1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This header defines the BitcodeReader class.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/Bitcode/ReaderWriter.h"
15 #include "BitcodeReader.h"
16 #include "llvm/Constants.h"
17 #include "llvm/DerivedTypes.h"
18 #include "llvm/InlineAsm.h"
19 #include "llvm/IntrinsicInst.h"
20 #include "llvm/Module.h"
21 #include "llvm/Operator.h"
22 #include "llvm/AutoUpgrade.h"
23 #include "llvm/ADT/SmallString.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/Support/DataStream.h"
26 #include "llvm/Support/MathExtras.h"
27 #include "llvm/Support/MemoryBuffer.h"
28 #include "llvm/OperandTraits.h"
29 using namespace llvm;
30
31 enum {
32 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex
33 };
34
materializeForwardReferencedFunctions()35 void BitcodeReader::materializeForwardReferencedFunctions() {
36 while (!BlockAddrFwdRefs.empty()) {
37 Function *F = BlockAddrFwdRefs.begin()->first;
38 F->Materialize();
39 }
40 }
41
FreeState()42 void BitcodeReader::FreeState() {
43 if (BufferOwned)
44 delete Buffer;
45 Buffer = 0;
46 std::vector<Type*>().swap(TypeList);
47 ValueList.clear();
48 MDValueList.clear();
49
50 std::vector<AttrListPtr>().swap(MAttributes);
51 std::vector<BasicBlock*>().swap(FunctionBBs);
52 std::vector<Function*>().swap(FunctionsWithBodies);
53 DeferredFunctionInfo.clear();
54 MDKindMap.clear();
55 }
56
57 //===----------------------------------------------------------------------===//
58 // Helper functions to implement forward reference resolution, etc.
59 //===----------------------------------------------------------------------===//
60
61 /// ConvertToString - Convert a string from a record into an std::string, return
62 /// true on failure.
63 template<typename StrTy>
ConvertToString(ArrayRef<uint64_t> Record,unsigned Idx,StrTy & Result)64 static bool ConvertToString(ArrayRef<uint64_t> Record, unsigned Idx,
65 StrTy &Result) {
66 if (Idx > Record.size())
67 return true;
68
69 for (unsigned i = Idx, e = Record.size(); i != e; ++i)
70 Result += (char)Record[i];
71 return false;
72 }
73
GetDecodedLinkage(unsigned Val)74 static GlobalValue::LinkageTypes GetDecodedLinkage(unsigned Val) {
75 switch (Val) {
76 default: // Map unknown/new linkages to external
77 case 0: return GlobalValue::ExternalLinkage;
78 case 1: return GlobalValue::WeakAnyLinkage;
79 case 2: return GlobalValue::AppendingLinkage;
80 case 3: return GlobalValue::InternalLinkage;
81 case 4: return GlobalValue::LinkOnceAnyLinkage;
82 case 5: return GlobalValue::DLLImportLinkage;
83 case 6: return GlobalValue::DLLExportLinkage;
84 case 7: return GlobalValue::ExternalWeakLinkage;
85 case 8: return GlobalValue::CommonLinkage;
86 case 9: return GlobalValue::PrivateLinkage;
87 case 10: return GlobalValue::WeakODRLinkage;
88 case 11: return GlobalValue::LinkOnceODRLinkage;
89 case 12: return GlobalValue::AvailableExternallyLinkage;
90 case 13: return GlobalValue::LinkerPrivateLinkage;
91 case 14: return GlobalValue::LinkerPrivateWeakLinkage;
92 case 15: return GlobalValue::LinkOnceODRAutoHideLinkage;
93 }
94 }
95
GetDecodedVisibility(unsigned Val)96 static GlobalValue::VisibilityTypes GetDecodedVisibility(unsigned Val) {
97 switch (Val) {
98 default: // Map unknown visibilities to default.
99 case 0: return GlobalValue::DefaultVisibility;
100 case 1: return GlobalValue::HiddenVisibility;
101 case 2: return GlobalValue::ProtectedVisibility;
102 }
103 }
104
GetDecodedThreadLocalMode(unsigned Val)105 static GlobalVariable::ThreadLocalMode GetDecodedThreadLocalMode(unsigned Val) {
106 switch (Val) {
107 case 0: return GlobalVariable::NotThreadLocal;
108 default: // Map unknown non-zero value to general dynamic.
109 case 1: return GlobalVariable::GeneralDynamicTLSModel;
110 case 2: return GlobalVariable::LocalDynamicTLSModel;
111 case 3: return GlobalVariable::InitialExecTLSModel;
112 case 4: return GlobalVariable::LocalExecTLSModel;
113 }
114 }
115
GetDecodedCastOpcode(unsigned Val)116 static int GetDecodedCastOpcode(unsigned Val) {
117 switch (Val) {
118 default: return -1;
119 case bitc::CAST_TRUNC : return Instruction::Trunc;
120 case bitc::CAST_ZEXT : return Instruction::ZExt;
121 case bitc::CAST_SEXT : return Instruction::SExt;
122 case bitc::CAST_FPTOUI : return Instruction::FPToUI;
123 case bitc::CAST_FPTOSI : return Instruction::FPToSI;
124 case bitc::CAST_UITOFP : return Instruction::UIToFP;
125 case bitc::CAST_SITOFP : return Instruction::SIToFP;
126 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
127 case bitc::CAST_FPEXT : return Instruction::FPExt;
128 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
129 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
130 case bitc::CAST_BITCAST : return Instruction::BitCast;
131 }
132 }
GetDecodedBinaryOpcode(unsigned Val,Type * Ty)133 static int GetDecodedBinaryOpcode(unsigned Val, Type *Ty) {
134 switch (Val) {
135 default: return -1;
136 case bitc::BINOP_ADD:
137 return Ty->isFPOrFPVectorTy() ? Instruction::FAdd : Instruction::Add;
138 case bitc::BINOP_SUB:
139 return Ty->isFPOrFPVectorTy() ? Instruction::FSub : Instruction::Sub;
140 case bitc::BINOP_MUL:
141 return Ty->isFPOrFPVectorTy() ? Instruction::FMul : Instruction::Mul;
142 case bitc::BINOP_UDIV: return Instruction::UDiv;
143 case bitc::BINOP_SDIV:
144 return Ty->isFPOrFPVectorTy() ? Instruction::FDiv : Instruction::SDiv;
145 case bitc::BINOP_UREM: return Instruction::URem;
146 case bitc::BINOP_SREM:
147 return Ty->isFPOrFPVectorTy() ? Instruction::FRem : Instruction::SRem;
148 case bitc::BINOP_SHL: return Instruction::Shl;
149 case bitc::BINOP_LSHR: return Instruction::LShr;
150 case bitc::BINOP_ASHR: return Instruction::AShr;
151 case bitc::BINOP_AND: return Instruction::And;
152 case bitc::BINOP_OR: return Instruction::Or;
153 case bitc::BINOP_XOR: return Instruction::Xor;
154 }
155 }
156
GetDecodedRMWOperation(unsigned Val)157 static AtomicRMWInst::BinOp GetDecodedRMWOperation(unsigned Val) {
158 switch (Val) {
159 default: return AtomicRMWInst::BAD_BINOP;
160 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg;
161 case bitc::RMW_ADD: return AtomicRMWInst::Add;
162 case bitc::RMW_SUB: return AtomicRMWInst::Sub;
163 case bitc::RMW_AND: return AtomicRMWInst::And;
164 case bitc::RMW_NAND: return AtomicRMWInst::Nand;
165 case bitc::RMW_OR: return AtomicRMWInst::Or;
166 case bitc::RMW_XOR: return AtomicRMWInst::Xor;
167 case bitc::RMW_MAX: return AtomicRMWInst::Max;
168 case bitc::RMW_MIN: return AtomicRMWInst::Min;
169 case bitc::RMW_UMAX: return AtomicRMWInst::UMax;
170 case bitc::RMW_UMIN: return AtomicRMWInst::UMin;
171 }
172 }
173
GetDecodedOrdering(unsigned Val)174 static AtomicOrdering GetDecodedOrdering(unsigned Val) {
175 switch (Val) {
176 case bitc::ORDERING_NOTATOMIC: return NotAtomic;
177 case bitc::ORDERING_UNORDERED: return Unordered;
178 case bitc::ORDERING_MONOTONIC: return Monotonic;
179 case bitc::ORDERING_ACQUIRE: return Acquire;
180 case bitc::ORDERING_RELEASE: return Release;
181 case bitc::ORDERING_ACQREL: return AcquireRelease;
182 default: // Map unknown orderings to sequentially-consistent.
183 case bitc::ORDERING_SEQCST: return SequentiallyConsistent;
184 }
185 }
186
GetDecodedSynchScope(unsigned Val)187 static SynchronizationScope GetDecodedSynchScope(unsigned Val) {
188 switch (Val) {
189 case bitc::SYNCHSCOPE_SINGLETHREAD: return SingleThread;
190 default: // Map unknown scopes to cross-thread.
191 case bitc::SYNCHSCOPE_CROSSTHREAD: return CrossThread;
192 }
193 }
194
195 namespace llvm {
196 namespace {
197 /// @brief A class for maintaining the slot number definition
198 /// as a placeholder for the actual definition for forward constants defs.
199 class ConstantPlaceHolder : public ConstantExpr {
200 void operator=(const ConstantPlaceHolder &); // DO NOT IMPLEMENT
201 public:
202 // allocate space for exactly one operand
operator new(size_t s)203 void *operator new(size_t s) {
204 return User::operator new(s, 1);
205 }
ConstantPlaceHolder(Type * Ty,LLVMContext & Context)206 explicit ConstantPlaceHolder(Type *Ty, LLVMContext& Context)
207 : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) {
208 Op<0>() = UndefValue::get(Type::getInt32Ty(Context));
209 }
210
211 /// @brief Methods to support type inquiry through isa, cast, and dyn_cast.
212 //static inline bool classof(const ConstantPlaceHolder *) { return true; }
classof(const Value * V)213 static bool classof(const Value *V) {
214 return isa<ConstantExpr>(V) &&
215 cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1;
216 }
217
218
219 /// Provide fast operand accessors
220 //DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
221 };
222 }
223
224 // FIXME: can we inherit this from ConstantExpr?
225 template <>
226 struct OperandTraits<ConstantPlaceHolder> :
227 public FixedNumOperandTraits<ConstantPlaceHolder, 1> {
228 };
229 }
230
231
AssignValue(Value * V,unsigned Idx)232 void BitcodeReaderValueList::AssignValue(Value *V, unsigned Idx) {
233 if (Idx == size()) {
234 push_back(V);
235 return;
236 }
237
238 if (Idx >= size())
239 resize(Idx+1);
240
241 WeakVH &OldV = ValuePtrs[Idx];
242 if (OldV == 0) {
243 OldV = V;
244 return;
245 }
246
247 // Handle constants and non-constants (e.g. instrs) differently for
248 // efficiency.
249 if (Constant *PHC = dyn_cast<Constant>(&*OldV)) {
250 ResolveConstants.push_back(std::make_pair(PHC, Idx));
251 OldV = V;
252 } else {
253 // If there was a forward reference to this value, replace it.
254 Value *PrevVal = OldV;
255 OldV->replaceAllUsesWith(V);
256 delete PrevVal;
257 }
258 }
259
260
getConstantFwdRef(unsigned Idx,Type * Ty)261 Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx,
262 Type *Ty) {
263 if (Idx >= size())
264 resize(Idx + 1);
265
266 if (Value *V = ValuePtrs[Idx]) {
267 assert(Ty == V->getType() && "Type mismatch in constant table!");
268 return cast<Constant>(V);
269 }
270
271 // Create and return a placeholder, which will later be RAUW'd.
272 Constant *C = new ConstantPlaceHolder(Ty, Context);
273 ValuePtrs[Idx] = C;
274 return C;
275 }
276
getValueFwdRef(unsigned Idx,Type * Ty)277 Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, Type *Ty) {
278 if (Idx >= size())
279 resize(Idx + 1);
280
281 if (Value *V = ValuePtrs[Idx]) {
282 assert((Ty == 0 || Ty == V->getType()) && "Type mismatch in value table!");
283 return V;
284 }
285
286 // No type specified, must be invalid reference.
287 if (Ty == 0) return 0;
288
289 // Create and return a placeholder, which will later be RAUW'd.
290 Value *V = new Argument(Ty);
291 ValuePtrs[Idx] = V;
292 return V;
293 }
294
295 /// ResolveConstantForwardRefs - Once all constants are read, this method bulk
296 /// resolves any forward references. The idea behind this is that we sometimes
297 /// get constants (such as large arrays) which reference *many* forward ref
298 /// constants. Replacing each of these causes a lot of thrashing when
299 /// building/reuniquing the constant. Instead of doing this, we look at all the
300 /// uses and rewrite all the place holders at once for any constant that uses
301 /// a placeholder.
ResolveConstantForwardRefs()302 void BitcodeReaderValueList::ResolveConstantForwardRefs() {
303 // Sort the values by-pointer so that they are efficient to look up with a
304 // binary search.
305 std::sort(ResolveConstants.begin(), ResolveConstants.end());
306
307 SmallVector<Constant*, 64> NewOps;
308
309 while (!ResolveConstants.empty()) {
310 Value *RealVal = operator[](ResolveConstants.back().second);
311 Constant *Placeholder = ResolveConstants.back().first;
312 ResolveConstants.pop_back();
313
314 // Loop over all users of the placeholder, updating them to reference the
315 // new value. If they reference more than one placeholder, update them all
316 // at once.
317 while (!Placeholder->use_empty()) {
318 Value::use_iterator UI = Placeholder->use_begin();
319 User *U = *UI;
320
321 // If the using object isn't uniqued, just update the operands. This
322 // handles instructions and initializers for global variables.
323 if (!isa<Constant>(U) || isa<GlobalValue>(U)) {
324 UI.getUse().set(RealVal);
325 continue;
326 }
327
328 // Otherwise, we have a constant that uses the placeholder. Replace that
329 // constant with a new constant that has *all* placeholder uses updated.
330 Constant *UserC = cast<Constant>(U);
331 for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end();
332 I != E; ++I) {
333 Value *NewOp;
334 if (!isa<ConstantPlaceHolder>(*I)) {
335 // Not a placeholder reference.
336 NewOp = *I;
337 } else if (*I == Placeholder) {
338 // Common case is that it just references this one placeholder.
339 NewOp = RealVal;
340 } else {
341 // Otherwise, look up the placeholder in ResolveConstants.
342 ResolveConstantsTy::iterator It =
343 std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(),
344 std::pair<Constant*, unsigned>(cast<Constant>(*I),
345 0));
346 assert(It != ResolveConstants.end() && It->first == *I);
347 NewOp = operator[](It->second);
348 }
349
350 NewOps.push_back(cast<Constant>(NewOp));
351 }
352
353 // Make the new constant.
