1 //===-- PeepholeOptimizer.cpp - Peephole Optimizations --------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Perform peephole optimizations on the machine code:
11 //
12 // - Optimize Extensions
13 //
14 // Optimization of sign / zero extension instructions. It may be extended to
15 // handle other instructions with similar properties.
16 //
17 // On some targets, some instructions, e.g. X86 sign / zero extension, may
18 // leave the source value in the lower part of the result. This optimization
19 // will replace some uses of the pre-extension value with uses of the
20 // sub-register of the results.
21 //
22 // - Optimize Comparisons
23 //
24 // Optimization of comparison instructions. For instance, in this code:
25 //
26 // sub r1, 1
27 // cmp r1, 0
28 // bz L1
29 //
30 // If the "sub" instruction all ready sets (or could be modified to set) the
31 // same flag that the "cmp" instruction sets and that "bz" uses, then we can
32 // eliminate the "cmp" instruction.
33 //
34 // Another instance, in this code:
35 //
36 // sub r1, r3 | sub r1, imm
37 // cmp r3, r1 or cmp r1, r3 | cmp r1, imm
38 // bge L1
39 //
40 // If the branch instruction can use flag from "sub", then we can replace
41 // "sub" with "subs" and eliminate the "cmp" instruction.
42 //
43 // - Optimize Bitcast pairs:
44 //
45 // v1 = bitcast v0
46 // v2 = bitcast v1
47 // = v2
48 // =>
49 // v1 = bitcast v0
50 // = v0
51 //
52 //===----------------------------------------------------------------------===//
53
54 #define DEBUG_TYPE "peephole-opt"
55 #include "llvm/CodeGen/Passes.h"
56 #include "llvm/CodeGen/MachineDominators.h"
57 #include "llvm/CodeGen/MachineInstrBuilder.h"
58 #include "llvm/CodeGen/MachineRegisterInfo.h"
59 #include "llvm/Target/TargetInstrInfo.h"
60 #include "llvm/Target/TargetRegisterInfo.h"
61 #include "llvm/Support/CommandLine.h"
62 #include "llvm/ADT/DenseMap.h"
63 #include "llvm/ADT/SmallPtrSet.h"
64 #include "llvm/ADT/SmallSet.h"
65 #include "llvm/ADT/Statistic.h"
66 using namespace llvm;
67
68 // Optimize Extensions
69 static cl::opt<bool>
70 Aggressive("aggressive-ext-opt", cl::Hidden,
71 cl::desc("Aggressive extension optimization"));
72
73 static cl::opt<bool>
74 DisablePeephole("disable-peephole", cl::Hidden, cl::init(false),
75 cl::desc("Disable the peephole optimizer"));
76
77 STATISTIC(NumReuse, "Number of extension results reused");
78 STATISTIC(NumBitcasts, "Number of bitcasts eliminated");
79 STATISTIC(NumCmps, "Number of compares eliminated");
80 STATISTIC(NumImmFold, "Number of move immediate folded");
81 STATISTIC(NumLoadFold, "Number of loads folded");
82 STATISTIC(NumSelects, "Number of selects optimized");
83
84 namespace {
85 class PeepholeOptimizer : public MachineFunctionPass {
86 const TargetMachine *TM;
87 const TargetInstrInfo *TII;
88 MachineRegisterInfo *MRI;
89 MachineDominatorTree *DT; // Machine dominator tree
90
91 public:
92 static char ID; // Pass identification
PeepholeOptimizer()93 PeepholeOptimizer() : MachineFunctionPass(ID) {
94 initializePeepholeOptimizerPass(*PassRegistry::getPassRegistry());
95 }
96
97 virtual bool runOnMachineFunction(MachineFunction &MF);
98
getAnalysisUsage(AnalysisUsage & AU) const99 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
100 AU.setPreservesCFG();
101 MachineFunctionPass::getAnalysisUsage(AU);
102 if (Aggressive) {
103 AU.addRequired<MachineDominatorTree>();
