1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements the TargetLowering class.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/Target/TargetLowering.h"
15 #include "llvm/MC/MCAsmInfo.h"
16 #include "llvm/MC/MCExpr.h"
17 #include "llvm/Target/TargetData.h"
18 #include "llvm/Target/TargetLoweringObjectFile.h"
19 #include "llvm/Target/TargetMachine.h"
20 #include "llvm/Target/TargetRegisterInfo.h"
21 #include "llvm/GlobalVariable.h"
22 #include "llvm/DerivedTypes.h"
23 #include "llvm/CodeGen/Analysis.h"
24 #include "llvm/CodeGen/MachineFrameInfo.h"
25 #include "llvm/CodeGen/MachineJumpTableInfo.h"
26 #include "llvm/CodeGen/MachineFunction.h"
27 #include "llvm/CodeGen/SelectionDAG.h"
28 #include "llvm/ADT/BitVector.h"
29 #include "llvm/ADT/STLExtras.h"
30 #include "llvm/Support/CommandLine.h"
31 #include "llvm/Support/ErrorHandling.h"
32 #include "llvm/Support/MathExtras.h"
33 #include <cctype>
34 using namespace llvm;
35
36 /// InitLibcallNames - Set default libcall names.
37 ///
InitLibcallNames(const char ** Names)38 static void InitLibcallNames(const char **Names) {
39 Names[RTLIB::SHL_I16] = "__ashlhi3";
40 Names[RTLIB::SHL_I32] = "__ashlsi3";
41 Names[RTLIB::SHL_I64] = "__ashldi3";
42 Names[RTLIB::SHL_I128] = "__ashlti3";
43 Names[RTLIB::SRL_I16] = "__lshrhi3";
44 Names[RTLIB::SRL_I32] = "__lshrsi3";
45 Names[RTLIB::SRL_I64] = "__lshrdi3";
46 Names[RTLIB::SRL_I128] = "__lshrti3";
47 Names[RTLIB::SRA_I16] = "__ashrhi3";
48 Names[RTLIB::SRA_I32] = "__ashrsi3";
49 Names[RTLIB::SRA_I64] = "__ashrdi3";
50 Names[RTLIB::SRA_I128] = "__ashrti3";
51 Names[RTLIB::MUL_I8] = "__mulqi3";
52 Names[RTLIB::MUL_I16] = "__mulhi3";
53 Names[RTLIB::MUL_I32] = "__mulsi3";
54 Names[RTLIB::MUL_I64] = "__muldi3";
55 Names[RTLIB::MUL_I128] = "__multi3";
56 Names[RTLIB::MULO_I32] = "__mulosi4";
57 Names[RTLIB::MULO_I64] = "__mulodi4";
58 Names[RTLIB::MULO_I128] = "__muloti4";
59 Names[RTLIB::SDIV_I8] = "__divqi3";
60 Names[RTLIB::SDIV_I16] = "__divhi3";
61 Names[RTLIB::SDIV_I32] = "__divsi3";
62 Names[RTLIB::SDIV_I64] = "__divdi3";
63 Names[RTLIB::SDIV_I128] = "__divti3";
64 Names[RTLIB::UDIV_I8] = "__udivqi3";
65 Names[RTLIB::UDIV_I16] = "__udivhi3";
66 Names[RTLIB::UDIV_I32] = "__udivsi3";
67 Names[RTLIB::UDIV_I64] = "__udivdi3";
68 Names[RTLIB::UDIV_I128] = "__udivti3";
69 Names[RTLIB::SREM_I8] = "__modqi3";
70 Names[RTLIB::SREM_I16] = "__modhi3";
71 Names[RTLIB::SREM_I32] = "__modsi3";
72 Names[RTLIB::SREM_I64] = "__moddi3";
73 Names[RTLIB::SREM_I128] = "__modti3";
74 Names[RTLIB::UREM_I8] = "__umodqi3";
75 Names[RTLIB::UREM_I16] = "__umodhi3";
76 Names[RTLIB::UREM_I32] = "__umodsi3";
77 Names[RTLIB::UREM_I64] = "__umoddi3";
78 Names[RTLIB::UREM_I128] = "__umodti3";
79
80 // These are generally not available.
81 Names[RTLIB::SDIVREM_I8] = 0;
82 Names[RTLIB::SDIVREM_I16] = 0;
83 Names[RTLIB::SDIVREM_I32] = 0;
84 Names[RTLIB::SDIVREM_I64] = 0;
85 Names[RTLIB::SDIVREM_I128] = 0;
86 Names[RTLIB::UDIVREM_I8] = 0;
87 Names[RTLIB::UDIVREM_I16] = 0;
88 Names[RTLIB::UDIVREM_I32] = 0;
89 Names[RTLIB::UDIVREM_I64] = 0;
90 Names[RTLIB::UDIVREM_I128] = 0;
91
92 Names[RTLIB::NEG_I32] = "__negsi2";
93 Names[RTLIB::NEG_I64] = "__negdi2";
94 Names[RTLIB::ADD_F32] = "__addsf3";
95 Names[RTLIB::ADD_F64] = "__adddf3";
96 Names[RTLIB::ADD_F80] = "__addxf3";
97 Names[RTLIB::ADD_PPCF128] = "__gcc_qadd";
98 Names[RTLIB::SUB_F32] = "__subsf3";
99 Names[RTLIB::SUB_F64] = "__subdf3";
100 Names[RTLIB::SUB_F80] = "__subxf3";
101 Names[RTLIB::SUB_PPCF128] = "__gcc_qsub";
102 Names[RTLIB::MUL_F32] = "__mulsf3";
103 Names[RTLIB::MUL_F64] = "__muldf3";
104 Names[RTLIB::MUL_F80] = "__mulxf3";
105 Names[RTLIB::MUL_PPCF128] = "__gcc_qmul";
106 Names[RTLIB::DIV_F32] = "__divsf3";
107 Names[RTLIB::DIV_F64] = "__divdf3";
108 Names[RTLIB::DIV_F80] = "__divxf3";
109 Names[RTLIB::DIV_PPCF128] = "__gcc_qdiv";
110 Names[RTLIB::REM_F32] = "fmodf";
111 Names[RTLIB::REM_F64] = "fmod";
112 Names[RTLIB::REM_F80] = "fmodl";
113 Names[RTLIB::REM_PPCF128] = "fmodl";
114 Names[RTLIB::FMA_F32] = "fmaf";
115 Names[RTLIB::FMA_F64] = "fma";
116 Names[RTLIB::FMA_F80] = "fmal";
117 Names[RTLIB::FMA_PPCF128] = "fmal";
118 Names[RTLIB::POWI_F32] = "__powisf2";
119 Names[RTLIB::POWI_F64] = "__powidf2";
120 Names[RTLIB::POWI_F80] = "__powixf2";
121 Names[RTLIB::POWI_PPCF128] = "__powitf2";
122 Names[RTLIB::SQRT_F32] = "sqrtf";
123 Names[RTLIB::SQRT_F64] = "sqrt";
124 Names[RTLIB::SQRT_F80] = "sqrtl";
125 Names[RTLIB::SQRT_PPCF128] = "sqrtl";
126 Names[RTLIB::LOG_F32] = "logf";
127 Names[RTLIB::LOG_F64] = "log";
128 Names[RTLIB::LOG_F80] = "logl";
129 Names[RTLIB::LOG_PPCF128] = "logl";
130 Names[RTLIB::LOG2_F32] = "log2f";
131 Names[RTLIB::LOG2_F64] = "log2";
132 Names[RTLIB::LOG2_F80] = "log2l";
133 Names[RTLIB::LOG2_PPCF128] = "log2l";
134 Names[RTLIB::LOG10_F32] = "log10f";
135 Names[RTLIB::LOG10_F64] = "log10";
136 Names[RTLIB::LOG10_F80] = "log10l";
137 Names[RTLIB::LOG10_PPCF128] = "log10l";
138 Names[RTLIB::EXP_F32] = "expf";
139 Names[RTLIB::EXP_F64] = "exp";
140 Names[RTLIB::EXP_F80] = "expl";
141 Names[RTLIB::EXP_PPCF128] = "expl";
142 Names[RTLIB::EXP2_F32] = "exp2f";
143 Names[RTLIB::EXP2_F64] = "exp2";
144 Names[RTLIB::EXP2_F80] = "exp2l";
145 Names[RTLIB::EXP2_PPCF128] = "exp2l";
146 Names[RTLIB::SIN_F32] = "sinf";
