1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Bitcode writer implementation.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/Bitcode/ReaderWriter.h"
15 #include "llvm/Bitcode/BitstreamWriter.h"
16 #include "llvm/Bitcode/LLVMBitCodes.h"
17 #include "ValueEnumerator.h"
18 #include "llvm/Constants.h"
19 #include "llvm/DerivedTypes.h"
20 #include "llvm/InlineAsm.h"
21 #include "llvm/Instructions.h"
22 #include "llvm/Module.h"
23 #include "llvm/Operator.h"
24 #include "llvm/ValueSymbolTable.h"
25 #include "llvm/ADT/Triple.h"
26 #include "llvm/Support/CommandLine.h"
27 #include "llvm/Support/ErrorHandling.h"
28 #include "llvm/Support/MathExtras.h"
29 #include "llvm/Support/raw_ostream.h"
30 #include "llvm/Support/Program.h"
31 #include <cctype>
32 #include <map>
33 using namespace llvm;
34
35 static cl::opt<bool>
36 EnablePreserveUseListOrdering("enable-bc-uselist-preserve",
37 cl::desc("Turn on experimental support for "
38 "use-list order preservation."),
39 cl::init(false), cl::Hidden);
40
41 /// These are manifest constants used by the bitcode writer. They do not need to
42 /// be kept in sync with the reader, but need to be consistent within this file.
43 enum {
44 CurVersion = 0,
45
46 // VALUE_SYMTAB_BLOCK abbrev id's.
47 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
48 VST_ENTRY_7_ABBREV,
49 VST_ENTRY_6_ABBREV,
50 VST_BBENTRY_6_ABBREV,
51
52 // CONSTANTS_BLOCK abbrev id's.
53 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
54 CONSTANTS_INTEGER_ABBREV,
55 CONSTANTS_CE_CAST_Abbrev,
56 CONSTANTS_NULL_Abbrev,
57
58 // FUNCTION_BLOCK abbrev id's.
59 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
60 FUNCTION_INST_BINOP_ABBREV,
61 FUNCTION_INST_BINOP_FLAGS_ABBREV,
62 FUNCTION_INST_CAST_ABBREV,
63 FUNCTION_INST_RET_VOID_ABBREV,
64 FUNCTION_INST_RET_VAL_ABBREV,
65 FUNCTION_INST_UNREACHABLE_ABBREV,
66
67 // SwitchInst Magic
68 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex
69 };
70
GetEncodedCastOpcode(unsigned Opcode)71 static unsigned GetEncodedCastOpcode(unsigned Opcode) {
72 switch (Opcode) {
73 default: llvm_unreachable("Unknown cast instruction!");
74 case Instruction::Trunc : return bitc::CAST_TRUNC;
75 case Instruction::ZExt : return bitc::CAST_ZEXT;
76 case Instruction::SExt : return bitc::CAST_SEXT;
77 case Instruction::FPToUI : return bitc::CAST_FPTOUI;
78 case Instruction::FPToSI : return bitc::CAST_FPTOSI;
79 case Instruction::UIToFP : return bitc::CAST_UITOFP;
80 case Instruction::SIToFP : return bitc::CAST_SITOFP;
81 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC;
82 case Instruction::FPExt : return bitc::CAST_FPEXT;
83 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT;
84 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR;
85 case Instruction::BitCast : return bitc::CAST_BITCAST;
86 }
87 }
88
GetEncodedBinaryOpcode(unsigned Opcode)89 static unsigned GetEncodedBinaryOpcode(unsigned Opcode) {
90 switch (Opcode) {
91 default: llvm_unreachable("Unknown binary instruction!");
92 case Instruction::Add:
93 case Instruction::FAdd: return bitc::BINOP_ADD;
94 case Instruction::Sub:
95 case Instruction::FSub: return bitc::BINOP_SUB;
96 case Instruction::Mul:
97 case Instruction::FMul: return bitc::BINOP_MUL;
98 case Instruction::UDiv: return bitc::BINOP_UDIV;
99 case Instruction::FDiv:
100 case Instruction::SDiv: return bitc::BINOP_SDIV;
101 case Instruction::URem: return bitc::BINOP_UREM;
102 case Instruction::FRem:
103 case Instruction::SRem: return bitc::BINOP_SREM;
104 case Instruction::Shl: return bitc::BINOP_SHL;
105 case Instruction::LShr: return bitc::BINOP_LSHR;
106 case Instruction::AShr: return bitc::BINOP_ASHR;
107 case Instruction::And: return bitc::BINOP_AND;
108 case Instruction::Or: return bitc::BINOP_OR;
109 case Instruction::Xor: return bitc::BINOP_XOR;
110 }
111 }
112
GetEncodedRMWOperation(AtomicRMWInst::BinOp Op)113 static unsigned GetEncodedRMWOperation(AtomicRMWInst::BinOp Op) {
114 switch (Op) {
115 default: llvm_unreachable("Unknown RMW operation!");
116 case AtomicRMWInst::Xchg: return bitc::RMW_XCHG;
117 case AtomicRMWInst::Add: return bitc::RMW_ADD;
118 case AtomicRMWInst::Sub: return bitc::RMW_SUB;
119 case AtomicRMWInst::And: return bitc::RMW_AND;
120 case AtomicRMWInst::Nand: return bitc::RMW_NAND;
121 case AtomicRMWInst::Or: return bitc::RMW_OR;
122 case AtomicRMWInst::Xor: return bitc::RMW_XOR;
123 case AtomicRMWInst::Max: return bitc::RMW_MAX;
124 case AtomicRMWInst::Min: return bitc::RMW_MIN;
125 case AtomicRMWInst::UMax: return bitc::RMW_UMAX;
126 case AtomicRMWInst::UMin: return bitc::RMW_UMIN;
127 }
128 }
129
GetEncodedOrdering(AtomicOrdering Ordering)130 static unsigned GetEncodedOrdering(AtomicOrdering Ordering) {
131 switch (Ordering) {
132 case NotAtomic: return bitc::ORDERING_NOTATOMIC;
133 case Unordered: return bitc::ORDERING_UNORDERED;
134 case Monotonic: return bitc::ORDERING_MONOTONIC;
135 case Acquire: return bitc::ORDERING_ACQUIRE;
136 case Release: return bitc::ORDERING_RELEASE;
137 case AcquireRelease: return bitc::ORDERING_ACQREL;
138 case SequentiallyConsistent: return bitc::ORDERING_SEQCST;
139 }
140 llvm_unreachable("Invalid ordering");
141 }
142
GetEncodedSynchScope(SynchronizationScope SynchScope)143 static unsigned GetEncodedSynchScope(SynchronizationScope SynchScope) {
144 switch (SynchScope) {
145 case SingleThread: return bitc::SYNCHSCOPE_SINGLETHREAD;
146 case CrossThread: return bitc::SYNCHSCOPE_CROSSTHREAD;
147 }
148 llvm_unreachable("Invalid synch scope");
149 }
150
WriteStringRecord(unsigned Code,StringRef Str,unsigned AbbrevToUse,BitstreamWriter & Stream)151 static void WriteStringRecord(unsigned Code, StringRef Str,
152 unsigned AbbrevToUse, BitstreamWriter &Stream) {
153 SmallVector<unsigned, 64> Vals;
154
155 // Code: [strchar x N]
156 for (unsigned i = 0, e = Str.size(); i != e; ++i) {
157 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i]))
158 AbbrevToUse = 0;
159 Vals.push_back(Str[i]);
160 }
161
162 // Emit the finished record.
163 Stream.EmitRecord(Code, Vals, AbbrevToUse);
164 }
165
166 // Emit information about parameter attributes.
WriteAttributeTable(const ValueEnumerator & VE,BitstreamWriter & Stream)167 static void WriteAttributeTable(const ValueEnumerator &VE,
168 BitstreamWriter &Stream) {
169 const std::vector<AttrListPtr> &Attrs = VE.getAttributes();
170 if (Attrs.empty()) return;
171
172 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3);
173
174 SmallVector<uint64_t, 64> Record;
175 for (unsigned i = 0, e = Attrs.size(); i != e; ++i) {
176 const AttrListPtr &A = Attrs[i];
177 for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i) {
178 const AttributeWithIndex &PAWI = A.getSlot(i);
179 Record.push_back(PAWI.Index);
180 Record.push_back(Attribute::encodeLLVMAttributesForBitcode(PAWI.Attrs));
181 }
182
183 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record);
184 Record.clear();
185 }
186
187 Stream.ExitBlock();
188 }
189
190 /// WriteTypeTable - Write out the type table for a module.
WriteTypeTable(const ValueEnumerator & VE,BitstreamWriter & Stream)191 static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) {
192 const ValueEnumerator::TypeList &TypeList = VE.getTypes();
193
194 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */);
195 SmallVector<uint64_t, 64> TypeVals;
196
197 uint64_t NumBits = Log2_32_Ceil(VE.getTypes().size()+1);
198
199 // Abbrev for TYPE_CODE_POINTER.
200 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
201 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER));
202 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
203 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0
204 unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv);
205
206 // Abbrev for TYPE_CODE_FUNCTION.
207 Abbv = new BitCodeAbbrev();
208 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION));
209 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg
210 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
211 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
212
213 unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv);
214
215 // Abbrev for TYPE_CODE_STRUCT_ANON.
216 Abbv = new BitCodeAbbrev();
217 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON));
218 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked
219 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
220 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
221
222 unsigned StructAnonAbbrev = Stream.EmitAbbrev(Abbv);
223
224 // Abbrev for TYPE_CODE_STRUCT_NAME.
225 Abbv = new BitCodeAbbrev();
226 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME));
227 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
228 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
229 unsigned StructNameAbbrev = Stream.EmitAbbrev(Abbv);
230
231 // Abbrev for TYPE_CODE_STRUCT_NAMED.