354 Constant *NewC;
355 if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) {
356 NewC = ConstantArray::get(UserCA->getType(), NewOps);
357 } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) {
358 NewC = ConstantStruct::get(UserCS->getType(), NewOps);
359 } else if (isa<ConstantVector>(UserC)) {
360 NewC = ConstantVector::get(NewOps);
361 } else {
362 assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr.");
363 NewC = cast<ConstantExpr>(UserC)->getWithOperands(NewOps);
364 }
365
366 UserC->replaceAllUsesWith(NewC);
367 UserC->destroyConstant();
368 NewOps.clear();
369 }
370
371 // Update all ValueHandles, they should be the only users at this point.
372 Placeholder->replaceAllUsesWith(RealVal);
373 delete Placeholder;
374 }
375 }
376
AssignValue(Value * V,unsigned Idx)377 void BitcodeReaderMDValueList::AssignValue(Value *V, unsigned Idx) {
378 if (Idx == size()) {
379 push_back(V);
380 return;
381 }
382
383 if (Idx >= size())
384 resize(Idx+1);
385
386 WeakVH &OldV = MDValuePtrs[Idx];
387 if (OldV == 0) {
388 OldV = V;
389 return;
390 }
391
392 // If there was a forward reference to this value, replace it.
393 MDNode *PrevVal = cast<MDNode>(OldV);
394 OldV->replaceAllUsesWith(V);
395 MDNode::deleteTemporary(PrevVal);
396 // Deleting PrevVal sets Idx value in MDValuePtrs to null. Set new
397 // value for Idx.
398 MDValuePtrs[Idx] = V;
399 }
400
getValueFwdRef(unsigned Idx)401 Value *BitcodeReaderMDValueList::getValueFwdRef(unsigned Idx) {
402 if (Idx >= size())
403 resize(Idx + 1);
404
405 if (Value *V = MDValuePtrs[Idx]) {
406 assert(V->getType()->isMetadataTy() && "Type mismatch in value table!");
407 return V;
408 }
409
410 // Create and return a placeholder, which will later be RAUW'd.
411 Value *V = MDNode::getTemporary(Context, ArrayRef<Value*>());
412 MDValuePtrs[Idx] = V;
413 return V;
414 }
415
getTypeByID(unsigned ID)416 Type *BitcodeReader::getTypeByID(unsigned ID) {
417 // The type table size is always specified correctly.
418 if (ID >= TypeList.size())
419 return 0;
420
421 if (Type *Ty = TypeList[ID])
422 return Ty;
423
424 // If we have a forward reference, the only possible case is when it is to a
425 // named struct. Just create a placeholder for now.
426 return TypeList[ID] = StructType::create(Context);
427 }
428
429
430 //===----------------------------------------------------------------------===//
431 // Functions for parsing blocks from the bitcode file
432 //===----------------------------------------------------------------------===//
433
ParseAttributeBlock()434 bool BitcodeReader::ParseAttributeBlock() {
435 if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
436 return Error("Malformed block record");
437
438 if (!MAttributes.empty())
439 return Error("Multiple PARAMATTR blocks found!");
440
441 SmallVector<uint64_t, 64> Record;
442
443 SmallVector<AttributeWithIndex, 8> Attrs;
444
445 // Read all the records.
446 while (1) {
447 unsigned Code = Stream.ReadCode();
448 if (Code == bitc::END_BLOCK) {
449 if (Stream.ReadBlockEnd())
450 return Error("Error at end of PARAMATTR block");
451 return false;
452 }
453
454 if (Code == bitc::ENTER_SUBBLOCK) {
455 // No known subblocks, always skip them.
456 Stream.ReadSubBlockID();
457 if (Stream.SkipBlock())
458 return Error("Malformed block record");
459 continue;
460 }
461
462 if (Code == bitc::DEFINE_ABBREV) {
463 Stream.ReadAbbrevRecord();
464 continue;
465 }
466
467 // Read a record.
468 Record.clear();
469 switch (Stream.ReadRecord(Code, Record)) {
470 default: // Default behavior: ignore.
471 break;
472 case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [paramidx0, attr0, ...]
473 if (Record.size() & 1)
474 return Error("Invalid ENTRY record");
475
476 for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
477 Attributes ReconstitutedAttr =
478 Attribute::decodeLLVMAttributesForBitcode(Record[i+1]);
479 Record[i+1] = ReconstitutedAttr.Raw();
480 }
481
482 for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
483 if (Attributes(Record[i+1]) != Attribute::None)
484 Attrs.push_back(AttributeWithIndex::get(Record[i],
485 Attributes(Record[i+1])));
486 }
487
488 MAttributes.push_back(AttrListPtr::get(Attrs));
489 Attrs.clear();
490 break;
491 }
492 }
493 }
494 }
495
ParseTypeTable()496 bool BitcodeReader::ParseTypeTable() {
497 if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW))
498 return Error("Malformed block record");
499
500 return ParseTypeTableBody();
501 }
502
ParseTypeTableBody()503 bool BitcodeReader::ParseTypeTableBody() {
504 if (!TypeList.empty())
505 return Error("Multiple TYPE_BLOCKs found!");
506
507 SmallVector<uint64_t, 64> Record;
508 unsigned NumRecords = 0;
509
510 SmallString<64> TypeName;
511
512 // Read all the records for this type table.
513 while (1) {
514 unsigned Code = Stream.ReadCode();
515 if (Code == bitc::END_BLOCK) {
516 if (NumRecords != TypeList.size())
517 return Error("Invalid type forward reference in TYPE_BLOCK");
518 if (Stream.ReadBlockEnd())
519 return Error("Error at end of type table block");
520 return false;
521 }
522
523 if (Code == bitc::ENTER_SUBBLOCK) {
524 // No known subblocks, always skip them.
525 Stream.ReadSubBlockID();
526 if (Stream.SkipBlock())
527 return Error("Malformed block record");
528 continue;
529 }
530
531 if (Code == bitc::DEFINE_ABBREV) {
532 Stream.ReadAbbrevRecord();
533 continue;
534 }
535
536 // Read a record.
537 Record.clear();
538 Type *ResultTy = 0;
539 switch (Stream.ReadRecord(Code, Record)) {
540 default: return Error("unknown type in type table");
541 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
542 // TYPE_CODE_NUMENTRY contains a count of the number of types in the
543 // type list. This allows us to reserve space.
544 if (Record.size() < 1)
545 return Error("Invalid TYPE_CODE_NUMENTRY record");
546 TypeList.resize(Record[0]);
547 continue;
548 case bitc::TYPE_CODE_VOID: // VOID
549 ResultTy = Type::getVoidTy(Context);
550 break;
551 case bitc::TYPE_CODE_HALF: // HALF
552 ResultTy = Type::getHalfTy(Context);
553 break;
554 case bitc::TYPE_CODE_FLOAT: // FLOAT
555 ResultTy = Type::getFloatTy(Context);
556 break;
557 case bitc::TYPE_CODE_DOUBLE: // DOUBLE
558 ResultTy = Type::getDoubleTy(Context);
559 break;
560 case bitc::TYPE_CODE_X86_FP80: // X86_FP80
561 ResultTy = Type::getX86_FP80Ty(Context);
562 break;
563 case bitc::TYPE_CODE_FP128: // FP128
564 ResultTy = Type::getFP128Ty(Context);
565 break;
566 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
567 ResultTy = Type::getPPC_FP128Ty(Context);
568 break;
569 case bitc::TYPE_CODE_LABEL: // LABEL
570 ResultTy = Type::getLabelTy(Context);
571 break;
572 case bitc::TYPE_CODE_METADATA: // METADATA
573 ResultTy = Type::getMetadataTy(Context);
574 break;
575 case bitc::TYPE_CODE_X86_MMX: // X86_MMX
576 ResultTy = Type::getX86_MMXTy(Context);
577 break;
578 case bitc::TYPE_CODE_INTEGER: // INTEGER: [width]
579 if (Record.size() < 1)
580 return Error("Invalid Integer type record");
581
582 ResultTy = IntegerType::get(Context, Record[0]);
583 break;
584 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
585 // [pointee type, address space]
586 if (Record.size() < 1)
587 return Error("Invalid POINTER type record");
588 unsigned AddressSpace = 0;
589 if (Record.size() == 2)
590 AddressSpace = Record[1];
591 ResultTy = getTypeByID(Record[0]);
592 if (ResultTy == 0) return Error("invalid element type in pointer type");
593 ResultTy = PointerType::get(ResultTy, AddressSpace);
594 break;
595 }
596 case bitc::TYPE_CODE_FUNCTION_OLD: {
597 // FIXME: attrid is dead, remove it in LLVM 4.0
598 // FUNCTION: [vararg, attrid, retty, paramty x N]
599 if (Record.size() < 3)
600 return Error("Invalid FUNCTION type record");
601 SmallVector<Type*, 8> ArgTys;
602 for (unsigned i = 3, e = Record.size(); i != e; ++i) {
603 if (Type *T = getTypeByID(Record[i]))
604 ArgTys.push_back(T);
605 else
606 break;
607 }
608
609 ResultTy = getTypeByID(Record[2]);
610 if (ResultTy == 0 || ArgTys.size() < Record.size()-3)
611 return Error("invalid type in function type");
612
613 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
614 break;
615 }
616 case bitc::TYPE_CODE_FUNCTION: {
617 // FUNCTION: [vararg, retty, paramty x N]
618 if (Record.size() < 2)
619 return Error("Invalid FUNCTION type record");
620 SmallVector<Type*, 8> ArgTys;
621 for (unsigned i = 2, e = Record.size(); i != e; ++i) {
622 if (Type *T = getTypeByID(Record[i]))
623 ArgTys.push_back(T);
624 else
625 break;
626 }
627
628 ResultTy = getTypeByID(Record[1]);
629 if (ResultTy == 0 || ArgTys.size() < Record.size()-2)
630 return Error("invalid type in function type");
631
632 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
633 break;
634 }
635 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N]
636 if (Record.size() < 1)
637 return Error("Invalid STRUCT type record");
638 SmallVector<Type*, 8> EltTys;
639 for (unsigned i = 1, e = Record.size(); i != e; ++i) {
640 if (Type *T = getTypeByID(Record[i]))
641 EltTys.push_back(T);
642 else
643 break;
644 }
645 if (EltTys.size() != Record.size()-1)
646 return Error("invalid type in struct type");
647 ResultTy = StructType::get(Context, EltTys, Record[0]);
648 break;
649 }
650 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N]
651 if (ConvertToString(Record, 0, TypeName))
652 return Error("Invalid STRUCT_NAME record");
653 continue;
654
655 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N]
656 if (Record.size() < 1)
657 return Error("Invalid STRUCT type record");
658
659 if (NumRecords >= TypeList.size())
660 return Error("invalid TYPE table");
661
662 // Check to see if this was forward referenced, if so fill in the temp.
663 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
664 if (Res) {
665 Res->setName(TypeName);
666 TypeList[NumRecords] = 0;
667 } else // Otherwise, create a new struct.
668 Res = StructType::create(Context, TypeName);
669 TypeName.clear();
670
671 SmallVector<Type*, 8> EltTys;
672 for (unsigned i = 1, e = Record.size(); i != e; ++i) {
673 if (Type *T = getTypeByID(Record[i]))
674 EltTys.push_back(T);
675 else
676 break;
677 }
678 if (EltTys.size() != Record.size()-1)
679 return Error("invalid STRUCT type record");
680 Res->setBody(EltTys, Record[0]);
681 ResultTy = Res;
682 break;
683 }
684 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: []
685 if (Record.size() != 1)
686 return Error("Invalid OPAQUE type record");
687
688 if (NumRecords >= TypeList.size())
689 return Error("invalid TYPE table");
690
691 // Check to see if this was forward referenced, if so fill in the temp.
692 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
693 if (Res) {
694 Res->setName(TypeName);
695 TypeList[NumRecords] = 0;
696 } else // Otherwise, create a new struct with no body.
697 Res = StructType::create(Context, TypeName);
698 TypeName.clear();
699 ResultTy = Res;
700 break;
701 }
702 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty]
703 if (Record.size() < 2)
704 return Error("Invalid ARRAY type record");
705 if ((ResultTy = getTypeByID(Record[1])))
706 ResultTy = ArrayType::get(ResultTy, Record[0]);
707 else
708 return Error("Invalid ARRAY type element");
709 break;
710 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty]
711 if (Record.size() < 2)
712 return Error("Invalid VECTOR type record");
713 if ((ResultTy = getTypeByID(Record[1])))
714 ResultTy = VectorType::get(ResultTy, Record[0]);
715 else
716 return Error("Invalid ARRAY type element");
717 break;
718 }
719
720 if (NumRecords >= TypeList.size())
721 return Error("invalid TYPE table");
722 assert(ResultTy && "Didn't read a type?");
723 assert(TypeList[NumRecords] == 0 && "Already read type?");
724 TypeList[NumRecords++] = ResultTy;
725 }
726 }
727
ParseValueSymbolTable()728 bool BitcodeReader::ParseValueSymbolTable() {
729 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
730 return Error("Malformed block record");
731
732 SmallVector<uint64_t, 64> Record;
733
734 // Read all the records for this value table.
735 SmallString<128> ValueName;
736 while (1) {
737 unsigned Code = Stream.ReadCode();
738 if (Code == bitc::END_BLOCK) {
739 if (Stream.ReadBlockEnd())
740 return Error("Error at end of value symbol table block");
741 return false;
742 }
743 if (Code == bitc::ENTER_SUBBLOCK) {
744 // No known subblocks, always skip them.
745 Stream.ReadSubBlockID();
746 if (Stream.SkipBlock())
747 return Error("Malformed block record");
748 continue;
749 }
750
751 if (Code == bitc::DEFINE_ABBREV) {
752 Stream.ReadAbbrevRecord();
753 continue;
754 }
755
756 // Read a record.
757 Record.clear();
758 switch (Stream.ReadRecord(Code, Record)) {
759 default: // Default behavior: unknown type.
760 break;
761 case bitc::VST_CODE_ENTRY: { // VST_ENTRY: [valueid, namechar x N]
762 if (ConvertToString(Record, 1, ValueName))
763 return Error("Invalid VST_ENTRY record");
764 unsigned ValueID = Record[0];
765 if (ValueID >= ValueList.size())
766 return Error("Invalid Value ID in VST_ENTRY record");
767 Value *V = ValueList[ValueID];
768
769 V->setName(StringRef(ValueName.data(), ValueName.size()));
770 ValueName.clear();
771 break;
772 }
773 case bitc::VST_CODE_BBENTRY: {
774 if (ConvertToString(Record, 1, ValueName))
775 return Error("Invalid VST_BBENTRY record");
776 BasicBlock *BB = getBasicBlock(Record[0]);
777 if (BB == 0)
778 return Error("Invalid BB ID in VST_BBENTRY record");
779
780 BB->setName(StringRef(ValueName.data(), ValueName.size()));
781 ValueName.clear();
782 break;
783 }
784 }
785 }
786 }
787
ParseMetadata()788 bool BitcodeReader::ParseMetadata() {
789 unsigned NextMDValueNo = MDValueList.size();
790
791 if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID))
792 return Error("Malformed block record");
793
794 SmallVector<uint64_t, 64> Record;
795
796 // Read all the records.