147 Names[RTLIB::SIN_F64] = "sin";
148 Names[RTLIB::SIN_F80] = "sinl";
149 Names[RTLIB::SIN_PPCF128] = "sinl";
150 Names[RTLIB::COS_F32] = "cosf";
151 Names[RTLIB::COS_F64] = "cos";
152 Names[RTLIB::COS_F80] = "cosl";
153 Names[RTLIB::COS_PPCF128] = "cosl";
154 Names[RTLIB::POW_F32] = "powf";
155 Names[RTLIB::POW_F64] = "pow";
156 Names[RTLIB::POW_F80] = "powl";
157 Names[RTLIB::POW_PPCF128] = "powl";
158 Names[RTLIB::CEIL_F32] = "ceilf";
159 Names[RTLIB::CEIL_F64] = "ceil";
160 Names[RTLIB::CEIL_F80] = "ceill";
161 Names[RTLIB::CEIL_PPCF128] = "ceill";
162 Names[RTLIB::TRUNC_F32] = "truncf";
163 Names[RTLIB::TRUNC_F64] = "trunc";
164 Names[RTLIB::TRUNC_F80] = "truncl";
165 Names[RTLIB::TRUNC_PPCF128] = "truncl";
166 Names[RTLIB::RINT_F32] = "rintf";
167 Names[RTLIB::RINT_F64] = "rint";
168 Names[RTLIB::RINT_F80] = "rintl";
169 Names[RTLIB::RINT_PPCF128] = "rintl";
170 Names[RTLIB::NEARBYINT_F32] = "nearbyintf";
171 Names[RTLIB::NEARBYINT_F64] = "nearbyint";
172 Names[RTLIB::NEARBYINT_F80] = "nearbyintl";
173 Names[RTLIB::NEARBYINT_PPCF128] = "nearbyintl";
174 Names[RTLIB::FLOOR_F32] = "floorf";
175 Names[RTLIB::FLOOR_F64] = "floor";
176 Names[RTLIB::FLOOR_F80] = "floorl";
177 Names[RTLIB::FLOOR_PPCF128] = "floorl";
178 Names[RTLIB::COPYSIGN_F32] = "copysignf";
179 Names[RTLIB::COPYSIGN_F64] = "copysign";
180 Names[RTLIB::COPYSIGN_F80] = "copysignl";
181 Names[RTLIB::COPYSIGN_PPCF128] = "copysignl";
182 Names[RTLIB::FPEXT_F32_F64] = "__extendsfdf2";
183 Names[RTLIB::FPEXT_F16_F32] = "__gnu_h2f_ieee";
184 Names[RTLIB::FPROUND_F32_F16] = "__gnu_f2h_ieee";
185 Names[RTLIB::FPROUND_F64_F32] = "__truncdfsf2";
186 Names[RTLIB::FPROUND_F80_F32] = "__truncxfsf2";
187 Names[RTLIB::FPROUND_PPCF128_F32] = "__trunctfsf2";
188 Names[RTLIB::FPROUND_F80_F64] = "__truncxfdf2";
189 Names[RTLIB::FPROUND_PPCF128_F64] = "__trunctfdf2";
190 Names[RTLIB::FPTOSINT_F32_I8] = "__fixsfqi";
191 Names[RTLIB::FPTOSINT_F32_I16] = "__fixsfhi";
192 Names[RTLIB::FPTOSINT_F32_I32] = "__fixsfsi";
193 Names[RTLIB::FPTOSINT_F32_I64] = "__fixsfdi";
194 Names[RTLIB::FPTOSINT_F32_I128] = "__fixsfti";
195 Names[RTLIB::FPTOSINT_F64_I8] = "__fixdfqi";
196 Names[RTLIB::FPTOSINT_F64_I16] = "__fixdfhi";
197 Names[RTLIB::FPTOSINT_F64_I32] = "__fixdfsi";
198 Names[RTLIB::FPTOSINT_F64_I64] = "__fixdfdi";
199 Names[RTLIB::FPTOSINT_F64_I128] = "__fixdfti";
200 Names[RTLIB::FPTOSINT_F80_I32] = "__fixxfsi";
201 Names[RTLIB::FPTOSINT_F80_I64] = "__fixxfdi";
202 Names[RTLIB::FPTOSINT_F80_I128] = "__fixxfti";
203 Names[RTLIB::FPTOSINT_PPCF128_I32] = "__fixtfsi";
204 Names[RTLIB::FPTOSINT_PPCF128_I64] = "__fixtfdi";
205 Names[RTLIB::FPTOSINT_PPCF128_I128] = "__fixtfti";
206 Names[RTLIB::FPTOUINT_F32_I8] = "__fixunssfqi";
207 Names[RTLIB::FPTOUINT_F32_I16] = "__fixunssfhi";
208 Names[RTLIB::FPTOUINT_F32_I32] = "__fixunssfsi";
209 Names[RTLIB::FPTOUINT_F32_I64] = "__fixunssfdi";
210 Names[RTLIB::FPTOUINT_F32_I128] = "__fixunssfti";
211 Names[RTLIB::FPTOUINT_F64_I8] = "__fixunsdfqi";
212 Names[RTLIB::FPTOUINT_F64_I16] = "__fixunsdfhi";
213 Names[RTLIB::FPTOUINT_F64_I32] = "__fixunsdfsi";
214 Names[RTLIB::FPTOUINT_F64_I64] = "__fixunsdfdi";
215 Names[RTLIB::FPTOUINT_F64_I128] = "__fixunsdfti";
216 Names[RTLIB::FPTOUINT_F80_I32] = "__fixunsxfsi";
217 Names[RTLIB::FPTOUINT_F80_I64] = "__fixunsxfdi";
218 Names[RTLIB::FPTOUINT_F80_I128] = "__fixunsxfti";
219 Names[RTLIB::FPTOUINT_PPCF128_I32] = "__fixunstfsi";
220 Names[RTLIB::FPTOUINT_PPCF128_I64] = "__fixunstfdi";
221 Names[RTLIB::FPTOUINT_PPCF128_I128] = "__fixunstfti";
222 Names[RTLIB::SINTTOFP_I32_F32] = "__floatsisf";
223 Names[RTLIB::SINTTOFP_I32_F64] = "__floatsidf";
224 Names[RTLIB::SINTTOFP_I32_F80] = "__floatsixf";
225 Names[RTLIB::SINTTOFP_I32_PPCF128] = "__floatsitf";
226 Names[RTLIB::SINTTOFP_I64_F32] = "__floatdisf";
227 Names[RTLIB::SINTTOFP_I64_F64] = "__floatdidf";
228 Names[RTLIB::SINTTOFP_I64_F80] = "__floatdixf";
229 Names[RTLIB::SINTTOFP_I64_PPCF128] = "__floatditf";
230 Names[RTLIB::SINTTOFP_I128_F32] = "__floattisf";
231 Names[RTLIB::SINTTOFP_I128_F64] = "__floattidf";
232 Names[RTLIB::SINTTOFP_I128_F80] = "__floattixf";
233 Names[RTLIB::SINTTOFP_I128_PPCF128] = "__floattitf";
234 Names[RTLIB::UINTTOFP_I32_F32] = "__floatunsisf";
235 Names[RTLIB::UINTTOFP_I32_F64] = "__floatunsidf";
236 Names[RTLIB::UINTTOFP_I32_F80] = "__floatunsixf";
237 Names[RTLIB::UINTTOFP_I32_PPCF128] = "__floatunsitf";
238 Names[RTLIB::UINTTOFP_I64_F32] = "__floatundisf";
239 Names[RTLIB::UINTTOFP_I64_F64] = "__floatundidf";
240 Names[RTLIB::UINTTOFP_I64_F80] = "__floatundixf";
241 Names[RTLIB::UINTTOFP_I64_PPCF128] = "__floatunditf";
242 Names[RTLIB::UINTTOFP_I128_F32] = "__floatuntisf";
243 Names[RTLIB::UINTTOFP_I128_F64] = "__floatuntidf";
244 Names[RTLIB::UINTTOFP_I128_F80] = "__floatuntixf";
245 Names[RTLIB::UINTTOFP_I128_PPCF128] = "__floatuntitf";
246 Names[RTLIB::OEQ_F32] = "__eqsf2";
247 Names[RTLIB::OEQ_F64] = "__eqdf2";
248 Names[RTLIB::UNE_F32] = "__nesf2";
249 Names[RTLIB::UNE_F64] = "__nedf2";
250 Names[RTLIB::OGE_F32] = "__gesf2";
251 Names[RTLIB::OGE_F64] = "__gedf2";
252 Names[RTLIB::OLT_F32] = "__ltsf2";
253 Names[RTLIB::OLT_F64] = "__ltdf2";
254 Names[RTLIB::OLE_F32] = "__lesf2";
255 Names[RTLIB::OLE_F64] = "__ledf2";
256 Names[RTLIB::OGT_F32] = "__gtsf2";
257 Names[RTLIB::OGT_F64] = "__gtdf2";