104 AU.addPreserved<MachineDominatorTree>();
105 }
106 }
107
108 private:
109 bool optimizeBitcastInstr(MachineInstr *MI, MachineBasicBlock *MBB);
110 bool optimizeCmpInstr(MachineInstr *MI, MachineBasicBlock *MBB);
111 bool optimizeExtInstr(MachineInstr *MI, MachineBasicBlock *MBB,
112 SmallPtrSet<MachineInstr*, 8> &LocalMIs);
113 bool optimizeSelect(MachineInstr *MI);
114 bool isMoveImmediate(MachineInstr *MI,
115 SmallSet<unsigned, 4> &ImmDefRegs,
116 DenseMap<unsigned, MachineInstr*> &ImmDefMIs);
117 bool foldImmediate(MachineInstr *MI, MachineBasicBlock *MBB,
118 SmallSet<unsigned, 4> &ImmDefRegs,
119 DenseMap<unsigned, MachineInstr*> &ImmDefMIs);
120 bool isLoadFoldable(MachineInstr *MI, unsigned &FoldAsLoadDefReg);
121 };
122 }
123
124 char PeepholeOptimizer::ID = 0;
125 char &llvm::PeepholeOptimizerID = PeepholeOptimizer::ID;
126 INITIALIZE_PASS_BEGIN(PeepholeOptimizer, "peephole-opts",
127 "Peephole Optimizations", false, false)
INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)128 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
129 INITIALIZE_PASS_END(PeepholeOptimizer, "peephole-opts",
130 "Peephole Optimizations", false, false)
131
132 /// optimizeExtInstr - If instruction is a copy-like instruction, i.e. it reads
133 /// a single register and writes a single register and it does not modify the
134 /// source, and if the source value is preserved as a sub-register of the
135 /// result, then replace all reachable uses of the source with the subreg of the
136 /// result.
137 ///
138 /// Do not generate an EXTRACT that is used only in a debug use, as this changes
139 /// the code. Since this code does not currently share EXTRACTs, just ignore all
140 /// debug uses.
141 bool PeepholeOptimizer::
142 optimizeExtInstr(MachineInstr *MI, MachineBasicBlock *MBB,
143 SmallPtrSet<MachineInstr*, 8> &LocalMIs) {
144 unsigned SrcReg, DstReg, SubIdx;
145 if (!TII->isCoalescableExtInstr(*MI, SrcReg, DstReg, SubIdx))
146 return false;
147
148 if (TargetRegisterInfo::isPhysicalRegister(DstReg) ||
149 TargetRegisterInfo::isPhysicalRegister(SrcReg))
150 return false;
151
152 if (MRI->hasOneNonDBGUse(SrcReg))
153 // No other uses.
154 return false;
155
156 // Ensure DstReg can get a register class that actually supports
157 // sub-registers. Don't change the class until we commit.
158 const TargetRegisterClass *DstRC = MRI->getRegClass(DstReg);
159 DstRC = TM->getRegisterInfo()->getSubClassWithSubReg(DstRC, SubIdx);
160 if (!DstRC)
161 return false;
162
163 // The ext instr may be operating on a sub-register of SrcReg as well.
164 // PPC::EXTSW is a 32 -> 64-bit sign extension, but it reads a 64-bit
165 // register.
166 // If UseSrcSubIdx is Set, SubIdx also applies to SrcReg, and only uses of
167 // SrcReg:SubIdx should be replaced.
168 bool UseSrcSubIdx = TM->getRegisterInfo()->
169 getSubClassWithSubReg(MRI->getRegClass(SrcReg), SubIdx) != 0;
170
171 // The source has other uses. See if we can replace the other uses with use of
172 // the result of the extension.
173 SmallPtrSet<MachineBasicBlock*, 4> ReachedBBs;
174 for (MachineRegisterInfo::use_nodbg_iterator
175 UI = MRI->use_nodbg_begin(DstReg), UE = MRI->use_nodbg_end();
176 UI != UE; ++UI)
177 ReachedBBs.insert(UI->getParent());
178
179 // Uses that are in the same BB of uses of the result of the instruction.
180 SmallVector<MachineOperand*, 8> Uses;
181
182 // Uses that the result of the instruction can reach.