797 while (1) {
798 unsigned Code = Stream.ReadCode();
799 if (Code == bitc::END_BLOCK) {
800 if (Stream.ReadBlockEnd())
801 return Error("Error at end of PARAMATTR block");
802 return false;
803 }
804
805 if (Code == bitc::ENTER_SUBBLOCK) {
806 // No known subblocks, always skip them.
807 Stream.ReadSubBlockID();
808 if (Stream.SkipBlock())
809 return Error("Malformed block record");
810 continue;
811 }
812
813 if (Code == bitc::DEFINE_ABBREV) {
814 Stream.ReadAbbrevRecord();
815 continue;
816 }
817
818 bool IsFunctionLocal = false;
819 // Read a record.
820 Record.clear();
821 Code = Stream.ReadRecord(Code, Record);
822 switch (Code) {
823 default: // Default behavior: ignore.
824 break;
825 case bitc::METADATA_NAME: {
826 // Read named of the named metadata.
827 SmallString<8> Name(Record.begin(), Record.end());
828 Record.clear();
829 Code = Stream.ReadCode();
830
831 // METADATA_NAME is always followed by METADATA_NAMED_NODE.
832 unsigned NextBitCode = Stream.ReadRecord(Code, Record);
833 assert(NextBitCode == bitc::METADATA_NAMED_NODE); (void)NextBitCode;
834
835 // Read named metadata elements.
836 unsigned Size = Record.size();
837 NamedMDNode *NMD = TheModule->getOrInsertNamedMetadata(Name);
838 for (unsigned i = 0; i != Size; ++i) {
839 MDNode *MD = dyn_cast<MDNode>(MDValueList.getValueFwdRef(Record[i]));
840 if (MD == 0)
841 return Error("Malformed metadata record");
842 NMD->addOperand(MD);
843 }
844 break;
845 }
846 case bitc::METADATA_FN_NODE:
847 IsFunctionLocal = true;
848 // fall-through
849 case bitc::METADATA_NODE: {
850 if (Record.size() % 2 == 1)
851 return Error("Invalid METADATA_NODE record");
852
853 unsigned Size = Record.size();
854 SmallVector<Value*, 8> Elts;
855 for (unsigned i = 0; i != Size; i += 2) {
856 Type *Ty = getTypeByID(Record[i]);
857 if (!Ty) return Error("Invalid METADATA_NODE record");
858 if (Ty->isMetadataTy())
859 Elts.push_back(MDValueList.getValueFwdRef(Record[i+1]));
860 else if (!Ty->isVoidTy())
861 Elts.push_back(ValueList.getValueFwdRef(Record[i+1], Ty));
862 else
863 Elts.push_back(NULL);
864 }
865 Value *V = MDNode::getWhenValsUnresolved(Context, Elts, IsFunctionLocal);
866 IsFunctionLocal = false;
867 MDValueList.AssignValue(V, NextMDValueNo++);
868 break;
869 }
870 case bitc::METADATA_STRING: {
871 SmallString<8> String(Record.begin(), Record.end());
872 Value *V = MDString::get(Context, String);
873 MDValueList.AssignValue(V, NextMDValueNo++);
874 break;
875 }
876 case bitc::METADATA_KIND: {
877 if (Record.size() < 2)
878 return Error("Invalid METADATA_KIND record");
879
880 unsigned Kind = Record[0];
881 SmallString<8> Name(Record.begin()+1, Record.end());
882
883 unsigned NewKind = TheModule->getMDKindID(Name.str());
884 if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second)
885 return Error("Conflicting METADATA_KIND records");
886 break;
887 }
888 }
889 }
890 }
891
892 /// DecodeSignRotatedValue - Decode a signed value stored with the sign bit in
893 /// the LSB for dense VBR encoding.
DecodeSignRotatedValue(uint64_t V)894 static uint64_t DecodeSignRotatedValue(uint64_t V) {
895 if ((V & 1) == 0)
896 return V >> 1;
897 if (V != 1)
898 return -(V >> 1);
899 // There is no such thing as -0 with integers. "-0" really means MININT.
900 return 1ULL << 63;
901 }
902
903 /// ResolveGlobalAndAliasInits - Resolve all of the initializers for global
904 /// values and aliases that we can.
ResolveGlobalAndAliasInits()905 bool BitcodeReader::ResolveGlobalAndAliasInits() {
906 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist;
907 std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist;
908
909 GlobalInitWorklist.swap(GlobalInits);
910 AliasInitWorklist.swap(AliasInits);
911
912 while (!GlobalInitWorklist.empty()) {
913 unsigned ValID = GlobalInitWorklist.back().second;
914 if (ValID >= ValueList.size()) {
915 // Not ready to resolve this yet, it requires something later in the file.
916 GlobalInits.push_back(GlobalInitWorklist.back());
917 } else {
918 if (Constant *C = dyn_cast<Constant>(ValueList[ValID]))
919 GlobalInitWorklist.back().first->setInitializer(C);
920 else
921 return Error("Global variable initializer is not a constant!");
922 }
923 GlobalInitWorklist.pop_back();
924 }
925
926 while (!AliasInitWorklist.empty()) {
927 unsigned ValID = AliasInitWorklist.back().second;
928 if (ValID >= ValueList.size()) {
929 AliasInits.push_back(AliasInitWorklist.back());
930 } else {
931 if (Constant *C = dyn_cast<Constant>(ValueList[ValID]))
932 AliasInitWorklist.back().first->setAliasee(C);
933 else
934 return Error("Alias initializer is not a constant!");
935 }
936 AliasInitWorklist.pop_back();
937 }
938 return false;
939 }
940
ReadWideAPInt(ArrayRef<uint64_t> Vals,unsigned TypeBits)941 static APInt ReadWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) {
942 SmallVector<uint64_t, 8> Words(Vals.size());
943 std::transform(Vals.begin(), Vals.end(), Words.begin(),
944 DecodeSignRotatedValue);
945
946 return APInt(TypeBits, Words);
947 }
948
ParseConstants()949 bool BitcodeReader::ParseConstants() {
950 if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
951 return Error("Malformed block record");
952
953 SmallVector<uint64_t, 64> Record;
954
955 // Read all the records for this value table.
956 Type *CurTy = Type::getInt32Ty(Context);
957 unsigned NextCstNo = ValueList.size();
958 while (1) {
959 unsigned Code = Stream.ReadCode();
960 if (Code == bitc::END_BLOCK)
961 break;
962
963 if (Code == bitc::ENTER_SUBBLOCK) {
964 // No known subblocks, always skip them.
965 Stream.ReadSubBlockID();
966 if (Stream.SkipBlock())
967 return Error("Malformed block record");
968 continue;
969 }
970
971 if (Code == bitc::DEFINE_ABBREV) {
972 Stream.ReadAbbrevRecord();
973 continue;
974 }
975
976 // Read a record.
977 Record.clear();
978 Value *V = 0;
979 unsigned BitCode = Stream.ReadRecord(Code, Record);
980 switch (BitCode) {
981 default: // Default behavior: unknown constant
982 case bitc::CST_CODE_UNDEF: // UNDEF
983 V = UndefValue::get(CurTy);
984 break;
985 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid]
986 if (Record.empty())
987 return Error("Malformed CST_SETTYPE record");
988 if (Record[0] >= TypeList.size())
989 return Error("Invalid Type ID in CST_SETTYPE record");
990 CurTy = TypeList[Record[0]];
991 continue; // Skip the ValueList manipulation.
992 case bitc::CST_CODE_NULL: // NULL
993 V = Constant::getNullValue(CurTy);
994 break;
995 case bitc::CST_CODE_INTEGER: // INTEGER: [intval]
996 if (!CurTy->isIntegerTy() || Record.empty())
997 return Error("Invalid CST_INTEGER record");
998 V = ConstantInt::get(CurTy, DecodeSignRotatedValue(Record[0]));
999 break;
1000 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
1001 if (!CurTy->isIntegerTy() || Record.empty())
1002 return Error("Invalid WIDE_INTEGER record");
1003
1004 APInt VInt = ReadWideAPInt(Record,
1005 cast<IntegerType>(CurTy)->getBitWidth());
1006 V = ConstantInt::get(Context, VInt);
1007
1008 break;
1009 }
1010 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval]
1011 if (Record.empty())
1012 return Error("Invalid FLOAT record");
1013 if (CurTy->isHalfTy())
1014 V = ConstantFP::get(Context, APFloat(APInt(16, (uint16_t)Record[0])));
1015 else if (CurTy->isFloatTy())
1016 V = ConstantFP::get(Context, APFloat(APInt(32, (uint32_t)Record[0])));
1017 else if (CurTy->isDoubleTy())
1018 V = ConstantFP::get(Context, APFloat(APInt(64, Record[0])));
1019 else if (CurTy->isX86_FP80Ty()) {
1020 // Bits are not stored the same way as a normal i80 APInt, compensate.
1021 uint64_t Rearrange[2];
1022 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
1023 Rearrange[1] = Record[0] >> 48;
1024 V = ConstantFP::get(Context, APFloat(APInt(80, Rearrange)));
1025 } else if (CurTy->isFP128Ty())
1026 V = ConstantFP::get(Context, APFloat(APInt(128, Record), true));
1027 else if (CurTy->isPPC_FP128Ty())
1028 V = ConstantFP::get(Context, APFloat(APInt(128, Record)));
1029 else
1030 V = UndefValue::get(CurTy);
1031 break;
1032 }
1033
1034 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
1035 if (Record.empty())
1036 return Error("Invalid CST_AGGREGATE record");
1037
1038 unsigned Size = Record.size();
1039 SmallVector<Constant*, 16> Elts;
1040
1041 if (StructType *STy = dyn_cast<StructType>(CurTy)) {
1042 for (unsigned i = 0; i != Size; ++i)
1043 Elts.push_back(ValueList.getConstantFwdRef(Record[i],
1044 STy->getElementType(i)));
1045 V = ConstantStruct::get(STy, Elts);
1046 } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) {
1047 Type *EltTy = ATy->getElementType();
1048 for (unsigned i = 0; i != Size; ++i)
1049 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
1050 V = ConstantArray::get(ATy, Elts);
1051 } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) {
1052 Type *EltTy = VTy->getElementType();
1053 for (unsigned i = 0; i != Size; ++i)
1054 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
1055 V = ConstantVector::get(Elts);
1056 } else {
1057 V = UndefValue::get(CurTy);
1058 }
1059 break;
1060 }
1061 case bitc::CST_CODE_STRING: // STRING: [values]
1062 case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
1063 if (Record.empty())
1064 return Error("Invalid CST_STRING record");
1065
1066 SmallString<16> Elts(Record.begin(), Record.end());
1067 V = ConstantDataArray::getString(Context, Elts,
1068 BitCode == bitc::CST_CODE_CSTRING);
1069 break;
1070 }
1071 case bitc::CST_CODE_DATA: {// DATA: [n x value]
1072 if (Record.empty())
1073 return Error("Invalid CST_DATA record");
1074
1075 Type *EltTy = cast<SequentialType>(CurTy)->getElementType();
1076 unsigned Size = Record.size();
1077
1078 if (EltTy->isIntegerTy(8)) {
1079 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end());
1080 if (isa<VectorType>(CurTy))
1081 V = ConstantDataVector::get(Context, Elts);
1082 else
1083 V = ConstantDataArray::get(Context, Elts);
1084 } else if (EltTy->isIntegerTy(16)) {
1085 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
1086 if (isa<VectorType>(CurTy))
1087 V = ConstantDataVector::get(Context, Elts);
1088 else
1089 V = ConstantDataArray::get(Context, Elts);
1090 } else if (EltTy->isIntegerTy(32)) {
1091 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
1092 if (isa<VectorType>(CurTy))
1093 V = ConstantDataVector::get(Context, Elts);
1094 else
1095 V = ConstantDataArray::get(Context, Elts);
1096 } else if (EltTy->isIntegerTy(64)) {
1097 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
1098 if (isa<VectorType>(CurTy))
1099 V = ConstantDataVector::get(Context, Elts);
1100 else
1101 V = ConstantDataArray::get(Context, Elts);
1102 } else if (EltTy->isFloatTy()) {
1103 SmallVector<float, 16> Elts(Size);
1104 std::transform(Record.begin(), Record.end(), Elts.begin(), BitsToFloat);
1105 if (isa<VectorType>(CurTy))
1106 V = ConstantDataVector::get(Context, Elts);
1107 else
1108 V = ConstantDataArray::get(Context, Elts);
1109 } else if (EltTy->isDoubleTy()) {
1110 SmallVector<double, 16> Elts(Size);
1111 std::transform(Record.begin(), Record.end(), Elts.begin(),
1112 BitsToDouble);
1113 if (isa<VectorType>(CurTy))
1114 V = ConstantDataVector::get(Context, Elts);
1115 else
1116 V = ConstantDataArray::get(Context, Elts);
1117 } else {
1118 return Error("Unknown element type in CE_DATA");
1119 }
1120 break;
1121 }
1122
1123 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval]
1124 if (Record.size() < 3) return Error("Invalid CE_BINOP record");
1125 int Opc = GetDecodedBinaryOpcode(Record[0], CurTy);
1126 if (Opc < 0) {
1127 V = UndefValue::get(CurTy); // Unknown binop.
1128 } else {
1129 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
1130 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy);
1131 unsigned Flags = 0;
1132 if (Record.size() >= 4) {
1133 if (Opc == Instruction::Add ||
1134 Opc == Instruction::Sub ||
1135 Opc == Instruction::Mul ||
1136 Opc == Instruction::Shl) {
1137 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
1138 Flags |= OverflowingBinaryOperator::NoSignedWrap;
1139 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
1140 Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
1141 } else if (Opc == Instruction::SDiv ||
1142 Opc == Instruction::UDiv ||
1143 Opc == Instruction::LShr ||
1144 Opc == Instruction::AShr) {
1145 if (Record[3] & (1 << bitc::PEO_EXACT))
1146 Flags |= SDivOperator::IsExact;
1147 }
1148 }
1149 V = ConstantExpr::get(Opc, LHS, RHS, Flags);
1150 }
1151 break;
1152 }
1153 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval]
1154 if (Record.size() < 3) return Error("Invalid CE_CAST record");
1155 int Opc = GetDecodedCastOpcode(Record[0]);