258 Names[RTLIB::UO_F32] = "__unordsf2";
259 Names[RTLIB::UO_F64] = "__unorddf2";
260 Names[RTLIB::O_F32] = "__unordsf2";
261 Names[RTLIB::O_F64] = "__unorddf2";
262 Names[RTLIB::MEMCPY] = "memcpy";
263 Names[RTLIB::MEMMOVE] = "memmove";
264 Names[RTLIB::MEMSET] = "memset";
265 Names[RTLIB::UNWIND_RESUME] = "_Unwind_Resume";
266 Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_1] = "__sync_val_compare_and_swap_1";
267 Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_2] = "__sync_val_compare_and_swap_2";
268 Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_4] = "__sync_val_compare_and_swap_4";
269 Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_8] = "__sync_val_compare_and_swap_8";
270 Names[RTLIB::SYNC_LOCK_TEST_AND_SET_1] = "__sync_lock_test_and_set_1";
271 Names[RTLIB::SYNC_LOCK_TEST_AND_SET_2] = "__sync_lock_test_and_set_2";
272 Names[RTLIB::SYNC_LOCK_TEST_AND_SET_4] = "__sync_lock_test_and_set_4";
273 Names[RTLIB::SYNC_LOCK_TEST_AND_SET_8] = "__sync_lock_test_and_set_8";
274 Names[RTLIB::SYNC_FETCH_AND_ADD_1] = "__sync_fetch_and_add_1";
275 Names[RTLIB::SYNC_FETCH_AND_ADD_2] = "__sync_fetch_and_add_2";
276 Names[RTLIB::SYNC_FETCH_AND_ADD_4] = "__sync_fetch_and_add_4";
277 Names[RTLIB::SYNC_FETCH_AND_ADD_8] = "__sync_fetch_and_add_8";
278 Names[RTLIB::SYNC_FETCH_AND_SUB_1] = "__sync_fetch_and_sub_1";
279 Names[RTLIB::SYNC_FETCH_AND_SUB_2] = "__sync_fetch_and_sub_2";
280 Names[RTLIB::SYNC_FETCH_AND_SUB_4] = "__sync_fetch_and_sub_4";
281 Names[RTLIB::SYNC_FETCH_AND_SUB_8] = "__sync_fetch_and_sub_8";
282 Names[RTLIB::SYNC_FETCH_AND_AND_1] = "__sync_fetch_and_and_1";
283 Names[RTLIB::SYNC_FETCH_AND_AND_2] = "__sync_fetch_and_and_2";
284 Names[RTLIB::SYNC_FETCH_AND_AND_4] = "__sync_fetch_and_and_4";
285 Names[RTLIB::SYNC_FETCH_AND_AND_8] = "__sync_fetch_and_and_8";
286 Names[RTLIB::SYNC_FETCH_AND_OR_1] = "__sync_fetch_and_or_1";
287 Names[RTLIB::SYNC_FETCH_AND_OR_2] = "__sync_fetch_and_or_2";
288 Names[RTLIB::SYNC_FETCH_AND_OR_4] = "__sync_fetch_and_or_4";
289 Names[RTLIB::SYNC_FETCH_AND_OR_8] = "__sync_fetch_and_or_8";
290 Names[RTLIB::SYNC_FETCH_AND_XOR_1] = "__sync_fetch_and_xor_1";
291 Names[RTLIB::SYNC_FETCH_AND_XOR_2] = "__sync_fetch_and_xor_2";
292 Names[RTLIB::SYNC_FETCH_AND_XOR_4] = "__sync_fetch_and_xor_4";
293 Names[RTLIB::SYNC_FETCH_AND_XOR_8] = "__sync_fetch_and_xor_8";
294 Names[RTLIB::SYNC_FETCH_AND_NAND_1] = "__sync_fetch_and_nand_1";
295 Names[RTLIB::SYNC_FETCH_AND_NAND_2] = "__sync_fetch_and_nand_2";
296 Names[RTLIB::SYNC_FETCH_AND_NAND_4] = "__sync_fetch_and_nand_4";
297 Names[RTLIB::SYNC_FETCH_AND_NAND_8] = "__sync_fetch_and_nand_8";
298 }
299
300 /// InitLibcallCallingConvs - Set default libcall CallingConvs.
301 ///
InitLibcallCallingConvs(CallingConv::ID * CCs)302 static void InitLibcallCallingConvs(CallingConv::ID *CCs) {
303 for (int i = 0; i < RTLIB::UNKNOWN_LIBCALL; ++i) {
304 CCs[i] = CallingConv::C;
305 }
306 }
307
308 /// getFPEXT - Return the FPEXT_*_* value for the given types, or
309 /// UNKNOWN_LIBCALL if there is none.
getFPEXT(EVT OpVT,EVT RetVT)310 RTLIB::Libcall RTLIB::getFPEXT(EVT OpVT, EVT RetVT) {
311 if (OpVT == MVT::f32) {
312 if (RetVT == MVT::f64)
313 return FPEXT_F32_F64;
314 }
315
316 return UNKNOWN_LIBCALL;
317 }
318
319 /// getFPROUND - Return the FPROUND_*_* value for the given types, or
320 /// UNKNOWN_LIBCALL if there is none.
getFPROUND(EVT OpVT,EVT RetVT)321 RTLIB::Libcall RTLIB::getFPROUND(EVT OpVT, EVT RetVT) {
322 if (RetVT == MVT::f32) {
323 if (OpVT == MVT::f64)
324 return FPROUND_F64_F32;
325 if (OpVT == MVT::f80)
326 return FPROUND_F80_F32;
327 if (OpVT == MVT::ppcf128)
328 return FPROUND_PPCF128_F32;
329 } else if (RetVT == MVT::f64) {
330 if (OpVT == MVT::f80)
331 return FPROUND_F80_F64;
332 if (OpVT == MVT::ppcf128)
333 return FPROUND_PPCF128_F64;
334 }
335
336 return UNKNOWN_LIBCALL;
337 }
338
339 /// getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or
340 /// UNKNOWN_LIBCALL if there is none.
getFPTOSINT(EVT OpVT,EVT RetVT)341 RTLIB::Libcall RTLIB::getFPTOSINT(EVT OpVT, EVT RetVT) {
342 if (OpVT == MVT::f32) {
343 if (RetVT == MVT::i8)
344 return FPTOSINT_F32_I8;
345 if (RetVT == MVT::i16)
346 return FPTOSINT_F32_I16;
347 if (RetVT == MVT::i32)
348 return FPTOSINT_F32_I32;
349 if (RetVT == MVT::i64)
350 return FPTOSINT_F32_I64;
351 if (RetVT == MVT::i128)
352 return FPTOSINT_F32_I128;
353 } else if (OpVT == MVT::f64) {
354 if (RetVT == MVT::i8)
355 return FPTOSINT_F64_I8;
356 if (RetVT == MVT::i16)
357 return FPTOSINT_F64_I16;
358 if (RetVT == MVT::i32)
359 return FPTOSINT_F64_I32;
360 if (RetVT == MVT::i64)
361 return FPTOSINT_F64_I64;
362 if (RetVT == MVT::i128)
363 return FPTOSINT_F64_I128;
364 } else if (OpVT == MVT::f80) {
365 if (RetVT == MVT::i32)
366 return FPTOSINT_F80_I32;
367 if (RetVT == MVT::i64)
368 return FPTOSINT_F80_I64;
369 if (RetVT == MVT::i128)
370 return FPTOSINT_F80_I128;
371 } else if (OpVT == MVT::ppcf128) {
372 if (RetVT == MVT::i32)
373 return FPTOSINT_PPCF128_I32;
374 if (RetVT == MVT::i64)
375 return FPTOSINT_PPCF128_I64;
376 if (RetVT == MVT::i128)
377 return FPTOSINT_PPCF128_I128;
378 }
379 return UNKNOWN_LIBCALL;
380 }
381
382 /// getFPTOUINT - Return the FPTOUINT_*_* value for the given types, or
383 /// UNKNOWN_LIBCALL if there is none.
