759 if (Constant *CLHS = dyn_cast<Constant>(Op0))
760 if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
761 Constant *Ops[] = { CLHS, CRHS };
762 return ConstantFoldInstOperands(Instruction::Sub, CLHS->getType(),
763 Ops, Q.TD, Q.TLI);
764 }
765
766 // X - undef -> undef
767 // undef - X -> undef
768 if (match(Op0, m_Undef()) || match(Op1, m_Undef()))
769 return UndefValue::get(Op0->getType());
770
771 // X - 0 -> X
772 if (match(Op1, m_Zero()))
773 return Op0;
774
775 // X - X -> 0
776 if (Op0 == Op1)
777 return Constant::getNullValue(Op0->getType());
778
779 // (X*2) - X -> X
780 // (X<<1) - X -> X
781 Value *X = 0;
782 if (match(Op0, m_Mul(m_Specific(Op1), m_ConstantInt<2>())) ||
783 match(Op0, m_Shl(m_Specific(Op1), m_One())))
784 return Op1;
785
786 // (X + Y) - Z -> X + (Y - Z) or Y + (X - Z) if everything simplifies.
787 // For example, (X + Y) - Y -> X; (Y + X) - Y -> X
788 Value *Y = 0, *Z = Op1;
789 if (MaxRecurse && match(Op0, m_Add(m_Value(X), m_Value(Y)))) { // (X + Y) - Z
790 // See if "V === Y - Z" simplifies.
791 if (Value *V = SimplifyBinOp(Instruction::Sub, Y, Z, Q, MaxRecurse-1))
792 // It does! Now see if "X + V" simplifies.
793 if (Value *W = SimplifyBinOp(Instruction::Add, X, V, Q, MaxRecurse-1)) {
794 // It does, we successfully reassociated!
795 ++NumReassoc;
796 return W;
797 }
798 // See if "V === X - Z" simplifies.
799 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1))
800 // It does! Now see if "Y + V" simplifies.
801 if (Value *W = SimplifyBinOp(Instruction::Add, Y, V, Q, MaxRecurse-1)) {
802 // It does, we successfully reassociated!
803 ++NumReassoc;
804 return W;
805 }
806 }
807
808 // X - (Y + Z) -> (X - Y) - Z or (X - Z) - Y if everything simplifies.
809 // For example, X - (X + 1) -> -1
810 X = Op0;
811 if (MaxRecurse && match(Op1, m_Add(m_Value(Y), m_Value(Z)))) { // X - (Y + Z)
812 // See if "V === X - Y" simplifies.
813 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1))
814 // It does! Now see if "V - Z" simplifies.
815 if (Value *W = SimplifyBinOp(Instruction::Sub, V, Z, Q, MaxRecurse-1)) {
816 // It does, we successfully reassociated!
817 ++NumReassoc;
818 return W;
819 }
820 // See if "V === X - Z" simplifies.
821 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1))
822 // It does! Now see if "V - Y" simplifies.
823 if (Value *W = SimplifyBinOp(Instruction::Sub, V, Y, Q, MaxRecurse-1)) {
824 // It does, we successfully reassociated!
825 ++NumReassoc;
826 return W;
827 }
828 }
829
830 // Z - (X - Y) -> (Z - X) + Y if everything simplifies.
831 // For example, X - (X - Y) -> Y.
832 Z = Op0;
833 if (MaxRecurse && match(Op1, m_Sub(m_Value(X), m_Value(Y)))) // Z - (X - Y)
834 // See if "V === Z - X" simplifies.
835 if (Value *V = SimplifyBinOp(Instruction::Sub, Z, X, Q, MaxRecurse-1))
836 // It does! Now see if "V + Y" simplifies.
837 if (Value *W = SimplifyBinOp(Instruction::Add, V, Y, Q, MaxRecurse-1)) {
838 // It does, we successfully reassociated!
839 ++NumReassoc;
840 return W;
841 }
842
843 // trunc(X) - trunc(Y) -> trunc(X - Y) if everything simplifies.
844 if (MaxRecurse && match(Op0, m_Trunc(m_Value(X))) &&
845 match(Op1, m_Trunc(m_Value(Y))))
846 if (X->getType() == Y->getType())
847 // See if "V === X - Y" simplifies.
848 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1))
849 // It does! Now see if "trunc V" simplifies.
850 if (Value *W = SimplifyTruncInst(V, Op0->getType(), Q, MaxRecurse-1))
851 // It does, return the simplified "trunc V".
852 return W;
853
854 // Variations on GEP(base, I, ...) - GEP(base, i, ...) -> GEP(null, I-i, ...).
855 if (Q.TD && match(Op0, m_PtrToInt(m_Value(X))) &&
856 match(Op1, m_PtrToInt(m_Value(Y))))
857 if (Constant *Result = computePointerDifference(*Q.TD, X, Y))
858 return ConstantExpr::getIntegerCast(Result, Op0->getType(), true);
859
860 // Mul distributes over Sub. Try some generic simplifications based on this.
861 if (Value *V = FactorizeBinOp(Instruction::Sub, Op0, Op1, Instruction::Mul,
862 Q, MaxRecurse))
863 return V;
864
865 // i1 sub -> xor.
866 if (MaxRecurse && Op0->getType()->isIntegerTy(1))
867 if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1))
868 return V;
869
870 // Threading Sub over selects and phi nodes is pointless, so don't bother.
871 // Threading over the select in "A - select(cond, B, C)" means evaluating
872 // "A-B" and "A-C" and seeing if they are equal; but they are equal if and
873 // only if B and C are equal. If B and C are equal then (since we assume
874 // that operands have already been simplified) "select(cond, B, C)" should
875 // have been simplified to the common value of B and C already. Analysing
876 // "A-B" and "A-C" thus gains nothing, but costs compile time. Similarly
877 // for threading over phi nodes.
878
879 return 0;
880 }
881
SimplifySubInst(Value * Op0,Value * Op1,bool isNSW,bool isNUW,const TargetData * TD,const TargetLibraryInfo * TLI,const DominatorTree * DT)882 Value *llvm::SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
883 const TargetData *TD, const TargetLibraryInfo *TLI,
884 const DominatorTree *DT) {
885 return ::SimplifySubInst(Op0, Op1, isNSW, isNUW, Query (TD, TLI, DT),
886 RecursionLimit);
887 }
888
889 /// SimplifyMulInst - Given operands for a Mul, see if we can
890 /// fold the result. If not, this returns null.
SimplifyMulInst(Value * Op0,Value * Op1,const Query & Q,unsigned MaxRecurse)891 static Value *SimplifyMulInst(Value *Op0, Value *Op1, const Query &Q,
892 unsigned MaxRecurse) {
893 if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
894 if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
895 Constant *Ops[] = { CLHS, CRHS };
896 return ConstantFoldInstOperands(Instruction::Mul, CLHS->getType(),
897 Ops, Q.TD, Q.TLI);
898 }
899
900 // Canonicalize the constant to the RHS.
901 std::swap(Op0, Op1);
902 }
903
904 // X * undef -> 0
905 if (match(Op1, m_Undef()))
906 return Constant::getNullValue(Op0->getType());
907
908 // X * 0 -> 0
909 if (match(Op1, m_Zero()))
910 return Op1;
911
912 // X * 1 -> X
913 if (match(Op1, m_One()))
914 return Op0;
915
916 // (X / Y) * Y -> X if the division is exact.
917 Value *X = 0;
918 if (match(Op0, m_Exact(m_IDiv(m_Value(X), m_Specific(Op1)))) || // (X / Y) * Y
919 match(Op1, m_Exact(m_IDiv(m_Value(X), m_Specific(Op0))))) // Y * (X / Y)
920 return X;
921
922 // i1 mul -> and.
923 if (MaxRecurse && Op0->getType()->isIntegerTy(1))
924 if (Value *V = SimplifyAndInst(Op0, Op1, Q, MaxRecurse-1))
925 return V;
926
927 // Try some generic simplifications for associative operations.
928 if (Value *V = SimplifyAssociativeBinOp(Instruction::Mul, Op0, Op1, Q,
929 MaxRecurse))
930 return V;
931
932 // Mul distributes over Add. Try some generic simplifications based on this.
933 if (Value *V = ExpandBinOp(Instruction::Mul, Op0, Op1, Instruction::Add,
934 Q, MaxRecurse))
935 return V;
936
937 // If the operation is with the result of a select instruction, check whether
938 // operating on either branch of the select always yields the same value.
939 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
940 if (Value *V = ThreadBinOpOverSelect(Instruction::Mul, Op0, Op1, Q,
941 MaxRecurse))
942 return V;
943
944 // If the operation is with the result of a phi instruction, check whether
945 // operating on all incoming values of the phi always yields the same value.
946 if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
947 if (Value *V = ThreadBinOpOverPHI(Instruction::Mul, Op0, Op1, Q,
948 MaxRecurse))
949 return V;
950
951 return 0;
952 }
953
SimplifyMulInst(Value * Op0,Value * Op1,const TargetData * TD,const TargetLibraryInfo * TLI,const DominatorTree * DT)954 Value *llvm::SimplifyMulInst(Value *Op0, Value *Op1, const TargetData *TD,
955 const TargetLibraryInfo *TLI,
956 const DominatorTree *DT) {
957 return ::SimplifyMulInst(Op0, Op1, Query (TD, TLI, DT), RecursionLimit);
958 }
959
960 /// SimplifyDiv - Given operands for an SDiv or UDiv, see if we can
961 /// fold the result. If not, this returns null.
SimplifyDiv(Instruction::BinaryOps Opcode,Value * Op0,Value * Op1,const Query & Q,unsigned MaxRecurse)962 static Value *SimplifyDiv(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1,
963 const Query &Q, unsigned MaxRecurse) {
964 if (Constant *C0 = dyn_cast<Constant>(Op0)) {
965 if (Constant *C1 = dyn_cast<Constant>(Op1)) {
966 Constant *Ops[] = { C0, C1 };
967 return ConstantFoldInstOperands(Opcode, C0->getType(), Ops, Q.TD, Q.TLI);
968 }
969 }
970
971 bool isSigned = Opcode == Instruction::SDiv;
972
973 // X / undef -> undef
974 if (match(Op1, m_Undef()))
975 return Op1;
976
977 // undef / X -> 0
978 if (match(Op0, m_Undef()))
979 return Constant::getNullValue(Op0->getType());
980
981 // 0 / X -> 0, we don't need to preserve faults!
982 if (match(Op0, m_Zero()))
983 return Op0;
984
985 // X / 1 -> X
986 if (match(Op1, m_One()))
987 return Op0;
988
989 if (Op0->getType()->isIntegerTy(1))
990 // It can't be division by zero, hence it must be division by one.
991 return Op0;
992
993 // X / X -> 1
994 if (Op0 == Op1)
995 return ConstantInt::get(Op0->getType(), 1);
996
997 // (X * Y) / Y -> X if the multiplication does not overflow.
998 Value *X = 0, *Y = 0;
999 if (match(Op0, m_Mul(m_Value(X), m_Value(Y))) && (X == Op1 || Y == Op1)) {
1000 if (Y != Op1) std::swap(X, Y); // Ensure expression is (X * Y) / Y, Y = Op1
1001 OverflowingBinaryOperator *Mul = cast<OverflowingBinaryOperator>(Op0);
1002 // If the Mul knows it does not overflow, then we are good to go.
1003 if ((isSigned && Mul->hasNoSignedWrap()) ||
1004 (!isSigned && Mul->hasNoUnsignedWrap()))
1005 return X;
1006 // If X has the form X = A / Y then X * Y cannot overflow.
1007 if (BinaryOperator *Div = dyn_cast<BinaryOperator>(X))
1008 if (Div->getOpcode() == Opcode && Div->getOperand(1) == Y)
1009 return X;
1010 }
1011
1012 // (X rem Y) / Y -> 0
1013 if ((isSigned && match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) ||
1014 (!isSigned && match(Op0, m_URem(m_Value(), m_Specific(Op1)))))
1015 return Constant::getNullValue(Op0->getType());
1016
1017 // If the operation is with the result of a select instruction, check whether
1018 // operating on either branch of the select always yields the same value.
1019 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1020 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse))
1021 return V;
1022
1023 // If the operation is with the result of a phi instruction, check whether
1024 // operating on all incoming values of the phi always yields the same value.
1025 if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1026 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
1027 return V;
1028
1029 return 0;
1030 }
1031
1032 /// SimplifySDivInst - Given operands for an SDiv, see if we can
1033 /// fold the result. If not, this returns null.