183 SmallVector<MachineOperand*, 8> ExtendedUses;
184
185 bool ExtendLife = true;
186 for (MachineRegisterInfo::use_nodbg_iterator
187 UI = MRI->use_nodbg_begin(SrcReg), UE = MRI->use_nodbg_end();
188 UI != UE; ++UI) {
189 MachineOperand &UseMO = UI.getOperand();
190 MachineInstr *UseMI = &*UI;
191 if (UseMI == MI)
192 continue;
193
194 if (UseMI->isPHI()) {
195 ExtendLife = false;
196 continue;
197 }
198
199 // Only accept uses of SrcReg:SubIdx.
200 if (UseSrcSubIdx && UseMO.getSubReg() != SubIdx)
201 continue;
202
203 // It's an error to translate this:
204 //
205 // %reg1025 = <sext> %reg1024
206 // ...
207 // %reg1026 = SUBREG_TO_REG 0, %reg1024, 4
208 //
209 // into this:
210 //
211 // %reg1025 = <sext> %reg1024
212 // ...
213 // %reg1027 = COPY %reg1025:4
214 // %reg1026 = SUBREG_TO_REG 0, %reg1027, 4
215 //
216 // The problem here is that SUBREG_TO_REG is there to assert that an
217 // implicit zext occurs. It doesn't insert a zext instruction. If we allow
218 // the COPY here, it will give us the value after the <sext>, not the
219 // original value of %reg1024 before <sext>.
220 if (UseMI->getOpcode() == TargetOpcode::SUBREG_TO_REG)
221 continue;
222
223 MachineBasicBlock *UseMBB = UseMI->getParent();
224 if (UseMBB == MBB) {
225 // Local uses that come after the extension.
226 if (!LocalMIs.count(UseMI))
227 Uses.push_back(&UseMO);
228 } else if (ReachedBBs.count(UseMBB)) {
229 // Non-local uses where the result of the extension is used. Always
230 // replace these unless it's a PHI.
231 Uses.push_back(&UseMO);
232 } else if (Aggressive && DT->dominates(MBB, UseMBB)) {
233 // We may want to extend the live range of the extension result in order
234 // to replace these uses.
235 ExtendedUses.push_back(&UseMO);
236 } else {
237 // Both will be live out of the def MBB anyway. Don't extend live range of
238 // the extension result.
239 ExtendLife = false;
240 break;
241 }
242 }
243
244 if (ExtendLife && !ExtendedUses.empty())
245 // Extend the liveness of the extension result.
246 std::copy(ExtendedUses.begin(), ExtendedUses.end(),
247 std::back_inserter(Uses));
248
249 // Now replace all uses.
250 bool Changed = false;
251 if (!Uses.empty()) {
252 SmallPtrSet<MachineBasicBlock*, 4> PHIBBs;
253
254 // Look for PHI uses of the extended result, we don't want to extend the
255 // liveness of a PHI input. It breaks all kinds of assumptions down
256 // stream. A PHI use is expected to be the kill of its source values.
257 for (MachineRegisterInfo::use_nodbg_iterator
258 UI = MRI->use_nodbg_begin(DstReg), UE = MRI->use_nodbg_end();
259 UI != UE; ++UI)
260 if (UI->isPHI())
261 PHIBBs.insert(UI->getParent());
262
263 const TargetRegisterClass *RC = MRI->getRegClass(SrcReg);
264 for (unsigned i = 0, e = Uses.size(); i != e; ++i) {
265 MachineOperand *UseMO = Uses[i];
266 MachineInstr *UseMI = UseMO->getParent();
267 MachineBasicBlock *UseMBB = UseMI->getParent();
268 if (PHIBBs.count(UseMBB))
269 continue;
270
271 // About to add uses of DstReg, clear DstReg's kill flags.
272 if (!Changed) {
273 MRI->clearKillFlags(DstReg);
274 MRI->constrainRegClass(DstReg, DstRC);
275 }
276
277 unsigned NewVR = MRI->createVirtualRegister(RC);
278 MachineInstr *Copy = BuildMI(*UseMBB, UseMI, UseMI->getDebugLoc(),
279 TII->get(TargetOpcode::COPY), NewVR)
280 .addReg(DstReg, 0, SubIdx);
281 // SubIdx applies to both SrcReg and DstReg when UseSrcSubIdx is set.