getFPTOUINT(EVT OpVT,EVT RetVT)384 RTLIB::Libcall RTLIB::getFPTOUINT(EVT OpVT, EVT RetVT) {
385 if (OpVT == MVT::f32) {
386 if (RetVT == MVT::i8)
387 return FPTOUINT_F32_I8;
388 if (RetVT == MVT::i16)
389 return FPTOUINT_F32_I16;
390 if (RetVT == MVT::i32)
391 return FPTOUINT_F32_I32;
392 if (RetVT == MVT::i64)
393 return FPTOUINT_F32_I64;
394 if (RetVT == MVT::i128)
395 return FPTOUINT_F32_I128;
396 } else if (OpVT == MVT::f64) {
397 if (RetVT == MVT::i8)
398 return FPTOUINT_F64_I8;
399 if (RetVT == MVT::i16)
400 return FPTOUINT_F64_I16;
401 if (RetVT == MVT::i32)
402 return FPTOUINT_F64_I32;
403 if (RetVT == MVT::i64)
404 return FPTOUINT_F64_I64;
405 if (RetVT == MVT::i128)
406 return FPTOUINT_F64_I128;
407 } else if (OpVT == MVT::f80) {
408 if (RetVT == MVT::i32)
409 return FPTOUINT_F80_I32;
410 if (RetVT == MVT::i64)
411 return FPTOUINT_F80_I64;
412 if (RetVT == MVT::i128)
413 return FPTOUINT_F80_I128;
414 } else if (OpVT == MVT::ppcf128) {
415 if (RetVT == MVT::i32)
416 return FPTOUINT_PPCF128_I32;
417 if (RetVT == MVT::i64)
418 return FPTOUINT_PPCF128_I64;
419 if (RetVT == MVT::i128)
420 return FPTOUINT_PPCF128_I128;
421 }
422 return UNKNOWN_LIBCALL;
423 }
424
425 /// getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or
426 /// UNKNOWN_LIBCALL if there is none.
getSINTTOFP(EVT OpVT,EVT RetVT)427 RTLIB::Libcall RTLIB::getSINTTOFP(EVT OpVT, EVT RetVT) {
428 if (OpVT == MVT::i32) {
429 if (RetVT == MVT::f32)
430 return SINTTOFP_I32_F32;
431 else if (RetVT == MVT::f64)
432 return SINTTOFP_I32_F64;
433 else if (RetVT == MVT::f80)
434 return SINTTOFP_I32_F80;
435 else if (RetVT == MVT::ppcf128)
436 return SINTTOFP_I32_PPCF128;
437 } else if (OpVT == MVT::i64) {
438 if (RetVT == MVT::f32)
439 return SINTTOFP_I64_F32;
440 else if (RetVT == MVT::f64)
441 return SINTTOFP_I64_F64;
442 else if (RetVT == MVT::f80)
443 return SINTTOFP_I64_F80;
444 else if (RetVT == MVT::ppcf128)
445 return SINTTOFP_I64_PPCF128;
446 } else if (OpVT == MVT::i128) {
447 if (RetVT == MVT::f32)
448 return SINTTOFP_I128_F32;
449 else if (RetVT == MVT::f64)
450 return SINTTOFP_I128_F64;
451 else if (RetVT == MVT::f80)
452 return SINTTOFP_I128_F80;
453 else if (RetVT == MVT::ppcf128)
454 return SINTTOFP_I128_PPCF128;
455 }
456 return UNKNOWN_LIBCALL;
457 }
458
459 /// getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or
460 /// UNKNOWN_LIBCALL if there is none.
getUINTTOFP(EVT OpVT,EVT RetVT)461 RTLIB::Libcall RTLIB::getUINTTOFP(EVT OpVT, EVT RetVT) {
462 if (OpVT == MVT::i32) {
463 if (RetVT == MVT::f32)
464 return UINTTOFP_I32_F32;
465 else if (RetVT == MVT::f64)
466 return UINTTOFP_I32_F64;
467 else if (RetVT == MVT::f80)
468 return UINTTOFP_I32_F80;
469 else if (RetVT == MVT::ppcf128)
470 return UINTTOFP_I32_PPCF128;
471 } else if (OpVT == MVT::i64) {
472 if (RetVT == MVT::f32)
473 return UINTTOFP_I64_F32;
474 else if (RetVT == MVT::f64)
475 return UINTTOFP_I64_F64;
476 else if (RetVT == MVT::f80)
477 return UINTTOFP_I64_F80;
478 else if (RetVT == MVT::ppcf128)
479 return UINTTOFP_I64_PPCF128;
480 } else if (OpVT == MVT::i128) {
481 if (RetVT == MVT::f32)
482 return UINTTOFP_I128_F32;
483 else if (RetVT == MVT::f64)
484 return UINTTOFP_I128_F64;
485 else if (RetVT == MVT::f80)
486 return UINTTOFP_I128_F80;
487 else if (RetVT == MVT::ppcf128)
488 return UINTTOFP_I128_PPCF128;
489 }
490 return UNKNOWN_LIBCALL;
491 }
492
493 /// InitCmpLibcallCCs - Set default comparison libcall CC.
494 ///
InitCmpLibcallCCs(ISD::CondCode * CCs)495 static void InitCmpLibcallCCs(ISD::CondCode *CCs) {
496 memset(CCs, ISD::SETCC_INVALID, sizeof(ISD::CondCode)*RTLIB::UNKNOWN_LIBCALL);
497 CCs[RTLIB::OEQ_F32] = ISD::SETEQ;
498 CCs[RTLIB::OEQ_F64] = ISD::SETEQ;
499 CCs[RTLIB::UNE_F32] = ISD::SETNE;
500 CCs[RTLIB::UNE_F64] = ISD::SETNE;
501 CCs[RTLIB::OGE_F32] = ISD::SETGE;
502 CCs[RTLIB::OGE_F64] = ISD::SETGE;
503 CCs[RTLIB::OLT_F32] = ISD::SETLT;
504 CCs[RTLIB::OLT_F64] = ISD::SETLT;
505 CCs[RTLIB::OLE_F32] = ISD::SETLE;
506 CCs[RTLIB::OLE_F64] = ISD::SETLE;
507 CCs[RTLIB::OGT_F32] = ISD::SETGT;
508 CCs[RTLIB::OGT_F64] = ISD::SETGT;
509 CCs[RTLIB::UO_F32] = ISD::SETNE;
510 CCs[RTLIB::UO_F64] = ISD::SETNE;
511 CCs[RTLIB::O_F32] = ISD::SETEQ;
512 CCs[RTLIB::O_F64] = ISD::SETEQ;
513 }
514
515 /// NOTE: The constructor takes ownership of TLOF.
TargetLowering(const TargetMachine & tm,const TargetLoweringObjectFile * tlof)516 TargetLowering::TargetLowering(const TargetMachine &tm,
517 const TargetLoweringObjectFile *tlof)
518 : TM(tm), TD(TM.getTargetData()), TLOF(*tlof) {
519 // All operations default to being supported.
520 memset(OpActions, 0, sizeof(OpActions));
521 memset(LoadExtActions, 0, sizeof(LoadExtActions));
522 memset(TruncStoreActions, 0, sizeof(TruncStoreActions));
523 memset(IndexedModeActions, 0, sizeof(IndexedModeActions));
524 memset(CondCodeActions, 0, sizeof(CondCodeActions));
525
526 // Set default actions for various operations.
527 for (unsigned VT = 0; VT != (unsigned)MVT::LAST_VALUETYPE; ++VT) {
528 // Default all indexed load / store to expand.
529 for (unsigned IM = (unsigned)ISD::PRE_INC;
530 IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) {
531 setIndexedLoadAction(IM, (MVT::SimpleValueType)VT, Expand);
532 setIndexedStoreAction(IM, (MVT::SimpleValueType)VT, Expand);
533 }
534
535 // These operations default to expand.
536 setOperationAction(ISD::FGETSIGN, (MVT::SimpleValueType)VT, Expand);
537 setOperationAction(ISD::CONCAT_VECTORS, (MVT::SimpleValueType)VT, Expand);
538 }
539
540 // Most targets ignore the @llvm.prefetch intrinsic.