SimplifySDivInst(Value * Op0,Value * Op1,const Query & Q,unsigned MaxRecurse)1034 static Value *SimplifySDivInst(Value *Op0, Value *Op1, const Query &Q,
1035 unsigned MaxRecurse) {
1036 if (Value *V = SimplifyDiv(Instruction::SDiv, Op0, Op1, Q, MaxRecurse))
1037 return V;
1038
1039 return 0;
1040 }
1041
SimplifySDivInst(Value * Op0,Value * Op1,const TargetData * TD,const TargetLibraryInfo * TLI,const DominatorTree * DT)1042 Value *llvm::SimplifySDivInst(Value *Op0, Value *Op1, const TargetData *TD,
1043 const TargetLibraryInfo *TLI,
1044 const DominatorTree *DT) {
1045 return ::SimplifySDivInst(Op0, Op1, Query (TD, TLI, DT), RecursionLimit);
1046 }
1047
1048 /// SimplifyUDivInst - Given operands for a UDiv, see if we can
1049 /// fold the result. If not, this returns null.
SimplifyUDivInst(Value * Op0,Value * Op1,const Query & Q,unsigned MaxRecurse)1050 static Value *SimplifyUDivInst(Value *Op0, Value *Op1, const Query &Q,
1051 unsigned MaxRecurse) {
1052 if (Value *V = SimplifyDiv(Instruction::UDiv, Op0, Op1, Q, MaxRecurse))
1053 return V;
1054
1055 return 0;
1056 }
1057
SimplifyUDivInst(Value * Op0,Value * Op1,const TargetData * TD,const TargetLibraryInfo * TLI,const DominatorTree * DT)1058 Value *llvm::SimplifyUDivInst(Value *Op0, Value *Op1, const TargetData *TD,
1059 const TargetLibraryInfo *TLI,
1060 const DominatorTree *DT) {
1061 return ::SimplifyUDivInst(Op0, Op1, Query (TD, TLI, DT), RecursionLimit);
1062 }
1063
SimplifyFDivInst(Value * Op0,Value * Op1,const Query & Q,unsigned)1064 static Value *SimplifyFDivInst(Value *Op0, Value *Op1, const Query &Q,
1065 unsigned) {
1066 // undef / X -> undef (the undef could be a snan).
1067 if (match(Op0, m_Undef()))
1068 return Op0;
1069
1070 // X / undef -> undef
1071 if (match(Op1, m_Undef()))
1072 return Op1;
1073
1074 return 0;
1075 }
1076
SimplifyFDivInst(Value * Op0,Value * Op1,const TargetData * TD,const TargetLibraryInfo * TLI,const DominatorTree * DT)1077 Value *llvm::SimplifyFDivInst(Value *Op0, Value *Op1, const TargetData *TD,
1078 const TargetLibraryInfo *TLI,
1079 const DominatorTree *DT) {
1080 return ::SimplifyFDivInst(Op0, Op1, Query (TD, TLI, DT), RecursionLimit);
1081 }
1082
1083 /// SimplifyRem - Given operands for an SRem or URem, see if we can
1084 /// fold the result. If not, this returns null.
SimplifyRem(Instruction::BinaryOps Opcode,Value * Op0,Value * Op1,const Query & Q,unsigned MaxRecurse)1085 static Value *SimplifyRem(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1,
1086 const Query &Q, unsigned MaxRecurse) {
1087 if (Constant *C0 = dyn_cast<Constant>(Op0)) {
1088 if (Constant *C1 = dyn_cast<Constant>(Op1)) {
1089 Constant *Ops[] = { C0, C1 };
1090 return ConstantFoldInstOperands(Opcode, C0->getType(), Ops, Q.TD, Q.TLI);
1091 }
1092 }
1093
1094 // X % undef -> undef
1095 if (match(Op1, m_Undef()))
1096 return Op1;
1097
1098 // undef % X -> 0
1099 if (match(Op0, m_Undef()))
1100 return Constant::getNullValue(Op0->getType());
1101
1102 // 0 % X -> 0, we don't need to preserve faults!
1103 if (match(Op0, m_Zero()))
1104 return Op0;
1105
1106 // X % 0 -> undef, we don't need to preserve faults!
1107 if (match(Op1, m_Zero()))
1108 return UndefValue::get(Op0->getType());
1109
1110 // X % 1 -> 0
1111 if (match(Op1, m_One()))
1112 return Constant::getNullValue(Op0->getType());
1113
1114 if (Op0->getType()->isIntegerTy(1))
1115 // It can't be remainder by zero, hence it must be remainder by one.
1116 return Constant::getNullValue(Op0->getType());
1117
1118 // X % X -> 0
1119 if (Op0 == Op1)
1120 return Constant::getNullValue(Op0->getType());
1121
1122 // If the operation is with the result of a select instruction, check whether
1123 // operating on either branch of the select always yields the same value.
1124 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1125 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse))
1126 return V;
1127
1128 // If the operation is with the result of a phi instruction, check whether
1129 // operating on all incoming values of the phi always yields the same value.
1130 if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1131 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
1132 return V;
1133
1134 return 0;
1135 }
1136
1137 /// SimplifySRemInst - Given operands for an SRem, see if we can
1138 /// fold the result. If not, this returns null.
SimplifySRemInst(Value * Op0,Value * Op1,const Query & Q,unsigned MaxRecurse)1139 static Value *SimplifySRemInst(Value *Op0, Value *Op1, const Query &Q,
1140 unsigned MaxRecurse) {
1141 if (Value *V = SimplifyRem(Instruction::SRem, Op0, Op1, Q, MaxRecurse))
1142 return V;
1143
1144 return 0;
1145 }
1146
SimplifySRemInst(Value * Op0,Value * Op1,const TargetData * TD,const TargetLibraryInfo * TLI,const DominatorTree * DT)1147 Value *llvm::SimplifySRemInst(Value *Op0, Value *Op1, const TargetData *TD,
1148 const TargetLibraryInfo *TLI,
1149 const DominatorTree *DT) {
1150 return ::SimplifySRemInst(Op0, Op1, Query (TD, TLI, DT), RecursionLimit);
1151 }
1152
1153 /// SimplifyURemInst - Given operands for a URem, see if we can
1154 /// fold the result. If not, this returns null.
SimplifyURemInst(Value * Op0,Value * Op1,const Query & Q,unsigned MaxRecurse)1155 static Value *SimplifyURemInst(Value *Op0, Value *Op1, const Query &Q,
1156 unsigned MaxRecurse) {
1157 if (Value *V = SimplifyRem(Instruction::URem, Op0, Op1, Q, MaxRecurse))
1158 return V;
1159
1160 return 0;
1161 }
1162
SimplifyURemInst(Value * Op0,Value * Op1,const TargetData * TD,const TargetLibraryInfo * TLI,const DominatorTree * DT)1163 Value *llvm::SimplifyURemInst(Value *Op0, Value *Op1, const TargetData *TD,
1164 const TargetLibraryInfo *TLI,
1165 const DominatorTree *DT) {
1166 return ::SimplifyURemInst(Op0, Op1, Query (TD, TLI, DT), RecursionLimit);
1167 }
1168
SimplifyFRemInst(Value * Op0,Value * Op1,const Query &,unsigned)1169 static Value *SimplifyFRemInst(Value *Op0, Value *Op1, const Query &,
1170 unsigned) {
1171 // undef % X -> undef (the undef could be a snan).
1172 if (match(Op0, m_Undef()))
1173 return Op0;
1174
1175 // X % undef -> undef
1176 if (match(Op1, m_Undef()))
1177 return Op1;
1178
1179 return 0;
1180 }
1181
SimplifyFRemInst(Value * Op0,Value * Op1,const TargetData * TD,const TargetLibraryInfo * TLI,const DominatorTree * DT)1182 Value *llvm::SimplifyFRemInst(Value *Op0, Value *Op1, const TargetData *TD,
1183 const TargetLibraryInfo *TLI,
1184 const DominatorTree *DT) {
1185 return ::SimplifyFRemInst(Op0, Op1, Query (TD, TLI, DT), RecursionLimit);
1186 }
1187
1188 /// SimplifyShift - Given operands for an Shl, LShr or AShr, see if we can
1189 /// fold the result. If not, this returns null.
SimplifyShift(unsigned Opcode,Value * Op0,Value * Op1,const Query & Q,unsigned MaxRecurse)1190 static Value *SimplifyShift(unsigned Opcode, Value *Op0, Value *Op1,
1191 const Query &Q, unsigned MaxRecurse) {
1192 if (Constant *C0 = dyn_cast<Constant>(Op0)) {
1193 if (Constant *C1 = dyn_cast<Constant>(Op1)) {
1194 Constant *Ops[] = { C0, C1 };
1195 return ConstantFoldInstOperands(Opcode, C0->getType(), Ops, Q.TD, Q.TLI);
1196 }
1197 }
1198
1199 // 0 shift by X -> 0
1200 if (match(Op0, m_Zero()))
1201 return Op0;
1202
1203 // X shift by 0 -> X
1204 if (match(Op1, m_Zero()))
1205 return Op0;
1206
1207 // X shift by undef -> undef because it may shift by the bitwidth.
1208 if (match(Op1, m_Undef()))
1209 return Op1;
1210
1211 // Shifting by the bitwidth or more is undefined.
1212 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1))
1213 if (CI->getValue().getLimitedValue() >=
1214 Op0->getType()->getScalarSizeInBits())
1215 return UndefValue::get(Op0->getType());
1216
1217 // If the operation is with the result of a select instruction, check whether
1218 // operating on either branch of the select always yields the same value.
1219 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1220 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse))
1221 return V;
1222
1223 // If the operation is with the result of a phi instruction, check whether
1224 // operating on all incoming values of the phi always yields the same value.
1225 if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1226 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
1227 return V;
1228
1229 return 0;
1230 }
1231
1232 /// SimplifyShlInst - Given operands for an Shl, see if we can
1233 /// fold the result. If not, this returns null.
SimplifyShlInst(Value * Op0,Value * Op1,bool isNSW,bool isNUW,const Query & Q,unsigned MaxRecurse)1234 static Value *SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
1235 const Query &Q, unsigned MaxRecurse) {
1236 if (Value *V = SimplifyShift(Instruction::Shl, Op0, Op1, Q, MaxRecurse))
1237 return V;
1238
1239 // undef << X -> 0
1240 if (match(Op0, m_Undef()))
1241 return Constant::getNullValue(Op0->getType());
1242
1243 // (X >> A) << A -> X
1244 Value *X;
1245 if (match(Op0, m_Exact(m_Shr(m_Value(X), m_Specific(Op1)))))
1246 return X;
1247 return 0;
1248 }
1249
SimplifyShlInst(Value * Op0,Value * Op1,bool isNSW,bool isNUW,const TargetData * TD,const TargetLibraryInfo * TLI,const DominatorTree * DT)1250 Value *llvm::SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
1251 const TargetData *TD, const TargetLibraryInfo *TLI,
1252 const DominatorTree *DT) {
1253 return ::SimplifyShlInst(Op0, Op1, isNSW, isNUW, Query (TD, TLI, DT),
1254 RecursionLimit);
1255 }
1256
1257 /// SimplifyLShrInst - Given operands for an LShr, see if we can
1258 /// fold the result. If not, this returns null.
SimplifyLShrInst(Value * Op0,Value * Op1,bool isExact,const Query & Q,unsigned MaxRecurse)1259 static Value *SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact,
1260 const Query &Q, unsigned MaxRecurse) {
1261 if (Value *V = SimplifyShift(Instruction::LShr, Op0, Op1, Q, MaxRecurse))
1262 return V;
1263
1264 // undef >>l X -> 0
1265 if (match(Op0, m_Undef()))
1266 return Constant::getNullValue(Op0->getType());
1267
1268 // (X << A) >> A -> X
1269 Value *X;
1270 if (match(Op0, m_Shl(m_Value(X), m_Specific(Op1))) &&
1271 cast<OverflowingBinaryOperator>(Op0)->hasNoUnsignedWrap())
1272 return X;
1273
1274 return 0;
1275 }
1276
SimplifyLShrInst(Value * Op0,Value * Op1,bool isExact,const TargetData * TD,const TargetLibraryInfo * TLI,const DominatorTree * DT)1277 Value *llvm::SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact,
1278 const TargetData *TD,
1279 const TargetLibraryInfo *TLI,
1280 const DominatorTree *DT) {
1281 return ::SimplifyLShrInst(Op0, Op1, isExact, Query (TD, TLI, DT),
1282 RecursionLimit);
1283 }
1284
1285 /// SimplifyAShrInst - Given operands for an AShr, see if we can
1286 /// fold the result. If not, this returns null.
SimplifyAShrInst(Value * Op0,Value * Op1,bool isExact,const Query & Q,unsigned MaxRecurse)1287 static Value *SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact,
1288 const Query &Q, unsigned MaxRecurse) {
1289 if (Value *V = SimplifyShift(Instruction::AShr, Op0, Op1, Q, MaxRecurse))
1290 return V;
1291
1292 // all ones >>a X -> all ones
1293 if (match(Op0, m_AllOnes()))
1294 return Op0;
1295
1296 // undef >>a X -> all ones
1297 if (match(Op0, m_Undef()))
1298 return Constant::getAllOnesValue(Op0->getType());
1299
1300 // (X << A) >> A -> X
1301 Value *X;
1302 if (match(Op0, m_Shl(m_Value(X), m_Specific(Op1))) &&
1303 cast<OverflowingBinaryOperator>(Op0)->hasNoSignedWrap())
1304 return X;
1305
1306 return 0;
1307 }
1308
SimplifyAShrInst(Value * Op0,Value * Op1,bool isExact,const TargetData * TD,const TargetLibraryInfo * TLI,const DominatorTree * DT)1309 Value *llvm::SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact,
1310 const TargetData *TD,
1311 const TargetLibraryInfo *TLI,
1312 const DominatorTree *DT) {
1313 return ::SimplifyAShrInst(Op0, Op1, isExact, Query (TD, TLI, DT),
1314 RecursionLimit);
1315 }
1316
1317 /// SimplifyAndInst - Given operands for an And, see if we can
1318 /// fold the result. If not, this returns null.