232 Abbv = new BitCodeAbbrev();
233 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED));
234 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked
235 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
236 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
237
238 unsigned StructNamedAbbrev = Stream.EmitAbbrev(Abbv);
239
240 // Abbrev for TYPE_CODE_ARRAY.
241 Abbv = new BitCodeAbbrev();
242 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY));
243 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size
244 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
245
246 unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv);
247
248 // Emit an entry count so the reader can reserve space.
249 TypeVals.push_back(TypeList.size());
250 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals);
251 TypeVals.clear();
252
253 // Loop over all of the types, emitting each in turn.
254 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) {
255 Type *T = TypeList[i];
256 int AbbrevToUse = 0;
257 unsigned Code = 0;
258
259 switch (T->getTypeID()) {
260 default: llvm_unreachable("Unknown type!");
261 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break;
262 case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break;
263 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break;
264 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break;
265 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break;
266 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break;
267 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break;
268 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break;
269 case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break;
270 case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break;
271 case Type::IntegerTyID:
272 // INTEGER: [width]
273 Code = bitc::TYPE_CODE_INTEGER;
274 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth());
275 break;
276 case Type::PointerTyID: {
277 PointerType *PTy = cast<PointerType>(T);
278 // POINTER: [pointee type, address space]
279 Code = bitc::TYPE_CODE_POINTER;
280 TypeVals.push_back(VE.getTypeID(PTy->getElementType()));
281 unsigned AddressSpace = PTy->getAddressSpace();
282 TypeVals.push_back(AddressSpace);
283 if (AddressSpace == 0) AbbrevToUse = PtrAbbrev;
284 break;
285 }
286 case Type::FunctionTyID: {
287 FunctionType *FT = cast<FunctionType>(T);
288 // FUNCTION: [isvararg, retty, paramty x N]
289 Code = bitc::TYPE_CODE_FUNCTION;
290 TypeVals.push_back(FT->isVarArg());
291 TypeVals.push_back(VE.getTypeID(FT->getReturnType()));
292 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i)
293 TypeVals.push_back(VE.getTypeID(FT->getParamType(i)));
294 AbbrevToUse = FunctionAbbrev;
295 break;
296 }
297 case Type::StructTyID: {
298 StructType *ST = cast<StructType>(T);
299 // STRUCT: [ispacked, eltty x N]
300 TypeVals.push_back(ST->isPacked());
301 // Output all of the element types.
302 for (StructType::element_iterator I = ST->element_begin(),
303 E = ST->element_end(); I != E; ++I)
304 TypeVals.push_back(VE.getTypeID(*I));
305
306 if (ST->isLiteral()) {
307 Code = bitc::TYPE_CODE_STRUCT_ANON;
308 AbbrevToUse = StructAnonAbbrev;
309 } else {
310 if (ST->isOpaque()) {
311 Code = bitc::TYPE_CODE_OPAQUE;
312 } else {
313 Code = bitc::TYPE_CODE_STRUCT_NAMED;
314 AbbrevToUse = StructNamedAbbrev;
315 }
316
317 // Emit the name if it is present.
318 if (!ST->getName().empty())
319 WriteStringRecord(bitc::TYPE_CODE_STRUCT_NAME, ST->getName(),
320 StructNameAbbrev, Stream);
321 }
322 break;
323 }
324 case Type::ArrayTyID: {
325 ArrayType *AT = cast<ArrayType>(T);
326 // ARRAY: [numelts, eltty]
327 Code = bitc::TYPE_CODE_ARRAY;
328 TypeVals.push_back(AT->getNumElements());
329 TypeVals.push_back(VE.getTypeID(AT->getElementType()));
330 AbbrevToUse = ArrayAbbrev;
331 break;
332 }
333 case Type::VectorTyID: {
334 VectorType *VT = cast<VectorType>(T);
335 // VECTOR [numelts, eltty]
336 Code = bitc::TYPE_CODE_VECTOR;
337 TypeVals.push_back(VT->getNumElements());
338 TypeVals.push_back(VE.getTypeID(VT->getElementType()));
339 break;
340 }
341 }
342
343 // Emit the finished record.
344 Stream.EmitRecord(Code, TypeVals, AbbrevToUse);
345 TypeVals.clear();
346 }
347
348 Stream.ExitBlock();
349 }
350
getEncodedLinkage(const GlobalValue * GV)351 static unsigned getEncodedLinkage(const GlobalValue *GV) {
352 switch (GV->getLinkage()) {
353 case GlobalValue::ExternalLinkage: return 0;
354 case GlobalValue::WeakAnyLinkage: return 1;
355 case GlobalValue::AppendingLinkage: return 2;
356 case GlobalValue::InternalLinkage: return 3;
357 case GlobalValue::LinkOnceAnyLinkage: return 4;
358 case GlobalValue::DLLImportLinkage: return 5;
359 case GlobalValue::DLLExportLinkage: return 6;
360 case GlobalValue::ExternalWeakLinkage: return 7;
361 case GlobalValue::CommonLinkage: return 8;
362 case GlobalValue::PrivateLinkage: return 9;
363 case GlobalValue::WeakODRLinkage: return 10;
364 case GlobalValue::LinkOnceODRLinkage: return 11;
365 case GlobalValue::AvailableExternallyLinkage: return 12;
366 case GlobalValue::LinkerPrivateLinkage: return 13;
367 case GlobalValue::LinkerPrivateWeakLinkage: return 14;
368 case GlobalValue::LinkOnceODRAutoHideLinkage: return 15;
369 }
370 llvm_unreachable("Invalid linkage");
371 }
372
getEncodedVisibility(const GlobalValue * GV)373 static unsigned getEncodedVisibility(const GlobalValue *GV) {
374 switch (GV->getVisibility()) {
375 case GlobalValue::DefaultVisibility: return 0;
376 case GlobalValue::HiddenVisibility: return 1;
377 case GlobalValue::ProtectedVisibility: return 2;
378 }
379 llvm_unreachable("Invalid visibility");
380 }
381
getEncodedThreadLocalMode(const GlobalVariable * GV)382 static unsigned getEncodedThreadLocalMode(const GlobalVariable *GV) {
383 switch (GV->getThreadLocalMode()) {
384 case GlobalVariable::NotThreadLocal: return 0;
385 case GlobalVariable::GeneralDynamicTLSModel: return 1;
386 case GlobalVariable::LocalDynamicTLSModel: return 2;
387 case GlobalVariable::InitialExecTLSModel: return 3;
388 case GlobalVariable::LocalExecTLSModel: return 4;
389 }
390 llvm_unreachable("Invalid TLS model");
391 }
392
393 // Emit top-level description of module, including target triple, inline asm,
394 // descriptors for global variables, and function prototype info.
WriteModuleInfo(const Module * M,const ValueEnumerator & VE,BitstreamWriter & Stream)395 static void WriteModuleInfo(const Module *M, const ValueEnumerator &VE,
396 BitstreamWriter &Stream) {
397 // Emit the list of dependent libraries for the Module.
398 for (Module::lib_iterator I = M->lib_begin(), E = M->lib_end(); I != E; ++I)
399 WriteStringRecord(bitc::MODULE_CODE_DEPLIB, *I, 0/*TODO*/, Stream);
400
401 // Emit various pieces of data attached to a module.
402 if (!M->getTargetTriple().empty())
403 WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(),
404 0/*TODO*/, Stream);
405 if (!M->getDataLayout().empty())
406 WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, M->getDataLayout(),
407 0/*TODO*/, Stream);
408 if (!M->getModuleInlineAsm().empty())
409 WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(),
410 0/*TODO*/, Stream);
411
412 // Emit information about sections and GC, computing how many there are. Also
413 // compute the maximum alignment value.
414 std::map<std::string, unsigned> SectionMap;
415 std::map<std::string, unsigned> GCMap;
416 unsigned MaxAlignment = 0;
417 unsigned MaxGlobalType = 0;
418 for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end();
419 GV != E; ++GV) {
420 MaxAlignment = std::max(MaxAlignment, GV->getAlignment());
421 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV->getType()));
422 if (GV->hasSection()) {
423 // Give section names unique ID's.
424 unsigned &Entry = SectionMap[GV->getSection()];
425 if (!Entry) {
426 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV->getSection(),
427 0/*TODO*/, Stream);
428 Entry = SectionMap.size();
429 }
430 }
431 }
432 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) {
433 MaxAlignment = std::max(MaxAlignment, F->getAlignment());
434 if (F->hasSection()) {
435 // Give section names unique ID's.
436 unsigned &Entry = SectionMap[F->getSection()];
437 if (!Entry) {
438 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F->getSection(),
439 0/*TODO*/, Stream);
440 Entry = SectionMap.size();
441 }
442 }
443 if (F->hasGC()) {
444 // Same for GC names.
445 unsigned &Entry = GCMap[F->getGC()];
446 if (!Entry) {
447 WriteStringRecord(bitc::MODULE_CODE_GCNAME, F->getGC(),
448 0/*TODO*/, Stream);
449 Entry = GCMap.size();
450 }
451 }
452 }
453
454 // Emit abbrev for globals, now that we know # sections and max alignment.
455 unsigned SimpleGVarAbbrev = 0;
456 if (!M->global_empty()) {
457 // Add an abbrev for common globals with no visibility or thread localness.
458 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
459 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR));
460 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
461 Log2_32_Ceil(MaxGlobalType+1)));
462 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // Constant.
463 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer.
464 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // Linkage.
465 if (MaxAlignment == 0) // Alignment.
466 Abbv->Add(BitCodeAbbrevOp(0));
467 else {
468 unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1;
469 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
470 Log2_32_Ceil(MaxEncAlignment+1)));
471 }
472 if (SectionMap.empty()) // Section.
473 Abbv->Add(BitCodeAbbrevOp(0));
474 else
475 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
476 Log2_32_Ceil(SectionMap.size()+1)));
477 // Don't bother emitting vis + thread local.
478 SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv);
479 }
480
481 // Emit the global variable information.