541 setOperationAction(ISD::PREFETCH, MVT::Other, Expand);
542
543 // ConstantFP nodes default to expand. Targets can either change this to
544 // Legal, in which case all fp constants are legal, or use isFPImmLegal()
545 // to optimize expansions for certain constants.
546 setOperationAction(ISD::ConstantFP, MVT::f16, Expand);
547 setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
548 setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
549 setOperationAction(ISD::ConstantFP, MVT::f80, Expand);
550
551 // These library functions default to expand.
552 setOperationAction(ISD::FLOG , MVT::f16, Expand);
553 setOperationAction(ISD::FLOG2, MVT::f16, Expand);
554 setOperationAction(ISD::FLOG10, MVT::f16, Expand);
555 setOperationAction(ISD::FEXP , MVT::f16, Expand);
556 setOperationAction(ISD::FEXP2, MVT::f16, Expand);
557 setOperationAction(ISD::FFLOOR, MVT::f16, Expand);
558 setOperationAction(ISD::FNEARBYINT, MVT::f16, Expand);
559 setOperationAction(ISD::FCEIL, MVT::f16, Expand);
560 setOperationAction(ISD::FRINT, MVT::f16, Expand);
561 setOperationAction(ISD::FTRUNC, MVT::f16, Expand);
562 setOperationAction(ISD::FLOG , MVT::f32, Expand);
563 setOperationAction(ISD::FLOG2, MVT::f32, Expand);
564 setOperationAction(ISD::FLOG10, MVT::f32, Expand);
565 setOperationAction(ISD::FEXP , MVT::f32, Expand);
566 setOperationAction(ISD::FEXP2, MVT::f32, Expand);
567 setOperationAction(ISD::FFLOOR, MVT::f32, Expand);
568 setOperationAction(ISD::FNEARBYINT, MVT::f32, Expand);
569 setOperationAction(ISD::FCEIL, MVT::f32, Expand);
570 setOperationAction(ISD::FRINT, MVT::f32, Expand);
571 setOperationAction(ISD::FTRUNC, MVT::f32, Expand);
572 setOperationAction(ISD::FLOG , MVT::f64, Expand);
573 setOperationAction(ISD::FLOG2, MVT::f64, Expand);
574 setOperationAction(ISD::FLOG10, MVT::f64, Expand);
575 setOperationAction(ISD::FEXP , MVT::f64, Expand);
576 setOperationAction(ISD::FEXP2, MVT::f64, Expand);
577 setOperationAction(ISD::FFLOOR, MVT::f64, Expand);
578 setOperationAction(ISD::FNEARBYINT, MVT::f64, Expand);
579 setOperationAction(ISD::FCEIL, MVT::f64, Expand);
580 setOperationAction(ISD::FRINT, MVT::f64, Expand);
581 setOperationAction(ISD::FTRUNC, MVT::f64, Expand);
582
583 // Default ISD::TRAP to expand (which turns it into abort).
584 setOperationAction(ISD::TRAP, MVT::Other, Expand);
585
586 IsLittleEndian = TD->isLittleEndian();
587 PointerTy = MVT::getIntegerVT(8*TD->getPointerSize());
588 memset(RegClassForVT, 0,MVT::LAST_VALUETYPE*sizeof(TargetRegisterClass*));
589 memset(TargetDAGCombineArray, 0, array_lengthof(TargetDAGCombineArray));
590 maxStoresPerMemset = maxStoresPerMemcpy = maxStoresPerMemmove = 8;
591 maxStoresPerMemsetOptSize = maxStoresPerMemcpyOptSize
592 = maxStoresPerMemmoveOptSize = 4;
593 benefitFromCodePlacementOpt = false;
594 UseUnderscoreSetJmp = false;
595 UseUnderscoreLongJmp = false;
596 SelectIsExpensive = false;
597 IntDivIsCheap = false;
598 Pow2DivIsCheap = false;
599 JumpIsExpensive = false;
600 predictableSelectIsExpensive = false;
601 StackPointerRegisterToSaveRestore = 0;
602 ExceptionPointerRegister = 0;
603 ExceptionSelectorRegister = 0;
604 BooleanContents = UndefinedBooleanContent;
605 BooleanVectorContents = UndefinedBooleanContent;
606 SchedPreferenceInfo = Sched::ILP;
607 JumpBufSize = 0;
608 JumpBufAlignment = 0;
609 MinFunctionAlignment = 0;
610 PrefFunctionAlignment = 0;
611 PrefLoopAlignment = 0;
612 MinStackArgumentAlignment = 1;
613 ShouldFoldAtomicFences = false;
614 InsertFencesForAtomic = false;
615 SupportJumpTables = true;
616
617 InitLibcallNames(LibcallRoutineNames);
618 InitCmpLibcallCCs(CmpLibcallCCs);
619 InitLibcallCallingConvs(LibcallCallingConvs);
620 }
621
~TargetLowering()622 TargetLowering::~TargetLowering() {
623 delete &TLOF;
624 }
625
getShiftAmountTy(EVT LHSTy) const626 MVT TargetLowering::getShiftAmountTy(EVT LHSTy) const {
627 return MVT::getIntegerVT(8*TD->getPointerSize());
628 }
629
630 /// canOpTrap - Returns true if the operation can trap for the value type.
631 /// VT must be a legal type.
canOpTrap(unsigned Op,EVT VT) const632 bool TargetLowering::canOpTrap(unsigned Op, EVT VT) const {
633 assert(isTypeLegal(VT));
634 switch (Op) {
635 default:
636 return false;
637 case ISD::FDIV:
638 case ISD::FREM:
639 case ISD::SDIV:
640 case ISD::UDIV:
641 case ISD::SREM:
642 case ISD::UREM:
643 return true;
644 }
645 }
646
647
getVectorTypeBreakdownMVT(MVT VT,MVT & IntermediateVT,unsigned & NumIntermediates,EVT & RegisterVT,TargetLowering * TLI)648 static unsigned getVectorTypeBreakdownMVT(MVT VT, MVT &IntermediateVT,
649 unsigned &NumIntermediates,
650 EVT &RegisterVT,
651 TargetLowering *TLI) {
652 // Figure out the right, legal destination reg to copy into.
653 unsigned NumElts = VT.getVectorNumElements();
654 MVT EltTy = VT.getVectorElementType();
655
656 unsigned NumVectorRegs = 1;
657
658 // FIXME: We don't support non-power-of-2-sized vectors for now. Ideally we
659 // could break down into LHS/RHS like LegalizeDAG does.
660 if (!isPowerOf2_32(NumElts)) {
661 NumVectorRegs = NumElts;
662 NumElts = 1;
663 }
664
665 // Divide the input until we get to a supported size. This will always
666 // end with a scalar if the target doesn't support vectors.
667 while (NumElts > 1 && !TLI->isTypeLegal(MVT::getVectorVT(EltTy, NumElts))) {
668 NumElts >>= 1;
669 NumVectorRegs <<= 1;
670 }
671
672 NumIntermediates = NumVectorRegs;
673
674 MVT NewVT = MVT::getVectorVT(EltTy, NumElts);
675 if (!TLI->isTypeLegal(NewVT))
676 NewVT = EltTy;
677 IntermediateVT = NewVT;
678
679 unsigned NewVTSize = NewVT.getSizeInBits();
680
681 // Convert sizes such as i33 to i64.
682 if (!isPowerOf2_32(NewVTSize))
683 NewVTSize = NextPowerOf2(NewVTSize);
684
685 EVT DestVT = TLI->getRegisterType(NewVT);
686 RegisterVT = DestVT;
687 if (EVT(DestVT).bitsLT(NewVT)) // Value is expanded, e.g. i64 -> i16.
688 return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits());
689
690 // Otherwise, promotion or legal types use the same number of registers as
691 // the vector decimated to the appropriate level.
692 return NumVectorRegs;
693 }
694
695 /// isLegalRC - Return true if the value types that can be represented by the
696 /// specified register class are all legal.
isLegalRC(const TargetRegisterClass * RC) const697 bool TargetLowering::isLegalRC(const TargetRegisterClass *RC) const {
698 for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
699 I != E; ++I) {
700 if (isTypeLegal(*I))
701 return true;
702 }
703 return false;
704 }
705
706 /// findRepresentativeClass - Return the largest legal super-reg register class
707 /// of the register class for the specified type and its associated "cost".
708 std::pair<const TargetRegisterClass*, uint8_t>
findRepresentativeClass(EVT VT) const709 TargetLowering::findRepresentativeClass(EVT VT) const {
710 const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
711 const TargetRegisterClass *RC = RegClassForVT[VT.getSimpleVT().SimpleTy];
712 if (!RC)
713 return std::make_pair(RC, 0);
714
715 // Compute the set of all super-register classes.
