• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===---- LiveRangeCalc.cpp - Calculate live ranges -----------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Implementation of the LiveRangeCalc class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #define DEBUG_TYPE "regalloc"
15 #include "LiveRangeCalc.h"
16 #include "llvm/CodeGen/MachineDominators.h"
17 #include "llvm/CodeGen/MachineRegisterInfo.h"
18 
19 using namespace llvm;
20 
reset(const MachineFunction * MF,SlotIndexes * SI,MachineDominatorTree * MDT,VNInfo::Allocator * VNIA)21 void LiveRangeCalc::reset(const MachineFunction *MF,
22                           SlotIndexes *SI,
23                           MachineDominatorTree *MDT,
24                           VNInfo::Allocator *VNIA) {
25   MRI = &MF->getRegInfo();
26   Indexes = SI;
27   DomTree = MDT;
28   Alloc = VNIA;
29 
30   unsigned N = MF->getNumBlockIDs();
31   Seen.clear();
32   Seen.resize(N);
33   LiveOut.resize(N);
34   LiveIn.clear();
35 }
36 
37 
createDeadDefs(LiveInterval * LI,unsigned Reg)38 void LiveRangeCalc::createDeadDefs(LiveInterval *LI, unsigned Reg) {
39   assert(MRI && Indexes && "call reset() first");
40 
41   // Visit all def operands. If the same instruction has multiple defs of Reg,
42   // LI->createDeadDef() will deduplicate.
43   for (MachineRegisterInfo::def_iterator
44        I = MRI->def_begin(Reg), E = MRI->def_end(); I != E; ++I) {
45     const MachineInstr *MI = &*I;
46     // Find the corresponding slot index.
47     SlotIndex Idx;
48     if (MI->isPHI())
49       // PHI defs begin at the basic block start index.
50       Idx = Indexes->getMBBStartIdx(MI->getParent());
51     else
52       // Instructions are either normal 'r', or early clobber 'e'.
53       Idx = Indexes->getInstructionIndex(MI)
54         .getRegSlot(I.getOperand().isEarlyClobber());
55 
56     // Create the def in LI. This may find an existing def.
57     LI->createDeadDef(Idx, *Alloc);
58   }
59 }
60 
61 
extendToUses(LiveInterval * LI,unsigned Reg)62 void LiveRangeCalc::extendToUses(LiveInterval *LI, unsigned Reg) {
63   assert(MRI && Indexes && "call reset() first");
64 
65   // Visit all operands that read Reg. This may include partial defs.
66   for (MachineRegisterInfo::reg_nodbg_iterator I = MRI->reg_nodbg_begin(Reg),
67        E = MRI->reg_nodbg_end(); I != E; ++I) {
68     MachineOperand &MO = I.getOperand();
69     // Clear all kill flags. They will be reinserted after register allocation
70     // by LiveIntervalAnalysis::addKillFlags().
71     if (MO.isUse())
72       MO.setIsKill(false);
73     if (!MO.readsReg())
74       continue;
75     // MI is reading Reg. We may have visited MI before if it happens to be
76     // reading Reg multiple times. That is OK, extend() is idempotent.
77     const MachineInstr *MI = &*I;
78 
79     // Find the SlotIndex being read.
80     SlotIndex Idx;
81     if (MI->isPHI()) {
82       assert(!MO.isDef() && "Cannot handle PHI def of partial register.");
83       // PHI operands are paired: (Reg, PredMBB).
84       // Extend the live range to be live-out from PredMBB.
85       Idx = Indexes->getMBBEndIdx(MI->getOperand(I.getOperandNo()+1).getMBB());
86     } else {
87       // This is a normal instruction.
88       Idx = Indexes->getInstructionIndex(MI).getRegSlot();
89       // Check for early-clobber redefs.
90       unsigned DefIdx;
91       if (MO.isDef()) {
92         if (MO.isEarlyClobber())
93           Idx = Idx.getRegSlot(true);
94       } else if (MI->isRegTiedToDefOperand(I.getOperandNo(), &DefIdx)) {
95         // FIXME: This would be a lot easier if tied early-clobber uses also
96         // had an early-clobber flag.
97         if (MI->getOperand(DefIdx).isEarlyClobber())
98           Idx = Idx.getRegSlot(true);
99       }
100     }
101     extend(LI, Idx, Reg);
102   }
103 }
104 
105 
106 // Transfer information from the LiveIn vector to the live ranges.
updateLiveIns(VNInfo * OverrideVNI)107 void LiveRangeCalc::updateLiveIns(VNInfo *OverrideVNI) {
108   for (SmallVectorImpl<LiveInBlock>::iterator I = LiveIn.begin(),
109          E = LiveIn.end(); I != E; ++I) {
110     if (!I->DomNode)
111       continue;
112     MachineBasicBlock *MBB = I->DomNode->getBlock();
113 
114     VNInfo *VNI = OverrideVNI ? OverrideVNI : I->Value;
115     assert(VNI && "No live-in value found");
116 
117     SlotIndex Start, End;
118     tie(Start, End) = Indexes->getMBBRange(MBB);
119 
120     if (I->Kill.isValid())
121       I->LI->addRange(LiveRange(Start, I->Kill, VNI));
122     else {
123       I->LI->addRange(LiveRange(Start, End, VNI));
124       // The value is live-through, update LiveOut as well.  Defer the Domtree
125       // lookup until it is needed.