1156 if (Opc < 0) {
1157 V = UndefValue::get(CurTy); // Unknown cast.
1158 } else {
1159 Type *OpTy = getTypeByID(Record[1]);
1160 if (!OpTy) return Error("Invalid CE_CAST record");
1161 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy);
1162 V = ConstantExpr::getCast(Opc, Op, CurTy);
1163 }
1164 break;
1165 }
1166 case bitc::CST_CODE_CE_INBOUNDS_GEP:
1167 case bitc::CST_CODE_CE_GEP: { // CE_GEP: [n x operands]
1168 if (Record.size() & 1) return Error("Invalid CE_GEP record");
1169 SmallVector<Constant*, 16> Elts;
1170 for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
1171 Type *ElTy = getTypeByID(Record[i]);
1172 if (!ElTy) return Error("Invalid CE_GEP record");
1173 Elts.push_back(ValueList.getConstantFwdRef(Record[i+1], ElTy));
1174 }
1175 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
1176 V = ConstantExpr::getGetElementPtr(Elts[0], Indices,
1177 BitCode ==
1178 bitc::CST_CODE_CE_INBOUNDS_GEP);
1179 break;
1180 }
1181 case bitc::CST_CODE_CE_SELECT: // CE_SELECT: [opval#, opval#, opval#]
1182 if (Record.size() < 3) return Error("Invalid CE_SELECT record");
1183 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0],
1184 Type::getInt1Ty(Context)),
1185 ValueList.getConstantFwdRef(Record[1],CurTy),
1186 ValueList.getConstantFwdRef(Record[2],CurTy));
1187 break;
1188 case bitc::CST_CODE_CE_EXTRACTELT: { // CE_EXTRACTELT: [opty, opval, opval]
1189 if (Record.size() < 3) return Error("Invalid CE_EXTRACTELT record");
1190 VectorType *OpTy =
1191 dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
1192 if (OpTy == 0) return Error("Invalid CE_EXTRACTELT record");
1193 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
1194 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
1195 V = ConstantExpr::getExtractElement(Op0, Op1);
1196 break;
1197 }
1198 case bitc::CST_CODE_CE_INSERTELT: { // CE_INSERTELT: [opval, opval, opval]
1199 VectorType *OpTy = dyn_cast<VectorType>(CurTy);
1200 if (Record.size() < 3 || OpTy == 0)
1201 return Error("Invalid CE_INSERTELT record");
1202 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
1203 Constant *Op1 = ValueList.getConstantFwdRef(Record[1],
1204 OpTy->getElementType());
1205 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
1206 V = ConstantExpr::getInsertElement(Op0, Op1, Op2);
1207 break;
1208 }
1209 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
1210 VectorType *OpTy = dyn_cast<VectorType>(CurTy);
1211 if (Record.size() < 3 || OpTy == 0)
1212 return Error("Invalid CE_SHUFFLEVEC record");
1213 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
1214 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy);
1215 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
1216 OpTy->getNumElements());
1217 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy);
1218 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
1219 break;
1220 }
1221 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
1222 VectorType *RTy = dyn_cast<VectorType>(CurTy);
1223 VectorType *OpTy =
1224 dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
1225 if (Record.size() < 4 || RTy == 0 || OpTy == 0)
1226 return Error("Invalid CE_SHUFVEC_EX record");
1227 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
1228 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
1229 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
1230 RTy->getNumElements());
1231 Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy);
1232 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
1233 break;
1234 }
1235 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred]
1236 if (Record.size() < 4) return Error("Invalid CE_CMP record");
1237 Type *OpTy = getTypeByID(Record[0]);
1238 if (OpTy == 0) return Error("Invalid CE_CMP record");
1239 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
1240 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
1241
1242 if (OpTy->isFPOrFPVectorTy())
1243 V = ConstantExpr::getFCmp(Record[3], Op0, Op1);
1244 else
1245 V = ConstantExpr::getICmp(Record[3], Op0, Op1);
1246 break;
1247 }
1248 // This maintains backward compatibility, pre-asm dialect keywords.
1249 // FIXME: Remove with the 4.0 release.
1250 case bitc::CST_CODE_INLINEASM_OLD: {
1251 if (Record.size() < 2) return Error("Invalid INLINEASM record");
1252 std::string AsmStr, ConstrStr;
1253 bool HasSideEffects = Record[0] & 1;
1254 bool IsAlignStack = Record[0] >> 1;
1255 unsigned AsmStrSize = Record[1];
1256 if (2+AsmStrSize >= Record.size())
1257 return Error("Invalid INLINEASM record");
1258 unsigned ConstStrSize = Record[2+AsmStrSize];
1259 if (3+AsmStrSize+ConstStrSize > Record.size())
1260 return Error("Invalid INLINEASM record");
1261
1262 for (unsigned i = 0; i != AsmStrSize; ++i)
1263 AsmStr += (char)Record[2+i];
1264 for (unsigned i = 0; i != ConstStrSize; ++i)
1265 ConstrStr += (char)Record[3+AsmStrSize+i];
1266 PointerType *PTy = cast<PointerType>(CurTy);
1267 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()),
1268 AsmStr, ConstrStr, HasSideEffects, IsAlignStack);
1269 break;
1270 }
1271 // This version adds support for the asm dialect keywords (e.g.,
1272 // inteldialect).
1273 case bitc::CST_CODE_INLINEASM: {
1274 if (Record.size() < 2) return Error("Invalid INLINEASM record");
1275 std::string AsmStr, ConstrStr;
1276 bool HasSideEffects = Record[0] & 1;
1277 bool IsAlignStack = (Record[0] >> 1) & 1;
1278 unsigned AsmDialect = Record[0] >> 2;
1279 unsigned AsmStrSize = Record[1];
1280 if (2+AsmStrSize >= Record.size())
1281 return Error("Invalid INLINEASM record");
1282 unsigned ConstStrSize = Record[2+AsmStrSize];
1283 if (3+AsmStrSize+ConstStrSize > Record.size())
1284 return Error("Invalid INLINEASM record");
1285
1286 for (unsigned i = 0; i != AsmStrSize; ++i)
1287 AsmStr += (char)Record[2+i];
1288 for (unsigned i = 0; i != ConstStrSize; ++i)
1289 ConstrStr += (char)Record[3+AsmStrSize+i];
1290 PointerType *PTy = cast<PointerType>(CurTy);
1291 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()),
1292 AsmStr, ConstrStr, HasSideEffects, IsAlignStack,
1293 InlineAsm::AsmDialect(AsmDialect));
1294 break;
1295 }
1296 case bitc::CST_CODE_BLOCKADDRESS:{
1297 if (Record.size() < 3) return Error("Invalid CE_BLOCKADDRESS record");
1298 Type *FnTy = getTypeByID(Record[0]);
1299 if (FnTy == 0) return Error("Invalid CE_BLOCKADDRESS record");
1300 Function *Fn =
1301 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy));
1302 if (Fn == 0) return Error("Invalid CE_BLOCKADDRESS record");
1303
1304 GlobalVariable *FwdRef = new GlobalVariable(*Fn->getParent(),
1305 Type::getInt8Ty(Context),
1306 false, GlobalValue::InternalLinkage,
1307 0, "");
1308 BlockAddrFwdRefs[Fn].push_back(std::make_pair(Record[2], FwdRef));
1309 V = FwdRef;
1310 break;
1311 }
1312 }
1313
1314 ValueList.AssignValue(V, NextCstNo);
1315 ++NextCstNo;
1316 }
1317
1318 if (NextCstNo != ValueList.size())
1319 return Error("Invalid constant reference!");
1320
1321 if (Stream.ReadBlockEnd())
1322 return Error("Error at end of constants block");
1323
1324 // Once all the constants have been read, go through and resolve forward
1325 // references.
1326 ValueList.ResolveConstantForwardRefs();
1327 return false;
1328 }
1329
ParseUseLists()1330 bool BitcodeReader::ParseUseLists() {
1331 if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID))
1332 return Error("Malformed block record");
1333
1334 SmallVector<uint64_t, 64> Record;
1335
1336 // Read all the records.
1337 while (1) {
1338 unsigned Code = Stream.ReadCode();
1339 if (Code == bitc::END_BLOCK) {
1340 if (Stream.ReadBlockEnd())
1341 return Error("Error at end of use-list table block");
1342 return false;
1343 }
1344
1345 if (Code == bitc::ENTER_SUBBLOCK) {
1346 // No known subblocks, always skip them.
1347 Stream.ReadSubBlockID();
1348 if (Stream.SkipBlock())
1349 return Error("Malformed block record");
1350 continue;
1351 }
1352
1353 if (Code == bitc::DEFINE_ABBREV) {
1354 Stream.ReadAbbrevRecord();
1355 continue;
1356 }
1357
1358 // Read a use list record.
1359 Record.clear();
1360 switch (Stream.ReadRecord(Code, Record)) {
1361 default: // Default behavior: unknown type.
1362 break;
1363 case bitc::USELIST_CODE_ENTRY: { // USELIST_CODE_ENTRY: TBD.
1364 unsigned RecordLength = Record.size();
1365 if (RecordLength < 1)
1366 return Error ("Invalid UseList reader!");
1367 UseListRecords.push_back(Record);
1368 break;
1369 }
1370 }
1371 }
1372 }
1373
1374 /// RememberAndSkipFunctionBody - When we see the block for a function body,
1375 /// remember where it is and then skip it. This lets us lazily deserialize the
1376 /// functions.
RememberAndSkipFunctionBody()1377 bool BitcodeReader::RememberAndSkipFunctionBody() {
1378 // Get the function we are talking about.
1379 if (FunctionsWithBodies.empty())
1380 return Error("Insufficient function protos");
1381
1382 Function *Fn = FunctionsWithBodies.back();
1383 FunctionsWithBodies.pop_back();
1384
1385 // Save the current stream state.
1386 uint64_t CurBit = Stream.GetCurrentBitNo();
1387 DeferredFunctionInfo[Fn] = CurBit;
1388
1389 // Skip over the function block for now.
1390 if (Stream.SkipBlock())
1391 return Error("Malformed block record");
1392 return false;
1393 }
1394
GlobalCleanup()1395 bool BitcodeReader::GlobalCleanup() {
1396 // Patch the initializers for globals and aliases up.
1397 ResolveGlobalAndAliasInits();
1398 if (!GlobalInits.empty() || !AliasInits.empty())
1399 return Error("Malformed global initializer set");
1400
1401 // Look for intrinsic functions which need to be upgraded at some point
1402 for (Module::iterator FI = TheModule->begin(), FE = TheModule->end();
1403 FI != FE; ++FI) {
1404 Function *NewFn;
1405 if (UpgradeIntrinsicFunction(FI, NewFn))
1406 UpgradedIntrinsics.push_back(std::make_pair(FI, NewFn));
1407 }
1408
1409 // Look for global variables which need to be renamed.
1410 for (Module::global_iterator
1411 GI = TheModule->global_begin(), GE = TheModule->global_end();
1412 GI != GE; ++GI)
1413 UpgradeGlobalVariable(GI);
1414 // Force deallocation of memory for these vectors to favor the client that
1415 // want lazy deserialization.
1416 std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits);
1417 std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits);
1418 return false;
1419 }
1420
ParseModule(bool Resume)1421 bool BitcodeReader::ParseModule(bool Resume) {
1422 if (Resume)
1423 Stream.JumpToBit(NextUnreadBit);
1424 else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
1425 return Error("Malformed block record");
1426
1427 SmallVector<uint64_t, 64> Record;
1428 std::vector<std::string> SectionTable;
1429 std::vector<std::string> GCTable;
1430
1431 // Read all the records for this module.
1432 while (!Stream.AtEndOfStream()) {
1433 unsigned Code = Stream.ReadCode();
1434 if (Code == bitc::END_BLOCK) {
1435 if (Stream.ReadBlockEnd())
1436 return Error("Error at end of module block");
1437
1438 return GlobalCleanup();
1439 }
1440
1441 if (Code == bitc::ENTER_SUBBLOCK) {
1442 switch (Stream.ReadSubBlockID()) {
1443 default: // Skip unknown content.
1444 if (Stream.SkipBlock())
1445 return Error("Malformed block record");
1446 break;
1447 case bitc::BLOCKINFO_BLOCK_ID:
1448 if (Stream.ReadBlockInfoBlock())
1449 return Error("Malformed BlockInfoBlock");
1450 break;
1451 case bitc::PARAMATTR_BLOCK_ID:
1452 if (ParseAttributeBlock())
1453 return true;
1454 break;
1455 case bitc::TYPE_BLOCK_ID_NEW:
1456 if (ParseTypeTable())
1457 return true;
1458 break;
1459 case bitc::VALUE_SYMTAB_BLOCK_ID:
1460 if (ParseValueSymbolTable())
1461 return true;
1462 SeenValueSymbolTable = true;
1463 break;
1464 case bitc::CONSTANTS_BLOCK_ID:
1465 if (ParseConstants() || ResolveGlobalAndAliasInits())
1466 return true;
1467 break;
1468 case bitc::METADATA_BLOCK_ID:
1469 if (ParseMetadata())
1470 return true;
1471 break;
1472 case bitc::FUNCTION_BLOCK_ID:
1473 // If this is the first function body we've seen, reverse the
1474 // FunctionsWithBodies list.
1475 if (!SeenFirstFunctionBody) {
1476 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
1477 if (GlobalCleanup())
1478 return true;
1479 SeenFirstFunctionBody = true;
1480 }
1481
1482 if (RememberAndSkipFunctionBody())
1483 return true;
1484 // For streaming bitcode, suspend parsing when we reach the function
1485 // bodies. Subsequent materialization calls will resume it when
1486 // necessary. For streaming, the function bodies must be at the end of
1487 // the bitcode. If the bitcode file is old, the symbol table will be
1488 // at the end instead and will not have been seen yet. In this case,
1489 // just finish the parse now.
1490 if (LazyStreamer && SeenValueSymbolTable) {
1491 NextUnreadBit = Stream.GetCurrentBitNo();
1492 return false;
1493 }
1494 break;
1495 case bitc::USELIST_BLOCK_ID:
1496 if (ParseUseLists())
1497 return true;
1498 break;
1499 }
1500 continue;
1501 }
1502
1503 if (Code == bitc::DEFINE_ABBREV) {
1504 Stream.ReadAbbrevRecord();
1505 continue;
1506 }
1507
1508 // Read a record.
1509 switch (Stream.ReadRecord(Code, Record)) {
1510 default: break; // Default behavior, ignore unknown content.
1511 case bitc::MODULE_CODE_VERSION: // VERSION: [version#]
1512 if (Record.size() < 1)
1513 return Error("Malformed MODULE_CODE_VERSION");
1514 // Only version #0 is supported so far.