482 SmallVector<unsigned, 64> Vals;
483 for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end();
484 GV != E; ++GV) {
485 unsigned AbbrevToUse = 0;
486
487 // GLOBALVAR: [type, isconst, initid,
488 // linkage, alignment, section, visibility, threadlocal,
489 // unnamed_addr]
490 Vals.push_back(VE.getTypeID(GV->getType()));
491 Vals.push_back(GV->isConstant());
492 Vals.push_back(GV->isDeclaration() ? 0 :
493 (VE.getValueID(GV->getInitializer()) + 1));
494 Vals.push_back(getEncodedLinkage(GV));
495 Vals.push_back(Log2_32(GV->getAlignment())+1);
496 Vals.push_back(GV->hasSection() ? SectionMap[GV->getSection()] : 0);
497 if (GV->isThreadLocal() ||
498 GV->getVisibility() != GlobalValue::DefaultVisibility ||
499 GV->hasUnnamedAddr()) {
500 Vals.push_back(getEncodedVisibility(GV));
501 Vals.push_back(getEncodedThreadLocalMode(GV));
502 Vals.push_back(GV->hasUnnamedAddr());
503 } else {
504 AbbrevToUse = SimpleGVarAbbrev;
505 }
506
507 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse);
508 Vals.clear();
509 }
510
511 // Emit the function proto information.
512 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) {
513 // FUNCTION: [type, callingconv, isproto, linkage, paramattrs, alignment,
514 // section, visibility, gc, unnamed_addr]
515 Vals.push_back(VE.getTypeID(F->getType()));
516 Vals.push_back(F->getCallingConv());
517 Vals.push_back(F->isDeclaration());
518 Vals.push_back(getEncodedLinkage(F));
519 Vals.push_back(VE.getAttributeID(F->getAttributes()));
520 Vals.push_back(Log2_32(F->getAlignment())+1);
521 Vals.push_back(F->hasSection() ? SectionMap[F->getSection()] : 0);
522 Vals.push_back(getEncodedVisibility(F));
523 Vals.push_back(F->hasGC() ? GCMap[F->getGC()] : 0);
524 Vals.push_back(F->hasUnnamedAddr());
525
526 unsigned AbbrevToUse = 0;
527 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse);
528 Vals.clear();
529 }
530
531 // Emit the alias information.
532 for (Module::const_alias_iterator AI = M->alias_begin(), E = M->alias_end();
533 AI != E; ++AI) {
534 // ALIAS: [alias type, aliasee val#, linkage, visibility]
535 Vals.push_back(VE.getTypeID(AI->getType()));
536 Vals.push_back(VE.getValueID(AI->getAliasee()));
537 Vals.push_back(getEncodedLinkage(AI));
538 Vals.push_back(getEncodedVisibility(AI));
539 unsigned AbbrevToUse = 0;
540 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse);
541 Vals.clear();
542 }
543 }
544
GetOptimizationFlags(const Value * V)545 static uint64_t GetOptimizationFlags(const Value *V) {
546 uint64_t Flags = 0;
547
548 if (const OverflowingBinaryOperator *OBO =
549 dyn_cast<OverflowingBinaryOperator>(V)) {
550 if (OBO->hasNoSignedWrap())
551 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP;
552 if (OBO->hasNoUnsignedWrap())
553 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP;
554 } else if (const PossiblyExactOperator *PEO =
555 dyn_cast<PossiblyExactOperator>(V)) {
556 if (PEO->isExact())
557 Flags |= 1 << bitc::PEO_EXACT;
558 }
559
560 return Flags;
561 }
562
WriteMDNode(const MDNode * N,const ValueEnumerator & VE,BitstreamWriter & Stream,SmallVector<uint64_t,64> & Record)563 static void WriteMDNode(const MDNode *N,
564 const ValueEnumerator &VE,
565 BitstreamWriter &Stream,
566 SmallVector<uint64_t, 64> &Record) {
567 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
568 if (N->getOperand(i)) {
569 Record.push_back(VE.getTypeID(N->getOperand(i)->getType()));
570 Record.push_back(VE.getValueID(N->getOperand(i)));
571 } else {
572 Record.push_back(VE.getTypeID(Type::getVoidTy(N->getContext())));
573 Record.push_back(0);
574 }
575 }
576 unsigned MDCode = N->isFunctionLocal() ? bitc::METADATA_FN_NODE :
577 bitc::METADATA_NODE;
578 Stream.EmitRecord(MDCode, Record, 0);
579 Record.clear();
580 }
581
WriteModuleMetadata(const Module * M,const ValueEnumerator & VE,BitstreamWriter & Stream)582 static void WriteModuleMetadata(const Module *M,
583 const ValueEnumerator &VE,
584 BitstreamWriter &Stream) {
585 const ValueEnumerator::ValueList &Vals = VE.getMDValues();
586 bool StartedMetadataBlock = false;
587 unsigned MDSAbbrev = 0;
588 SmallVector<uint64_t, 64> Record;
589 for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
590
591 if (const MDNode *N = dyn_cast<MDNode>(Vals[i].first)) {
592 if (!N->isFunctionLocal() || !N->getFunction()) {
593 if (!StartedMetadataBlock) {
594 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
595 StartedMetadataBlock = true;
596 }
597 WriteMDNode(N, VE, Stream, Record);
598 }
599 } else if (const MDString *MDS = dyn_cast<MDString>(Vals[i].first)) {
600 if (!StartedMetadataBlock) {
601 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
602
603 // Abbrev for METADATA_STRING.
604 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
605 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRING));
606 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
607 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
608 MDSAbbrev = Stream.EmitAbbrev(Abbv);
609 StartedMetadataBlock = true;
610 }
611
612 // Code: [strchar x N]
613 Record.append(MDS->begin(), MDS->end());
614
615 // Emit the finished record.
616 Stream.EmitRecord(bitc::METADATA_STRING, Record, MDSAbbrev);
617 Record.clear();
618 }
619 }
620
621 // Write named metadata.
622 for (Module::const_named_metadata_iterator I = M->named_metadata_begin(),
623 E = M->named_metadata_end(); I != E; ++I) {
624 const NamedMDNode *NMD = I;
625 if (!StartedMetadataBlock) {
626 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
627 StartedMetadataBlock = true;
628 }
629
630 // Write name.
631 StringRef Str = NMD->getName();
632 for (unsigned i = 0, e = Str.size(); i != e; ++i)
633 Record.push_back(Str[i]);
634 Stream.EmitRecord(bitc::METADATA_NAME, Record, 0/*TODO*/);
635 Record.clear();
636
637 // Write named metadata operands.
638 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i)
639 Record.push_back(VE.getValueID(NMD->getOperand(i)));
640 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0);
641 Record.clear();
642 }
643
644 if (StartedMetadataBlock)
645 Stream.ExitBlock();
646 }
647
WriteFunctionLocalMetadata(const Function & F,const ValueEnumerator & VE,BitstreamWriter & Stream)648 static void WriteFunctionLocalMetadata(const Function &F,
649 const ValueEnumerator &VE,
650 BitstreamWriter &Stream) {
651 bool StartedMetadataBlock = false;
652 SmallVector<uint64_t, 64> Record;
653 const SmallVector<const MDNode *, 8> &Vals = VE.getFunctionLocalMDValues();
654 for (unsigned i = 0, e = Vals.size(); i != e; ++i)
655 if (const MDNode *N = Vals[i])
656 if (N->isFunctionLocal() && N->getFunction() == &F) {
657 if (!StartedMetadataBlock) {
658 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
659 StartedMetadataBlock = true;
660 }
661 WriteMDNode(N, VE, Stream, Record);
662 }
663
664 if (StartedMetadataBlock)
665 Stream.ExitBlock();
666 }
667
WriteMetadataAttachment(const Function & F,const ValueEnumerator & VE,BitstreamWriter & Stream)668 static void WriteMetadataAttachment(const Function &F,
669 const ValueEnumerator &VE,
670 BitstreamWriter &Stream) {
671 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3);
672
673 SmallVector<uint64_t, 64> Record;
674
675 // Write metadata attachments
676 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]]
677 SmallVector<std::pair<unsigned, MDNode*>, 4> MDs;
678
679 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
680 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
681 I != E; ++I) {
682 MDs.clear();
683 I->getAllMetadataOtherThanDebugLoc(MDs);
684
685 // If no metadata, ignore instruction.
686 if (MDs.empty()) continue;
687
688 Record.push_back(VE.getInstructionID(I));
689
690 for (unsigned i = 0, e = MDs.size(); i != e; ++i) {
691 Record.push_back(MDs[i].first);
692 Record.push_back(VE.getValueID(MDs[i].second));
693 }
694 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0);
695 Record.clear();
696 }
697
698 Stream.ExitBlock();
699 }
700
WriteModuleMetadataStore(const Module * M,BitstreamWriter & Stream)701 static void WriteModuleMetadataStore(const Module *M, BitstreamWriter &Stream) {
702 SmallVector<uint64_t, 64> Record;
703
704 // Write metadata kinds
705 // METADATA_KIND - [n x [id, name]]
706 SmallVector<StringRef, 4> Names;
707 M->getMDKindNames(Names);
708
709 if (Names.empty()) return;
710
711 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
712
713 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) {
714 Record.push_back(MDKindID);
715 StringRef KName = Names[MDKindID];
716 Record.append(KName.begin(), KName.end());
717
718 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0);
719 Record.clear();
720 }
721
722 Stream.ExitBlock();
723 }
724
EmitAPInt(SmallVectorImpl<uint64_t> & Vals,unsigned & Code,unsigned & AbbrevToUse,const APInt & Val,bool EmitSizeForWideNumbers=false)725 static void EmitAPInt(SmallVectorImpl<uint64_t> &Vals,
726 unsigned &Code, unsigned &AbbrevToUse, const APInt &Val,
727 bool EmitSizeForWideNumbers = false
728 ) {
729 if (Val.getBitWidth() <= 64) {
730 uint64_t V = Val.getSExtValue();
731 if ((int64_t)V >= 0)
732 Vals.push_back(V << 1);
733 else
734 Vals.push_back((-V << 1) | 1);
735 Code = bitc::CST_CODE_INTEGER;
736 AbbrevToUse = CONSTANTS_INTEGER_ABBREV;
737 } else {
738 // Wide integers, > 64 bits in size.