282 if (UseSrcSubIdx) {
283 Copy->getOperand(0).setSubReg(SubIdx);
284 Copy->getOperand(0).setIsUndef();
285 }
286 UseMO->setReg(NewVR);
287 ++NumReuse;
288 Changed = true;
289 }
290 }
291
292 return Changed;
293 }
294
295 /// optimizeBitcastInstr - If the instruction is a bitcast instruction A that
296 /// cannot be optimized away during isel (e.g. ARM::VMOVSR, which bitcast
297 /// a value cross register classes), and the source is defined by another
298 /// bitcast instruction B. And if the register class of source of B matches
299 /// the register class of instruction A, then it is legal to replace all uses
300 /// of the def of A with source of B. e.g.
301 /// %vreg0<def> = VMOVSR %vreg1
302 /// %vreg3<def> = VMOVRS %vreg0
303 /// Replace all uses of vreg3 with vreg1.
304
optimizeBitcastInstr(MachineInstr * MI,MachineBasicBlock * MBB)305 bool PeepholeOptimizer::optimizeBitcastInstr(MachineInstr *MI,
306 MachineBasicBlock *MBB) {
307 unsigned NumDefs = MI->getDesc().getNumDefs();
308 unsigned NumSrcs = MI->getDesc().getNumOperands() - NumDefs;
309 if (NumDefs != 1)
310 return false;
311
312 unsigned Def = 0;
313 unsigned Src = 0;
314 for (unsigned i = 0, e = NumDefs + NumSrcs; i != e; ++i) {
315 const MachineOperand &MO = MI->getOperand(i);
316 if (!MO.isReg())
317 continue;
318 unsigned Reg = MO.getReg();
319 if (!Reg)
320 continue;
321 if (MO.isDef())
322 Def = Reg;
323 else if (Src)
324 // Multiple sources?
325 return false;
326 else
327 Src = Reg;
328 }
329
330 assert(Def && Src && "Malformed bitcast instruction!");
331
332 MachineInstr *DefMI = MRI->getVRegDef(Src);
333 if (!DefMI || !DefMI->isBitcast())
334 return false;
335
336 unsigned SrcSrc = 0;
337 NumDefs = DefMI->getDesc().getNumDefs();
338 NumSrcs = DefMI->getDesc().getNumOperands() - NumDefs;
339 if (NumDefs != 1)
340 return false;
341 for (unsigned i = 0, e = NumDefs + NumSrcs; i != e; ++i) {
342 const MachineOperand &MO = DefMI->getOperand(i);
343 if (!MO.isReg() || MO.isDef())
344 continue;
345 unsigned Reg = MO.getReg();
346 if (!Reg)
347 continue;
348 if (!MO.isDef()) {
349 if (SrcSrc)
350 // Multiple sources?
351 return false;
352 else
353 SrcSrc = Reg;
354 }
355 }
356
357 if (MRI->getRegClass(SrcSrc) != MRI->getRegClass(Def))
358 return false;
359
360 MRI->replaceRegWith(Def, SrcSrc);
361 MRI->clearKillFlags(SrcSrc);
362 MI->eraseFromParent();
363 ++NumBitcasts;
364 return true;
365 }
366
367 /// optimizeCmpInstr - If the instruction is a compare and the previous
368 /// instruction it's comparing against all ready sets (or could be modified to
369 /// set) the same flag as the compare, then we can remove the comparison and use
370 /// the flag from the previous instruction.
optimizeCmpInstr(MachineInstr * MI,MachineBasicBlock * MBB)371 bool PeepholeOptimizer::optimizeCmpInstr(MachineInstr *MI,
372 MachineBasicBlock *MBB) {
373 // If this instruction is a comparison against zero and isn't comparing a
374 // physical register, we can try to optimize it.
375 unsigned SrcReg, SrcReg2;
376 int CmpMask, CmpValue;
377 if (!TII->analyzeCompare(MI, SrcReg, SrcReg2, CmpMask, CmpValue) ||
378 TargetRegisterInfo::isPhysicalRegister(SrcReg) ||
379 (SrcReg2 != 0 && TargetRegisterInfo::isPhysicalRegister(SrcReg2)))
380 return false;
381
382 // Attempt to optimize the comparison instruction.