1515 if (Record[0] != 0)
1516 return Error("Unknown bitstream version!");
1517 break;
1518 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N]
1519 std::string S;
1520 if (ConvertToString(Record, 0, S))
1521 return Error("Invalid MODULE_CODE_TRIPLE record");
1522 TheModule->setTargetTriple(S);
1523 break;
1524 }
1525 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N]
1526 std::string S;
1527 if (ConvertToString(Record, 0, S))
1528 return Error("Invalid MODULE_CODE_DATALAYOUT record");
1529 TheModule->setDataLayout(S);
1530 break;
1531 }
1532 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N]
1533 std::string S;
1534 if (ConvertToString(Record, 0, S))
1535 return Error("Invalid MODULE_CODE_ASM record");
1536 TheModule->setModuleInlineAsm(S);
1537 break;
1538 }
1539 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N]
1540 std::string S;
1541 if (ConvertToString(Record, 0, S))
1542 return Error("Invalid MODULE_CODE_DEPLIB record");
1543 TheModule->addLibrary(S);
1544 break;
1545 }
1546 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N]
1547 std::string S;
1548 if (ConvertToString(Record, 0, S))
1549 return Error("Invalid MODULE_CODE_SECTIONNAME record");
1550 SectionTable.push_back(S);
1551 break;
1552 }
1553 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N]
1554 std::string S;
1555 if (ConvertToString(Record, 0, S))
1556 return Error("Invalid MODULE_CODE_GCNAME record");
1557 GCTable.push_back(S);
1558 break;
1559 }
1560 // GLOBALVAR: [pointer type, isconst, initid,
1561 // linkage, alignment, section, visibility, threadlocal,
1562 // unnamed_addr]
1563 case bitc::MODULE_CODE_GLOBALVAR: {
1564 if (Record.size() < 6)
1565 return Error("Invalid MODULE_CODE_GLOBALVAR record");
1566 Type *Ty = getTypeByID(Record[0]);
1567 if (!Ty) return Error("Invalid MODULE_CODE_GLOBALVAR record");
1568 if (!Ty->isPointerTy())
1569 return Error("Global not a pointer type!");
1570 unsigned AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
1571 Ty = cast<PointerType>(Ty)->getElementType();
1572
1573 bool isConstant = Record[1];
1574 GlobalValue::LinkageTypes Linkage = GetDecodedLinkage(Record[3]);
1575 unsigned Alignment = (1 << Record[4]) >> 1;
1576 std::string Section;
1577 if (Record[5]) {
1578 if (Record[5]-1 >= SectionTable.size())
1579 return Error("Invalid section ID");
1580 Section = SectionTable[Record[5]-1];
1581 }
1582 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
1583 if (Record.size() > 6)
1584 Visibility = GetDecodedVisibility(Record[6]);
1585
1586 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal;
1587 if (Record.size() > 7)
1588 TLM = GetDecodedThreadLocalMode(Record[7]);
1589
1590 bool UnnamedAddr = false;
1591 if (Record.size() > 8)
1592 UnnamedAddr = Record[8];
1593
1594 GlobalVariable *NewGV =
1595 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, 0, "", 0,
1596 TLM, AddressSpace);
1597 NewGV->setAlignment(Alignment);
1598 if (!Section.empty())
1599 NewGV->setSection(Section);
1600 NewGV->setVisibility(Visibility);
1601 NewGV->setUnnamedAddr(UnnamedAddr);
1602
1603 ValueList.push_back(NewGV);
1604
1605 // Remember which value to use for the global initializer.
1606 if (unsigned InitID = Record[2])
1607 GlobalInits.push_back(std::make_pair(NewGV, InitID-1));
1608 break;
1609 }
1610 // FUNCTION: [type, callingconv, isproto, linkage, paramattr,
1611 // alignment, section, visibility, gc, unnamed_addr]
1612 case bitc::MODULE_CODE_FUNCTION: {
1613 if (Record.size() < 8)
1614 return Error("Invalid MODULE_CODE_FUNCTION record");
1615 Type *Ty = getTypeByID(Record[0]);
1616 if (!Ty) return Error("Invalid MODULE_CODE_FUNCTION record");
1617 if (!Ty->isPointerTy())
1618 return Error("Function not a pointer type!");
1619 FunctionType *FTy =
1620 dyn_cast<FunctionType>(cast<PointerType>(Ty)->getElementType());
1621 if (!FTy)
1622 return Error("Function not a pointer to function type!");
1623
1624 Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage,
1625 "", TheModule);
1626
1627 Func->setCallingConv(static_cast<CallingConv::ID>(Record[1]));
1628 bool isProto = Record[2];
1629 Func->setLinkage(GetDecodedLinkage(Record[3]));
1630 Func->setAttributes(getAttributes(Record[4]));
1631
1632 Func->setAlignment((1 << Record[5]) >> 1);
1633 if (Record[6]) {
1634 if (Record[6]-1 >= SectionTable.size())
1635 return Error("Invalid section ID");
1636 Func->setSection(SectionTable[Record[6]-1]);
1637 }
1638 Func->setVisibility(GetDecodedVisibility(Record[7]));
1639 if (Record.size() > 8 && Record[8]) {
1640 if (Record[8]-1 > GCTable.size())
1641 return Error("Invalid GC ID");
1642 Func->setGC(GCTable[Record[8]-1].c_str());
1643 }
1644 bool UnnamedAddr = false;
1645 if (Record.size() > 9)
1646 UnnamedAddr = Record[9];
1647 Func->setUnnamedAddr(UnnamedAddr);
1648 ValueList.push_back(Func);
1649
1650 // If this is a function with a body, remember the prototype we are
1651 // creating now, so that we can match up the body with them later.
1652 if (!isProto) {
1653 FunctionsWithBodies.push_back(Func);
1654 if (LazyStreamer) DeferredFunctionInfo[Func] = 0;
1655 }
1656 break;
1657 }
1658 // ALIAS: [alias type, aliasee val#, linkage]
1659 // ALIAS: [alias type, aliasee val#, linkage, visibility]
1660 case bitc::MODULE_CODE_ALIAS: {
1661 if (Record.size() < 3)
1662 return Error("Invalid MODULE_ALIAS record");
1663 Type *Ty = getTypeByID(Record[0]);
1664 if (!Ty) return Error("Invalid MODULE_ALIAS record");
1665 if (!Ty->isPointerTy())
1666 return Error("Function not a pointer type!");
1667
1668 GlobalAlias *NewGA = new GlobalAlias(Ty, GetDecodedLinkage(Record[2]),
1669 "", 0, TheModule);
1670 // Old bitcode files didn't have visibility field.
1671 if (Record.size() > 3)
1672 NewGA->setVisibility(GetDecodedVisibility(Record[3]));
1673 ValueList.push_back(NewGA);
1674 AliasInits.push_back(std::make_pair(NewGA, Record[1]));
1675 break;
1676 }
1677 /// MODULE_CODE_PURGEVALS: [numvals]
1678 case bitc::MODULE_CODE_PURGEVALS:
1679 // Trim down the value list to the specified size.
1680 if (Record.size() < 1 || Record[0] > ValueList.size())
1681 return Error("Invalid MODULE_PURGEVALS record");
1682 ValueList.shrinkTo(Record[0]);
1683 break;
1684 }
1685 Record.clear();
1686 }
1687
1688 return Error("Premature end of bitstream");
1689 }
1690
ParseBitcodeInto(Module * M)1691 bool BitcodeReader::ParseBitcodeInto(Module *M) {
1692 TheModule = 0;
1693
1694 if (InitStream()) return true;
1695
1696 // Sniff for the signature.
1697 if (Stream.Read(8) != 'B' ||
1698 Stream.Read(8) != 'C' ||
1699 Stream.Read(4) != 0x0 ||
1700 Stream.Read(4) != 0xC ||
1701 Stream.Read(4) != 0xE ||
1702 Stream.Read(4) != 0xD)
1703 return Error("Invalid bitcode signature");
1704
1705 // We expect a number of well-defined blocks, though we don't necessarily
1706 // need to understand them all.
1707 while (!Stream.AtEndOfStream()) {
1708 unsigned Code = Stream.ReadCode();
1709
1710 if (Code != bitc::ENTER_SUBBLOCK) {
1711
1712 // The ranlib in xcode 4 will align archive members by appending newlines
1713 // to the end of them. If this file size is a multiple of 4 but not 8, we
1714 // have to read and ignore these final 4 bytes :-(
1715 if (Stream.GetAbbrevIDWidth() == 2 && Code == 2 &&
1716 Stream.Read(6) == 2 && Stream.Read(24) == 0xa0a0a &&
1717 Stream.AtEndOfStream())
1718 return false;
1719
1720 return Error("Invalid record at top-level");
1721 }
1722
1723 unsigned BlockID = Stream.ReadSubBlockID();
1724
1725 // We only know the MODULE subblock ID.
1726 switch (BlockID) {
1727 case bitc::BLOCKINFO_BLOCK_ID:
1728 if (Stream.ReadBlockInfoBlock())
1729 return Error("Malformed BlockInfoBlock");
1730 break;
1731 case bitc::MODULE_BLOCK_ID:
1732 // Reject multiple MODULE_BLOCK's in a single bitstream.
1733 if (TheModule)
1734 return Error("Multiple MODULE_BLOCKs in same stream");
1735 TheModule = M;
1736 if (ParseModule(false))
1737 return true;
1738 if (LazyStreamer) return false;
1739 break;
1740 default:
1741 if (Stream.SkipBlock())
1742 return Error("Malformed block record");
1743 break;
1744 }
1745 }
1746
1747 return false;
1748 }
1749
ParseModuleTriple(std::string & Triple)1750 bool BitcodeReader::ParseModuleTriple(std::string &Triple) {
1751 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
1752 return Error("Malformed block record");
1753
1754 SmallVector<uint64_t, 64> Record;
1755
1756 // Read all the records for this module.
1757 while (!Stream.AtEndOfStream()) {
1758 unsigned Code = Stream.ReadCode();
1759 if (Code == bitc::END_BLOCK) {
1760 if (Stream.ReadBlockEnd())
1761 return Error("Error at end of module block");
1762
1763 return false;
1764 }
1765
1766 if (Code == bitc::ENTER_SUBBLOCK) {
1767 switch (Stream.ReadSubBlockID()) {
1768 default: // Skip unknown content.
1769 if (Stream.SkipBlock())
1770 return Error("Malformed block record");
1771 break;
1772 }
1773 continue;
1774 }
1775
1776 if (Code == bitc::DEFINE_ABBREV) {
1777 Stream.ReadAbbrevRecord();
1778 continue;
1779 }
1780
1781 // Read a record.
1782 switch (Stream.ReadRecord(Code, Record)) {
1783 default: break; // Default behavior, ignore unknown content.
1784 case bitc::MODULE_CODE_VERSION: // VERSION: [version#]
1785 if (Record.size() < 1)
1786 return Error("Malformed MODULE_CODE_VERSION");
1787 // Only version #0 is supported so far.
1788 if (Record[0] != 0)
1789 return Error("Unknown bitstream version!");
1790 break;
1791 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N]
1792 std::string S;
1793 if (ConvertToString(Record, 0, S))
1794 return Error("Invalid MODULE_CODE_TRIPLE record");
1795 Triple = S;
1796 break;
1797 }
1798 }
1799 Record.clear();
1800 }
1801
1802 return Error("Premature end of bitstream");
1803 }
1804
ParseTriple(std::string & Triple)1805 bool BitcodeReader::ParseTriple(std::string &Triple) {
1806 if (InitStream()) return true;
1807
1808 // Sniff for the signature.
1809 if (Stream.Read(8) != 'B' ||
1810 Stream.Read(8) != 'C' ||
1811 Stream.Read(4) != 0x0 ||
1812 Stream.Read(4) != 0xC ||
1813 Stream.Read(4) != 0xE ||
1814 Stream.Read(4) != 0xD)
1815 return Error("Invalid bitcode signature");
1816
1817 // We expect a number of well-defined blocks, though we don't necessarily
1818 // need to understand them all.
1819 while (!Stream.AtEndOfStream()) {
1820 unsigned Code = Stream.ReadCode();
1821
1822 if (Code != bitc::ENTER_SUBBLOCK)
1823 return Error("Invalid record at top-level");
1824
1825 unsigned BlockID = Stream.ReadSubBlockID();
1826
1827 // We only know the MODULE subblock ID.
1828 switch (BlockID) {
1829 case bitc::MODULE_BLOCK_ID:
1830 if (ParseModuleTriple(Triple))
1831 return true;
1832 break;
1833 default:
1834 if (Stream.SkipBlock())
1835 return Error("Malformed block record");
1836 break;
1837 }
1838 }
1839
1840 return false;
1841 }
1842
1843 /// ParseMetadataAttachment - Parse metadata attachments.
ParseMetadataAttachment()1844 bool BitcodeReader::ParseMetadataAttachment() {
1845 if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID))
1846 return Error("Malformed block record");
1847
1848 SmallVector<uint64_t, 64> Record;
1849 while(1) {
1850 unsigned Code = Stream.ReadCode();
1851 if (Code == bitc::END_BLOCK) {
1852 if (Stream.ReadBlockEnd())
1853 return Error("Error at end of PARAMATTR block");
1854 break;
1855 }
1856 if (Code == bitc::DEFINE_ABBREV) {
1857 Stream.ReadAbbrevRecord();
1858 continue;
1859 }
1860 // Read a metadata attachment record.
1861 Record.clear();
1862 switch (Stream.ReadRecord(Code, Record)) {
1863 default: // Default behavior: ignore.
1864 break;
1865 case bitc::METADATA_ATTACHMENT: {
1866 unsigned RecordLength = Record.size();
1867 if (Record.empty() || (RecordLength - 1) % 2 == 1)
1868 return Error ("Invalid METADATA_ATTACHMENT reader!");
1869 Instruction *Inst = InstructionList[Record[0]];
1870 for (unsigned i = 1; i != RecordLength; i = i+2) {
1871 unsigned Kind = Record[i];
1872 DenseMap<unsigned, unsigned>::iterator I =
1873 MDKindMap.find(Kind);
1874 if (I == MDKindMap.end())
1875 return Error("Invalid metadata kind ID");
1876 Value *Node = MDValueList.getValueFwdRef(Record[i+1]);
1877 Inst->setMetadata(I->second, cast<MDNode>(Node));
1878 }
1879 break;
1880 }
1881 }
1882 }
1883 return false;
1884 }
1885
1886 /// ParseFunctionBody - Lazily parse the specified function body block.
ParseFunctionBody(Function * F)1887 bool BitcodeReader::ParseFunctionBody(Function *F) {
1888 if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
1889 return Error("Malformed block record");
1890
1891 InstructionList.clear();
1892 unsigned ModuleValueListSize = ValueList.size();
1893 unsigned ModuleMDValueListSize = MDValueList.size();
1894
1895 // Add all the function arguments to the value table.