716 BitVector SuperRegRC(TRI->getNumRegClasses());
717 for (SuperRegClassIterator RCI(RC, TRI); RCI.isValid(); ++RCI)
718 SuperRegRC.setBitsInMask(RCI.getMask());
719
720 // Find the first legal register class with the largest spill size.
721 const TargetRegisterClass *BestRC = RC;
722 for (int i = SuperRegRC.find_first(); i >= 0; i = SuperRegRC.find_next(i)) {
723 const TargetRegisterClass *SuperRC = TRI->getRegClass(i);
724 // We want the largest possible spill size.
725 if (SuperRC->getSize() <= BestRC->getSize())
726 continue;
727 if (!isLegalRC(SuperRC))
728 continue;
729 BestRC = SuperRC;
730 }
731 return std::make_pair(BestRC, 1);
732 }
733
734 /// computeRegisterProperties - Once all of the register classes are added,
735 /// this allows us to compute derived properties we expose.
computeRegisterProperties()736 void TargetLowering::computeRegisterProperties() {
737 assert(MVT::LAST_VALUETYPE <= MVT::MAX_ALLOWED_VALUETYPE &&
738 "Too many value types for ValueTypeActions to hold!");
739
740 // Everything defaults to needing one register.
741 for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
742 NumRegistersForVT[i] = 1;
743 RegisterTypeForVT[i] = TransformToType[i] = (MVT::SimpleValueType)i;
744 }
745 // ...except isVoid, which doesn't need any registers.
746 NumRegistersForVT[MVT::isVoid] = 0;
747
748 // Find the largest integer register class.
749 unsigned LargestIntReg = MVT::LAST_INTEGER_VALUETYPE;
750 for (; RegClassForVT[LargestIntReg] == 0; --LargestIntReg)
751 assert(LargestIntReg != MVT::i1 && "No integer registers defined!");
752
753 // Every integer value type larger than this largest register takes twice as
754 // many registers to represent as the previous ValueType.
755 for (unsigned ExpandedReg = LargestIntReg + 1; ; ++ExpandedReg) {
756 EVT ExpandedVT = (MVT::SimpleValueType)ExpandedReg;
757 if (!ExpandedVT.isInteger())
758 break;
759 NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1];
760 RegisterTypeForVT[ExpandedReg] = (MVT::SimpleValueType)LargestIntReg;
761 TransformToType[ExpandedReg] = (MVT::SimpleValueType)(ExpandedReg - 1);
762 ValueTypeActions.setTypeAction(ExpandedVT, TypeExpandInteger);
763 }
764
765 // Inspect all of the ValueType's smaller than the largest integer
766 // register to see which ones need promotion.
767 unsigned LegalIntReg = LargestIntReg;
768 for (unsigned IntReg = LargestIntReg - 1;
769 IntReg >= (unsigned)MVT::i1; --IntReg) {
770 EVT IVT = (MVT::SimpleValueType)IntReg;
771 if (isTypeLegal(IVT)) {
772 LegalIntReg = IntReg;
773 } else {
774 RegisterTypeForVT[IntReg] = TransformToType[IntReg] =
775 (const MVT::SimpleValueType)LegalIntReg;
776 ValueTypeActions.setTypeAction(IVT, TypePromoteInteger);
777 }
778 }
779
780 // ppcf128 type is really two f64's.
781 if (!isTypeLegal(MVT::ppcf128)) {
782 NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64];
783 RegisterTypeForVT[MVT::ppcf128] = MVT::f64;
784 TransformToType[MVT::ppcf128] = MVT::f64;
785 ValueTypeActions.setTypeAction(MVT::ppcf128, TypeExpandFloat);
786 }
787
788 // Decide how to handle f64. If the target does not have native f64 support,
789 // expand it to i64 and we will be generating soft float library calls.
790 if (!isTypeLegal(MVT::f64)) {
791 NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64];
792 RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64];
793 TransformToType[MVT::f64] = MVT::i64;
794 ValueTypeActions.setTypeAction(MVT::f64, TypeSoftenFloat);
795 }
796
797 // Decide how to handle f32. If the target does not have native support for
798 // f32, promote it to f64 if it is legal. Otherwise, expand it to i32.
799 if (!isTypeLegal(MVT::f32)) {
800 if (isTypeLegal(MVT::f64)) {
801 NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::f64];
802 RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::f64];
803 TransformToType[MVT::f32] = MVT::f64;
804 ValueTypeActions.setTypeAction(MVT::f32, TypePromoteInteger);
805 } else {
806 NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32];
807 RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32];
808 TransformToType[MVT::f32] = MVT::i32;
809 ValueTypeActions.setTypeAction(MVT::f32, TypeSoftenFloat);
810 }
811 }
812
813 // Loop over all of the vector value types to see which need transformations.
814 for (unsigned i = MVT::FIRST_VECTOR_VALUETYPE;
815 i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
816 MVT VT = (MVT::SimpleValueType)i;
817 if (isTypeLegal(VT)) continue;
818
819 // Determine if there is a legal wider type. If so, we should promote to
820 // that wider vector type.
821 EVT EltVT = VT.getVectorElementType();
822 unsigned NElts = VT.getVectorNumElements();
823 if (NElts != 1) {
824 bool IsLegalWiderType = false;
825 // First try to promote the elements of integer vectors. If no legal
826 // promotion was found, fallback to the widen-vector method.
827 for (unsigned nVT = i+1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
828 EVT SVT = (MVT::SimpleValueType)nVT;
829 // Promote vectors of integers to vectors with the same number
830 // of elements, with a wider element type.
831 if (SVT.getVectorElementType().getSizeInBits() > EltVT.getSizeInBits()
832 && SVT.getVectorNumElements() == NElts &&
833 isTypeLegal(SVT) && SVT.getScalarType().isInteger()) {
834 TransformToType[i] = SVT;
835 RegisterTypeForVT[i] = SVT;
836 NumRegistersForVT[i] = 1;
837 ValueTypeActions.setTypeAction(VT, TypePromoteInteger);
838 IsLegalWiderType = true;
839 break;
840 }
841 }
842
843 if (IsLegalWiderType) continue;
844
845 // Try to widen the vector.
846 for (unsigned nVT = i+1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
847 EVT SVT = (MVT::SimpleValueType)nVT;
848 if (SVT.getVectorElementType() == EltVT &&
849 SVT.getVectorNumElements() > NElts &&
850 isTypeLegal(SVT)) {
851 TransformToType[i] = SVT;
852 RegisterTypeForVT[i] = SVT;
853 NumRegistersForVT[i] = 1;
854 ValueTypeActions.setTypeAction(VT, TypeWidenVector);
855 IsLegalWiderType = true;
856 break;
857 }
858 }
859 if (IsLegalWiderType) continue;
860 }
861
862 MVT IntermediateVT;
863 EVT RegisterVT;
864 unsigned NumIntermediates;
865 NumRegistersForVT[i] =
866 getVectorTypeBreakdownMVT(VT, IntermediateVT, NumIntermediates,
867 RegisterVT, this);
868 RegisterTypeForVT[i] = RegisterVT;
869
870 EVT NVT = VT.getPow2VectorType();
871 if (NVT == VT) {
872 // Type is already a power of 2. The default action is to split.
873 TransformToType[i] = MVT::Other;
874 unsigned NumElts = VT.getVectorNumElements();
875 ValueTypeActions.setTypeAction(VT,
876 NumElts > 1 ? TypeSplitVector : TypeScalarizeVector);
877 } else {
878 TransformToType[i] = NVT;
879 ValueTypeActions.setTypeAction(VT, TypeWidenVector);
880 }
881 }
882
883 // Determine the 'representative' register class for each value type.
884 // An representative register class is the largest (meaning one which is
885 // not a sub-register class / subreg register class) legal register class for
886 // a group of value types. For example, on i386, i8, i16, and i32
887 // representative would be GR32; while on x86_64 it's GR64.