383 if (TII->optimizeCompareInstr(MI, SrcReg, SrcReg2, CmpMask, CmpValue, MRI)) {
384 ++NumCmps;
385 return true;
386 }
387
388 return false;
389 }
390
391 /// Optimize a select instruction.
optimizeSelect(MachineInstr * MI)392 bool PeepholeOptimizer::optimizeSelect(MachineInstr *MI) {
393 unsigned TrueOp = 0;
394 unsigned FalseOp = 0;
395 bool Optimizable = false;
396 SmallVector<MachineOperand, 4> Cond;
397 if (TII->analyzeSelect(MI, Cond, TrueOp, FalseOp, Optimizable))
398 return false;
399 if (!Optimizable)
400 return false;
401 if (!TII->optimizeSelect(MI))
402 return false;
403 MI->eraseFromParent();
404 ++NumSelects;
405 return true;
406 }
407
408 /// isLoadFoldable - Check whether MI is a candidate for folding into a later
409 /// instruction. We only fold loads to virtual registers and the virtual
410 /// register defined has a single use.
isLoadFoldable(MachineInstr * MI,unsigned & FoldAsLoadDefReg)411 bool PeepholeOptimizer::isLoadFoldable(MachineInstr *MI,
412 unsigned &FoldAsLoadDefReg) {
413 if (!MI->canFoldAsLoad() || !MI->mayLoad())
414 return false;
415 const MCInstrDesc &MCID = MI->getDesc();
416 if (MCID.getNumDefs() != 1)
417 return false;
418
419 unsigned Reg = MI->getOperand(0).getReg();
420 // To reduce compilation time, we check MRI->hasOneUse when inserting
421 // loads. It should be checked when processing uses of the load, since
422 // uses can be removed during peephole.
423 if (!MI->getOperand(0).getSubReg() &&
424 TargetRegisterInfo::isVirtualRegister(Reg) &&
425 MRI->hasOneUse(Reg)) {
426 FoldAsLoadDefReg = Reg;
427 return true;
428 }
429 return false;
430 }
431
isMoveImmediate(MachineInstr * MI,SmallSet<unsigned,4> & ImmDefRegs,DenseMap<unsigned,MachineInstr * > & ImmDefMIs)432 bool PeepholeOptimizer::isMoveImmediate(MachineInstr *MI,
433 SmallSet<unsigned, 4> &ImmDefRegs,
434 DenseMap<unsigned, MachineInstr*> &ImmDefMIs) {
435 const MCInstrDesc &MCID = MI->getDesc();
436 if (!MI->isMoveImmediate())
437 return false;
438 if (MCID.getNumDefs() != 1)
439 return false;
440 unsigned Reg = MI->getOperand(0).getReg();
441 if (TargetRegisterInfo::isVirtualRegister(Reg)) {
442 ImmDefMIs.insert(std::make_pair(Reg, MI));
443 ImmDefRegs.insert(Reg);
444 return true;
445 }
446
447 return false;
448 }
449
450 /// foldImmediate - Try folding register operands that are defined by move
451 /// immediate instructions, i.e. a trivial constant folding optimization, if
452 /// and only if the def and use are in the same BB.