1896 for(Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I)
1897 ValueList.push_back(I);
1898
1899 unsigned NextValueNo = ValueList.size();
1900 BasicBlock *CurBB = 0;
1901 unsigned CurBBNo = 0;
1902
1903 DebugLoc LastLoc;
1904
1905 // Read all the records.
1906 SmallVector<uint64_t, 64> Record;
1907 while (1) {
1908 unsigned Code = Stream.ReadCode();
1909 if (Code == bitc::END_BLOCK) {
1910 if (Stream.ReadBlockEnd())
1911 return Error("Error at end of function block");
1912 break;
1913 }
1914
1915 if (Code == bitc::ENTER_SUBBLOCK) {
1916 switch (Stream.ReadSubBlockID()) {
1917 default: // Skip unknown content.
1918 if (Stream.SkipBlock())
1919 return Error("Malformed block record");
1920 break;
1921 case bitc::CONSTANTS_BLOCK_ID:
1922 if (ParseConstants()) return true;
1923 NextValueNo = ValueList.size();
1924 break;
1925 case bitc::VALUE_SYMTAB_BLOCK_ID:
1926 if (ParseValueSymbolTable()) return true;
1927 break;
1928 case bitc::METADATA_ATTACHMENT_ID:
1929 if (ParseMetadataAttachment()) return true;
1930 break;
1931 case bitc::METADATA_BLOCK_ID:
1932 if (ParseMetadata()) return true;
1933 break;
1934 }
1935 continue;
1936 }
1937
1938 if (Code == bitc::DEFINE_ABBREV) {
1939 Stream.ReadAbbrevRecord();
1940 continue;
1941 }
1942
1943 // Read a record.
1944 Record.clear();
1945 Instruction *I = 0;
1946 unsigned BitCode = Stream.ReadRecord(Code, Record);
1947 switch (BitCode) {
1948 default: // Default behavior: reject
1949 return Error("Unknown instruction");
1950 case bitc::FUNC_CODE_DECLAREBLOCKS: // DECLAREBLOCKS: [nblocks]
1951 if (Record.size() < 1 || Record[0] == 0)
1952 return Error("Invalid DECLAREBLOCKS record");
1953 // Create all the basic blocks for the function.
1954 FunctionBBs.resize(Record[0]);
1955 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i)
1956 FunctionBBs[i] = BasicBlock::Create(Context, "", F);
1957 CurBB = FunctionBBs[0];
1958 continue;
1959
1960 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN
1961 // This record indicates that the last instruction is at the same
1962 // location as the previous instruction with a location.
1963 I = 0;
1964
1965 // Get the last instruction emitted.
1966 if (CurBB && !CurBB->empty())
1967 I = &CurBB->back();
1968 else if (CurBBNo && FunctionBBs[CurBBNo-1] &&
1969 !FunctionBBs[CurBBNo-1]->empty())
1970 I = &FunctionBBs[CurBBNo-1]->back();
1971
1972 if (I == 0) return Error("Invalid DEBUG_LOC_AGAIN record");
1973 I->setDebugLoc(LastLoc);
1974 I = 0;
1975 continue;
1976
1977 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia]
1978 I = 0; // Get the last instruction emitted.
1979 if (CurBB && !CurBB->empty())
1980 I = &CurBB->back();
1981 else if (CurBBNo && FunctionBBs[CurBBNo-1] &&
1982 !FunctionBBs[CurBBNo-1]->empty())
1983 I = &FunctionBBs[CurBBNo-1]->back();
1984 if (I == 0 || Record.size() < 4)
1985 return Error("Invalid FUNC_CODE_DEBUG_LOC record");
1986
1987 unsigned Line = Record[0], Col = Record[1];
1988 unsigned ScopeID = Record[2], IAID = Record[3];
1989
1990 MDNode *Scope = 0, *IA = 0;
1991 if (ScopeID) Scope = cast<MDNode>(MDValueList.getValueFwdRef(ScopeID-1));
1992 if (IAID) IA = cast<MDNode>(MDValueList.getValueFwdRef(IAID-1));
1993 LastLoc = DebugLoc::get(Line, Col, Scope, IA);
1994 I->setDebugLoc(LastLoc);
1995 I = 0;
1996 continue;
1997 }
1998
1999 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode]
2000 unsigned OpNum = 0;
2001 Value *LHS, *RHS;
2002 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
2003 getValue(Record, OpNum, LHS->getType(), RHS) ||
2004 OpNum+1 > Record.size())
2005 return Error("Invalid BINOP record");
2006
2007 int Opc = GetDecodedBinaryOpcode(Record[OpNum++], LHS->getType());
2008 if (Opc == -1) return Error("Invalid BINOP record");
2009 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
2010 InstructionList.push_back(I);
2011 if (OpNum < Record.size()) {
2012 if (Opc == Instruction::Add ||
2013 Opc == Instruction::Sub ||
2014 Opc == Instruction::Mul ||
2015 Opc == Instruction::Shl) {
2016 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP))
2017 cast<BinaryOperator>(I)->setHasNoSignedWrap(true);
2018 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
2019 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true);
2020 } else if (Opc == Instruction::SDiv ||
2021 Opc == Instruction::UDiv ||
2022 Opc == Instruction::LShr ||
2023 Opc == Instruction::AShr) {
2024 if (Record[OpNum] & (1 << bitc::PEO_EXACT))
2025 cast<BinaryOperator>(I)->setIsExact(true);
2026 }
2027 }
2028 break;
2029 }
2030 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc]
2031 unsigned OpNum = 0;
2032 Value *Op;
2033 if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
2034 OpNum+2 != Record.size())
2035 return Error("Invalid CAST record");
2036
2037 Type *ResTy = getTypeByID(Record[OpNum]);
2038 int Opc = GetDecodedCastOpcode(Record[OpNum+1]);
2039 if (Opc == -1 || ResTy == 0)
2040 return Error("Invalid CAST record");
2041 I = CastInst::Create((Instruction::CastOps)Opc, Op, ResTy);
2042 InstructionList.push_back(I);
2043 break;
2044 }
2045 case bitc::FUNC_CODE_INST_INBOUNDS_GEP:
2046 case bitc::FUNC_CODE_INST_GEP: { // GEP: [n x operands]
2047 unsigned OpNum = 0;
2048 Value *BasePtr;
2049 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr))
2050 return Error("Invalid GEP record");
2051
2052 SmallVector<Value*, 16> GEPIdx;
2053 while (OpNum != Record.size()) {
2054 Value *Op;
2055 if (getValueTypePair(Record, OpNum, NextValueNo, Op))
2056 return Error("Invalid GEP record");
2057 GEPIdx.push_back(Op);
2058 }
2059
2060 I = GetElementPtrInst::Create(BasePtr, GEPIdx);
2061 InstructionList.push_back(I);
2062 if (BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP)
2063 cast<GetElementPtrInst>(I)->setIsInBounds(true);
2064 break;
2065 }
2066
2067 case bitc::FUNC_CODE_INST_EXTRACTVAL: {
2068 // EXTRACTVAL: [opty, opval, n x indices]
2069 unsigned OpNum = 0;
2070 Value *Agg;
2071 if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
2072 return Error("Invalid EXTRACTVAL record");
2073
2074 SmallVector<unsigned, 4> EXTRACTVALIdx;
2075 for (unsigned RecSize = Record.size();
2076 OpNum != RecSize; ++OpNum) {
2077 uint64_t Index = Record[OpNum];
2078 if ((unsigned)Index != Index)
2079 return Error("Invalid EXTRACTVAL index");
2080 EXTRACTVALIdx.push_back((unsigned)Index);
2081 }
2082
2083 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx);
2084 InstructionList.push_back(I);
2085 break;
2086 }
2087
2088 case bitc::FUNC_CODE_INST_INSERTVAL: {
2089 // INSERTVAL: [opty, opval, opty, opval, n x indices]
2090 unsigned OpNum = 0;
2091 Value *Agg;
2092 if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
2093 return Error("Invalid INSERTVAL record");
2094 Value *Val;
2095 if (getValueTypePair(Record, OpNum, NextValueNo, Val))
2096 return Error("Invalid INSERTVAL record");
2097
2098 SmallVector<unsigned, 4> INSERTVALIdx;
2099 for (unsigned RecSize = Record.size();
2100 OpNum != RecSize; ++OpNum) {
2101 uint64_t Index = Record[OpNum];
2102 if ((unsigned)Index != Index)
2103 return Error("Invalid INSERTVAL index");
2104 INSERTVALIdx.push_back((unsigned)Index);
2105 }
2106
2107 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx);
2108 InstructionList.push_back(I);
2109 break;
2110 }
2111
2112 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
2113 // obsolete form of select
2114 // handles select i1 ... in old bitcode
2115 unsigned OpNum = 0;
2116 Value *TrueVal, *FalseVal, *Cond;
2117 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
2118 getValue(Record, OpNum, TrueVal->getType(), FalseVal) ||
2119 getValue(Record, OpNum, Type::getInt1Ty(Context), Cond))
2120 return Error("Invalid SELECT record");
2121
2122 I = SelectInst::Create(Cond, TrueVal, FalseVal);
2123 InstructionList.push_back(I);
2124 break;
2125 }
2126
2127 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
2128 // new form of select
2129 // handles select i1 or select [N x i1]
2130 unsigned OpNum = 0;
2131 Value *TrueVal, *FalseVal, *Cond;
2132 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
2133 getValue(Record, OpNum, TrueVal->getType(), FalseVal) ||
2134 getValueTypePair(Record, OpNum, NextValueNo, Cond))
2135 return Error("Invalid SELECT record");
2136
2137 // select condition can be either i1 or [N x i1]
2138 if (VectorType* vector_type =
2139 dyn_cast<VectorType>(Cond->getType())) {
2140 // expect <n x i1>
2141 if (vector_type->getElementType() != Type::getInt1Ty(Context))
2142 return Error("Invalid SELECT condition type");
2143 } else {
2144 // expect i1
2145 if (Cond->getType() != Type::getInt1Ty(Context))
2146 return Error("Invalid SELECT condition type");
2147 }
2148
2149 I = SelectInst::Create(Cond, TrueVal, FalseVal);
2150 InstructionList.push_back(I);
2151 break;
2152 }
2153
2154 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
2155 unsigned OpNum = 0;
2156 Value *Vec, *Idx;
2157 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
2158 getValue(Record, OpNum, Type::getInt32Ty(Context), Idx))
2159 return Error("Invalid EXTRACTELT record");
2160 I = ExtractElementInst::Create(Vec, Idx);
2161 InstructionList.push_back(I);
2162 break;
2163 }
2164
2165 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
2166 unsigned OpNum = 0;
2167 Value *Vec, *Elt, *Idx;
2168 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
2169 getValue(Record, OpNum,
2170 cast<VectorType>(Vec->getType())->getElementType(), Elt) ||
2171 getValue(Record, OpNum, Type::getInt32Ty(Context), Idx))
2172 return Error("Invalid INSERTELT record");
2173 I = InsertElementInst::Create(Vec, Elt, Idx);
2174 InstructionList.push_back(I);
2175 break;
2176 }
2177
2178 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
2179 unsigned OpNum = 0;
2180 Value *Vec1, *Vec2, *Mask;
2181 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) ||
2182 getValue(Record, OpNum, Vec1->getType(), Vec2))
2183 return Error("Invalid SHUFFLEVEC record");
2184
2185 if (getValueTypePair(Record, OpNum, NextValueNo, Mask))
2186 return Error("Invalid SHUFFLEVEC record");
2187 I = new ShuffleVectorInst(Vec1, Vec2, Mask);
2188 InstructionList.push_back(I);
2189 break;
2190 }
2191
2192 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred]
2193 // Old form of ICmp/FCmp returning bool
2194 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were
2195 // both legal on vectors but had different behaviour.
2196 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
2197 // FCmp/ICmp returning bool or vector of bool
2198
2199 unsigned OpNum = 0;
2200 Value *LHS, *RHS;
2201 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
2202 getValue(Record, OpNum, LHS->getType(), RHS) ||
2203 OpNum+1 != Record.size())
2204 return Error("Invalid CMP record");
2205
2206 if (LHS->getType()->isFPOrFPVectorTy())
2207 I = new FCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS);
2208 else
2209 I = new ICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS);
2210 InstructionList.push_back(I);
2211 break;
2212 }
2213
2214 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
2215 {
2216 unsigned Size = Record.size();
2217 if (Size == 0) {
2218 I = ReturnInst::Create(Context);
2219 InstructionList.push_back(I);
2220 break;
2221 }
2222
2223 unsigned OpNum = 0;
2224 Value *Op = NULL;
2225 if (getValueTypePair(Record, OpNum, NextValueNo, Op))
2226 return Error("Invalid RET record");
2227 if (OpNum != Record.size())
2228 return Error("Invalid RET record");
2229
2230 I = ReturnInst::Create(Context, Op);
2231 InstructionList.push_back(I);
2232 break;
2233 }
2234 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
2235 if (Record.size() != 1 && Record.size() != 3)
2236 return Error("Invalid BR record");
2237 BasicBlock *TrueDest = getBasicBlock(Record[0]);
2238 if (TrueDest == 0)
2239 return Error("Invalid BR record");
2240
2241 if (Record.size() == 1) {
2242 I = BranchInst::Create(TrueDest);
2243 InstructionList.push_back(I);
2244 }
2245 else {
2246 BasicBlock *FalseDest = getBasicBlock(Record[1]);
2247 Value *Cond = getFnValueByID(Record[2], Type::getInt1Ty(Context));
2248 if (FalseDest == 0 || Cond == 0)
2249 return Error("Invalid BR record");
2250 I = BranchInst::Create(TrueDest, FalseDest, Cond);
2251 InstructionList.push_back(I);
2252 }
2253 break;
2254 }
2255 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...]
2256 // Check magic
2257 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) {
2258 // New SwitchInst format with case ranges.