SimplifyAndInst(Value * Op0,Value * Op1,const Query & Q,unsigned MaxRecurse)1319 static Value *SimplifyAndInst(Value *Op0, Value *Op1, const Query &Q,
1320 unsigned MaxRecurse) {
1321 if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
1322 if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
1323 Constant *Ops[] = { CLHS, CRHS };
1324 return ConstantFoldInstOperands(Instruction::And, CLHS->getType(),
1325 Ops, Q.TD, Q.TLI);
1326 }
1327
1328 // Canonicalize the constant to the RHS.
1329 std::swap(Op0, Op1);
1330 }
1331
1332 // X & undef -> 0
1333 if (match(Op1, m_Undef()))
1334 return Constant::getNullValue(Op0->getType());
1335
1336 // X & X = X
1337 if (Op0 == Op1)
1338 return Op0;
1339
1340 // X & 0 = 0
1341 if (match(Op1, m_Zero()))
1342 return Op1;
1343
1344 // X & -1 = X
1345 if (match(Op1, m_AllOnes()))
1346 return Op0;
1347
1348 // A & ~A = ~A & A = 0
1349 if (match(Op0, m_Not(m_Specific(Op1))) ||
1350 match(Op1, m_Not(m_Specific(Op0))))
1351 return Constant::getNullValue(Op0->getType());
1352
1353 // (A | ?) & A = A
1354 Value *A = 0, *B = 0;
1355 if (match(Op0, m_Or(m_Value(A), m_Value(B))) &&
1356 (A == Op1 || B == Op1))
1357 return Op1;
1358
1359 // A & (A | ?) = A
1360 if (match(Op1, m_Or(m_Value(A), m_Value(B))) &&
1361 (A == Op0 || B == Op0))
1362 return Op0;
1363
1364 // A & (-A) = A if A is a power of two or zero.
1365 if (match(Op0, m_Neg(m_Specific(Op1))) ||
1366 match(Op1, m_Neg(m_Specific(Op0)))) {
1367 if (isPowerOfTwo(Op0, Q.TD, /*OrZero*/true))
1368 return Op0;
1369 if (isPowerOfTwo(Op1, Q.TD, /*OrZero*/true))
1370 return Op1;
1371 }
1372
1373 // Try some generic simplifications for associative operations.
1374 if (Value *V = SimplifyAssociativeBinOp(Instruction::And, Op0, Op1, Q,
1375 MaxRecurse))
1376 return V;
1377
1378 // And distributes over Or. Try some generic simplifications based on this.
1379 if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Or,
1380 Q, MaxRecurse))
1381 return V;
1382
1383 // And distributes over Xor. Try some generic simplifications based on this.
1384 if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Xor,
1385 Q, MaxRecurse))
1386 return V;
1387
1388 // Or distributes over And. Try some generic simplifications based on this.
1389 if (Value *V = FactorizeBinOp(Instruction::And, Op0, Op1, Instruction::Or,
1390 Q, MaxRecurse))
1391 return V;
1392
1393 // If the operation is with the result of a select instruction, check whether
1394 // operating on either branch of the select always yields the same value.
1395 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1396 if (Value *V = ThreadBinOpOverSelect(Instruction::And, Op0, Op1, Q,
1397 MaxRecurse))
1398 return V;
1399
1400 // If the operation is with the result of a phi instruction, check whether
1401 // operating on all incoming values of the phi always yields the same value.
1402 if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1403 if (Value *V = ThreadBinOpOverPHI(Instruction::And, Op0, Op1, Q,
1404 MaxRecurse))
1405 return V;
1406
1407 return 0;
1408 }
1409
SimplifyAndInst(Value * Op0,Value * Op1,const TargetData * TD,const TargetLibraryInfo * TLI,const DominatorTree * DT)1410 Value *llvm::SimplifyAndInst(Value *Op0, Value *Op1, const TargetData *TD,
1411 const TargetLibraryInfo *TLI,
1412 const DominatorTree *DT) {
1413 return ::SimplifyAndInst(Op0, Op1, Query (TD, TLI, DT), RecursionLimit);
1414 }
1415
1416 /// SimplifyOrInst - Given operands for an Or, see if we can
1417 /// fold the result. If not, this returns null.
SimplifyOrInst(Value * Op0,Value * Op1,const Query & Q,unsigned MaxRecurse)1418 static Value *SimplifyOrInst(Value *Op0, Value *Op1, const Query &Q,
1419 unsigned MaxRecurse) {
1420 if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
1421 if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
1422 Constant *Ops[] = { CLHS, CRHS };
1423 return ConstantFoldInstOperands(Instruction::Or, CLHS->getType(),
1424 Ops, Q.TD, Q.TLI);
1425 }
1426
1427 // Canonicalize the constant to the RHS.
1428 std::swap(Op0, Op1);
1429 }
1430
1431 // X | undef -> -1
1432 if (match(Op1, m_Undef()))
1433 return Constant::getAllOnesValue(Op0->getType());
1434
1435 // X | X = X
1436 if (Op0 == Op1)
1437 return Op0;
1438
1439 // X | 0 = X
1440 if (match(Op1, m_Zero()))
1441 return Op0;
1442
1443 // X | -1 = -1
1444 if (match(Op1, m_AllOnes()))
1445 return Op1;
1446
1447 // A | ~A = ~A | A = -1
1448 if (match(Op0, m_Not(m_Specific(Op1))) ||
1449 match(Op1, m_Not(m_Specific(Op0))))
1450 return Constant::getAllOnesValue(Op0->getType());
1451
1452 // (A & ?) | A = A
1453 Value *A = 0, *B = 0;
1454 if (match(Op0, m_And(m_Value(A), m_Value(B))) &&
1455 (A == Op1 || B == Op1))
1456 return Op1;
1457
1458 // A | (A & ?) = A
1459 if (match(Op1, m_And(m_Value(A), m_Value(B))) &&
1460 (A == Op0 || B == Op0))
1461 return Op0;
1462
1463 // ~(A & ?) | A = -1
1464 if (match(Op0, m_Not(m_And(m_Value(A), m_Value(B)))) &&
1465 (A == Op1 || B == Op1))
1466 return Constant::getAllOnesValue(Op1->getType());
1467
1468 // A | ~(A & ?) = -1
1469 if (match(Op1, m_Not(m_And(m_Value(A), m_Value(B)))) &&
1470 (A == Op0 || B == Op0))
1471 return Constant::getAllOnesValue(Op0->getType());
1472
1473 // Try some generic simplifications for associative operations.
1474 if (Value *V = SimplifyAssociativeBinOp(Instruction::Or, Op0, Op1, Q,
1475 MaxRecurse))
1476 return V;
1477
1478 // Or distributes over And. Try some generic simplifications based on this.
1479 if (Value *V = ExpandBinOp(Instruction::Or, Op0, Op1, Instruction::And, Q,
1480 MaxRecurse))
1481 return V;
1482
1483 // And distributes over Or. Try some generic simplifications based on this.
1484 if (Value *V = FactorizeBinOp(Instruction::Or, Op0, Op1, Instruction::And,
1485 Q, MaxRecurse))
1486 return V;
1487
1488 // If the operation is with the result of a select instruction, check whether
1489 // operating on either branch of the select always yields the same value.
1490 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1491 if (Value *V = ThreadBinOpOverSelect(Instruction::Or, Op0, Op1, Q,
1492 MaxRecurse))
1493 return V;
1494
1495 // If the operation is with the result of a phi instruction, check whether
1496 // operating on all incoming values of the phi always yields the same value.
1497 if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1498 if (Value *V = ThreadBinOpOverPHI(Instruction::Or, Op0, Op1, Q, MaxRecurse))
1499 return V;
1500
1501 return 0;
1502 }
1503
SimplifyOrInst(Value * Op0,Value * Op1,const TargetData * TD,const TargetLibraryInfo * TLI,const DominatorTree * DT)1504 Value *llvm::SimplifyOrInst(Value *Op0, Value *Op1, const TargetData *TD,
1505 const TargetLibraryInfo *TLI,
1506 const DominatorTree *DT) {
1507 return ::SimplifyOrInst(Op0, Op1, Query (TD, TLI, DT), RecursionLimit);
1508 }
1509
1510 /// SimplifyXorInst - Given operands for a Xor, see if we can
1511 /// fold the result. If not, this returns null.
SimplifyXorInst(Value * Op0,Value * Op1,const Query & Q,unsigned MaxRecurse)1512 static Value *SimplifyXorInst(Value *Op0, Value *Op1, const Query &Q,
1513 unsigned MaxRecurse) {
1514 if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
1515 if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
1516 Constant *Ops[] = { CLHS, CRHS };
1517 return ConstantFoldInstOperands(Instruction::Xor, CLHS->getType(),
1518 Ops, Q.TD, Q.TLI);
1519 }
1520
1521 // Canonicalize the constant to the RHS.
1522 std::swap(Op0, Op1);
1523 }
1524
1525 // A ^ undef -> undef
1526 if (match(Op1, m_Undef()))
1527 return Op1;
1528
1529 // A ^ 0 = A
1530 if (match(Op1, m_Zero()))
1531 return Op0;
1532
1533 // A ^ A = 0
1534 if (Op0 == Op1)
1535 return Constant::getNullValue(Op0->getType());
1536
1537 // A ^ ~A = ~A ^ A = -1
1538 if (match(Op0, m_Not(m_Specific(Op1))) ||
1539 match(Op1, m_Not(m_Specific(Op0))))
1540 return Constant::getAllOnesValue(Op0->getType());
1541
1542 // Try some generic simplifications for associative operations.
1543 if (Value *V = SimplifyAssociativeBinOp(Instruction::Xor, Op0, Op1, Q,
1544 MaxRecurse))
1545 return V;
1546
1547 // And distributes over Xor. Try some generic simplifications based on this.
1548 if (Value *V = FactorizeBinOp(Instruction::Xor, Op0, Op1, Instruction::And,
1549 Q, MaxRecurse))
1550 return V;
1551
1552 // Threading Xor over selects and phi nodes is pointless, so don't bother.
1553 // Threading over the select in "A ^ select(cond, B, C)" means evaluating
1554 // "A^B" and "A^C" and seeing if they are equal; but they are equal if and
1555 // only if B and C are equal. If B and C are equal then (since we assume
1556 // that operands have already been simplified) "select(cond, B, C)" should
1557 // have been simplified to the common value of B and C already. Analysing
1558 // "A^B" and "A^C" thus gains nothing, but costs compile time. Similarly
1559 // for threading over phi nodes.
1560
1561 return 0;
1562 }
1563
SimplifyXorInst(Value * Op0,Value * Op1,const TargetData * TD,const TargetLibraryInfo * TLI,const DominatorTree * DT)1564 Value *llvm::SimplifyXorInst(Value *Op0, Value *Op1, const TargetData *TD,
1565 const TargetLibraryInfo *TLI,
1566 const DominatorTree *DT) {
1567 return ::SimplifyXorInst(Op0, Op1, Query (TD, TLI, DT), RecursionLimit);
1568 }
1569
GetCompareTy(Value * Op)1570 static Type *GetCompareTy(Value *Op) {
1571 return CmpInst::makeCmpResultType(Op->getType());
1572 }
1573
1574 /// ExtractEquivalentCondition - Rummage around inside V looking for something
1575 /// equivalent to the comparison "LHS Pred RHS". Return such a value if found,
1576 /// otherwise return null. Helper function for analyzing max/min idioms.
ExtractEquivalentCondition(Value * V,CmpInst::Predicate Pred,Value * LHS,Value * RHS)1577 static Value *ExtractEquivalentCondition(Value *V, CmpInst::Predicate Pred,
1578 Value *LHS, Value *RHS) {
1579 SelectInst *SI = dyn_cast<SelectInst>(V);
1580 if (!SI)
1581 return 0;
1582 CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition());
1583 if (!Cmp)
1584 return 0;
1585 Value *CmpLHS = Cmp->getOperand(0), *CmpRHS = Cmp->getOperand(1);
1586 if (Pred == Cmp->getPredicate() && LHS == CmpLHS && RHS == CmpRHS)
1587 return Cmp;
1588 if (Pred == CmpInst::getSwappedPredicate(Cmp->getPredicate()) &&
1589 LHS == CmpRHS && RHS == CmpLHS)
1590 return Cmp;
1591 return 0;
1592 }
1593
computePointerICmp(const TargetData & TD,CmpInst::Predicate Pred,Value * LHS,Value * RHS)1594 static Constant *computePointerICmp(const TargetData &TD,
1595 CmpInst::Predicate Pred,
1596 Value *LHS, Value *RHS) {
1597 // We can only fold certain predicates on pointer comparisons.