739 // We have an arbitrary precision integer value to write whose
740 // bit width is > 64. However, in canonical unsigned integer
741 // format it is likely that the high bits are going to be zero.
742 // So, we only write the number of active words.
743 unsigned NWords = Val.getActiveWords();
744
745 if (EmitSizeForWideNumbers)
746 Vals.push_back(NWords);
747
748 const uint64_t *RawWords = Val.getRawData();
749 for (unsigned i = 0; i != NWords; ++i) {
750 int64_t V = RawWords[i];
751 if (V >= 0)
752 Vals.push_back(V << 1);
753 else
754 Vals.push_back((-V << 1) | 1);
755 }
756 Code = bitc::CST_CODE_WIDE_INTEGER;
757 }
758 }
759
WriteConstants(unsigned FirstVal,unsigned LastVal,const ValueEnumerator & VE,BitstreamWriter & Stream,bool isGlobal)760 static void WriteConstants(unsigned FirstVal, unsigned LastVal,
761 const ValueEnumerator &VE,
762 BitstreamWriter &Stream, bool isGlobal) {
763 if (FirstVal == LastVal) return;
764
765 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4);
766
767 unsigned AggregateAbbrev = 0;
768 unsigned String8Abbrev = 0;
769 unsigned CString7Abbrev = 0;
770 unsigned CString6Abbrev = 0;
771 // If this is a constant pool for the module, emit module-specific abbrevs.
772 if (isGlobal) {
773 // Abbrev for CST_CODE_AGGREGATE.
774 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
775 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE));
776 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
777 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1)));
778 AggregateAbbrev = Stream.EmitAbbrev(Abbv);
779
780 // Abbrev for CST_CODE_STRING.
781 Abbv = new BitCodeAbbrev();
782 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING));
783 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
784 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
785 String8Abbrev = Stream.EmitAbbrev(Abbv);
786 // Abbrev for CST_CODE_CSTRING.
787 Abbv = new BitCodeAbbrev();
788 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
789 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
790 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
791 CString7Abbrev = Stream.EmitAbbrev(Abbv);
792 // Abbrev for CST_CODE_CSTRING.
793 Abbv = new BitCodeAbbrev();
794 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
795 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
796 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
797 CString6Abbrev = Stream.EmitAbbrev(Abbv);
798 }
799
800 SmallVector<uint64_t, 64> Record;
801
802 const ValueEnumerator::ValueList &Vals = VE.getValues();
803 Type *LastTy = 0;
804 for (unsigned i = FirstVal; i != LastVal; ++i) {
805 const Value *V = Vals[i].first;
806 // If we need to switch types, do so now.
807 if (V->getType() != LastTy) {
808 LastTy = V->getType();
809 Record.push_back(VE.getTypeID(LastTy));
810 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record,
811 CONSTANTS_SETTYPE_ABBREV);
812 Record.clear();
813 }
814
815 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
816 Record.push_back(unsigned(IA->hasSideEffects()) |
817 unsigned(IA->isAlignStack()) << 1 |
818 unsigned(IA->getDialect()&1) << 2);
819
820 // Add the asm string.
821 const std::string &AsmStr = IA->getAsmString();
822 Record.push_back(AsmStr.size());
823 for (unsigned i = 0, e = AsmStr.size(); i != e; ++i)
824 Record.push_back(AsmStr[i]);
825
826 // Add the constraint string.
827 const std::string &ConstraintStr = IA->getConstraintString();
828 Record.push_back(ConstraintStr.size());
829 for (unsigned i = 0, e = ConstraintStr.size(); i != e; ++i)
830 Record.push_back(ConstraintStr[i]);
831 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record);
832 Record.clear();
833 continue;
834 }
835 const Constant *C = cast<Constant>(V);
836 unsigned Code = -1U;
837 unsigned AbbrevToUse = 0;
838 if (C->isNullValue()) {
839 Code = bitc::CST_CODE_NULL;
840 } else if (isa<UndefValue>(C)) {
841 Code = bitc::CST_CODE_UNDEF;
842 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) {
843 EmitAPInt(Record, Code, AbbrevToUse, IV->getValue());
844 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
845 Code = bitc::CST_CODE_FLOAT;
846 Type *Ty = CFP->getType();
847 if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) {
848 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
849 } else if (Ty->isX86_FP80Ty()) {
850 // api needed to prevent premature destruction
851 // bits are not in the same order as a normal i80 APInt, compensate.
852 APInt api = CFP->getValueAPF().bitcastToAPInt();
853 const uint64_t *p = api.getRawData();
854 Record.push_back((p[1] << 48) | (p[0] >> 16));
855 Record.push_back(p[0] & 0xffffLL);
856 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) {
857 APInt api = CFP->getValueAPF().bitcastToAPInt();
858 const uint64_t *p = api.getRawData();
859 Record.push_back(p[0]);
860 Record.push_back(p[1]);
861 } else {
862 assert (0 && "Unknown FP type!");
863 }
864 } else if (isa<ConstantDataSequential>(C) &&
865 cast<ConstantDataSequential>(C)->isString()) {
866 const ConstantDataSequential *Str = cast<ConstantDataSequential>(C);
867 // Emit constant strings specially.
868 unsigned NumElts = Str->getNumElements();
869 // If this is a null-terminated string, use the denser CSTRING encoding.
870 if (Str->isCString()) {
871 Code = bitc::CST_CODE_CSTRING;
872 --NumElts; // Don't encode the null, which isn't allowed by char6.
873 } else {
874 Code = bitc::CST_CODE_STRING;
875 AbbrevToUse = String8Abbrev;
876 }
877 bool isCStr7 = Code == bitc::CST_CODE_CSTRING;
878 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING;
879 for (unsigned i = 0; i != NumElts; ++i) {
880 unsigned char V = Str->getElementAsInteger(i);
881 Record.push_back(V);
882 isCStr7 &= (V & 128) == 0;
883 if (isCStrChar6)
884 isCStrChar6 = BitCodeAbbrevOp::isChar6(V);
885 }
886
887 if (isCStrChar6)
888 AbbrevToUse = CString6Abbrev;
889 else if (isCStr7)
890 AbbrevToUse = CString7Abbrev;
891 } else if (const ConstantDataSequential *CDS =
892 dyn_cast<ConstantDataSequential>(C)) {
893 Code = bitc::CST_CODE_DATA;
894 Type *EltTy = CDS->getType()->getElementType();
895 if (isa<IntegerType>(EltTy)) {
896 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i)
897 Record.push_back(CDS->getElementAsInteger(i));
898 } else if (EltTy->isFloatTy()) {
899 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
900 union { float F; uint32_t I; };
901 F = CDS->getElementAsFloat(i);
902 Record.push_back(I);
903 }
904 } else {
905 assert(EltTy->isDoubleTy() && "Unknown ConstantData element type");
906 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
907 union { double F; uint64_t I; };
908 F = CDS->getElementAsDouble(i);
909 Record.push_back(I);
910 }
911 }
912 } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(C) ||
913 isa<ConstantVector>(C)) {
914 Code = bitc::CST_CODE_AGGREGATE;
915 for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i)
916 Record.push_back(VE.getValueID(C->getOperand(i)));
917 AbbrevToUse = AggregateAbbrev;
918 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
919 switch (CE->getOpcode()) {
920 default:
921 if (Instruction::isCast(CE->getOpcode())) {
922 Code = bitc::CST_CODE_CE_CAST;
923 Record.push_back(GetEncodedCastOpcode(CE->getOpcode()));
924 Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
925 Record.push_back(VE.getValueID(C->getOperand(0)));
926 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev;
927 } else {
928 assert(CE->getNumOperands() == 2 && "Unknown constant expr!");
929 Code = bitc::CST_CODE_CE_BINOP;
930 Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode()));
931 Record.push_back(VE.getValueID(C->getOperand(0)));
932 Record.push_back(VE.getValueID(C->getOperand(1)));
933 uint64_t Flags = GetOptimizationFlags(CE);
934 if (Flags != 0)
935 Record.push_back(Flags);
936 }
937 break;
938 case Instruction::GetElementPtr:
939 Code = bitc::CST_CODE_CE_GEP;
940 if (cast<GEPOperator>(C)->isInBounds())
941 Code = bitc::CST_CODE_CE_INBOUNDS_GEP;
942 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) {
943 Record.push_back(VE.getTypeID(C->getOperand(i)->getType()));
944 Record.push_back(VE.getValueID(C->getOperand(i)));
945 }
946 break;
947 case Instruction::Select:
948 Code = bitc::CST_CODE_CE_SELECT;
949 Record.push_back(VE.getValueID(C->getOperand(0)));
950 Record.push_back(VE.getValueID(C->getOperand(1)));
951 Record.push_back(VE.getValueID(C->getOperand(2)));
952 break;
953 case Instruction::ExtractElement:
954 Code = bitc::CST_CODE_CE_EXTRACTELT;
955 Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
956 Record.push_back(VE.getValueID(C->getOperand(0)));
957 Record.push_back(VE.getValueID(C->getOperand(1)));
958 break;
959 case Instruction::InsertElement:
960 Code = bitc::CST_CODE_CE_INSERTELT;
961 Record.push_back(VE.getValueID(C->getOperand(0)));
962 Record.push_back(VE.getValueID(C->getOperand(1)));
963 Record.push_back(VE.getValueID(C->getOperand(2)));
964 break;
965 case Instruction::ShuffleVector:
966 // If the return type and argument types are the same, this is a
967 // standard shufflevector instruction. If the types are different,
968 // then the shuffle is widening or truncating the input vectors, and
969 // the argument type must also be encoded.