126       assert(Seen.test(MBB->getNumber()));
127       LiveOut[MBB] = LiveOutPair(VNI, (MachineDomTreeNode *)0);
128     }
129   }
130   LiveIn.clear();
131 }
132 
133 
extend(LiveInterval * LI,SlotIndex Kill,unsigned PhysReg)134 void LiveRangeCalc::extend(LiveInterval *LI,
135                            SlotIndex Kill,
136                            unsigned PhysReg) {
137   assert(LI && "Missing live range");
138   assert(Kill.isValid() && "Invalid SlotIndex");
139   assert(Indexes && "Missing SlotIndexes");
140   assert(DomTree && "Missing dominator tree");
141 
142   MachineBasicBlock *KillMBB = Indexes->getMBBFromIndex(Kill.getPrevSlot());
143   assert(KillMBB && "No MBB at Kill");
144 
145   // Is there a def in the same MBB we can extend?
146   if (LI->extendInBlock(Indexes->getMBBStartIdx(KillMBB), Kill))
147     return;
148 
149   // Find the single reaching def, or determine if Kill is jointly dominated by
150   // multiple values, and we may need to create even more phi-defs to preserve
151   // VNInfo SSA form.  Perform a search for all predecessor blocks where we
152   // know the dominating VNInfo.
153   VNInfo *VNI = findReachingDefs(LI, KillMBB, Kill, PhysReg);
154 
155   // When there were multiple different values, we may need new PHIs.
156   if (!VNI)
157     updateSSA();
158 
159   updateLiveIns(VNI);
160 }
161 
162 
163 // This function is called by a client after using the low-level API to add
164 // live-out and live-in blocks.  The unique value optimization is not
165 // available, SplitEditor::transferValues handles that case directly anyway.
calculateValues()166 void LiveRangeCalc::calculateValues() {
167   assert(Indexes && "Missing SlotIndexes");
168   assert(DomTree && "Missing dominator tree");
169   updateSSA();
170   updateLiveIns(0);
171 }
172 
173 
findReachingDefs(LiveInterval * LI,MachineBasicBlock * KillMBB,SlotIndex Kill,unsigned PhysReg)174 VNInfo *LiveRangeCalc::findReachingDefs(LiveInterval *LI,
175                                         MachineBasicBlock *KillMBB,
176                                         SlotIndex Kill,
177                                         unsigned PhysReg) {
178   // Blocks where LI should be live-in.
179   SmallVector<MachineBasicBlock*, 16> WorkList(1, KillMBB);
180 
181   // Remember if we have seen more than one value.
182   bool UniqueVNI = true;
183   VNInfo *TheVNI = 0;
184 
185   // Using Seen as a visited set, perform a BFS for all reaching defs.
186   for (unsigned i = 0; i != WorkList.size(); ++i) {
187     MachineBasicBlock *MBB = WorkList[i];
188 
189 #ifndef NDEBUG
190     if (MBB->pred_empty()) {
191       MBB->getParent()->verify();
192       llvm_unreachable("Use not jointly dominated by defs.");
193     }
194 
195     if (TargetRegisterInfo::isPhysicalRegister(PhysReg) &&
196         !MBB->isLiveIn(PhysReg)) {
197       MBB->getParent()->verify();
198       errs() << "The register needs to be live in to BB#" << MBB->getNumber()
199              << ", but is missing from the live-in list.\n";
200       llvm_unreachable("Invalid global physical register");
201     }
202 #endif
203 
204     for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
205            PE = MBB->pred_end(); PI != PE; ++PI) {
206        MachineBasicBlock *Pred = *PI;
207 
208        // Is this a known live-out block?
209        if (Seen.test(Pred->getNumber())) {
210          if (VNInfo *VNI = LiveOut[Pred].first) {
211            if (TheVNI && TheVNI != VNI)
212              UniqueVNI = false;
213            TheVNI = VNI;
214          }
215          continue;
216        }
217 
218        SlotIndex Start, End;
219        tie(Start, End) = Indexes->getMBBRange(Pred);
220 
221        // First time we see Pred.  Try to determine the live-out value, but set
222        // it as null if Pred is live-through with an unknown value.
223        VNInfo *VNI = LI->extendInBlock(Start, End);
224        setLiveOutValue(Pred, VNI);
225        if (VNI) {
226          if (TheVNI && TheVNI != VNI)
227            UniqueVNI = false;
228          TheVNI = VNI;
229          continue;
230        }
231 
232        // No, we need a live-in value for Pred as well
233        if (Pred != KillMBB)
234           WorkList.push_back(Pred);
235        else
236           // Loopback to KillMBB, so value is really live through.