1598 switch (Pred) {
1599 default:
1600 return 0;
1601
1602 // Equality comaprisons are easy to fold.
1603 case CmpInst::ICMP_EQ:
1604 case CmpInst::ICMP_NE:
1605 break;
1606
1607 // We can only handle unsigned relational comparisons because 'inbounds' on
1608 // a GEP only protects against unsigned wrapping.
1609 case CmpInst::ICMP_UGT:
1610 case CmpInst::ICMP_UGE:
1611 case CmpInst::ICMP_ULT:
1612 case CmpInst::ICMP_ULE:
1613 // However, we have to switch them to their signed variants to handle
1614 // negative indices from the base pointer.
1615 Pred = ICmpInst::getSignedPredicate(Pred);
1616 break;
1617 }
1618
1619 Constant *LHSOffset = stripAndComputeConstantOffsets(TD, LHS);
1620 if (!LHSOffset)
1621 return 0;
1622 Constant *RHSOffset = stripAndComputeConstantOffsets(TD, RHS);
1623 if (!RHSOffset)
1624 return 0;
1625
1626 // If LHS and RHS are not related via constant offsets to the same base
1627 // value, there is nothing we can do here.
1628 if (LHS != RHS)
1629 return 0;
1630
1631 return ConstantExpr::getICmp(Pred, LHSOffset, RHSOffset);
1632 }
1633
1634 /// SimplifyICmpInst - Given operands for an ICmpInst, see if we can
1635 /// fold the result. If not, this returns null.
SimplifyICmpInst(unsigned Predicate,Value * LHS,Value * RHS,const Query & Q,unsigned MaxRecurse)1636 static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
1637 const Query &Q, unsigned MaxRecurse) {
1638 CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate;
1639 assert(CmpInst::isIntPredicate(Pred) && "Not an integer compare!");
1640
1641 if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
1642 if (Constant *CRHS = dyn_cast<Constant>(RHS))
1643 return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.TD, Q.TLI);
1644
1645 // If we have a constant, make sure it is on the RHS.
1646 std::swap(LHS, RHS);
1647 Pred = CmpInst::getSwappedPredicate(Pred);
1648 }
1649
1650 Type *ITy = GetCompareTy(LHS); // The return type.
1651 Type *OpTy = LHS->getType(); // The operand type.
1652
1653 // icmp X, X -> true/false
1654 // X icmp undef -> true/false. For example, icmp ugt %X, undef -> false
1655 // because X could be 0.
1656 if (LHS == RHS || isa<UndefValue>(RHS))
1657 return ConstantInt::get(ITy, CmpInst::isTrueWhenEqual(Pred));
1658
1659 // Special case logic when the operands have i1 type.
1660 if (OpTy->getScalarType()->isIntegerTy(1)) {
1661 switch (Pred) {
1662 default: break;
1663 case ICmpInst::ICMP_EQ:
1664 // X == 1 -> X
1665 if (match(RHS, m_One()))
1666 return LHS;
1667 break;
1668 case ICmpInst::ICMP_NE:
1669 // X != 0 -> X
1670 if (match(RHS, m_Zero()))
1671 return LHS;
1672 break;
1673 case ICmpInst::ICMP_UGT:
1674 // X >u 0 -> X
1675 if (match(RHS, m_Zero()))
1676 return LHS;
1677 break;
1678 case ICmpInst::ICMP_UGE:
1679 // X >=u 1 -> X
1680 if (match(RHS, m_One()))
1681 return LHS;
1682 break;
1683 case ICmpInst::ICMP_SLT:
1684 // X <s 0 -> X
1685 if (match(RHS, m_Zero()))
1686 return LHS;
1687 break;
1688 case ICmpInst::ICMP_SLE:
1689 // X <=s -1 -> X
1690 if (match(RHS, m_One()))
1691 return LHS;
1692 break;
1693 }
1694 }
1695
1696 // icmp <object*>, <object*/null> - Different identified objects have
1697 // different addresses (unless null), and what's more the address of an
1698 // identified local is never equal to another argument (again, barring null).
1699 // Note that generalizing to the case where LHS is a global variable address
1700 // or null is pointless, since if both LHS and RHS are constants then we
1701 // already constant folded the compare, and if only one of them is then we
1702 // moved it to RHS already.
1703 Value *LHSPtr = LHS->stripPointerCasts();
1704 Value *RHSPtr = RHS->stripPointerCasts();
1705 if (LHSPtr == RHSPtr)
1706 return ConstantInt::get(ITy, CmpInst::isTrueWhenEqual(Pred));
1707
1708 // Be more aggressive about stripping pointer adjustments when checking a
1709 // comparison of an alloca address to another object. We can rip off all
1710 // inbounds GEP operations, even if they are variable.
1711 LHSPtr = LHSPtr->stripInBoundsOffsets();
1712 if (llvm::isIdentifiedObject(LHSPtr)) {
1713 RHSPtr = RHSPtr->stripInBoundsOffsets();
1714 if (llvm::isKnownNonNull(LHSPtr) || llvm::isKnownNonNull(RHSPtr)) {
1715 // If both sides are different identified objects, they aren't equal
1716 // unless they're null.
1717 if (LHSPtr != RHSPtr && llvm::isIdentifiedObject(RHSPtr) &&
1718 Pred == CmpInst::ICMP_EQ)
1719 return ConstantInt::get(ITy, false);
1720
1721 // A local identified object (alloca or noalias call) can't equal any
1722 // incoming argument, unless they're both null or they belong to
1723 // different functions. The latter happens during inlining.
1724 if (Instruction *LHSInst = dyn_cast<Instruction>(LHSPtr))
1725 if (Argument *RHSArg = dyn_cast<Argument>(RHSPtr))
1726 if (LHSInst->getParent()->getParent() == RHSArg->getParent() &&
1727 Pred == CmpInst::ICMP_EQ)
1728 return ConstantInt::get(ITy, false);
1729 }
1730
1731 // Assume that the constant null is on the right.
1732 if (llvm::isKnownNonNull(LHSPtr) && isa<ConstantPointerNull>(RHSPtr)) {
1733 if (Pred == CmpInst::ICMP_EQ)
1734 return ConstantInt::get(ITy, false);
1735 else if (Pred == CmpInst::ICMP_NE)
1736 return ConstantInt::get(ITy, true);
1737 }
1738 } else if (Argument *LHSArg = dyn_cast<Argument>(LHSPtr)) {
1739 RHSPtr = RHSPtr->stripInBoundsOffsets();
1740 // An alloca can't be equal to an argument unless they come from separate
1741 // functions via inlining.
1742 if (AllocaInst *RHSInst = dyn_cast<AllocaInst>(RHSPtr)) {
1743 if (LHSArg->getParent() == RHSInst->getParent()->getParent()) {
1744 if (Pred == CmpInst::ICMP_EQ)
1745 return ConstantInt::get(ITy, false);
1746 else if (Pred == CmpInst::ICMP_NE)
1747 return ConstantInt::get(ITy, true);
1748 }
1749 }
1750 }
1751
1752 // If we are comparing with zero then try hard since this is a common case.
1753 if (match(RHS, m_Zero())) {
1754 bool LHSKnownNonNegative, LHSKnownNegative;
1755 switch (Pred) {
1756 default: llvm_unreachable("Unknown ICmp predicate!");
1757 case ICmpInst::ICMP_ULT:
1758 return getFalse(ITy);
1759 case ICmpInst::ICMP_UGE:
1760 return getTrue(ITy);
1761 case ICmpInst::ICMP_EQ:
1762 case ICmpInst::ICMP_ULE:
1763 if (isKnownNonZero(LHS, Q.TD))
1764 return getFalse(ITy);
1765 break;
1766 case ICmpInst::ICMP_NE:
1767 case ICmpInst::ICMP_UGT:
1768 if (isKnownNonZero(LHS, Q.TD))
1769 return getTrue(ITy);
1770 break;
1771 case ICmpInst::ICMP_SLT:
1772 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.TD);
1773 if (LHSKnownNegative)
1774 return getTrue(ITy);
1775 if (LHSKnownNonNegative)
1776 return getFalse(ITy);
1777 break;
1778 case ICmpInst::ICMP_SLE:
1779 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.TD);
1780 if (LHSKnownNegative)
1781 return getTrue(ITy);
1782 if (LHSKnownNonNegative && isKnownNonZero(LHS, Q.TD))
1783 return getFalse(ITy);
1784 break;
1785 case ICmpInst::ICMP_SGE:
1786 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.TD);
1787 if (LHSKnownNegative)
1788 return getFalse(ITy);
1789 if (LHSKnownNonNegative)
1790 return getTrue(ITy);
1791 break;
1792 case ICmpInst::ICMP_SGT:
1793 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.TD);
1794 if (LHSKnownNegative)
1795 return getFalse(ITy);
1796 if (LHSKnownNonNegative && isKnownNonZero(LHS, Q.TD))
1797 return getTrue(ITy);
1798 break;
1799 }
1800 }
1801
1802 // See if we are doing a comparison with a constant integer.
1803 if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
1804 // Rule out tautological comparisons (eg., ult 0 or uge 0).
1805 ConstantRange RHS_CR = ICmpInst::makeConstantRange(Pred, CI->getValue());
1806 if (RHS_CR.isEmptySet())
1807 return ConstantInt::getFalse(CI->getContext());
1808 if (RHS_CR.isFullSet())
1809 return ConstantInt::getTrue(CI->getContext());
1810
1811 // Many binary operators with constant RHS have easy to compute constant
1812 // range. Use them to check whether the comparison is a tautology.
1813 uint32_t Width = CI->getBitWidth();
1814 APInt Lower = APInt(Width, 0);
1815 APInt Upper = APInt(Width, 0);
1816 ConstantInt *CI2;
1817 if (match(LHS, m_URem(m_Value(), m_ConstantInt(CI2)))) {
1818 // 'urem x, CI2' produces [0, CI2).
1819 Upper = CI2->getValue();
1820 } else if (match(LHS, m_SRem(m_Value(), m_ConstantInt(CI2)))) {
1821 // 'srem x, CI2' produces (-|CI2|, |CI2|).
1822 Upper = CI2->getValue().abs();
1823 Lower = (-Upper) + 1;
1824 } else if (match(LHS, m_UDiv(m_ConstantInt(CI2), m_Value()))) {
1825 // 'udiv CI2, x' produces [0, CI2].
1826 Upper = CI2->getValue() + 1;
1827 } else if (match(LHS, m_UDiv(m_Value(), m_ConstantInt(CI2)))) {
1828 // 'udiv x, CI2' produces [0, UINT_MAX / CI2].
1829 APInt NegOne = APInt::getAllOnesValue(Width);
1830 if (!CI2->isZero())
1831 Upper = NegOne.udiv(CI2->getValue()) + 1;
1832 } else if (match(LHS, m_SDiv(m_Value(), m_ConstantInt(CI2)))) {
1833 // 'sdiv x, CI2' produces [INT_MIN / CI2, INT_MAX / CI2].
1834 APInt IntMin = APInt::getSignedMinValue(Width);
1835 APInt IntMax = APInt::getSignedMaxValue(Width);
1836 APInt Val = CI2->getValue().abs();
1837 if (!Val.isMinValue()) {
1838 Lower = IntMin.sdiv(Val);
1839 Upper = IntMax.sdiv(Val) + 1;
1840 }
1841 } else if (match(LHS, m_LShr(m_Value(), m_ConstantInt(CI2)))) {
1842 // 'lshr x, CI2' produces [0, UINT_MAX >> CI2].
1843 APInt NegOne = APInt::getAllOnesValue(Width);
1844 if (CI2->getValue().ult(Width))
1845 Upper = NegOne.lshr(CI2->getValue()) + 1;
1846 } else if (match(LHS, m_AShr(m_Value(), m_ConstantInt(CI2)))) {
1847 // 'ashr x, CI2' produces [INT_MIN >> CI2, INT_MAX >> CI2].
1848 APInt IntMin = APInt::getSignedMinValue(Width);
1849 APInt IntMax = APInt::getSignedMaxValue(Width);
1850 if (CI2->getValue().ult(Width)) {
1851 Lower = IntMin.ashr(CI2->getValue());
1852 Upper = IntMax.ashr(CI2->getValue()) + 1;
1853 }
1854 } else if (match(LHS, m_Or(m_Value(), m_ConstantInt(CI2)))) {
1855 // 'or x, CI2' produces [CI2, UINT_MAX].
1856 Lower = CI2->getValue();
1857 } else if (match(LHS, m_And(m_Value(), m_ConstantInt(CI2)))) {
1858 // 'and x, CI2' produces [0, CI2].