888 for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
889 const TargetRegisterClass* RRC;
890 uint8_t Cost;
891 tie(RRC, Cost) = findRepresentativeClass((MVT::SimpleValueType)i);
892 RepRegClassForVT[i] = RRC;
893 RepRegClassCostForVT[i] = Cost;
894 }
895 }
896
getTargetNodeName(unsigned Opcode) const897 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
898 return NULL;
899 }
900
getSetCCResultType(EVT VT) const901 EVT TargetLowering::getSetCCResultType(EVT VT) const {
902 assert(!VT.isVector() && "No default SetCC type for vectors!");
903 return PointerTy.SimpleTy;
904 }
905
getCmpLibcallReturnType() const906 MVT::SimpleValueType TargetLowering::getCmpLibcallReturnType() const {
907 return MVT::i32; // return the default value
908 }
909
910 /// getVectorTypeBreakdown - Vector types are broken down into some number of
911 /// legal first class types. For example, MVT::v8f32 maps to 2 MVT::v4f32
912 /// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
913 /// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86.
914 ///
915 /// This method returns the number of registers needed, and the VT for each
916 /// register. It also returns the VT and quantity of the intermediate values
917 /// before they are promoted/expanded.
918 ///
getVectorTypeBreakdown(LLVMContext & Context,EVT VT,EVT & IntermediateVT,unsigned & NumIntermediates,EVT & RegisterVT) const919 unsigned TargetLowering::getVectorTypeBreakdown(LLVMContext &Context, EVT VT,
920 EVT &IntermediateVT,
921 unsigned &NumIntermediates,
922 EVT &RegisterVT) const {
923 unsigned NumElts = VT.getVectorNumElements();
924
925 // If there is a wider vector type with the same element type as this one,
926 // or a promoted vector type that has the same number of elements which
927 // are wider, then we should convert to that legal vector type.
928 // This handles things like <2 x float> -> <4 x float> and
929 // <4 x i1> -> <4 x i32>.
930 LegalizeTypeAction TA = getTypeAction(Context, VT);
931 if (NumElts != 1 && (TA == TypeWidenVector || TA == TypePromoteInteger)) {
932 RegisterVT = getTypeToTransformTo(Context, VT);
933 if (isTypeLegal(RegisterVT)) {
934 IntermediateVT = RegisterVT;
935 NumIntermediates = 1;
936 return 1;
937 }
938 }
939
940 // Figure out the right, legal destination reg to copy into.
941 EVT EltTy = VT.getVectorElementType();
942
943 unsigned NumVectorRegs = 1;
944
945 // FIXME: We don't support non-power-of-2-sized vectors for now. Ideally we
946 // could break down into LHS/RHS like LegalizeDAG does.
947 if (!isPowerOf2_32(NumElts)) {
948 NumVectorRegs = NumElts;
949 NumElts = 1;
950 }
951
952 // Divide the input until we get to a supported size. This will always
953 // end with a scalar if the target doesn't support vectors.
954 while (NumElts > 1 && !isTypeLegal(
955 EVT::getVectorVT(Context, EltTy, NumElts))) {
956 NumElts >>= 1;
957 NumVectorRegs <<= 1;
958 }
959
960 NumIntermediates = NumVectorRegs;
961
962 EVT NewVT = EVT::getVectorVT(Context, EltTy, NumElts);
963 if (!isTypeLegal(NewVT))
964 NewVT = EltTy;
965 IntermediateVT = NewVT;
966
967 EVT DestVT = getRegisterType(Context, NewVT);
968 RegisterVT = DestVT;
969 unsigned NewVTSize = NewVT.getSizeInBits();
970
971 // Convert sizes such as i33 to i64.
972 if (!isPowerOf2_32(NewVTSize))
973 NewVTSize = NextPowerOf2(NewVTSize);
974
975 if (DestVT.bitsLT(NewVT)) // Value is expanded, e.g. i64 -> i16.
976 return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits());
977
978 // Otherwise, promotion or legal types use the same number of registers as
979 // the vector decimated to the appropriate level.
980 return NumVectorRegs;
981 }
982
983 /// Get the EVTs and ArgFlags collections that represent the legalized return
984 /// type of the given function. This does not require a DAG or a return value,
985 /// and is suitable for use before any DAGs for the function are constructed.
986 /// TODO: Move this out of TargetLowering.cpp.
GetReturnInfo(Type * ReturnType,Attributes attr,SmallVectorImpl<ISD::OutputArg> & Outs,const TargetLowering & TLI)987 void llvm::GetReturnInfo(Type* ReturnType, Attributes attr,
988 SmallVectorImpl<ISD::OutputArg> &Outs,
989 const TargetLowering &TLI) {
990 SmallVector<EVT, 4> ValueVTs;
991 ComputeValueVTs(TLI, ReturnType, ValueVTs);
992 unsigned NumValues = ValueVTs.size();
993 if (NumValues == 0) return;
994
995 for (unsigned j = 0, f = NumValues; j != f; ++j) {
996 EVT VT = ValueVTs[j];
997 ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
998
999 if (attr & Attribute::SExt)
1000 ExtendKind = ISD::SIGN_EXTEND;
1001 else if (attr & Attribute::ZExt)
1002 ExtendKind = ISD::ZERO_EXTEND;
1003
1004 // FIXME: C calling convention requires the return type to be promoted to
1005 // at least 32-bit. But this is not necessary for non-C calling
1006 // conventions. The frontend should mark functions whose return values
1007 // require promoting with signext or zeroext attributes.
1008 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) {
1009 EVT MinVT = TLI.getRegisterType(ReturnType->getContext(), MVT::i32);
1010 if (VT.bitsLT(MinVT))
1011 VT = MinVT;
1012 }
1013
1014 unsigned NumParts = TLI.getNumRegisters(ReturnType->getContext(), VT);
1015 EVT PartVT = TLI.getRegisterType(ReturnType->getContext(), VT);
1016
1017 // 'inreg' on function refers to return value
1018 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1019 if (attr & Attribute::InReg)
1020 Flags.setInReg();
1021
1022 // Propagate extension type if any
1023 if (attr & Attribute::SExt)
1024 Flags.setSExt();
1025 else if (attr & Attribute::ZExt)
1026 Flags.setZExt();
1027
1028 for (unsigned i = 0; i < NumParts; ++i) {
1029 Outs.push_back(ISD::OutputArg(Flags, PartVT, /*isFixed=*/true));
1030 }
1031 }
1032 }
1033
1034 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1035 /// function arguments in the caller parameter area. This is the actual
1036 /// alignment, not its logarithm.
getByValTypeAlignment(Type * Ty) const1037 unsigned TargetLowering::getByValTypeAlignment(Type *Ty) const {
1038 return TD->getCallFrameTypeAlignment(Ty);
1039 }
1040
1041 /// getJumpTableEncoding - Return the entry encoding for a jump table in the
1042 /// current function. The returned value is a member of the
1043 /// MachineJumpTableInfo::JTEntryKind enum.
getJumpTableEncoding() const1044 unsigned TargetLowering::getJumpTableEncoding() const {
1045 // In non-pic modes, just use the address of a block.
1046 if (getTargetMachine().getRelocationModel() != Reloc::PIC_)
1047 return MachineJumpTableInfo::EK_BlockAddress;
1048
1049 // In PIC mode, if the target supports a GPRel32 directive, use it.
1050 if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != 0)
1051 return MachineJumpTableInfo::EK_GPRel32BlockAddress;
1052
1053 // Otherwise, use a label difference.
1054 return MachineJumpTableInfo::EK_LabelDifference32;
1055 }
1056
getPICJumpTableRelocBase(SDValue Table,SelectionDAG & DAG) const1057 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table,
1058 SelectionDAG &DAG) const {
1059 // If our PIC model is GP relative, use the global offset table as the base.
1060 unsigned JTEncoding = getJumpTableEncoding();
1061
1062 if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) ||
1063 (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress))
1064 return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy());
1065
1066 return Table;
1067 }
1068
1069 /// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
1070 /// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
1071 /// MCExpr.
1072 const MCExpr *
getPICJumpTableRelocBaseExpr(const MachineFunction * MF,unsigned JTI,MCContext & Ctx) const1073 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
1074 unsigned JTI,MCContext &Ctx) const{
1075 // The normal PIC reloc base is the label at the start of the jump table.
1076 return MCSymbolRefExpr::Create(MF->getJTISymbol(JTI, Ctx), Ctx);
1077 }
1078
1079 bool
isOffsetFoldingLegal(const GlobalAddressSDNode * GA) const1080 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
1081 // Assume that everything is safe in static mode.
1082 if (getTargetMachine().getRelocationModel() == Reloc::Static)
1083 return true;
1084
1085 // In dynamic-no-pic mode, assume that known defined values are safe.