foldImmediate(MachineInstr * MI,MachineBasicBlock * MBB,SmallSet<unsigned,4> & ImmDefRegs,DenseMap<unsigned,MachineInstr * > & ImmDefMIs)453 bool PeepholeOptimizer::foldImmediate(MachineInstr *MI, MachineBasicBlock *MBB,
454 SmallSet<unsigned, 4> &ImmDefRegs,
455 DenseMap<unsigned, MachineInstr*> &ImmDefMIs) {
456 for (unsigned i = 0, e = MI->getDesc().getNumOperands(); i != e; ++i) {
457 MachineOperand &MO = MI->getOperand(i);
458 if (!MO.isReg() || MO.isDef())
459 continue;
460 unsigned Reg = MO.getReg();
461 if (!TargetRegisterInfo::isVirtualRegister(Reg))
462 continue;
463 if (ImmDefRegs.count(Reg) == 0)
464 continue;
465 DenseMap<unsigned, MachineInstr*>::iterator II = ImmDefMIs.find(Reg);
466 assert(II != ImmDefMIs.end());
467 if (TII->FoldImmediate(MI, II->second, Reg, MRI)) {
468 ++NumImmFold;
469 return true;
470 }
471 }
472 return false;
473 }
474
runOnMachineFunction(MachineFunction & MF)475 bool PeepholeOptimizer::runOnMachineFunction(MachineFunction &MF) {
476 if (DisablePeephole)
477 return false;
478
479 TM = &MF.getTarget();
480 TII = TM->getInstrInfo();
481 MRI = &MF.getRegInfo();
482 DT = Aggressive ? &getAnalysis<MachineDominatorTree>() : 0;
483
484 bool Changed = false;
485
486 SmallPtrSet<MachineInstr*, 8> LocalMIs;
487 SmallSet<unsigned, 4> ImmDefRegs;
488 DenseMap<unsigned, MachineInstr*> ImmDefMIs;
489 unsigned FoldAsLoadDefReg;
490 for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I) {
491 MachineBasicBlock *MBB = &*I;
492
493 bool SeenMoveImm = false;
494 LocalMIs.clear();
495 ImmDefRegs.clear();
496 ImmDefMIs.clear();
497 FoldAsLoadDefReg = 0;
498
499 for (MachineBasicBlock::iterator
500 MII = I->begin(), MIE = I->end(); MII != MIE; ) {
501 MachineInstr *MI = &*MII;
502 // We may be erasing MI below, increment MII now.
503 ++MII;
504 LocalMIs.insert(MI);
505
506 // If there exists an instruction which belongs to the following
507 // categories, we will discard the load candidate.
508 if (MI->isLabel() || MI->isPHI() || MI->isImplicitDef() ||
509 MI->isKill() || MI->isInlineAsm() || MI->isDebugValue() ||
510 MI->hasUnmodeledSideEffects()) {
511 FoldAsLoadDefReg = 0;
512 continue;
513 }
514 if (MI->mayStore() || MI->isCall())
515 FoldAsLoadDefReg = 0;
516
517 if ((MI->isBitcast() && optimizeBitcastInstr(MI, MBB)) ||
518 (MI->isCompare() && optimizeCmpInstr(MI, MBB)) ||
519 (MI->isSelect() && optimizeSelect(MI))) {
520 // MI is deleted.
521 LocalMIs.erase(MI);
522 Changed = true;
523 continue;
524 }
525
526 if (isMoveImmediate(MI, ImmDefRegs, ImmDefMIs)) {
527 SeenMoveImm = true;
528 } else {
529 Changed |= optimizeExtInstr(MI, MBB, LocalMIs);
530 if (SeenMoveImm)
531 Changed |= foldImmediate(MI, MBB, ImmDefRegs, ImmDefMIs);
532 }
533
534 // Check whether MI is a load candidate for folding into a later
535 // instruction. If MI is not a candidate, check whether we can fold an
536 // earlier load into MI.
537 if (!isLoadFoldable(MI, FoldAsLoadDefReg) && FoldAsLoadDefReg) {
538 // We need to fold load after optimizeCmpInstr, since optimizeCmpInstr
539 // can enable folding by converting SUB to CMP.
540 MachineInstr *DefMI = 0;
541 MachineInstr *FoldMI = TII->optimizeLoadInstr(MI, MRI,
542 FoldAsLoadDefReg, DefMI);
543 if (FoldMI) {
544 // Update LocalMIs since we replaced MI with FoldMI and deleted DefMI.
545 LocalMIs.erase(MI);
546 LocalMIs.erase(DefMI);
547 LocalMIs.insert(FoldMI);
548 MI->eraseFromParent();
549 DefMI->eraseFromParent();
550 ++NumLoadFold;
551
552 // MI is replaced with FoldMI.
553 Changed = true;
554 continue;
555 }
556 }
557 }
558 }
559
560 return Changed;
561 }
562