1859 Upper = CI2->getValue() + 1;
1860 }
1861 if (Lower != Upper) {
1862 ConstantRange LHS_CR = ConstantRange(Lower, Upper);
1863 if (RHS_CR.contains(LHS_CR))
1864 return ConstantInt::getTrue(RHS->getContext());
1865 if (RHS_CR.inverse().contains(LHS_CR))
1866 return ConstantInt::getFalse(RHS->getContext());
1867 }
1868 }
1869
1870 // Compare of cast, for example (zext X) != 0 -> X != 0
1871 if (isa<CastInst>(LHS) && (isa<Constant>(RHS) || isa<CastInst>(RHS))) {
1872 Instruction *LI = cast<CastInst>(LHS);
1873 Value *SrcOp = LI->getOperand(0);
1874 Type *SrcTy = SrcOp->getType();
1875 Type *DstTy = LI->getType();
1876
1877 // Turn icmp (ptrtoint x), (ptrtoint/constant) into a compare of the input
1878 // if the integer type is the same size as the pointer type.
1879 if (MaxRecurse && Q.TD && isa<PtrToIntInst>(LI) &&
1880 Q.TD->getPointerSizeInBits() == DstTy->getPrimitiveSizeInBits()) {
1881 if (Constant *RHSC = dyn_cast<Constant>(RHS)) {
1882 // Transfer the cast to the constant.
1883 if (Value *V = SimplifyICmpInst(Pred, SrcOp,
1884 ConstantExpr::getIntToPtr(RHSC, SrcTy),
1885 Q, MaxRecurse-1))
1886 return V;
1887 } else if (PtrToIntInst *RI = dyn_cast<PtrToIntInst>(RHS)) {
1888 if (RI->getOperand(0)->getType() == SrcTy)
1889 // Compare without the cast.
1890 if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0),
1891 Q, MaxRecurse-1))
1892 return V;
1893 }
1894 }
1895
1896 if (isa<ZExtInst>(LHS)) {
1897 // Turn icmp (zext X), (zext Y) into a compare of X and Y if they have the
1898 // same type.
1899 if (ZExtInst *RI = dyn_cast<ZExtInst>(RHS)) {
1900 if (MaxRecurse && SrcTy == RI->getOperand(0)->getType())
1901 // Compare X and Y. Note that signed predicates become unsigned.
1902 if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred),
1903 SrcOp, RI->getOperand(0), Q,
1904 MaxRecurse-1))
1905 return V;
1906 }
1907 // Turn icmp (zext X), Cst into a compare of X and Cst if Cst is extended
1908 // too. If not, then try to deduce the result of the comparison.
1909 else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
1910 // Compute the constant that would happen if we truncated to SrcTy then
1911 // reextended to DstTy.
1912 Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy);
1913 Constant *RExt = ConstantExpr::getCast(CastInst::ZExt, Trunc, DstTy);
1914
1915 // If the re-extended constant didn't change then this is effectively
1916 // also a case of comparing two zero-extended values.
1917 if (RExt == CI && MaxRecurse)
1918 if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred),
1919 SrcOp, Trunc, Q, MaxRecurse-1))
1920 return V;
1921
1922 // Otherwise the upper bits of LHS are zero while RHS has a non-zero bit
1923 // there. Use this to work out the result of the comparison.
1924 if (RExt != CI) {
1925 switch (Pred) {
1926 default: llvm_unreachable("Unknown ICmp predicate!");
1927 // LHS <u RHS.
1928 case ICmpInst::ICMP_EQ:
1929 case ICmpInst::ICMP_UGT:
1930 case ICmpInst::ICMP_UGE:
1931 return ConstantInt::getFalse(CI->getContext());
1932
1933 case ICmpInst::ICMP_NE:
1934 case ICmpInst::ICMP_ULT:
1935 case ICmpInst::ICMP_ULE:
1936 return ConstantInt::getTrue(CI->getContext());
1937
1938 // LHS is non-negative. If RHS is negative then LHS >s LHS. If RHS
1939 // is non-negative then LHS <s RHS.
1940 case ICmpInst::ICMP_SGT:
1941 case ICmpInst::ICMP_SGE:
1942 return CI->getValue().isNegative() ?
1943 ConstantInt::getTrue(CI->getContext()) :
1944 ConstantInt::getFalse(CI->getContext());
1945
1946 case ICmpInst::ICMP_SLT:
1947 case ICmpInst::ICMP_SLE:
1948 return CI->getValue().isNegative() ?
1949 ConstantInt::getFalse(CI->getContext()) :
1950 ConstantInt::getTrue(CI->getContext());
1951 }
1952 }
1953 }
1954 }
1955
1956 if (isa<SExtInst>(LHS)) {
1957 // Turn icmp (sext X), (sext Y) into a compare of X and Y if they have the
1958 // same type.
1959 if (SExtInst *RI = dyn_cast<SExtInst>(RHS)) {
1960 if (MaxRecurse && SrcTy == RI->getOperand(0)->getType())
1961 // Compare X and Y. Note that the predicate does not change.
1962 if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0),
1963 Q, MaxRecurse-1))
1964 return V;
1965 }
1966 // Turn icmp (sext X), Cst into a compare of X and Cst if Cst is extended
1967 // too. If not, then try to deduce the result of the comparison.
1968 else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
1969 // Compute the constant that would happen if we truncated to SrcTy then
1970 // reextended to DstTy.
1971 Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy);
1972 Constant *RExt = ConstantExpr::getCast(CastInst::SExt, Trunc, DstTy);
1973
1974 // If the re-extended constant didn't change then this is effectively
1975 // also a case of comparing two sign-extended values.
1976 if (RExt == CI && MaxRecurse)
1977 if (Value *V = SimplifyICmpInst(Pred, SrcOp, Trunc, Q, MaxRecurse-1))
1978 return V;
1979
1980 // Otherwise the upper bits of LHS are all equal, while RHS has varying
1981 // bits there. Use this to work out the result of the comparison.
1982 if (RExt != CI) {
1983 switch (Pred) {
1984 default: llvm_unreachable("Unknown ICmp predicate!");
1985 case ICmpInst::ICMP_EQ:
1986 return ConstantInt::getFalse(CI->getContext());
1987 case ICmpInst::ICMP_NE:
1988 return ConstantInt::getTrue(CI->getContext());
1989
1990 // If RHS is non-negative then LHS <s RHS. If RHS is negative then
1991 // LHS >s RHS.
1992 case ICmpInst::ICMP_SGT:
1993 case ICmpInst::ICMP_SGE:
1994 return CI->getValue().isNegative() ?
1995 ConstantInt::getTrue(CI->getContext()) :
1996 ConstantInt::getFalse(CI->getContext());
1997 case ICmpInst::ICMP_SLT:
1998 case ICmpInst::ICMP_SLE:
1999 return CI->getValue().isNegative() ?
2000 ConstantInt::getFalse(CI->getContext()) :
2001 ConstantInt::getTrue(CI->getContext());
2002
2003 // If LHS is non-negative then LHS <u RHS. If LHS is negative then
2004 // LHS >u RHS.
2005 case ICmpInst::ICMP_UGT:
2006 case ICmpInst::ICMP_UGE:
2007 // Comparison is true iff the LHS <s 0.
2008 if (MaxRecurse)
2009 if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SLT, SrcOp,
2010 Constant::getNullValue(SrcTy),
2011 Q, MaxRecurse-1))
2012 return V;
2013 break;
2014 case ICmpInst::ICMP_ULT:
2015 case ICmpInst::ICMP_ULE:
2016 // Comparison is true iff the LHS >=s 0.
2017 if (MaxRecurse)
2018 if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SGE, SrcOp,
2019 Constant::getNullValue(SrcTy),
2020 Q, MaxRecurse-1))
2021 return V;
2022 break;
2023 }
2024 }
2025 }
2026 }
2027 }
2028
2029 // Special logic for binary operators.
2030 BinaryOperator *LBO = dyn_cast<BinaryOperator>(LHS);
2031 BinaryOperator *RBO = dyn_cast<BinaryOperator>(RHS);
2032 if (MaxRecurse && (LBO || RBO)) {
2033 // Analyze the case when either LHS or RHS is an add instruction.
2034 Value *A = 0, *B = 0, *C = 0, *D = 0;
2035 // LHS = A + B (or A and B are null); RHS = C + D (or C and D are null).
2036 bool NoLHSWrapProblem = false, NoRHSWrapProblem = false;
2037 if (LBO && LBO->getOpcode() == Instruction::Add) {
2038 A = LBO->getOperand(0); B = LBO->getOperand(1);
2039 NoLHSWrapProblem = ICmpInst::isEquality(Pred) ||
2040 (CmpInst::isUnsigned(Pred) && LBO->hasNoUnsignedWrap()) ||
2041 (CmpInst::isSigned(Pred) && LBO->hasNoSignedWrap());
2042 }
2043 if (RBO && RBO->getOpcode() == Instruction::Add) {
2044 C = RBO->getOperand(0); D = RBO->getOperand(1);
2045 NoRHSWrapProblem = ICmpInst::isEquality(Pred) ||
2046 (CmpInst::isUnsigned(Pred) && RBO->hasNoUnsignedWrap()) ||
2047 (CmpInst::isSigned(Pred) && RBO->hasNoSignedWrap());
2048 }
2049
2050 // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow.
2051 if ((A == RHS || B == RHS) && NoLHSWrapProblem)
2052 if (Value *V = SimplifyICmpInst(Pred, A == RHS ? B : A,
2053 Constant::getNullValue(RHS->getType()),
2054 Q, MaxRecurse-1))
2055 return V;
2056
2057 // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow.
2058 if ((C == LHS || D == LHS) && NoRHSWrapProblem)
2059 if (Value *V = SimplifyICmpInst(Pred,
2060 Constant::getNullValue(LHS->getType()),
2061 C == LHS ? D : C, Q, MaxRecurse-1))
2062 return V;
2063
2064 // icmp (X+Y), (X+Z) -> icmp Y,Z for equalities or if there is no overflow.
2065 if (A && C && (A == C || A == D || B == C || B == D) &&
2066 NoLHSWrapProblem && NoRHSWrapProblem) {
2067 // Determine Y and Z in the form icmp (X+Y), (X+Z).
2068 Value *Y = (A == C || A == D) ? B : A;
2069 Value *Z = (C == A || C == B) ? D : C;
2070 if (Value *V = SimplifyICmpInst(Pred, Y, Z, Q, MaxRecurse-1))
2071 return V;
2072 }
2073 }
2074
2075 if (LBO && match(LBO, m_URem(m_Value(), m_Specific(RHS)))) {
2076 bool KnownNonNegative, KnownNegative;
2077 switch (Pred) {
2078 default:
2079 break;
2080 case ICmpInst::ICMP_SGT:
2081 case ICmpInst::ICMP_SGE:
2082 ComputeSignBit(LHS, KnownNonNegative, KnownNegative, Q.TD);
2083 if (!KnownNonNegative)
2084 break;
2085 // fall-through
2086 case ICmpInst::ICMP_EQ:
2087 case ICmpInst::ICMP_UGT:
2088 case ICmpInst::ICMP_UGE:
2089 return getFalse(ITy);
2090 case ICmpInst::ICMP_SLT:
2091 case ICmpInst::ICMP_SLE:
2092 ComputeSignBit(LHS, KnownNonNegative, KnownNegative, Q.TD);
2093 if (!KnownNonNegative)
2094 break;
2095 // fall-through
2096 case ICmpInst::ICMP_NE:
2097 case ICmpInst::ICMP_ULT:
2098 case ICmpInst::ICMP_ULE:
2099 return getTrue(ITy);
2100 }
2101 }
2102 if (RBO && match(RBO, m_URem(m_Value(), m_Specific(LHS)))) {
2103 bool KnownNonNegative, KnownNegative;
2104 switch (Pred) {
2105 default:
2106 break;
2107 case ICmpInst::ICMP_SGT:
2108 case ICmpInst::ICMP_SGE:
2109 ComputeSignBit(RHS, KnownNonNegative, KnownNegative, Q.TD);
2110 if (!KnownNonNegative)
2111 break;
2112 // fall-through
2113 case ICmpInst::ICMP_NE:
2114 case ICmpInst::ICMP_UGT:
2115 case ICmpInst::ICMP_UGE:
2116 return getTrue(ITy);
2117 case ICmpInst::ICMP_SLT:
2118 case ICmpInst::ICMP_SLE:
2119 ComputeSignBit(RHS, KnownNonNegative, KnownNegative, Q.TD);
2120 if (!KnownNonNegative)
2121 break;
2122 // fall-through
2123 case ICmpInst::ICMP_EQ:
2124 case ICmpInst::ICMP_ULT:
2125 case ICmpInst::ICMP_ULE:
2126 return getFalse(ITy);
2127 }
2128 }
2129
2130 // x udiv y <=u x.