970 if (C->getType() == C->getOperand(0)->getType()) {
971 Code = bitc::CST_CODE_CE_SHUFFLEVEC;
972 } else {
973 Code = bitc::CST_CODE_CE_SHUFVEC_EX;
974 Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
975 }
976 Record.push_back(VE.getValueID(C->getOperand(0)));
977 Record.push_back(VE.getValueID(C->getOperand(1)));
978 Record.push_back(VE.getValueID(C->getOperand(2)));
979 break;
980 case Instruction::ICmp:
981 case Instruction::FCmp:
982 Code = bitc::CST_CODE_CE_CMP;
983 Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
984 Record.push_back(VE.getValueID(C->getOperand(0)));
985 Record.push_back(VE.getValueID(C->getOperand(1)));
986 Record.push_back(CE->getPredicate());
987 break;
988 }
989 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) {
990 Code = bitc::CST_CODE_BLOCKADDRESS;
991 Record.push_back(VE.getTypeID(BA->getFunction()->getType()));
992 Record.push_back(VE.getValueID(BA->getFunction()));
993 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock()));
994 } else {
995 #ifndef NDEBUG
996 C->dump();
997 #endif
998 llvm_unreachable("Unknown constant!");
999 }
1000 Stream.EmitRecord(Code, Record, AbbrevToUse);
1001 Record.clear();
1002 }
1003
1004 Stream.ExitBlock();
1005 }
1006
WriteModuleConstants(const ValueEnumerator & VE,BitstreamWriter & Stream)1007 static void WriteModuleConstants(const ValueEnumerator &VE,
1008 BitstreamWriter &Stream) {
1009 const ValueEnumerator::ValueList &Vals = VE.getValues();
1010
1011 // Find the first constant to emit, which is the first non-globalvalue value.
1012 // We know globalvalues have been emitted by WriteModuleInfo.
1013 for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
1014 if (!isa<GlobalValue>(Vals[i].first)) {
1015 WriteConstants(i, Vals.size(), VE, Stream, true);
1016 return;
1017 }
1018 }
1019 }
1020
1021 /// PushValueAndType - The file has to encode both the value and type id for
1022 /// many values, because we need to know what type to create for forward
1023 /// references. However, most operands are not forward references, so this type
1024 /// field is not needed.
1025 ///
1026 /// This function adds V's value ID to Vals. If the value ID is higher than the
1027 /// instruction ID, then it is a forward reference, and it also includes the
1028 /// type ID.
PushValueAndType(const Value * V,unsigned InstID,SmallVector<unsigned,64> & Vals,ValueEnumerator & VE)1029 static bool PushValueAndType(const Value *V, unsigned InstID,
1030 SmallVector<unsigned, 64> &Vals,
1031 ValueEnumerator &VE) {
1032 unsigned ValID = VE.getValueID(V);
1033 Vals.push_back(ValID);
1034 if (ValID >= InstID) {
1035 Vals.push_back(VE.getTypeID(V->getType()));
1036 return true;
1037 }
1038 return false;
1039 }
1040
1041 /// WriteInstruction - Emit an instruction to the specified stream.
WriteInstruction(const Instruction & I,unsigned InstID,ValueEnumerator & VE,BitstreamWriter & Stream,SmallVector<unsigned,64> & Vals)1042 static void WriteInstruction(const Instruction &I, unsigned InstID,
1043 ValueEnumerator &VE, BitstreamWriter &Stream,
1044 SmallVector<unsigned, 64> &Vals) {
1045 unsigned Code = 0;
1046 unsigned AbbrevToUse = 0;
1047 VE.setInstructionID(&I);
1048 switch (I.getOpcode()) {
1049 default:
1050 if (Instruction::isCast(I.getOpcode())) {
1051 Code = bitc::FUNC_CODE_INST_CAST;
1052 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
1053 AbbrevToUse = FUNCTION_INST_CAST_ABBREV;
1054 Vals.push_back(VE.getTypeID(I.getType()));
1055 Vals.push_back(GetEncodedCastOpcode(I.getOpcode()));
1056 } else {
1057 assert(isa<BinaryOperator>(I) && "Unknown instruction!");
1058 Code = bitc::FUNC_CODE_INST_BINOP;
1059 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
1060 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV;
1061 Vals.push_back(VE.getValueID(I.getOperand(1)));
1062 Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode()));
1063 uint64_t Flags = GetOptimizationFlags(&I);
1064 if (Flags != 0) {
1065 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV)
1066 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV;
1067 Vals.push_back(Flags);
1068 }
1069 }
1070 break;
1071
1072 case Instruction::GetElementPtr:
1073 Code = bitc::FUNC_CODE_INST_GEP;
1074 if (cast<GEPOperator>(&I)->isInBounds())
1075 Code = bitc::FUNC_CODE_INST_INBOUNDS_GEP;
1076 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
1077 PushValueAndType(I.getOperand(i), InstID, Vals, VE);
1078 break;
1079 case Instruction::ExtractValue: {
1080 Code = bitc::FUNC_CODE_INST_EXTRACTVAL;
1081 PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1082 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I);
1083 for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i)
1084 Vals.push_back(*i);
1085 break;
1086 }
1087 case Instruction::InsertValue: {
1088 Code = bitc::FUNC_CODE_INST_INSERTVAL;
1089 PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1090 PushValueAndType(I.getOperand(1), InstID, Vals, VE);
1091 const InsertValueInst *IVI = cast<InsertValueInst>(&I);
1092 for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i)
1093 Vals.push_back(*i);
1094 break;
1095 }
1096 case Instruction::Select:
1097 Code = bitc::FUNC_CODE_INST_VSELECT;
1098 PushValueAndType(I.getOperand(1), InstID, Vals, VE);
1099 Vals.push_back(VE.getValueID(I.getOperand(2)));
1100 PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1101 break;
1102 case Instruction::ExtractElement:
1103 Code = bitc::FUNC_CODE_INST_EXTRACTELT;
1104 PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1105 Vals.push_back(VE.getValueID(I.getOperand(1)));
1106 break;
1107 case Instruction::InsertElement:
1108 Code = bitc::FUNC_CODE_INST_INSERTELT;
1109 PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1110 Vals.push_back(VE.getValueID(I.getOperand(1)));
1111 Vals.push_back(VE.getValueID(I.getOperand(2)));
1112 break;
1113 case Instruction::ShuffleVector:
1114 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC;
1115 PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1116 Vals.push_back(VE.getValueID(I.getOperand(1)));
1117 Vals.push_back(VE.getValueID(I.getOperand(2)));
1118 break;
1119 case Instruction::ICmp:
1120 case Instruction::FCmp:
1121 // compare returning Int1Ty or vector of Int1Ty
1122 Code = bitc::FUNC_CODE_INST_CMP2;
1123 PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1124 Vals.push_back(VE.getValueID(I.getOperand(1)));
1125 Vals.push_back(cast<CmpInst>(I).getPredicate());
1126 break;
1127
1128 case Instruction::Ret:
1129 {
1130 Code = bitc::FUNC_CODE_INST_RET;
1131 unsigned NumOperands = I.getNumOperands();
1132 if (NumOperands == 0)
1133 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV;
1134 else if (NumOperands == 1) {
1135 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
1136 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV;
1137 } else {
1138 for (unsigned i = 0, e = NumOperands; i != e; ++i)
1139 PushValueAndType(I.getOperand(i), InstID, Vals, VE);
1140 }
1141 }
1142 break;
1143 case Instruction::Br:
1144 {
1145 Code = bitc::FUNC_CODE_INST_BR;
1146 BranchInst &II = cast<BranchInst>(I);
1147 Vals.push_back(VE.getValueID(II.getSuccessor(0)));
1148 if (II.isConditional()) {
1149 Vals.push_back(VE.getValueID(II.getSuccessor(1)));
1150 Vals.push_back(VE.getValueID(II.getCondition()));
1151 }
1152 }
1153 break;
1154 case Instruction::Switch:
1155 {
1156 // Redefine Vals, since here we need to use 64 bit values
1157 // explicitly to store large APInt numbers.
1158 SmallVector<uint64_t, 128> Vals64;
1159
1160 Code = bitc::FUNC_CODE_INST_SWITCH;
1161 SwitchInst &SI = cast<SwitchInst>(I);
1162
1163 uint32_t SwitchRecordHeader = SI.hash() | (SWITCH_INST_MAGIC << 16);
1164 Vals64.push_back(SwitchRecordHeader);
1165
1166 Vals64.push_back(VE.getTypeID(SI.getCondition()->getType()));
1167 Vals64.push_back(VE.getValueID(SI.getCondition()));
1168 Vals64.push_back(VE.getValueID(SI.getDefaultDest()));
1169 Vals64.push_back(SI.getNumCases());
1170 for (SwitchInst::CaseIt i = SI.case_begin(), e = SI.case_end();
1171 i != e; ++i) {
1172 IntegersSubset& CaseRanges = i.getCaseValueEx();
1173 unsigned Code, Abbrev; // will unused.