2259
2260 Type *OpTy = getTypeByID(Record[1]);
2261 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth();
2262
2263 Value *Cond = getFnValueByID(Record[2], OpTy);
2264 BasicBlock *Default = getBasicBlock(Record[3]);
2265 if (OpTy == 0 || Cond == 0 || Default == 0)
2266 return Error("Invalid SWITCH record");
2267
2268 unsigned NumCases = Record[4];
2269
2270 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
2271 InstructionList.push_back(SI);
2272
2273 unsigned CurIdx = 5;
2274 for (unsigned i = 0; i != NumCases; ++i) {
2275 IntegersSubsetToBB CaseBuilder;
2276 unsigned NumItems = Record[CurIdx++];
2277 for (unsigned ci = 0; ci != NumItems; ++ci) {
2278 bool isSingleNumber = Record[CurIdx++];
2279
2280 APInt Low;
2281 unsigned ActiveWords = 1;
2282 if (ValueBitWidth > 64)
2283 ActiveWords = Record[CurIdx++];
2284 Low = ReadWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords),
2285 ValueBitWidth);
2286 CurIdx += ActiveWords;
2287
2288 if (!isSingleNumber) {
2289 ActiveWords = 1;
2290 if (ValueBitWidth > 64)
2291 ActiveWords = Record[CurIdx++];
2292 APInt High =
2293 ReadWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords),
2294 ValueBitWidth);
2295
2296 CaseBuilder.add(IntItem::fromType(OpTy, Low),
2297 IntItem::fromType(OpTy, High));
2298 CurIdx += ActiveWords;
2299 } else
2300 CaseBuilder.add(IntItem::fromType(OpTy, Low));
2301 }
2302 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]);
2303 IntegersSubset Case = CaseBuilder.getCase();
2304 SI->addCase(Case, DestBB);
2305 }
2306 uint16_t Hash = SI->hash();
2307 if (Hash != (Record[0] & 0xFFFF))
2308 return Error("Invalid SWITCH record");
2309 I = SI;
2310 break;
2311 }
2312
2313 // Old SwitchInst format without case ranges.
2314
2315 if (Record.size() < 3 || (Record.size() & 1) == 0)
2316 return Error("Invalid SWITCH record");
2317 Type *OpTy = getTypeByID(Record[0]);
2318 Value *Cond = getFnValueByID(Record[1], OpTy);
2319 BasicBlock *Default = getBasicBlock(Record[2]);
2320 if (OpTy == 0 || Cond == 0 || Default == 0)
2321 return Error("Invalid SWITCH record");
2322 unsigned NumCases = (Record.size()-3)/2;
2323 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
2324 InstructionList.push_back(SI);
2325 for (unsigned i = 0, e = NumCases; i != e; ++i) {
2326 ConstantInt *CaseVal =
2327 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy));
2328 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
2329 if (CaseVal == 0 || DestBB == 0) {
2330 delete SI;
2331 return Error("Invalid SWITCH record!");
2332 }
2333 SI->addCase(CaseVal, DestBB);
2334 }
2335 I = SI;
2336 break;
2337 }
2338 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...]
2339 if (Record.size() < 2)
2340 return Error("Invalid INDIRECTBR record");
2341 Type *OpTy = getTypeByID(Record[0]);
2342 Value *Address = getFnValueByID(Record[1], OpTy);
2343 if (OpTy == 0 || Address == 0)
2344 return Error("Invalid INDIRECTBR record");
2345 unsigned NumDests = Record.size()-2;
2346 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests);
2347 InstructionList.push_back(IBI);
2348 for (unsigned i = 0, e = NumDests; i != e; ++i) {
2349 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) {
2350 IBI->addDestination(DestBB);
2351 } else {
2352 delete IBI;
2353 return Error("Invalid INDIRECTBR record!");
2354 }
2355 }
2356 I = IBI;
2357 break;
2358 }
2359
2360 case bitc::FUNC_CODE_INST_INVOKE: {
2361 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
2362 if (Record.size() < 4) return Error("Invalid INVOKE record");
2363 AttrListPtr PAL = getAttributes(Record[0]);
2364 unsigned CCInfo = Record[1];
2365 BasicBlock *NormalBB = getBasicBlock(Record[2]);
2366 BasicBlock *UnwindBB = getBasicBlock(Record[3]);
2367
2368 unsigned OpNum = 4;
2369 Value *Callee;
2370 if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
2371 return Error("Invalid INVOKE record");
2372
2373 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
2374 FunctionType *FTy = !CalleeTy ? 0 :
2375 dyn_cast<FunctionType>(CalleeTy->getElementType());
2376
2377 // Check that the right number of fixed parameters are here.
2378 if (FTy == 0 || NormalBB == 0 || UnwindBB == 0 ||
2379 Record.size() < OpNum+FTy->getNumParams())
2380 return Error("Invalid INVOKE record");
2381
2382 SmallVector<Value*, 16> Ops;
2383 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
2384 Ops.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i)));
2385 if (Ops.back() == 0) return Error("Invalid INVOKE record");
2386 }
2387
2388 if (!FTy->isVarArg()) {
2389 if (Record.size() != OpNum)
2390 return Error("Invalid INVOKE record");
2391 } else {
2392 // Read type/value pairs for varargs params.
2393 while (OpNum != Record.size()) {
2394 Value *Op;
2395 if (getValueTypePair(Record, OpNum, NextValueNo, Op))
2396 return Error("Invalid INVOKE record");
2397 Ops.push_back(Op);
2398 }
2399 }
2400
2401 I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops);
2402 InstructionList.push_back(I);
2403 cast<InvokeInst>(I)->setCallingConv(
2404 static_cast<CallingConv::ID>(CCInfo));
2405 cast<InvokeInst>(I)->setAttributes(PAL);
2406 break;
2407 }
2408 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval]
2409 unsigned Idx = 0;
2410 Value *Val = 0;
2411 if (getValueTypePair(Record, Idx, NextValueNo, Val))
2412 return Error("Invalid RESUME record");
2413 I = ResumeInst::Create(Val);
2414 InstructionList.push_back(I);
2415 break;
2416 }
2417 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
2418 I = new UnreachableInst(Context);
2419 InstructionList.push_back(I);
2420 break;
2421 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
2422 if (Record.size() < 1 || ((Record.size()-1)&1))
2423 return Error("Invalid PHI record");
2424 Type *Ty = getTypeByID(Record[0]);
2425 if (!Ty) return Error("Invalid PHI record");
2426
2427 PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2);
2428 InstructionList.push_back(PN);
2429
2430 for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) {
2431 Value *V = getFnValueByID(Record[1+i], Ty);
2432 BasicBlock *BB = getBasicBlock(Record[2+i]);
2433 if (!V || !BB) return Error("Invalid PHI record");
2434 PN->addIncoming(V, BB);
2435 }
2436 I = PN;
2437 break;
2438 }
2439
2440 case bitc::FUNC_CODE_INST_LANDINGPAD: {
2441 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?]
2442 unsigned Idx = 0;
2443 if (Record.size() < 4)
2444 return Error("Invalid LANDINGPAD record");
2445 Type *Ty = getTypeByID(Record[Idx++]);
2446 if (!Ty) return Error("Invalid LANDINGPAD record");
2447 Value *PersFn = 0;
2448 if (getValueTypePair(Record, Idx, NextValueNo, PersFn))
2449 return Error("Invalid LANDINGPAD record");
2450
2451 bool IsCleanup = !!Record[Idx++];
2452 unsigned NumClauses = Record[Idx++];
2453 LandingPadInst *LP = LandingPadInst::Create(Ty, PersFn, NumClauses);
2454 LP->setCleanup(IsCleanup);
2455 for (unsigned J = 0; J != NumClauses; ++J) {
2456 LandingPadInst::ClauseType CT =
2457 LandingPadInst::ClauseType(Record[Idx++]); (void)CT;
2458 Value *Val;
2459
2460 if (getValueTypePair(Record, Idx, NextValueNo, Val)) {
2461 delete LP;
2462 return Error("Invalid LANDINGPAD record");
2463 }
2464
2465 assert((CT != LandingPadInst::Catch ||
2466 !isa<ArrayType>(Val->getType())) &&
2467 "Catch clause has a invalid type!");
2468 assert((CT != LandingPadInst::Filter ||
2469 isa<ArrayType>(Val->getType())) &&
2470 "Filter clause has invalid type!");
2471 LP->addClause(Val);
2472 }
2473
2474 I = LP;
2475 InstructionList.push_back(I);
2476 break;
2477 }
2478
2479 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align]
2480 if (Record.size() != 4)
2481 return Error("Invalid ALLOCA record");
2482 PointerType *Ty =
2483 dyn_cast_or_null<PointerType>(getTypeByID(Record[0]));
2484 Type *OpTy = getTypeByID(Record[1]);
2485 Value *Size = getFnValueByID(Record[2], OpTy);
2486 unsigned Align = Record[3];
2487 if (!Ty || !Size) return Error("Invalid ALLOCA record");
2488 I = new AllocaInst(Ty->getElementType(), Size, (1 << Align) >> 1);
2489 InstructionList.push_back(I);
2490 break;
2491 }
2492 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
2493 unsigned OpNum = 0;
2494 Value *Op;
2495 if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
2496 OpNum+2 != Record.size())
2497 return Error("Invalid LOAD record");
2498
2499 I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1);
2500 InstructionList.push_back(I);
2501 break;
2502 }
2503 case bitc::FUNC_CODE_INST_LOADATOMIC: {
2504 // LOADATOMIC: [opty, op, align, vol, ordering, synchscope]
2505 unsigned OpNum = 0;
2506 Value *Op;
2507 if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
2508 OpNum+4 != Record.size())
2509 return Error("Invalid LOADATOMIC record");
2510
2511
2512 AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]);
2513 if (Ordering == NotAtomic || Ordering == Release ||
2514 Ordering == AcquireRelease)
2515 return Error("Invalid LOADATOMIC record");
2516 if (Ordering != NotAtomic && Record[OpNum] == 0)
2517 return Error("Invalid LOADATOMIC record");
2518 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]);
2519
2520 I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1,
2521 Ordering, SynchScope);
2522 InstructionList.push_back(I);
2523 break;
2524 }
2525 case bitc::FUNC_CODE_INST_STORE: { // STORE2:[ptrty, ptr, val, align, vol]
2526 unsigned OpNum = 0;
2527 Value *Val, *Ptr;
2528 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
2529 getValue(Record, OpNum,
2530 cast<PointerType>(Ptr->getType())->getElementType(), Val) ||
2531 OpNum+2 != Record.size())
2532 return Error("Invalid STORE record");
2533
2534 I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1);
2535 InstructionList.push_back(I);
2536 break;
2537 }
2538 case bitc::FUNC_CODE_INST_STOREATOMIC: {
2539 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, synchscope]
2540 unsigned OpNum = 0;
2541 Value *Val, *Ptr;
2542 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
2543 getValue(Record, OpNum,
2544 cast<PointerType>(Ptr->getType())->getElementType(), Val) ||
2545 OpNum+4 != Record.size())
2546 return Error("Invalid STOREATOMIC record");
2547
2548 AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]);
2549 if (Ordering == NotAtomic || Ordering == Acquire ||
2550 Ordering == AcquireRelease)
2551 return Error("Invalid STOREATOMIC record");
2552 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]);
2553 if (Ordering != NotAtomic && Record[OpNum] == 0)
2554 return Error("Invalid STOREATOMIC record");
2555
2556 I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1,
2557 Ordering, SynchScope);
2558 InstructionList.push_back(I);
2559 break;
2560 }
2561 case bitc::FUNC_CODE_INST_CMPXCHG: {
2562 // CMPXCHG:[ptrty, ptr, cmp, new, vol, ordering, synchscope]
2563 unsigned OpNum = 0;
2564 Value *Ptr, *Cmp, *New;
2565 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
2566 getValue(Record, OpNum,
2567 cast<PointerType>(Ptr->getType())->getElementType(), Cmp) ||
2568 getValue(Record, OpNum,
2569 cast<PointerType>(Ptr->getType())->getElementType(), New) ||
2570 OpNum+3 != Record.size())
2571 return Error("Invalid CMPXCHG record");
2572 AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+1]);
2573 if (Ordering == NotAtomic || Ordering == Unordered)
2574 return Error("Invalid CMPXCHG record");
2575 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+2]);
2576 I = new AtomicCmpXchgInst(Ptr, Cmp, New, Ordering, SynchScope);
2577 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]);
2578 InstructionList.push_back(I);
2579 break;
2580 }
2581 case bitc::FUNC_CODE_INST_ATOMICRMW: {
2582 // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, synchscope]
2583 unsigned OpNum = 0;
2584 Value *Ptr, *Val;
2585 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
2586 getValue(Record, OpNum,
2587 cast<PointerType>(Ptr->getType())->getElementType(), Val) ||
2588 OpNum+4 != Record.size())
2589 return Error("Invalid ATOMICRMW record");
2590 AtomicRMWInst::BinOp Operation = GetDecodedRMWOperation(Record[OpNum]);
2591 if (Operation < AtomicRMWInst::FIRST_BINOP ||
2592 Operation > AtomicRMWInst::LAST_BINOP)
2593 return Error("Invalid ATOMICRMW record");
2594 AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]);
2595 if (Ordering == NotAtomic || Ordering == Unordered)
2596 return Error("Invalid ATOMICRMW record");
2597 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]);
2598 I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SynchScope);
2599 cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]);
2600 InstructionList.push_back(I);
2601 break;
2602 }
2603 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, synchscope]
2604 if (2 != Record.size())
2605 return Error("Invalid FENCE record");
2606 AtomicOrdering Ordering = GetDecodedOrdering(Record[0]);
2607 if (Ordering == NotAtomic || Ordering == Unordered ||
2608 Ordering == Monotonic)
2609 return Error("Invalid FENCE record");
2610 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[1]);
2611 I = new FenceInst(Context, Ordering, SynchScope);
2612 InstructionList.push_back(I);
2613 break;
2614 }
2615 case bitc::FUNC_CODE_INST_CALL: {
2616 // CALL: [paramattrs, cc, fnty, fnid, arg0, arg1...]
2617 if (Record.size() < 3)
2618 return Error("Invalid CALL record");
2619
2620 AttrListPtr PAL = getAttributes(Record[0]);
2621 unsigned CCInfo = Record[1];
2622
2623 unsigned OpNum = 2;
2624 Value *Callee;
2625 if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
2626 return Error("Invalid CALL record");
2627
2628 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
2629 FunctionType *FTy = 0;
2630 if (OpTy) FTy = dyn_cast<FunctionType>(OpTy->getElementType());
2631 if (!FTy || Record.size() < FTy->getNumParams()+OpNum)
2632 return Error("Invalid CALL record");
2633
2634 SmallVector<Value*, 16> Args;
2635 // Read the fixed params.
2636 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
2637 if (FTy->getParamType(i)->isLabelTy())
2638 Args.push_back(getBasicBlock(Record[OpNum]));
2639 else
2640 Args.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i)));
2641 if (Args.back() == 0) return Error("Invalid CALL record");
2642 }
2643
2644 // Read type/value pairs for varargs params.