2131 if (LBO && match(LBO, m_UDiv(m_Specific(RHS), m_Value()))) {
2132 // icmp pred (X /u Y), X
2133 if (Pred == ICmpInst::ICMP_UGT)
2134 return getFalse(ITy);
2135 if (Pred == ICmpInst::ICMP_ULE)
2136 return getTrue(ITy);
2137 }
2138
2139 if (MaxRecurse && LBO && RBO && LBO->getOpcode() == RBO->getOpcode() &&
2140 LBO->getOperand(1) == RBO->getOperand(1)) {
2141 switch (LBO->getOpcode()) {
2142 default: break;
2143 case Instruction::UDiv:
2144 case Instruction::LShr:
2145 if (ICmpInst::isSigned(Pred))
2146 break;
2147 // fall-through
2148 case Instruction::SDiv:
2149 case Instruction::AShr:
2150 if (!LBO->isExact() || !RBO->isExact())
2151 break;
2152 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
2153 RBO->getOperand(0), Q, MaxRecurse-1))
2154 return V;
2155 break;
2156 case Instruction::Shl: {
2157 bool NUW = LBO->hasNoUnsignedWrap() && RBO->hasNoUnsignedWrap();
2158 bool NSW = LBO->hasNoSignedWrap() && RBO->hasNoSignedWrap();
2159 if (!NUW && !NSW)
2160 break;
2161 if (!NSW && ICmpInst::isSigned(Pred))
2162 break;
2163 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
2164 RBO->getOperand(0), Q, MaxRecurse-1))
2165 return V;
2166 break;
2167 }
2168 }
2169 }
2170
2171 // Simplify comparisons involving max/min.
2172 Value *A, *B;
2173 CmpInst::Predicate P = CmpInst::BAD_ICMP_PREDICATE;
2174 CmpInst::Predicate EqP; // Chosen so that "A == max/min(A,B)" iff "A EqP B".
2175
2176 // Signed variants on "max(a,b)>=a -> true".
2177 if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) {
2178 if (A != RHS) std::swap(A, B); // smax(A, B) pred A.
2179 EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B".
2180 // We analyze this as smax(A, B) pred A.
2181 P = Pred;
2182 } else if (match(RHS, m_SMax(m_Value(A), m_Value(B))) &&
2183 (A == LHS || B == LHS)) {
2184 if (A != LHS) std::swap(A, B); // A pred smax(A, B).
2185 EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B".
2186 // We analyze this as smax(A, B) swapped-pred A.
2187 P = CmpInst::getSwappedPredicate(Pred);
2188 } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) &&
2189 (A == RHS || B == RHS)) {
2190 if (A != RHS) std::swap(A, B); // smin(A, B) pred A.
2191 EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B".
2192 // We analyze this as smax(-A, -B) swapped-pred -A.
2193 // Note that we do not need to actually form -A or -B thanks to EqP.
2194 P = CmpInst::getSwappedPredicate(Pred);
2195 } else if (match(RHS, m_SMin(m_Value(A), m_Value(B))) &&
2196 (A == LHS || B == LHS)) {
2197 if (A != LHS) std::swap(A, B); // A pred smin(A, B).
2198 EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B".
2199 // We analyze this as smax(-A, -B) pred -A.
2200 // Note that we do not need to actually form -A or -B thanks to EqP.
2201 P = Pred;
2202 }
2203 if (P != CmpInst::BAD_ICMP_PREDICATE) {
2204 // Cases correspond to "max(A, B) p A".
2205 switch (P) {
2206 default:
2207 break;
2208 case CmpInst::ICMP_EQ:
2209 case CmpInst::ICMP_SLE:
2210 // Equivalent to "A EqP B". This may be the same as the condition tested
2211 // in the max/min; if so, we can just return that.
2212 if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B))
2213 return V;
2214 if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B))
2215 return V;
2216 // Otherwise, see if "A EqP B" simplifies.
2217 if (MaxRecurse)
2218 if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse-1))
2219 return V;
2220 break;
2221 case CmpInst::ICMP_NE:
2222 case CmpInst::ICMP_SGT: {
2223 CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP);
2224 // Equivalent to "A InvEqP B". This may be the same as the condition
2225 // tested in the max/min; if so, we can just return that.
2226 if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B))
2227 return V;
2228 if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B))
2229 return V;
2230 // Otherwise, see if "A InvEqP B" simplifies.
2231 if (MaxRecurse)
2232 if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse-1))
2233 return V;
2234 break;
2235 }
2236 case CmpInst::ICMP_SGE:
2237 // Always true.
2238 return getTrue(ITy);
2239 case CmpInst::ICMP_SLT:
2240 // Always false.
2241 return getFalse(ITy);
2242 }
2243 }
2244
2245 // Unsigned variants on "max(a,b)>=a -> true".
2246 P = CmpInst::BAD_ICMP_PREDICATE;
2247 if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) {
2248 if (A != RHS) std::swap(A, B); // umax(A, B) pred A.
2249 EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B".
2250 // We analyze this as umax(A, B) pred A.
2251 P = Pred;
2252 } else if (match(RHS, m_UMax(m_Value(A), m_Value(B))) &&
2253 (A == LHS || B == LHS)) {
2254 if (A != LHS) std::swap(A, B); // A pred umax(A, B).
2255 EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B".
2256 // We analyze this as umax(A, B) swapped-pred A.
2257 P = CmpInst::getSwappedPredicate(Pred);
2258 } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) &&
2259 (A == RHS || B == RHS)) {
2260 if (A != RHS) std::swap(A, B); // umin(A, B) pred A.
2261 EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B".
2262 // We analyze this as umax(-A, -B) swapped-pred -A.
2263 // Note that we do not need to actually form -A or -B thanks to EqP.
2264 P = CmpInst::getSwappedPredicate(Pred);
2265 } else if (match(RHS, m_UMin(m_Value(A), m_Value(B))) &&
2266 (A == LHS || B == LHS)) {
2267 if (A != LHS) std::swap(A, B); // A pred umin(A, B).
2268 EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B".
2269 // We analyze this as umax(-A, -B) pred -A.
2270 // Note that we do not need to actually form -A or -B thanks to EqP.
2271 P = Pred;
2272 }
2273 if (P != CmpInst::BAD_ICMP_PREDICATE) {
2274 // Cases correspond to "max(A, B) p A".
2275 switch (P) {
2276 default:
2277 break;
2278 case CmpInst::ICMP_EQ:
2279 case CmpInst::ICMP_ULE:
2280 // Equivalent to "A EqP B". This may be the same as the condition tested
2281 // in the max/min; if so, we can just return that.
2282 if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B))
2283 return V;
2284 if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B))
2285 return V;
2286 // Otherwise, see if "A EqP B" simplifies.
2287 if (MaxRecurse)
2288 if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse-1))
2289 return V;
2290 break;
2291 case CmpInst::ICMP_NE:
2292 case CmpInst::ICMP_UGT: {
2293 CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP);
2294 // Equivalent to "A InvEqP B". This may be the same as the condition
2295 // tested in the max/min; if so, we can just return that.
2296 if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B))
2297 return V;
2298 if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B))
2299 return V;
2300 // Otherwise, see if "A InvEqP B" simplifies.
2301 if (MaxRecurse)
2302 if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse-1))
2303 return V;
2304 break;
2305 }
2306 case CmpInst::ICMP_UGE:
2307 // Always true.
2308 return getTrue(ITy);
2309 case CmpInst::ICMP_ULT:
2310 // Always false.
2311 return getFalse(ITy);
2312 }
2313 }
2314
2315 // Variants on "max(x,y) >= min(x,z)".
2316 Value *C, *D;
2317 if (match(LHS, m_SMax(m_Value(A), m_Value(B))) &&
2318 match(RHS, m_SMin(m_Value(C), m_Value(D))) &&
2319 (A == C || A == D || B == C || B == D)) {
2320 // max(x, ?) pred min(x, ?).
2321 if (Pred == CmpInst::ICMP_SGE)
2322 // Always true.
2323 return getTrue(ITy);
2324 if (Pred == CmpInst::ICMP_SLT)
2325 // Always false.
2326 return getFalse(ITy);
2327 } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) &&
2328 match(RHS, m_SMax(m_Value(C), m_Value(D))) &&
2329 (A == C || A == D || B == C || B == D)) {
2330 // min(x, ?) pred max(x, ?).
2331 if (Pred == CmpInst::ICMP_SLE)
2332 // Always true.
2333 return getTrue(ITy);
2334 if (Pred == CmpInst::ICMP_SGT)
2335 // Always false.
2336 return getFalse(ITy);
2337 } else if (match(LHS, m_UMax(m_Value(A), m_Value(B))) &&
2338 match(RHS, m_UMin(m_Value(C), m_Value(D))) &&
2339 (A == C || A == D || B == C || B == D)) {
2340 // max(x, ?) pred min(x, ?).
2341 if (Pred == CmpInst::ICMP_UGE)
2342 // Always true.
2343 return getTrue(ITy);
2344 if (Pred == CmpInst::ICMP_ULT)
2345 // Always false.
2346 return getFalse(ITy);
2347 } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) &&
2348 match(RHS, m_UMax(m_Value(C), m_Value(D))) &&
2349 (A == C || A == D || B == C || B == D)) {
2350 // min(x, ?) pred max(x, ?).
2351 if (Pred == CmpInst::ICMP_ULE)
2352 // Always true.
2353 return getTrue(ITy);
2354 if (Pred == CmpInst::ICMP_UGT)
2355 // Always false.
2356 return getFalse(ITy);
2357 }
2358
2359 // Simplify comparisons of related pointers using a powerful, recursive
2360 // GEP-walk when we have target data available..
2361 if (Q.TD && LHS->getType()->isPointerTy() && RHS->getType()->isPointerTy())
2362 if (Constant *C = computePointerICmp(*Q.TD, Pred, LHS, RHS))
2363 return C;
2364
2365 if (GetElementPtrInst *GLHS = dyn_cast<GetElementPtrInst>(LHS)) {
2366 if (GEPOperator *GRHS = dyn_cast<GEPOperator>(RHS)) {
2367 if (GLHS->getPointerOperand() == GRHS->getPointerOperand() &&
2368 GLHS->hasAllConstantIndices() && GRHS->hasAllConstantIndices() &&
2369 (ICmpInst::isEquality(Pred) ||
2370 (GLHS->isInBounds() && GRHS->isInBounds() &&
2371 Pred == ICmpInst::getSignedPredicate(Pred)))) {
2372 // The bases are equal and the indices are constant. Build a constant
2373 // expression GEP with the same indices and a null base pointer to see
2374 // what constant folding can make out of it.
2375 Constant *Null = Constant::getNullValue(GLHS->getPointerOperandType());
2376 SmallVector<Value *, 4> IndicesLHS(GLHS->idx_begin(), GLHS->idx_end());
2377 Constant *NewLHS = ConstantExpr::getGetElementPtr(Null, IndicesLHS);
2378
2379 SmallVector<Value *, 4> IndicesRHS(GRHS->idx_begin(), GRHS->idx_end());
2380 Constant *NewRHS = ConstantExpr::getGetElementPtr(Null, IndicesRHS);
2381 return ConstantExpr::getICmp(Pred, NewLHS, NewRHS);
2382 }
2383 }
2384 }
2385
2386 // If the comparison is with the result of a select instruction, check whether
2387 // comparing with either branch of the select always yields the same value.
2388 if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
2389 if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse))
2390 return V;
2391
2392 // If the comparison is with the result of a phi instruction, check whether
2393 // doing the compare with each incoming phi value yields a common result.
2394 if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
2395 if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse))
2396 return V;
2397
2398 return 0;
2399 }
2400
SimplifyICmpInst(unsigned Predicate,Value * LHS,Value * RHS,const TargetData * TD,const TargetLibraryInfo * TLI,const DominatorTree * DT)2401 Value *llvm::SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
2402 const TargetData *TD,
2403 const TargetLibraryInfo *TLI,
2404 const DominatorTree *DT) {
2405 return ::SimplifyICmpInst(Predicate, LHS, RHS, Query (TD, TLI, DT),
2406 RecursionLimit);
2407 }
2408
2409 /// SimplifyFCmpInst - Given operands for an FCmpInst, see if we can
2410 /// fold the result. If not, this returns null.
SimplifyFCmpInst(unsigned Predicate,Value * LHS,Value * RHS,const Query & Q,unsigned MaxRecurse)2411 static Value *SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
2412 const Query &Q, unsigned MaxRecurse) {
2413 CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate;
2414 assert(CmpInst::isFPPredicate(Pred) && "Not an FP compare!");
2415
2416 if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
2417 if (Constant *CRHS = dyn_cast<Constant>(RHS))
2418 return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.TD, Q.TLI);
2419
2420 // If we have a constant, make sure it is on the RHS.
2421 std::swap(LHS, RHS);
2422 Pred = CmpInst::getSwappedPredicate(Pred);
2423 }
2424
2425 // Fold trivial predicates.
2426 if (Pred == FCmpInst::FCMP_FALSE)
2427 return ConstantInt::get(GetCompareTy(LHS), 0);
2428 if (Pred == FCmpInst::FCMP_TRUE)
2429 return ConstantInt::get(GetCompareTy(LHS), 1);
2430
2431 if (isa<UndefValue>(RHS)) // fcmp pred X, undef -> undef
2432 return UndefValue::get(GetCompareTy(LHS));
2433
2434 // fcmp x,x -> true/false. Not all compares are foldable.