1174
1175 if (CaseRanges.isSingleNumber()) {
1176 Vals64.push_back(1/*NumItems = 1*/);
1177 Vals64.push_back(true/*IsSingleNumber = true*/);
1178 EmitAPInt(Vals64, Code, Abbrev, CaseRanges.getSingleNumber(0), true);
1179 } else {
1180
1181 Vals64.push_back(CaseRanges.getNumItems());
1182
1183 if (CaseRanges.isSingleNumbersOnly()) {
1184 for (unsigned ri = 0, rn = CaseRanges.getNumItems();
1185 ri != rn; ++ri) {
1186
1187 Vals64.push_back(true/*IsSingleNumber = true*/);
1188
1189 EmitAPInt(Vals64, Code, Abbrev,
1190 CaseRanges.getSingleNumber(ri), true);
1191 }
1192 } else
1193 for (unsigned ri = 0, rn = CaseRanges.getNumItems();
1194 ri != rn; ++ri) {
1195 IntegersSubset::Range r = CaseRanges.getItem(ri);
1196 bool IsSingleNumber = CaseRanges.isSingleNumber(ri);
1197
1198 Vals64.push_back(IsSingleNumber);
1199
1200 EmitAPInt(Vals64, Code, Abbrev, r.getLow(), true);
1201 if (!IsSingleNumber)
1202 EmitAPInt(Vals64, Code, Abbrev, r.getHigh(), true);
1203 }
1204 }
1205 Vals64.push_back(VE.getValueID(i.getCaseSuccessor()));
1206 }
1207
1208 Stream.EmitRecord(Code, Vals64, AbbrevToUse);
1209
1210 // Also do expected action - clear external Vals collection:
1211 Vals.clear();
1212 return;
1213 }
1214 break;
1215 case Instruction::IndirectBr:
1216 Code = bitc::FUNC_CODE_INST_INDIRECTBR;
1217 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
1218 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
1219 Vals.push_back(VE.getValueID(I.getOperand(i)));
1220 break;
1221
1222 case Instruction::Invoke: {
1223 const InvokeInst *II = cast<InvokeInst>(&I);
1224 const Value *Callee(II->getCalledValue());
1225 PointerType *PTy = cast<PointerType>(Callee->getType());
1226 FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
1227 Code = bitc::FUNC_CODE_INST_INVOKE;
1228
1229 Vals.push_back(VE.getAttributeID(II->getAttributes()));
1230 Vals.push_back(II->getCallingConv());
1231 Vals.push_back(VE.getValueID(II->getNormalDest()));
1232 Vals.push_back(VE.getValueID(II->getUnwindDest()));
1233 PushValueAndType(Callee, InstID, Vals, VE);
1234
1235 // Emit value #'s for the fixed parameters.
1236 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
1237 Vals.push_back(VE.getValueID(I.getOperand(i))); // fixed param.
1238
1239 // Emit type/value pairs for varargs params.
1240 if (FTy->isVarArg()) {
1241 for (unsigned i = FTy->getNumParams(), e = I.getNumOperands()-3;
1242 i != e; ++i)
1243 PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg
1244 }
1245 break;
1246 }
1247 case Instruction::Resume:
1248 Code = bitc::FUNC_CODE_INST_RESUME;
1249 PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1250 break;
1251 case Instruction::Unreachable:
1252 Code = bitc::FUNC_CODE_INST_UNREACHABLE;
1253 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV;
1254 break;
1255
1256 case Instruction::PHI: {
1257 const PHINode &PN = cast<PHINode>(I);
1258 Code = bitc::FUNC_CODE_INST_PHI;
1259 Vals.push_back(VE.getTypeID(PN.getType()));
1260 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
1261 Vals.push_back(VE.getValueID(PN.getIncomingValue(i)));
1262 Vals.push_back(VE.getValueID(PN.getIncomingBlock(i)));
1263 }
1264 break;
1265 }
1266
1267 case Instruction::LandingPad: {
1268 const LandingPadInst &LP = cast<LandingPadInst>(I);
1269 Code = bitc::FUNC_CODE_INST_LANDINGPAD;
1270 Vals.push_back(VE.getTypeID(LP.getType()));
1271 PushValueAndType(LP.getPersonalityFn(), InstID, Vals, VE);
1272 Vals.push_back(LP.isCleanup());
1273 Vals.push_back(LP.getNumClauses());
1274 for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) {
1275 if (LP.isCatch(I))
1276 Vals.push_back(LandingPadInst::Catch);
1277 else
1278 Vals.push_back(LandingPadInst::Filter);
1279 PushValueAndType(LP.getClause(I), InstID, Vals, VE);
1280 }
1281 break;
1282 }
1283
1284 case Instruction::Alloca:
1285 Code = bitc::FUNC_CODE_INST_ALLOCA;
1286 Vals.push_back(VE.getTypeID(I.getType()));
1287 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
1288 Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
1289 Vals.push_back(Log2_32(cast<AllocaInst>(I).getAlignment())+1);
1290 break;
1291
1292 case Instruction::Load:
1293 if (cast<LoadInst>(I).isAtomic()) {
1294 Code = bitc::FUNC_CODE_INST_LOADATOMIC;
1295 PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1296 } else {
1297 Code = bitc::FUNC_CODE_INST_LOAD;
1298 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) // ptr
1299 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV;
1300 }
1301 Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1);
1302 Vals.push_back(cast<LoadInst>(I).isVolatile());
1303 if (cast<LoadInst>(I).isAtomic()) {
1304 Vals.push_back(GetEncodedOrdering(cast<LoadInst>(I).getOrdering()));
1305 Vals.push_back(GetEncodedSynchScope(cast<LoadInst>(I).getSynchScope()));
1306 }
1307 break;
1308 case Instruction::Store:
1309 if (cast<StoreInst>(I).isAtomic())
1310 Code = bitc::FUNC_CODE_INST_STOREATOMIC;
1311 else
1312 Code = bitc::FUNC_CODE_INST_STORE;
1313 PushValueAndType(I.getOperand(1), InstID, Vals, VE); // ptrty + ptr
1314 Vals.push_back(VE.getValueID(I.getOperand(0))); // val.
1315 Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1);
1316 Vals.push_back(cast<StoreInst>(I).isVolatile());
1317 if (cast<StoreInst>(I).isAtomic()) {
1318 Vals.push_back(GetEncodedOrdering(cast<StoreInst>(I).getOrdering()));
1319 Vals.push_back(GetEncodedSynchScope(cast<StoreInst>(I).getSynchScope()));
1320 }
1321 break;
1322 case Instruction::AtomicCmpXchg:
1323 Code = bitc::FUNC_CODE_INST_CMPXCHG;
1324 PushValueAndType(I.getOperand(0), InstID, Vals, VE); // ptrty + ptr
1325 Vals.push_back(VE.getValueID(I.getOperand(1))); // cmp.
1326 Vals.push_back(VE.getValueID(I.getOperand(2))); // newval.
1327 Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile());
1328 Vals.push_back(GetEncodedOrdering(
1329 cast<AtomicCmpXchgInst>(I).getOrdering()));
1330 Vals.push_back(GetEncodedSynchScope(
1331 cast<AtomicCmpXchgInst>(I).getSynchScope()));
1332 break;
1333 case Instruction::AtomicRMW:
1334 Code = bitc::FUNC_CODE_INST_ATOMICRMW;
1335 PushValueAndType(I.getOperand(0), InstID, Vals, VE); // ptrty + ptr
1336 Vals.push_back(VE.getValueID(I.getOperand(1))); // val.
1337 Vals.push_back(GetEncodedRMWOperation(
1338 cast<AtomicRMWInst>(I).getOperation()));
1339 Vals.push_back(cast<AtomicRMWInst>(I).isVolatile());
1340 Vals.push_back(GetEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering()));
1341 Vals.push_back(GetEncodedSynchScope(
1342 cast<AtomicRMWInst>(I).getSynchScope()));
1343 break;
1344 case Instruction::Fence:
1345 Code = bitc::FUNC_CODE_INST_FENCE;
1346 Vals.push_back(GetEncodedOrdering(cast<FenceInst>(I).getOrdering()));
1347 Vals.push_back(GetEncodedSynchScope(cast<FenceInst>(I).getSynchScope()));
1348 break;
1349 case Instruction::Call: {
1350 const CallInst &CI = cast<CallInst>(I);
1351 PointerType *PTy = cast<PointerType>(CI.getCalledValue()->getType());
1352 FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
1353
1354 Code = bitc::FUNC_CODE_INST_CALL;
1355
1356 Vals.push_back(VE.getAttributeID(CI.getAttributes()));
1357 Vals.push_back((CI.getCallingConv() << 1) | unsigned(CI.isTailCall()));
1358 PushValueAndType(CI.getCalledValue(), InstID, Vals, VE); // Callee
1359
1360 // Emit value #'s for the fixed parameters.
1361 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
1362 Vals.push_back(VE.getValueID(CI.getArgOperand(i))); // fixed param.
1363
1364 // Emit type/value pairs for varargs params.
1365 if (FTy->isVarArg()) {
1366 for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands();
1367 i != e; ++i)
1368 PushValueAndType(CI.getArgOperand(i), InstID, Vals, VE); // varargs
1369 }
1370 break;
1371 }
1372 case Instruction::VAArg:
1373 Code = bitc::FUNC_CODE_INST_VAARG;
1374 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty
1375 Vals.push_back(VE.getValueID(I.getOperand(0))); // valist.
1376 Vals.push_back(VE.getTypeID(I.getType())); // restype.
1377 break;
1378 }
1379
1380 Stream.EmitRecord(Code, Vals, AbbrevToUse);
1381 Vals.clear();
1382 }
1383
1384 // Emit names for globals/functions etc.
WriteValueSymbolTable(const ValueSymbolTable & VST,const ValueEnumerator & VE,BitstreamWriter & Stream)1385 static void WriteValueSymbolTable(const ValueSymbolTable &VST,
1386 const ValueEnumerator &VE,
1387 BitstreamWriter &Stream) {
1388 if (VST.empty()) return;
1389 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
1390
1391 // FIXME: Set up the abbrev, we know how many values there are!
1392 // FIXME: We know if the type names can use 7-bit ascii.
1393 SmallVector<unsigned, 64> NameVals;
1394
1395 for (ValueSymbolTable::const_iterator SI = VST.begin(), SE = VST.end();
1396 SI != SE; ++SI) {
1397
1398 const ValueName &Name = *SI;
1399
1400 // Figure out the encoding to use for the name.
1401 bool is7Bit = true;
1402 bool isChar6 = true;
1403 for (const char *C = Name.getKeyData(), *E = C+Name.getKeyLength();
1404 C != E; ++C) {
1405 if (isChar6)
1406 isChar6 = BitCodeAbbrevOp::isChar6(*C);
1407 if ((unsigned char)*C & 128) {
1408 is7Bit = false;
1409 break; // don't bother scanning the rest.