237          Kill = SlotIndex();
238     }
239   }
240 
241   // Transfer WorkList to LiveInBlocks in reverse order.
242   // This ordering works best with updateSSA().
243   LiveIn.clear();
244   LiveIn.reserve(WorkList.size());
245   while(!WorkList.empty())
246     addLiveInBlock(LI, DomTree->getNode(WorkList.pop_back_val()));
247 
248   // The kill block may not be live-through.
249   assert(LiveIn.back().DomNode->getBlock() == KillMBB);
250   LiveIn.back().Kill = Kill;
251 
252   return UniqueVNI ? TheVNI : 0;
253 }
254 
255 
256 // This is essentially the same iterative algorithm that SSAUpdater uses,
257 // except we already have a dominator tree, so we don't have to recompute it.
updateSSA()258 void LiveRangeCalc::updateSSA() {
259   assert(Indexes && "Missing SlotIndexes");
260   assert(DomTree && "Missing dominator tree");
261 
262   // Interate until convergence.
263   unsigned Changes;
264   do {
265     Changes = 0;
266     // Propagate live-out values down the dominator tree, inserting phi-defs
267     // when necessary.
268     for (SmallVectorImpl<LiveInBlock>::iterator I = LiveIn.begin(),
269            E = LiveIn.end(); I != E; ++I) {
270       MachineDomTreeNode *Node = I->DomNode;
271       // Skip block if the live-in value has already been determined.
272       if (!Node)
273         continue;
274       MachineBasicBlock *MBB = Node->getBlock();
275       MachineDomTreeNode *IDom = Node->getIDom();
276       LiveOutPair IDomValue;
277 
278       // We need a live-in value to a block with no immediate dominator?
279       // This is probably an unreachable block that has survived somehow.
280       bool needPHI = !IDom || !Seen.test(IDom->getBlock()->getNumber());
281 
282       // IDom dominates all of our predecessors, but it may not be their
283       // immediate dominator. Check if any of them have live-out values that are
284       // properly dominated by IDom. If so, we need a phi-def here.
285       if (!needPHI) {
286         IDomValue = LiveOut[IDom->getBlock()];
287 
288         // Cache the DomTree node that defined the value.
289         if (IDomValue.first && !IDomValue.second)
290           LiveOut[IDom->getBlock()].second = IDomValue.second =
291             DomTree->getNode(Indexes->getMBBFromIndex(IDomValue.first->def));
292 
293         for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
294                PE = MBB->pred_end(); PI != PE; ++PI) {
295           LiveOutPair &Value = LiveOut[*PI];
296           if (!Value.first || Value.first == IDomValue.first)
297             continue;
298 
299           // Cache the DomTree node that defined the value.
300           if (!Value.second)
301             Value.second =
302               DomTree->getNode(Indexes->getMBBFromIndex(Value.first->def));
303 
304           // This predecessor is carrying something other than IDomValue.
305           // It could be because IDomValue hasn't propagated yet, or it could be
306           // because MBB is in the dominance frontier of that value.
307           if (DomTree->dominates(IDom, Value.second)) {
308             needPHI = true;
309             break;
310           }
311         }
312       }
313 
314       // The value may be live-through even if Kill is set, as can happen when
315       // we are called from extendRange. In that case LiveOutSeen is true, and
316       // LiveOut indicates a foreign or missing value.
317       LiveOutPair &LOP = LiveOut[MBB];
318 
319       // Create a phi-def if required.
320       if (needPHI) {
321         ++Changes;
322         assert(Alloc && "Need VNInfo allocator to create PHI-defs");
323         SlotIndex Start, End;
324         tie(Start, End) = Indexes->getMBBRange(MBB);
325         VNInfo *VNI = I->LI->getNextValue(Start, *Alloc);
326         I->Value = VNI;
327         // This block is done, we know the final value.
328         I->DomNode = 0;
329 
330         // Add liveness since updateLiveIns now skips this node.
331         if (I->Kill.isValid())
332           I->LI->addRange(LiveRange(Start, I->Kill, VNI));
333         else {
334           I->LI->addRange(LiveRange(Start, End, VNI));
335           LOP = LiveOutPair(VNI, Node);
336         }
337       } else if (IDomValue.first) {
338         // No phi-def here. Remember incoming value.
339         I->Value = IDomValue.first;
340 
341         // If the IDomValue is killed in the block, don't propagate through.
342         if (I->Kill.isValid())
343           continue;
344 
345         // Propagate IDomValue if it isn't killed:
346         // MBB is live-out and doesn't define its own value.
347         if (LOP.first == IDomValue.first)
348           continue;
349         ++Changes;
350         LOP = IDomValue;
351       }
352     }
353   } while (Changes);
354 }
355