2435 if (LHS == RHS) {
2436 if (CmpInst::isTrueWhenEqual(Pred))
2437 return ConstantInt::get(GetCompareTy(LHS), 1);
2438 if (CmpInst::isFalseWhenEqual(Pred))
2439 return ConstantInt::get(GetCompareTy(LHS), 0);
2440 }
2441
2442 // Handle fcmp with constant RHS
2443 if (Constant *RHSC = dyn_cast<Constant>(RHS)) {
2444 // If the constant is a nan, see if we can fold the comparison based on it.
2445 if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHSC)) {
2446 if (CFP->getValueAPF().isNaN()) {
2447 if (FCmpInst::isOrdered(Pred)) // True "if ordered and foo"
2448 return ConstantInt::getFalse(CFP->getContext());
2449 assert(FCmpInst::isUnordered(Pred) &&
2450 "Comparison must be either ordered or unordered!");
2451 // True if unordered.
2452 return ConstantInt::getTrue(CFP->getContext());
2453 }
2454 // Check whether the constant is an infinity.
2455 if (CFP->getValueAPF().isInfinity()) {
2456 if (CFP->getValueAPF().isNegative()) {
2457 switch (Pred) {
2458 case FCmpInst::FCMP_OLT:
2459 // No value is ordered and less than negative infinity.
2460 return ConstantInt::getFalse(CFP->getContext());
2461 case FCmpInst::FCMP_UGE:
2462 // All values are unordered with or at least negative infinity.
2463 return ConstantInt::getTrue(CFP->getContext());
2464 default:
2465 break;
2466 }
2467 } else {
2468 switch (Pred) {
2469 case FCmpInst::FCMP_OGT:
2470 // No value is ordered and greater than infinity.
2471 return ConstantInt::getFalse(CFP->getContext());
2472 case FCmpInst::FCMP_ULE:
2473 // All values are unordered with and at most infinity.
2474 return ConstantInt::getTrue(CFP->getContext());
2475 default:
2476 break;
2477 }
2478 }
2479 }
2480 }
2481 }
2482
2483 // If the comparison is with the result of a select instruction, check whether
2484 // comparing with either branch of the select always yields the same value.
2485 if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
2486 if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse))
2487 return V;
2488
2489 // If the comparison is with the result of a phi instruction, check whether
2490 // doing the compare with each incoming phi value yields a common result.
2491 if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
2492 if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse))
2493 return V;
2494
2495 return 0;
2496 }
2497
SimplifyFCmpInst(unsigned Predicate,Value * LHS,Value * RHS,const TargetData * TD,const TargetLibraryInfo * TLI,const DominatorTree * DT)2498 Value *llvm::SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
2499 const TargetData *TD,
2500 const TargetLibraryInfo *TLI,
2501 const DominatorTree *DT) {
2502 return ::SimplifyFCmpInst(Predicate, LHS, RHS, Query (TD, TLI, DT),
2503 RecursionLimit);
2504 }
2505
2506 /// SimplifySelectInst - Given operands for a SelectInst, see if we can fold
2507 /// the result. If not, this returns null.
SimplifySelectInst(Value * CondVal,Value * TrueVal,Value * FalseVal,const Query & Q,unsigned MaxRecurse)2508 static Value *SimplifySelectInst(Value *CondVal, Value *TrueVal,
2509 Value *FalseVal, const Query &Q,
2510 unsigned MaxRecurse) {
2511 // select true, X, Y -> X
2512 // select false, X, Y -> Y
2513 if (ConstantInt *CB = dyn_cast<ConstantInt>(CondVal))
2514 return CB->getZExtValue() ? TrueVal : FalseVal;
2515
2516 // select C, X, X -> X
2517 if (TrueVal == FalseVal)
2518 return TrueVal;
2519
2520 if (isa<UndefValue>(CondVal)) { // select undef, X, Y -> X or Y
2521 if (isa<Constant>(TrueVal))
2522 return TrueVal;
2523 return FalseVal;
2524 }
2525 if (isa<UndefValue>(TrueVal)) // select C, undef, X -> X
2526 return FalseVal;
2527 if (isa<UndefValue>(FalseVal)) // select C, X, undef -> X
2528 return TrueVal;
2529
2530 return 0;
2531 }
2532
SimplifySelectInst(Value * Cond,Value * TrueVal,Value * FalseVal,const TargetData * TD,const TargetLibraryInfo * TLI,const DominatorTree * DT)2533 Value *llvm::SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal,
2534 const TargetData *TD,
2535 const TargetLibraryInfo *TLI,
2536 const DominatorTree *DT) {
2537 return ::SimplifySelectInst(Cond, TrueVal, FalseVal, Query (TD, TLI, DT),
2538 RecursionLimit);
2539 }
2540
2541 /// SimplifyGEPInst - Given operands for an GetElementPtrInst, see if we can
2542 /// fold the result. If not, this returns null.
SimplifyGEPInst(ArrayRef<Value * > Ops,const Query & Q,unsigned)2543 static Value *SimplifyGEPInst(ArrayRef<Value *> Ops, const Query &Q, unsigned) {
2544 // The type of the GEP pointer operand.
2545 PointerType *PtrTy = dyn_cast<PointerType>(Ops[0]->getType());
2546 // The GEP pointer operand is not a pointer, it's a vector of pointers.
2547 if (!PtrTy)
2548 return 0;
2549
2550 // getelementptr P -> P.
2551 if (Ops.size() == 1)
2552 return Ops[0];
2553
2554 if (isa<UndefValue>(Ops[0])) {
2555 // Compute the (pointer) type returned by the GEP instruction.
2556 Type *LastType = GetElementPtrInst::getIndexedType(PtrTy, Ops.slice(1));
2557 Type *GEPTy = PointerType::get(LastType, PtrTy->getAddressSpace());
2558 return UndefValue::get(GEPTy);
2559 }
2560
2561 if (Ops.size() == 2) {
2562 // getelementptr P, 0 -> P.
2563 if (ConstantInt *C = dyn_cast<ConstantInt>(Ops[1]))
2564 if (C->isZero())
2565 return Ops[0];
2566 // getelementptr P, N -> P if P points to a type of zero size.
2567 if (Q.TD) {
2568 Type *Ty = PtrTy->getElementType();
2569 if (Ty->isSized() && Q.TD->getTypeAllocSize(Ty) == 0)
2570 return Ops[0];
2571 }
2572 }
2573
2574 // Check to see if this is constant foldable.
2575 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2576 if (!isa<Constant>(Ops[i]))
2577 return 0;
2578
2579 return ConstantExpr::getGetElementPtr(cast<Constant>(Ops[0]), Ops.slice(1));
2580 }
2581
SimplifyGEPInst(ArrayRef<Value * > Ops,const TargetData * TD,const TargetLibraryInfo * TLI,const DominatorTree * DT)2582 Value *llvm::SimplifyGEPInst(ArrayRef<Value *> Ops, const TargetData *TD,
2583 const TargetLibraryInfo *TLI,
2584 const DominatorTree *DT) {
2585 return ::SimplifyGEPInst(Ops, Query (TD, TLI, DT), RecursionLimit);
2586 }
2587
2588 /// SimplifyInsertValueInst - Given operands for an InsertValueInst, see if we
2589 /// can fold the result. If not, this returns null.
SimplifyInsertValueInst(Value * Agg,Value * Val,ArrayRef<unsigned> Idxs,const Query & Q,unsigned)2590 static Value *SimplifyInsertValueInst(Value *Agg, Value *Val,
2591 ArrayRef<unsigned> Idxs, const Query &Q,
2592 unsigned) {
2593 if (Constant *CAgg = dyn_cast<Constant>(Agg))
2594 if (Constant *CVal = dyn_cast<Constant>(Val))
2595 return ConstantFoldInsertValueInstruction(CAgg, CVal, Idxs);
2596
2597 // insertvalue x, undef, n -> x
2598 if (match(Val, m_Undef()))
2599 return Agg;
2600
2601 // insertvalue x, (extractvalue y, n), n
2602 if (ExtractValueInst *EV = dyn_cast<ExtractValueInst>(Val))
2603 if (EV->getAggregateOperand()->getType() == Agg->getType() &&
2604 EV->getIndices() == Idxs) {
2605 // insertvalue undef, (extractvalue y, n), n -> y
2606 if (match(Agg, m_Undef()))
2607 return EV->getAggregateOperand();
2608
2609 // insertvalue y, (extractvalue y, n), n -> y
2610 if (Agg == EV->getAggregateOperand())
2611 return Agg;
2612 }
2613
2614 return 0;
2615 }
2616
SimplifyInsertValueInst(Value * Agg,Value * Val,ArrayRef<unsigned> Idxs,const TargetData * TD,const TargetLibraryInfo * TLI,const DominatorTree * DT)2617 Value *llvm::SimplifyInsertValueInst(Value *Agg, Value *Val,
2618 ArrayRef<unsigned> Idxs,
2619 const TargetData *TD,
2620 const TargetLibraryInfo *TLI,
2621 const DominatorTree *DT) {
2622 return ::SimplifyInsertValueInst(Agg, Val, Idxs, Query (TD, TLI, DT),
2623 RecursionLimit);
2624 }
2625
2626 /// SimplifyPHINode - See if we can fold the given phi. If not, returns null.
SimplifyPHINode(PHINode * PN,const Query & Q)2627 static Value *SimplifyPHINode(PHINode *PN, const Query &Q) {
2628 // If all of the PHI's incoming values are the same then replace the PHI node
2629 // with the common value.
2630 Value *CommonValue = 0;
2631 bool HasUndefInput = false;
2632 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
2633 Value *Incoming = PN->getIncomingValue(i);
2634 // If the incoming value is the phi node itself, it can safely be skipped.
2635 if (Incoming == PN) continue;
2636 if (isa<UndefValue>(Incoming)) {
2637 // Remember that we saw an undef value, but otherwise ignore them.
2638 HasUndefInput = true;
2639 continue;
2640 }
2641 if (CommonValue && Incoming != CommonValue)
2642 return 0; // Not the same, bail out.
2643 CommonValue = Incoming;
2644 }
2645
2646 // If CommonValue is null then all of the incoming values were either undef or
2647 // equal to the phi node itself.
2648 if (!CommonValue)
2649 return UndefValue::get(PN->getType());
2650
2651 // If we have a PHI node like phi(X, undef, X), where X is defined by some
2652 // instruction, we cannot return X as the result of the PHI node unless it
2653 // dominates the PHI block.
2654 if (HasUndefInput)
2655 return ValueDominatesPHI(CommonValue, PN, Q.DT) ? CommonValue : 0;
2656
2657 return CommonValue;
2658 }
2659
SimplifyTruncInst(Value * Op,Type * Ty,const Query & Q,unsigned)2660 static Value *SimplifyTruncInst(Value *Op, Type *Ty, const Query &Q, unsigned) {
2661 if (Constant *C = dyn_cast<Constant>(Op))
2662 return ConstantFoldInstOperands(Instruction::Trunc, Ty, C, Q.TD, Q.TLI);
2663
2664 return 0;
2665 }
2666
SimplifyTruncInst(Value * Op,Type * Ty,const TargetData * TD,const TargetLibraryInfo * TLI,const DominatorTree * DT)2667 Value *llvm::SimplifyTruncInst(Value *Op, Type *Ty, const TargetData *TD,
2668 const TargetLibraryInfo *TLI,
2669 const DominatorTree *DT) {
2670 return ::SimplifyTruncInst(Op, Ty, Query (TD, TLI, DT), RecursionLimit);
2671 }
2672
2673 //=== Helper functions for higher up the class hierarchy.
2674
2675 /// SimplifyBinOp - Given operands for a BinaryOperator, see if we can
2676 /// fold the result. If not, this returns null.