2645 if (!FTy->isVarArg()) {
2646 if (OpNum != Record.size())
2647 return Error("Invalid CALL record");
2648 } else {
2649 while (OpNum != Record.size()) {
2650 Value *Op;
2651 if (getValueTypePair(Record, OpNum, NextValueNo, Op))
2652 return Error("Invalid CALL record");
2653 Args.push_back(Op);
2654 }
2655 }
2656
2657 I = CallInst::Create(Callee, Args);
2658 InstructionList.push_back(I);
2659 cast<CallInst>(I)->setCallingConv(
2660 static_cast<CallingConv::ID>(CCInfo>>1));
2661 cast<CallInst>(I)->setTailCall(CCInfo & 1);
2662 cast<CallInst>(I)->setAttributes(PAL);
2663 break;
2664 }
2665 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
2666 if (Record.size() < 3)
2667 return Error("Invalid VAARG record");
2668 Type *OpTy = getTypeByID(Record[0]);
2669 Value *Op = getFnValueByID(Record[1], OpTy);
2670 Type *ResTy = getTypeByID(Record[2]);
2671 if (!OpTy || !Op || !ResTy)
2672 return Error("Invalid VAARG record");
2673 I = new VAArgInst(Op, ResTy);
2674 InstructionList.push_back(I);
2675 break;
2676 }
2677 }
2678
2679 // Add instruction to end of current BB. If there is no current BB, reject
2680 // this file.
2681 if (CurBB == 0) {
2682 delete I;
2683 return Error("Invalid instruction with no BB");
2684 }
2685 CurBB->getInstList().push_back(I);
2686
2687 // If this was a terminator instruction, move to the next block.
2688 if (isa<TerminatorInst>(I)) {
2689 ++CurBBNo;
2690 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : 0;
2691 }
2692
2693 // Non-void values get registered in the value table for future use.
2694 if (I && !I->getType()->isVoidTy())
2695 ValueList.AssignValue(I, NextValueNo++);
2696 }
2697
2698 // Check the function list for unresolved values.
2699 if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
2700 if (A->getParent() == 0) {
2701 // We found at least one unresolved value. Nuke them all to avoid leaks.
2702 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
2703 if ((A = dyn_cast<Argument>(ValueList[i])) && A->getParent() == 0) {
2704 A->replaceAllUsesWith(UndefValue::get(A->getType()));
2705 delete A;
2706 }
2707 }
2708 return Error("Never resolved value found in function!");
2709 }
2710 }
2711
2712 // FIXME: Check for unresolved forward-declared metadata references
2713 // and clean up leaks.
2714
2715 // See if anything took the address of blocks in this function. If so,
2716 // resolve them now.
2717 DenseMap<Function*, std::vector<BlockAddrRefTy> >::iterator BAFRI =
2718 BlockAddrFwdRefs.find(F);
2719 if (BAFRI != BlockAddrFwdRefs.end()) {
2720 std::vector<BlockAddrRefTy> &RefList = BAFRI->second;
2721 for (unsigned i = 0, e = RefList.size(); i != e; ++i) {
2722 unsigned BlockIdx = RefList[i].first;
2723 if (BlockIdx >= FunctionBBs.size())
2724 return Error("Invalid blockaddress block #");
2725
2726 GlobalVariable *FwdRef = RefList[i].second;
2727 FwdRef->replaceAllUsesWith(BlockAddress::get(F, FunctionBBs[BlockIdx]));
2728 FwdRef->eraseFromParent();
2729 }
2730
2731 BlockAddrFwdRefs.erase(BAFRI);
2732 }
2733
2734 // Trim the value list down to the size it was before we parsed this function.
2735 ValueList.shrinkTo(ModuleValueListSize);
2736 MDValueList.shrinkTo(ModuleMDValueListSize);
2737 std::vector<BasicBlock*>().swap(FunctionBBs);
2738 return false;
2739 }
2740
2741 /// FindFunctionInStream - Find the function body in the bitcode stream
FindFunctionInStream(Function * F,DenseMap<Function *,uint64_t>::iterator DeferredFunctionInfoIterator)2742 bool BitcodeReader::FindFunctionInStream(Function *F,
2743 DenseMap<Function*, uint64_t>::iterator DeferredFunctionInfoIterator) {
2744 while (DeferredFunctionInfoIterator->second == 0) {
2745 if (Stream.AtEndOfStream())
2746 return Error("Could not find Function in stream");
2747 // ParseModule will parse the next body in the stream and set its
2748 // position in the DeferredFunctionInfo map.
2749 if (ParseModule(true)) return true;
2750 }
2751 return false;
2752 }
2753
2754 //===----------------------------------------------------------------------===//
2755 // GVMaterializer implementation
2756 //===----------------------------------------------------------------------===//
2757
2758
isMaterializable(const GlobalValue * GV) const2759 bool BitcodeReader::isMaterializable(const GlobalValue *GV) const {
2760 if (const Function *F = dyn_cast<Function>(GV)) {
2761 return F->isDeclaration() &&
2762 DeferredFunctionInfo.count(const_cast<Function*>(F));
2763 }
2764 return false;
2765 }
2766
Materialize(GlobalValue * GV,std::string * ErrInfo)2767 bool BitcodeReader::Materialize(GlobalValue *GV, std::string *ErrInfo) {
2768 Function *F = dyn_cast<Function>(GV);
2769 // If it's not a function or is already material, ignore the request.
2770 if (!F || !F->isMaterializable()) return false;
2771
2772 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F);
2773 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
2774 // If its position is recorded as 0, its body is somewhere in the stream
2775 // but we haven't seen it yet.
2776 if (DFII->second == 0)
2777 if (LazyStreamer && FindFunctionInStream(F, DFII)) return true;
2778
2779 // Move the bit stream to the saved position of the deferred function body.
2780 Stream.JumpToBit(DFII->second);
2781
2782 if (ParseFunctionBody(F)) {
2783 if (ErrInfo) *ErrInfo = ErrorString;
2784 return true;
2785 }
2786
2787 // Upgrade any old intrinsic calls in the function.
2788 for (UpgradedIntrinsicMap::iterator I = UpgradedIntrinsics.begin(),
2789 E = UpgradedIntrinsics.end(); I != E; ++I) {
2790 if (I->first != I->second) {
2791 for (Value::use_iterator UI = I->first->use_begin(),
2792 UE = I->first->use_end(); UI != UE; ) {
2793 if (CallInst* CI = dyn_cast<CallInst>(*UI++))
2794 UpgradeIntrinsicCall(CI, I->second);
2795 }
2796 }
2797 }
2798
2799 return false;
2800 }
2801
isDematerializable(const GlobalValue * GV) const2802 bool BitcodeReader::isDematerializable(const GlobalValue *GV) const {
2803 const Function *F = dyn_cast<Function>(GV);
2804 if (!F || F->isDeclaration())
2805 return false;
2806 return DeferredFunctionInfo.count(const_cast<Function*>(F));
2807 }
2808
Dematerialize(GlobalValue * GV)2809 void BitcodeReader::Dematerialize(GlobalValue *GV) {
2810 Function *F = dyn_cast<Function>(GV);
2811 // If this function isn't dematerializable, this is a noop.
2812 if (!F || !isDematerializable(F))
2813 return;
2814
2815 assert(DeferredFunctionInfo.count(F) && "No info to read function later?");
2816
2817 // Just forget the function body, we can remat it later.
2818 F->deleteBody();
2819 }
2820
2821
MaterializeModule(Module * M,std::string * ErrInfo)2822 bool BitcodeReader::MaterializeModule(Module *M, std::string *ErrInfo) {
2823 assert(M == TheModule &&
2824 "Can only Materialize the Module this BitcodeReader is attached to.");
2825 // Iterate over the module, deserializing any functions that are still on
2826 // disk.
2827 for (Module::iterator F = TheModule->begin(), E = TheModule->end();
2828 F != E; ++F)
2829 if (F->isMaterializable() &&
2830 Materialize(F, ErrInfo))
2831 return true;
2832
2833 // At this point, if there are any function bodies, the current bit is
2834 // pointing to the END_BLOCK record after them. Now make sure the rest
2835 // of the bits in the module have been read.
2836 if (NextUnreadBit)
2837 ParseModule(true);
2838
2839 // Upgrade any intrinsic calls that slipped through (should not happen!) and
2840 // delete the old functions to clean up. We can't do this unless the entire
2841 // module is materialized because there could always be another function body
2842 // with calls to the old function.
2843 for (std::vector<std::pair<Function*, Function*> >::iterator I =
2844 UpgradedIntrinsics.begin(), E = UpgradedIntrinsics.end(); I != E; ++I) {
2845 if (I->first != I->second) {
2846 for (Value::use_iterator UI = I->first->use_begin(),
2847 UE = I->first->use_end(); UI != UE; ) {
2848 if (CallInst* CI = dyn_cast<CallInst>(*UI++))
2849 UpgradeIntrinsicCall(CI, I->second);
2850 }
2851 if (!I->first->use_empty())
2852 I->first->replaceAllUsesWith(I->second);
2853 I->first->eraseFromParent();
2854 }
2855 }
2856 std::vector<std::pair<Function*, Function*> >().swap(UpgradedIntrinsics);
2857
2858 return false;
2859 }
2860
InitStream()2861 bool BitcodeReader::InitStream() {
2862 if (LazyStreamer) return InitLazyStream();
2863 return InitStreamFromBuffer();
2864 }
2865
InitStreamFromBuffer()2866 bool BitcodeReader::InitStreamFromBuffer() {
2867 const unsigned char *BufPtr = (const unsigned char*)Buffer->getBufferStart();
2868 const unsigned char *BufEnd = BufPtr+Buffer->getBufferSize();
2869
2870 if (Buffer->getBufferSize() & 3) {
2871 if (!isRawBitcode(BufPtr, BufEnd) && !isBitcodeWrapper(BufPtr, BufEnd))
2872 return Error("Invalid bitcode signature");
2873 else
2874 return Error("Bitcode stream should be a multiple of 4 bytes in length");
2875 }
2876
2877 // If we have a wrapper header, parse it and ignore the non-bc file contents.
2878 // The magic number is 0x0B17C0DE stored in little endian.
2879 if (isBitcodeWrapper(BufPtr, BufEnd))
2880 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true))
2881 return Error("Invalid bitcode wrapper header");
2882
2883 StreamFile.reset(new BitstreamReader(BufPtr, BufEnd));
2884 Stream.init(*StreamFile);
2885
2886 return false;
2887 }
2888
InitLazyStream()2889 bool BitcodeReader::InitLazyStream() {
2890 // Check and strip off the bitcode wrapper; BitstreamReader expects never to
2891 // see it.
2892 StreamingMemoryObject *Bytes = new StreamingMemoryObject(LazyStreamer);
2893 StreamFile.reset(new BitstreamReader(Bytes));
2894 Stream.init(*StreamFile);
2895
2896 unsigned char buf[16];
2897 if (Bytes->readBytes(0, 16, buf, NULL) == -1)
2898 return Error("Bitcode stream must be at least 16 bytes in length");
2899
2900 if (!isBitcode(buf, buf + 16))
2901 return Error("Invalid bitcode signature");
2902
2903 if (isBitcodeWrapper(buf, buf + 4)) {
2904 const unsigned char *bitcodeStart = buf;
2905 const unsigned char *bitcodeEnd = buf + 16;
2906 SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false);
2907 Bytes->dropLeadingBytes(bitcodeStart - buf);
2908 Bytes->setKnownObjectSize(bitcodeEnd - bitcodeStart);
2909 }
2910 return false;
2911 }
2912
2913 //===----------------------------------------------------------------------===//
2914 // External interface
2915 //===----------------------------------------------------------------------===//
2916
2917 /// getLazyBitcodeModule - lazy function-at-a-time loading from a file.
2918 ///
getLazyBitcodeModule(MemoryBuffer * Buffer,LLVMContext & Context,std::string * ErrMsg)2919 Module *llvm::getLazyBitcodeModule(MemoryBuffer *Buffer,
2920 LLVMContext& Context,
2921 std::string *ErrMsg) {
2922 Module *M = new Module(Buffer->getBufferIdentifier(), Context);
2923 BitcodeReader *R = new BitcodeReader(Buffer, Context);
2924 M->setMaterializer(R);
2925 if (R->ParseBitcodeInto(M)) {
2926 if (ErrMsg)
2927 *ErrMsg = R->getErrorString();
2928
2929 delete M; // Also deletes R.
2930 return 0;
2931 }
2932 // Have the BitcodeReader dtor delete 'Buffer'.
2933 R->setBufferOwned(true);
2934
2935 R->materializeForwardReferencedFunctions();
2936
2937 return M;
2938 }
2939
2940
getStreamedBitcodeModule(const std::string & name,DataStreamer * streamer,LLVMContext & Context,std::string * ErrMsg)2941 Module *llvm::getStreamedBitcodeModule(const std::string &name,
2942 DataStreamer *streamer,
2943 LLVMContext &Context,
2944 std::string *ErrMsg) {
2945 Module *M = new Module(name, Context);
2946 BitcodeReader *R = new BitcodeReader(streamer, Context);
2947 M->setMaterializer(R);
2948 if (R->ParseBitcodeInto(M)) {
2949 if (ErrMsg)
2950 *ErrMsg = R->getErrorString();
2951 delete M; // Also deletes R.
2952 return 0;
2953 }
2954 R->setBufferOwned(false); // no buffer to delete
2955 return M;
2956 }
2957
2958 /// ParseBitcodeFile - Read the specified bitcode file, returning the module.
2959 /// If an error occurs, return null and fill in *ErrMsg if non-null.
ParseBitcodeFile(MemoryBuffer * Buffer,LLVMContext & Context,std::string * ErrMsg)2960 Module *llvm::ParseBitcodeFile(MemoryBuffer *Buffer, LLVMContext& Context,
2961 std::string *ErrMsg){
2962 Module *M = getLazyBitcodeModule(Buffer, Context, ErrMsg);
2963 if (!M) return 0;
2964
2965 // Don't let the BitcodeReader dtor delete 'Buffer', regardless of whether
2966 // there was an error.
2967 static_cast<BitcodeReader*>(M->getMaterializer())->setBufferOwned(false);
2968
2969 // Read in the entire module, and destroy the BitcodeReader.
2970 if (M->MaterializeAllPermanently(ErrMsg)) {
2971 delete M;
2972 return 0;
2973 }
2974
2975 // TODO: Restore the use-lists to the in-memory state when the bitcode was
2976 // written. We must defer until the Module has been fully materialized.
2977
2978 return M;
2979 }
2980
getBitcodeTargetTriple(MemoryBuffer * Buffer,LLVMContext & Context,std::string * ErrMsg)2981 std::string llvm::getBitcodeTargetTriple(MemoryBuffer *Buffer,
2982 LLVMContext& Context,
2983 std::string *ErrMsg) {
2984 BitcodeReader *R = new BitcodeReader(Buffer, Context);
2985 // Don't let the BitcodeReader dtor delete 'Buffer'.
2986 R->setBufferOwned(false);
2987
2988 std::string Triple("");
2989 if (R->ParseTriple(Triple))
2990 if (ErrMsg)
2991 *ErrMsg = R->getErrorString();
2992
2993 delete R;
2994 return Triple;
2995 }
2996