1410 }
1411 }
1412
1413 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV;
1414
1415 // VST_ENTRY: [valueid, namechar x N]
1416 // VST_BBENTRY: [bbid, namechar x N]
1417 unsigned Code;
1418 if (isa<BasicBlock>(SI->getValue())) {
1419 Code = bitc::VST_CODE_BBENTRY;
1420 if (isChar6)
1421 AbbrevToUse = VST_BBENTRY_6_ABBREV;
1422 } else {
1423 Code = bitc::VST_CODE_ENTRY;
1424 if (isChar6)
1425 AbbrevToUse = VST_ENTRY_6_ABBREV;
1426 else if (is7Bit)
1427 AbbrevToUse = VST_ENTRY_7_ABBREV;
1428 }
1429
1430 NameVals.push_back(VE.getValueID(SI->getValue()));
1431 for (const char *P = Name.getKeyData(),
1432 *E = Name.getKeyData()+Name.getKeyLength(); P != E; ++P)
1433 NameVals.push_back((unsigned char)*P);
1434
1435 // Emit the finished record.
1436 Stream.EmitRecord(Code, NameVals, AbbrevToUse);
1437 NameVals.clear();
1438 }
1439 Stream.ExitBlock();
1440 }
1441
1442 /// WriteFunction - Emit a function body to the module stream.
WriteFunction(const Function & F,ValueEnumerator & VE,BitstreamWriter & Stream)1443 static void WriteFunction(const Function &F, ValueEnumerator &VE,
1444 BitstreamWriter &Stream) {
1445 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4);
1446 VE.incorporateFunction(F);
1447
1448 SmallVector<unsigned, 64> Vals;
1449
1450 // Emit the number of basic blocks, so the reader can create them ahead of
1451 // time.
1452 Vals.push_back(VE.getBasicBlocks().size());
1453 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals);
1454 Vals.clear();
1455
1456 // If there are function-local constants, emit them now.
1457 unsigned CstStart, CstEnd;
1458 VE.getFunctionConstantRange(CstStart, CstEnd);
1459 WriteConstants(CstStart, CstEnd, VE, Stream, false);
1460
1461 // If there is function-local metadata, emit it now.
1462 WriteFunctionLocalMetadata(F, VE, Stream);
1463
1464 // Keep a running idea of what the instruction ID is.
1465 unsigned InstID = CstEnd;
1466
1467 bool NeedsMetadataAttachment = false;
1468
1469 DebugLoc LastDL;
1470
1471 // Finally, emit all the instructions, in order.
1472 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
1473 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
1474 I != E; ++I) {
1475 WriteInstruction(*I, InstID, VE, Stream, Vals);
1476
1477 if (!I->getType()->isVoidTy())
1478 ++InstID;
1479
1480 // If the instruction has metadata, write a metadata attachment later.
1481 NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc();
1482
1483 // If the instruction has a debug location, emit it.
1484 DebugLoc DL = I->getDebugLoc();
1485 if (DL.isUnknown()) {
1486 // nothing todo.
1487 } else if (DL == LastDL) {
1488 // Just repeat the same debug loc as last time.
1489 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals);
1490 } else {
1491 MDNode *Scope, *IA;
1492 DL.getScopeAndInlinedAt(Scope, IA, I->getContext());
1493
1494 Vals.push_back(DL.getLine());
1495 Vals.push_back(DL.getCol());
1496 Vals.push_back(Scope ? VE.getValueID(Scope)+1 : 0);
1497 Vals.push_back(IA ? VE.getValueID(IA)+1 : 0);
1498 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals);
1499 Vals.clear();
1500
1501 LastDL = DL;
1502 }
1503 }
1504
1505 // Emit names for all the instructions etc.
1506 WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream);
1507
1508 if (NeedsMetadataAttachment)
1509 WriteMetadataAttachment(F, VE, Stream);
1510 VE.purgeFunction();
1511 Stream.ExitBlock();
1512 }
1513
1514 // Emit blockinfo, which defines the standard abbreviations etc.
WriteBlockInfo(const ValueEnumerator & VE,BitstreamWriter & Stream)1515 static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) {
1516 // We only want to emit block info records for blocks that have multiple
1517 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. Other
1518 // blocks can defined their abbrevs inline.
1519 Stream.EnterBlockInfoBlock(2);
1520
1521 { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings.
1522 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1523 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3));
1524 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1525 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1526 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
1527 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1528 Abbv) != VST_ENTRY_8_ABBREV)
1529 llvm_unreachable("Unexpected abbrev ordering!");
1530 }
1531
1532 { // 7-bit fixed width VST_ENTRY strings.
1533 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1534 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
1535 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1536 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1537 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
1538 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1539 Abbv) != VST_ENTRY_7_ABBREV)
1540 llvm_unreachable("Unexpected abbrev ordering!");
1541 }
1542 { // 6-bit char6 VST_ENTRY strings.
1543 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1544 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
1545 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1546 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1547 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
1548 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1549 Abbv) != VST_ENTRY_6_ABBREV)
1550 llvm_unreachable("Unexpected abbrev ordering!");
1551 }
1552 { // 6-bit char6 VST_BBENTRY strings.
1553 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1554 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY));
1555 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1556 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1557 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
1558 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1559 Abbv) != VST_BBENTRY_6_ABBREV)
1560 llvm_unreachable("Unexpected abbrev ordering!");
1561 }
1562
1563
1564
1565 { // SETTYPE abbrev for CONSTANTS_BLOCK.
1566 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1567 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE));
1568 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1569 Log2_32_Ceil(VE.getTypes().size()+1)));
1570 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1571 Abbv) != CONSTANTS_SETTYPE_ABBREV)
1572 llvm_unreachable("Unexpected abbrev ordering!");
1573 }
1574
1575 { // INTEGER abbrev for CONSTANTS_BLOCK.
1576 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1577 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER));
1578 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1579 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1580 Abbv) != CONSTANTS_INTEGER_ABBREV)
1581 llvm_unreachable("Unexpected abbrev ordering!");
1582 }
1583
1584 { // CE_CAST abbrev for CONSTANTS_BLOCK.
1585 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1586 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST));
1587 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc
1588 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid
1589 Log2_32_Ceil(VE.getTypes().size()+1)));
1590 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id
1591
1592 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1593 Abbv) != CONSTANTS_CE_CAST_Abbrev)
1594 llvm_unreachable("Unexpected abbrev ordering!");
1595 }
1596 { // NULL abbrev for CONSTANTS_BLOCK.
1597 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1598 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL));
1599 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1600 Abbv) != CONSTANTS_NULL_Abbrev)
1601 llvm_unreachable("Unexpected abbrev ordering!");
1602 }
1603
1604 // FIXME: This should only use space for first class types!
1605
1606 { // INST_LOAD abbrev for FUNCTION_BLOCK.
1607 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1608 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD));
1609 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr
1610 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align
1611 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile
1612 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1613 Abbv) != FUNCTION_INST_LOAD_ABBREV)
1614 llvm_unreachable("Unexpected abbrev ordering!");
1615 }
1616 { // INST_BINOP abbrev for FUNCTION_BLOCK.
1617 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1618 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
1619 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
1620 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
1621 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
1622 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1623 Abbv) != FUNCTION_INST_BINOP_ABBREV)
1624 llvm_unreachable("Unexpected abbrev ordering!");
1625 }
1626 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK.
1627 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1628 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
1629 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
1630 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
1631 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
1632 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags
1633 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1634 Abbv) != FUNCTION_INST_BINOP_FLAGS_ABBREV)
1635 llvm_unreachable("Unexpected abbrev ordering!");
1636 }
1637 { // INST_CAST abbrev for FUNCTION_BLOCK.
1638 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1639 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST));
1640 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal
1641 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty
1642 Log2_32_Ceil(VE.getTypes().size()+1)));
1643 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
1644 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1645 Abbv) != FUNCTION_INST_CAST_ABBREV)
1646 llvm_unreachable("Unexpected abbrev ordering!");
1647 }
1648
1649 { // INST_RET abbrev for FUNCTION_BLOCK.
1650 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1651 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
1652 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1653 Abbv) != FUNCTION_INST_RET_VOID_ABBREV)
1654 llvm_unreachable("Unexpected abbrev ordering!");
1655 }
1656 { // INST_RET abbrev for FUNCTION_BLOCK.
1657 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1658 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
1659 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID
1660 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1661 Abbv) != FUNCTION_INST_RET_VAL_ABBREV)
1662 llvm_unreachable("Unexpected abbrev ordering!");
1663 }
1664 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK.
1665 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1666 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE));
1667 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1668 Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV)
1669 llvm_unreachable("Unexpected abbrev ordering!");
1670 }
1671
1672 Stream.ExitBlock();
1673 }
1674
1675 // Sort the Users based on the order in which the reader parses the bitcode
1676 // file.
bitcodereader_order(const User * lhs,const User * rhs)1677 static bool bitcodereader_order(const User *lhs, const User *rhs) {
1678 // TODO: Implement.
1679 return true;
1680 }
1681
WriteUseList(const Value * V,const ValueEnumerator & VE,BitstreamWriter & Stream)1682 static void WriteUseList(const Value *V, const ValueEnumerator &VE,
1683 BitstreamWriter &Stream) {
1684
1685 // One or zero uses can't get out of order.
1686 if (V->use_empty() || V->hasNUses(1))
1687 return;
1688
1689 // Make a copy of the in-memory use-list for sorting.
1690 unsigned UseListSize = std::distance(V->use_begin(), V->use_end());
1691 SmallVector<const User*, 8> UseList;
1692 UseList.reserve(UseListSize);
1693 for (Value::const_use_iterator I = V->use_begin(), E = V->use_end();
1694 I != E; ++I) {
1695 const User *U = *I;
1696 UseList.push_back(U);
1697 }
1698
1699 // Sort the copy based on the order read by the BitcodeReader.
1700 std::sort(UseList.begin(), UseList.end(), bitcodereader_order);
1701
1702 // TODO: Generate a diff between the BitcodeWriter in-memory use-list and the
1703 // sorted list (i.e., the expected BitcodeReader in-memory use-list).