SimplifyBinOp(unsigned Opcode,Value * LHS,Value * RHS,const Query & Q,unsigned MaxRecurse)2677 static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
2678 const Query &Q, unsigned MaxRecurse) {
2679 switch (Opcode) {
2680 case Instruction::Add:
2681 return SimplifyAddInst(LHS, RHS, /*isNSW*/false, /*isNUW*/false,
2682 Q, MaxRecurse);
2683 case Instruction::Sub:
2684 return SimplifySubInst(LHS, RHS, /*isNSW*/false, /*isNUW*/false,
2685 Q, MaxRecurse);
2686 case Instruction::Mul: return SimplifyMulInst (LHS, RHS, Q, MaxRecurse);
2687 case Instruction::SDiv: return SimplifySDivInst(LHS, RHS, Q, MaxRecurse);
2688 case Instruction::UDiv: return SimplifyUDivInst(LHS, RHS, Q, MaxRecurse);
2689 case Instruction::FDiv: return SimplifyFDivInst(LHS, RHS, Q, MaxRecurse);
2690 case Instruction::SRem: return SimplifySRemInst(LHS, RHS, Q, MaxRecurse);
2691 case Instruction::URem: return SimplifyURemInst(LHS, RHS, Q, MaxRecurse);
2692 case Instruction::FRem: return SimplifyFRemInst(LHS, RHS, Q, MaxRecurse);
2693 case Instruction::Shl:
2694 return SimplifyShlInst(LHS, RHS, /*isNSW*/false, /*isNUW*/false,
2695 Q, MaxRecurse);
2696 case Instruction::LShr:
2697 return SimplifyLShrInst(LHS, RHS, /*isExact*/false, Q, MaxRecurse);
2698 case Instruction::AShr:
2699 return SimplifyAShrInst(LHS, RHS, /*isExact*/false, Q, MaxRecurse);
2700 case Instruction::And: return SimplifyAndInst(LHS, RHS, Q, MaxRecurse);
2701 case Instruction::Or: return SimplifyOrInst (LHS, RHS, Q, MaxRecurse);
2702 case Instruction::Xor: return SimplifyXorInst(LHS, RHS, Q, MaxRecurse);
2703 default:
2704 if (Constant *CLHS = dyn_cast<Constant>(LHS))
2705 if (Constant *CRHS = dyn_cast<Constant>(RHS)) {
2706 Constant *COps[] = {CLHS, CRHS};
2707 return ConstantFoldInstOperands(Opcode, LHS->getType(), COps, Q.TD,
2708 Q.TLI);
2709 }
2710
2711 // If the operation is associative, try some generic simplifications.
2712 if (Instruction::isAssociative(Opcode))
2713 if (Value *V = SimplifyAssociativeBinOp(Opcode, LHS, RHS, Q, MaxRecurse))
2714 return V;
2715
2716 // If the operation is with the result of a select instruction check whether
2717 // operating on either branch of the select always yields the same value.
2718 if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
2719 if (Value *V = ThreadBinOpOverSelect(Opcode, LHS, RHS, Q, MaxRecurse))
2720 return V;
2721
2722 // If the operation is with the result of a phi instruction, check whether
2723 // operating on all incoming values of the phi always yields the same value.
2724 if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
2725 if (Value *V = ThreadBinOpOverPHI(Opcode, LHS, RHS, Q, MaxRecurse))
2726 return V;
2727
2728 return 0;
2729 }
2730 }
2731
SimplifyBinOp(unsigned Opcode,Value * LHS,Value * RHS,const TargetData * TD,const TargetLibraryInfo * TLI,const DominatorTree * DT)2732 Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
2733 const TargetData *TD, const TargetLibraryInfo *TLI,
2734 const DominatorTree *DT) {
2735 return ::SimplifyBinOp(Opcode, LHS, RHS, Query (TD, TLI, DT), RecursionLimit);
2736 }
2737
2738 /// SimplifyCmpInst - Given operands for a CmpInst, see if we can
2739 /// fold the result.
SimplifyCmpInst(unsigned Predicate,Value * LHS,Value * RHS,const Query & Q,unsigned MaxRecurse)2740 static Value *SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
2741 const Query &Q, unsigned MaxRecurse) {
2742 if (CmpInst::isIntPredicate((CmpInst::Predicate)Predicate))
2743 return SimplifyICmpInst(Predicate, LHS, RHS, Q, MaxRecurse);
2744 return SimplifyFCmpInst(Predicate, LHS, RHS, Q, MaxRecurse);
2745 }
2746
SimplifyCmpInst(unsigned Predicate,Value * LHS,Value * RHS,const TargetData * TD,const TargetLibraryInfo * TLI,const DominatorTree * DT)2747 Value *llvm::SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
2748 const TargetData *TD, const TargetLibraryInfo *TLI,
2749 const DominatorTree *DT) {
2750 return ::SimplifyCmpInst(Predicate, LHS, RHS, Query (TD, TLI, DT),
2751 RecursionLimit);
2752 }
2753
SimplifyCallInst(CallInst * CI,const Query &)2754 static Value *SimplifyCallInst(CallInst *CI, const Query &) {
2755 // call undef -> undef
2756 if (isa<UndefValue>(CI->getCalledValue()))
2757 return UndefValue::get(CI->getType());
2758
2759 return 0;
2760 }
2761
2762 /// SimplifyInstruction - See if we can compute a simplified version of this
2763 /// instruction. If not, this returns null.
SimplifyInstruction(Instruction * I,const TargetData * TD,const TargetLibraryInfo * TLI,const DominatorTree * DT)2764 Value *llvm::SimplifyInstruction(Instruction *I, const TargetData *TD,
2765 const TargetLibraryInfo *TLI,
2766 const DominatorTree *DT) {
2767 Value *Result;
2768
2769 switch (I->getOpcode()) {
2770 default:
2771 Result = ConstantFoldInstruction(I, TD, TLI);
2772 break;
2773 case Instruction::Add:
2774 Result = SimplifyAddInst(I->getOperand(0), I->getOperand(1),
2775 cast<BinaryOperator>(I)->hasNoSignedWrap(),
2776 cast<BinaryOperator>(I)->hasNoUnsignedWrap(),
2777 TD, TLI, DT);
2778 break;
2779 case Instruction::Sub:
2780 Result = SimplifySubInst(I->getOperand(0), I->getOperand(1),
2781 cast<BinaryOperator>(I)->hasNoSignedWrap(),
2782 cast<BinaryOperator>(I)->hasNoUnsignedWrap(),
2783 TD, TLI, DT);
2784 break;
2785 case Instruction::Mul:
2786 Result = SimplifyMulInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT);
2787 break;
2788 case Instruction::SDiv:
2789 Result = SimplifySDivInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT);
2790 break;
2791 case Instruction::UDiv:
2792 Result = SimplifyUDivInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT);
2793 break;
2794 case Instruction::FDiv:
2795 Result = SimplifyFDivInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT);
2796 break;
2797 case Instruction::SRem:
2798 Result = SimplifySRemInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT);
2799 break;
2800 case Instruction::URem:
2801 Result = SimplifyURemInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT);
2802 break;
2803 case Instruction::FRem:
2804 Result = SimplifyFRemInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT);
2805 break;
2806 case Instruction::Shl:
2807 Result = SimplifyShlInst(I->getOperand(0), I->getOperand(1),
2808 cast<BinaryOperator>(I)->hasNoSignedWrap(),
2809 cast<BinaryOperator>(I)->hasNoUnsignedWrap(),
2810 TD, TLI, DT);
2811 break;
2812 case Instruction::LShr:
2813 Result = SimplifyLShrInst(I->getOperand(0), I->getOperand(1),
2814 cast<BinaryOperator>(I)->isExact(),
2815 TD, TLI, DT);
2816 break;
2817 case Instruction::AShr:
2818 Result = SimplifyAShrInst(I->getOperand(0), I->getOperand(1),
2819 cast<BinaryOperator>(I)->isExact(),
2820 TD, TLI, DT);
2821 break;
2822 case Instruction::And:
2823 Result = SimplifyAndInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT);
2824 break;
2825 case Instruction::Or:
2826 Result = SimplifyOrInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT);
2827 break;
2828 case Instruction::Xor:
2829 Result = SimplifyXorInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT);
2830 break;
2831 case Instruction::ICmp:
2832 Result = SimplifyICmpInst(cast<ICmpInst>(I)->getPredicate(),
2833 I->getOperand(0), I->getOperand(1), TD, TLI, DT);
2834 break;
2835 case Instruction::FCmp:
2836 Result = SimplifyFCmpInst(cast<FCmpInst>(I)->getPredicate(),
2837 I->getOperand(0), I->getOperand(1), TD, TLI, DT);
2838 break;
2839 case Instruction::Select:
2840 Result = SimplifySelectInst(I->getOperand(0), I->getOperand(1),
2841 I->getOperand(2), TD, TLI, DT);
2842 break;
2843 case Instruction::GetElementPtr: {
2844 SmallVector<Value*, 8> Ops(I->op_begin(), I->op_end());
2845 Result = SimplifyGEPInst(Ops, TD, TLI, DT);
2846 break;
2847 }
2848 case Instruction::InsertValue: {
2849 InsertValueInst *IV = cast<InsertValueInst>(I);
2850 Result = SimplifyInsertValueInst(IV->getAggregateOperand(),
2851 IV->getInsertedValueOperand(),
2852 IV->getIndices(), TD, TLI, DT);
2853 break;
2854 }
2855 case Instruction::PHI:
2856 Result = SimplifyPHINode(cast<PHINode>(I), Query (TD, TLI, DT));
2857 break;
2858 case Instruction::Call:
2859 Result = SimplifyCallInst(cast<CallInst>(I), Query (TD, TLI, DT));
2860 break;
2861 case Instruction::Trunc:
2862 Result = SimplifyTruncInst(I->getOperand(0), I->getType(), TD, TLI, DT);
2863 break;
2864 }
2865
2866 /// If called on unreachable code, the above logic may report that the
2867 /// instruction simplified to itself. Make life easier for users by
2868 /// detecting that case here, returning a safe value instead.
2869 return Result == I ? UndefValue::get(I->getType()) : Result;
2870 }
2871
2872 /// \brief Implementation of recursive simplification through an instructions
2873 /// uses.
2874 ///
2875 /// This is the common implementation of the recursive simplification routines.
2876 /// If we have a pre-simplified value in 'SimpleV', that is forcibly used to
2877 /// replace the instruction 'I'. Otherwise, we simply add 'I' to the list of
2878 /// instructions to process and attempt to simplify it using
2879 /// InstructionSimplify.
2880 ///
2881 /// This routine returns 'true' only when *it* simplifies something. The passed
2882 /// in simplified value does not count toward this.
replaceAndRecursivelySimplifyImpl(Instruction * I,Value * SimpleV,const TargetData * TD,const TargetLibraryInfo * TLI,const DominatorTree * DT)2883 static bool replaceAndRecursivelySimplifyImpl(Instruction *I, Value *SimpleV,
2884 const TargetData *TD,
2885 const TargetLibraryInfo *TLI,
2886 const DominatorTree *DT) {
2887 bool Simplified = false;
2888 SmallSetVector<Instruction *, 8> Worklist;
2889
2890 // If we have an explicit value to collapse to, do that round of the
2891 // simplification loop by hand initially.
2892 if (SimpleV) {
2893 for (Value::use_iterator UI = I->use_begin(), UE = I->use_end(); UI != UE;
2894 ++UI)
2895 if (*UI != I)
2896 Worklist.insert(cast<Instruction>(*UI));
2897
2898 // Replace the instruction with its simplified value.
2899 I->replaceAllUsesWith(SimpleV);
2900
2901 // Gracefully handle edge cases where the instruction is not wired into any
2902 // parent block.
2903 if (I->getParent())
2904 I->eraseFromParent();
2905 } else {
2906 Worklist.insert(I);
2907 }
2908
2909 // Note that we must test the size on each iteration, the worklist can grow.
2910 for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) {
2911 I = Worklist[Idx];
2912
2913 // See if this instruction simplifies.
2914 SimpleV = SimplifyInstruction(I, TD, TLI, DT);
2915 if (!SimpleV)
2916 continue;
2917
2918 Simplified = true;
2919
2920 // Stash away all the uses of the old instruction so we can check them for
2921 // recursive simplifications after a RAUW. This is cheaper than checking all
2922 // uses of To on the recursive step in most cases.
2923 for (Value::use_iterator UI = I->use_begin(), UE = I->use_end(); UI != UE;
2924 ++UI)
2925 Worklist.insert(cast<Instruction>(*UI));
2926
2927 // Replace the instruction with its simplified value.
2928 I->replaceAllUsesWith(SimpleV);
2929
2930 // Gracefully handle edge cases where the instruction is not wired into any
2931 // parent block.
2932 if (I->getParent())
2933 I->eraseFromParent();
2934 }
2935 return Simplified;
2936 }
2937
recursivelySimplifyInstruction(Instruction * I,const TargetData * TD,const TargetLibraryInfo * TLI,const DominatorTree * DT)2938 bool llvm::recursivelySimplifyInstruction(Instruction *I,
2939 const TargetData *TD,
2940 const TargetLibraryInfo *TLI,
2941 const DominatorTree *DT) {
2942 return replaceAndRecursivelySimplifyImpl(I, 0, TD, TLI, DT);
2943 }
2944
replaceAndRecursivelySimplify(Instruction * I,Value * SimpleV,const TargetData * TD,const TargetLibraryInfo * TLI,const DominatorTree * DT)2945 bool llvm::replaceAndRecursivelySimplify(Instruction *I, Value *SimpleV,
2946 const TargetData *TD,
2947 const TargetLibraryInfo *TLI,
2948 const DominatorTree *DT) {
2949 assert(I != SimpleV && "replaceAndRecursivelySimplify(X,X) is not valid!");
2950 assert(SimpleV && "Must provide a simplified value.");
2951 return replaceAndRecursivelySimplifyImpl(I, SimpleV, TD, TLI, DT);
2952 }
2953