1704
1705 // TODO: Emit the USELIST_CODE_ENTRYs.
1706 }
1707
WriteFunctionUseList(const Function * F,ValueEnumerator & VE,BitstreamWriter & Stream)1708 static void WriteFunctionUseList(const Function *F, ValueEnumerator &VE,
1709 BitstreamWriter &Stream) {
1710 VE.incorporateFunction(*F);
1711
1712 for (Function::const_arg_iterator AI = F->arg_begin(), AE = F->arg_end();
1713 AI != AE; ++AI)
1714 WriteUseList(AI, VE, Stream);
1715 for (Function::const_iterator BB = F->begin(), FE = F->end(); BB != FE;
1716 ++BB) {
1717 WriteUseList(BB, VE, Stream);
1718 for (BasicBlock::const_iterator II = BB->begin(), IE = BB->end(); II != IE;
1719 ++II) {
1720 WriteUseList(II, VE, Stream);
1721 for (User::const_op_iterator OI = II->op_begin(), E = II->op_end();
1722 OI != E; ++OI) {
1723 if ((isa<Constant>(*OI) && !isa<GlobalValue>(*OI)) ||
1724 isa<InlineAsm>(*OI))
1725 WriteUseList(*OI, VE, Stream);
1726 }
1727 }
1728 }
1729 VE.purgeFunction();
1730 }
1731
1732 // Emit use-lists.
WriteModuleUseLists(const Module * M,ValueEnumerator & VE,BitstreamWriter & Stream)1733 static void WriteModuleUseLists(const Module *M, ValueEnumerator &VE,
1734 BitstreamWriter &Stream) {
1735 Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3);
1736
1737 // XXX: this modifies the module, but in a way that should never change the
1738 // behavior of any pass or codegen in LLVM. The problem is that GVs may
1739 // contain entries in the use_list that do not exist in the Module and are
1740 // not stored in the .bc file.
1741 for (Module::const_global_iterator I = M->global_begin(), E = M->global_end();
1742 I != E; ++I)
1743 I->removeDeadConstantUsers();
1744
1745 // Write the global variables.
1746 for (Module::const_global_iterator GI = M->global_begin(),
1747 GE = M->global_end(); GI != GE; ++GI) {
1748 WriteUseList(GI, VE, Stream);
1749
1750 // Write the global variable initializers.
1751 if (GI->hasInitializer())
1752 WriteUseList(GI->getInitializer(), VE, Stream);
1753 }
1754
1755 // Write the functions.
1756 for (Module::const_iterator FI = M->begin(), FE = M->end(); FI != FE; ++FI) {
1757 WriteUseList(FI, VE, Stream);
1758 if (!FI->isDeclaration())
1759 WriteFunctionUseList(FI, VE, Stream);
1760 }
1761
1762 // Write the aliases.
1763 for (Module::const_alias_iterator AI = M->alias_begin(), AE = M->alias_end();
1764 AI != AE; ++AI) {
1765 WriteUseList(AI, VE, Stream);
1766 WriteUseList(AI->getAliasee(), VE, Stream);
1767 }
1768
1769 Stream.ExitBlock();
1770 }
1771
1772 /// WriteModule - Emit the specified module to the bitstream.
WriteModule(const Module * M,BitstreamWriter & Stream)1773 static void WriteModule(const Module *M, BitstreamWriter &Stream) {
1774 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
1775
1776 // Emit the version number if it is non-zero.
1777 if (CurVersion) {
1778 SmallVector<unsigned, 1> Vals;
1779 Vals.push_back(CurVersion);
1780 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals);
1781 }
1782
1783 // Analyze the module, enumerating globals, functions, etc.
1784 ValueEnumerator VE(M);
1785
1786 // Emit blockinfo, which defines the standard abbreviations etc.
1787 WriteBlockInfo(VE, Stream);
1788
1789 // Emit information about parameter attributes.
1790 WriteAttributeTable(VE, Stream);
1791
1792 // Emit information describing all of the types in the module.
1793 WriteTypeTable(VE, Stream);
1794
1795 // Emit top-level description of module, including target triple, inline asm,
1796 // descriptors for global variables, and function prototype info.
1797 WriteModuleInfo(M, VE, Stream);
1798
1799 // Emit constants.
1800 WriteModuleConstants(VE, Stream);
1801
1802 // Emit metadata.
1803 WriteModuleMetadata(M, VE, Stream);
1804
1805 // Emit metadata.
1806 WriteModuleMetadataStore(M, Stream);
1807
1808 // Emit names for globals/functions etc.
1809 WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream);
1810
1811 // Emit use-lists.
1812 if (EnablePreserveUseListOrdering)
1813 WriteModuleUseLists(M, VE, Stream);
1814
1815 // Emit function bodies.
1816 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F)
1817 if (!F->isDeclaration())
1818 WriteFunction(*F, VE, Stream);
1819
1820 Stream.ExitBlock();
1821 }
1822
1823 /// EmitDarwinBCHeader - If generating a bc file on darwin, we have to emit a
1824 /// header and trailer to make it compatible with the system archiver. To do
1825 /// this we emit the following header, and then emit a trailer that pads the
1826 /// file out to be a multiple of 16 bytes.
1827 ///
1828 /// struct bc_header {
1829 /// uint32_t Magic; // 0x0B17C0DE
1830 /// uint32_t Version; // Version, currently always 0.
1831 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file.
1832 /// uint32_t BitcodeSize; // Size of traditional bitcode file.
1833 /// uint32_t CPUType; // CPU specifier.
1834 /// ... potentially more later ...
1835 /// };
1836 enum {
1837 DarwinBCSizeFieldOffset = 3*4, // Offset to bitcode_size.
1838 DarwinBCHeaderSize = 5*4
1839 };
1840
WriteInt32ToBuffer(uint32_t Value,SmallVectorImpl<char> & Buffer,uint32_t & Position)1841 static void WriteInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer,
1842 uint32_t &Position) {
1843 Buffer[Position + 0] = (unsigned char) (Value >> 0);
1844 Buffer[Position + 1] = (unsigned char) (Value >> 8);
1845 Buffer[Position + 2] = (unsigned char) (Value >> 16);
1846 Buffer[Position + 3] = (unsigned char) (Value >> 24);
1847 Position += 4;
1848 }
1849
EmitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> & Buffer,const Triple & TT)1850 static void EmitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer,
1851 const Triple &TT) {
1852 unsigned CPUType = ~0U;
1853
1854 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*,
1855 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic
1856 // number from /usr/include/mach/machine.h. It is ok to reproduce the
1857 // specific constants here because they are implicitly part of the Darwin ABI.
1858 enum {
1859 DARWIN_CPU_ARCH_ABI64 = 0x01000000,
1860 DARWIN_CPU_TYPE_X86 = 7,
1861 DARWIN_CPU_TYPE_ARM = 12,
1862 DARWIN_CPU_TYPE_POWERPC = 18
1863 };
1864
1865 Triple::ArchType Arch = TT.getArch();
1866 if (Arch == Triple::x86_64)
1867 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64;
1868 else if (Arch == Triple::x86)
1869 CPUType = DARWIN_CPU_TYPE_X86;
1870 else if (Arch == Triple::ppc)
1871 CPUType = DARWIN_CPU_TYPE_POWERPC;
1872 else if (Arch == Triple::ppc64)
1873 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64;
1874 else if (Arch == Triple::arm || Arch == Triple::thumb)
1875 CPUType = DARWIN_CPU_TYPE_ARM;
1876
1877 // Traditional Bitcode starts after header.
1878 assert(Buffer.size() >= DarwinBCHeaderSize &&
1879 "Expected header size to be reserved");
1880 unsigned BCOffset = DarwinBCHeaderSize;
1881 unsigned BCSize = Buffer.size()-DarwinBCHeaderSize;
1882
1883 // Write the magic and version.
1884 unsigned Position = 0;
1885 WriteInt32ToBuffer(0x0B17C0DE , Buffer, Position);
1886 WriteInt32ToBuffer(0 , Buffer, Position); // Version.
1887 WriteInt32ToBuffer(BCOffset , Buffer, Position);
1888 WriteInt32ToBuffer(BCSize , Buffer, Position);
1889 WriteInt32ToBuffer(CPUType , Buffer, Position);
1890
1891 // If the file is not a multiple of 16 bytes, insert dummy padding.
1892 while (Buffer.size() & 15)
1893 Buffer.push_back(0);
1894 }
1895
1896 /// WriteBitcodeToFile - Write the specified module to the specified output
1897 /// stream.
WriteBitcodeToFile(const Module * M,raw_ostream & Out)1898 void llvm::WriteBitcodeToFile(const Module *M, raw_ostream &Out) {
1899 SmallVector<char, 1024> Buffer;
1900 Buffer.reserve(256*1024);
1901
1902 // If this is darwin or another generic macho target, reserve space for the
1903 // header.
1904 Triple TT(M->getTargetTriple());
1905 if (TT.isOSDarwin())
1906 Buffer.insert(Buffer.begin(), DarwinBCHeaderSize, 0);
1907
1908 // Emit the module into the buffer.
1909 {
1910 BitstreamWriter Stream(Buffer);
1911
1912 // Emit the file header.
1913 Stream.Emit((unsigned)'B', 8);
1914 Stream.Emit((unsigned)'C', 8);
1915 Stream.Emit(0x0, 4);
1916 Stream.Emit(0xC, 4);
1917 Stream.Emit(0xE, 4);
1918 Stream.Emit(0xD, 4);
1919
1920 // Emit the module.
1921 WriteModule(M, Stream);
1922 }
1923
1924 if (TT.isOSDarwin())
1925 EmitDarwinBCHeaderAndTrailer(Buffer, TT);
1926
1927 // Write the generated bitstream to "Out".
1928 Out.write((char*)&Buffer.front(), Buffer.size());
1929 }
1930