1086 if (getTargetMachine().getRelocationModel() == Reloc::DynamicNoPIC &&
1087 GA &&
1088 !GA->getGlobal()->isDeclaration() &&
1089 !GA->getGlobal()->isWeakForLinker())
1090 return true;
1091
1092 // Otherwise assume nothing is safe.
1093 return false;
1094 }
1095
1096 //===----------------------------------------------------------------------===//
1097 // Optimization Methods
1098 //===----------------------------------------------------------------------===//
1099
1100 /// ShrinkDemandedConstant - Check to see if the specified operand of the
1101 /// specified instruction is a constant integer. If so, check to see if there
1102 /// are any bits set in the constant that are not demanded. If so, shrink the
1103 /// constant and return true.
ShrinkDemandedConstant(SDValue Op,const APInt & Demanded)1104 bool TargetLowering::TargetLoweringOpt::ShrinkDemandedConstant(SDValue Op,
1105 const APInt &Demanded) {
1106 DebugLoc dl = Op.getDebugLoc();
1107
1108 // FIXME: ISD::SELECT, ISD::SELECT_CC
1109 switch (Op.getOpcode()) {
1110 default: break;
1111 case ISD::XOR:
1112 case ISD::AND:
1113 case ISD::OR: {
1114 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
1115 if (!C) return false;
1116
1117 if (Op.getOpcode() == ISD::XOR &&
1118 (C->getAPIntValue() | (~Demanded)).isAllOnesValue())
1119 return false;
1120
1121 // if we can expand it to have all bits set, do it
1122 if (C->getAPIntValue().intersects(~Demanded)) {
1123 EVT VT = Op.getValueType();
1124 SDValue New = DAG.getNode(Op.getOpcode(), dl, VT, Op.getOperand(0),
1125 DAG.getConstant(Demanded &
1126 C->getAPIntValue(),
1127 VT));
1128 return CombineTo(Op, New);
1129 }
1130
1131 break;
1132 }
1133 }
1134
1135 return false;
1136 }
1137
1138 /// ShrinkDemandedOp - Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the
1139 /// casts are free. This uses isZExtFree and ZERO_EXTEND for the widening
1140 /// cast, but it could be generalized for targets with other types of
1141 /// implicit widening casts.
1142 bool
ShrinkDemandedOp(SDValue Op,unsigned BitWidth,const APInt & Demanded,DebugLoc dl)1143 TargetLowering::TargetLoweringOpt::ShrinkDemandedOp(SDValue Op,
1144 unsigned BitWidth,
1145 const APInt &Demanded,
1146 DebugLoc dl) {
1147 assert(Op.getNumOperands() == 2 &&
1148 "ShrinkDemandedOp only supports binary operators!");
1149 assert(Op.getNode()->getNumValues() == 1 &&
1150 "ShrinkDemandedOp only supports nodes with one result!");
1151
1152 // Don't do this if the node has another user, which may require the
1153 // full value.
1154 if (!Op.getNode()->hasOneUse())
1155 return false;
1156
1157 // Search for the smallest integer type with free casts to and from
1158 // Op's type. For expedience, just check power-of-2 integer types.
1159 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1160 unsigned SmallVTBits = BitWidth - Demanded.countLeadingZeros();
1161 if (!isPowerOf2_32(SmallVTBits))
1162 SmallVTBits = NextPowerOf2(SmallVTBits);
1163 for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) {
1164 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits);
1165 if (TLI.isTruncateFree(Op.getValueType(), SmallVT) &&
1166 TLI.isZExtFree(SmallVT, Op.getValueType())) {
1167 // We found a type with free casts.
1168 SDValue X = DAG.getNode(Op.getOpcode(), dl, SmallVT,
1169 DAG.getNode(ISD::TRUNCATE, dl, SmallVT,
1170 Op.getNode()->getOperand(0)),
1171 DAG.getNode(ISD::TRUNCATE, dl, SmallVT,
1172 Op.getNode()->getOperand(1)));
1173 SDValue Z = DAG.getNode(ISD::ZERO_EXTEND, dl, Op.getValueType(), X);
1174 return CombineTo(Op, Z);
1175 }
1176 }
1177 return false;
1178 }
1179
1180 /// SimplifyDemandedBits - Look at Op. At this point, we know that only the
1181 /// DemandedMask bits of the result of Op are ever used downstream. If we can
1182 /// use this information to simplify Op, create a new simplified DAG node and
1183 /// return true, returning the original and new nodes in Old and New. Otherwise,
1184 /// analyze the expression and return a mask of KnownOne and KnownZero bits for
1185 /// the expression (used to simplify the caller). The KnownZero/One bits may
1186 /// only be accurate for those bits in the DemandedMask.
SimplifyDemandedBits(SDValue Op,const APInt & DemandedMask,APInt & KnownZero,APInt & KnownOne,TargetLoweringOpt & TLO,unsigned Depth) const1187 bool TargetLowering::SimplifyDemandedBits(SDValue Op,
1188 const APInt &DemandedMask,
1189 APInt &KnownZero,
1190 APInt &KnownOne,
1191 TargetLoweringOpt &TLO,
1192 unsigned Depth) const {
1193 unsigned BitWidth = DemandedMask.getBitWidth();
1194 assert(Op.getValueType().getScalarType().getSizeInBits() == BitWidth &&
1195 "Mask size mismatches value type size!");
1196 APInt NewMask = DemandedMask;
1197 DebugLoc dl = Op.getDebugLoc();
1198
1199 // Don't know anything.
1200 KnownZero = KnownOne = APInt(BitWidth, 0);
1201
1202 // Other users may use these bits.
1203 if (!Op.getNode()->hasOneUse()) {
1204 if (Depth != 0) {
1205 // If not at the root, Just compute the KnownZero/KnownOne bits to
1206 // simplify things downstream.
1207 TLO.DAG.ComputeMaskedBits(Op, KnownZero, KnownOne, Depth);
1208 return false;
1209 }
1210 // If this is the root being simplified, allow it to have multiple uses,
1211 // just set the NewMask to all bits.
1212 NewMask = APInt::getAllOnesValue(BitWidth);
1213 } else if (DemandedMask == 0) {
1214 // Not demanding any bits from Op.
1215 if (Op.getOpcode() != ISD::UNDEF)
1216 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(Op.getValueType()));
1217 return false;
1218 } else if (Depth == 6) { // Limit search depth.
1219 return false;
1220 }
1221
1222 APInt KnownZero2, KnownOne2, KnownZeroOut, KnownOneOut;
1223 switch (Op.getOpcode()) {
1224 case ISD::Constant:
1225 // We know all of the bits for a constant!
1226 KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue();
1227 KnownZero = ~KnownOne;
1228 return false; // Don't fall through, will infinitely loop.
1229 case ISD::AND:
1230 // If the RHS is a constant, check to see if the LHS would be zero without
1231 // using the bits from the RHS. Below, we use knowledge about the RHS to
1232 // simplify the LHS, here we're using information from the LHS to simplify
1233 // the RHS.
1234 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1235 APInt LHSZero, LHSOne;
1236 // Do not increment Depth here; that can cause an infinite loop.
1237 TLO.DAG.ComputeMaskedBits(Op.getOperand(0), LHSZero, LHSOne, Depth);
1238 // If the LHS already has zeros where RHSC does, this and is dead.
1239 if ((LHSZero & NewMask) == (~RHSC->getAPIntValue() & NewMask))
1240 return TLO.CombineTo(Op, Op.getOperand(0));
1241 // If any of the set bits in the RHS are known zero on the LHS, shrink
1242 // the constant.
1243 if (TLO.ShrinkDemandedConstant(Op, ~LHSZero & NewMask))
1244 return true;
1245 }
1246
1247 if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
1248 KnownOne, TLO, Depth+1))
1249 return true;
1250 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1251 if (SimplifyDemandedBits(Op.getOperand(0), ~KnownZero & NewMask,
1252 KnownZero2, KnownOne2, TLO, Depth+1))
1253 return true;
1254 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1255
1256 // If all of the demanded bits are known one on one side, return the other.
1257 // These bits cannot contribute to the result of the 'and'.
1258 if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask))
1259 return TLO.CombineTo(Op, Op.getOperand(0));
1260 if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask))
1261 return TLO.CombineTo(Op, Op.getOperand(1));
1262 // If all of the demanded bits in the inputs are known zeros, return zero.
1263 if ((NewMask & (KnownZero|KnownZero2)) == NewMask)
1264 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, Op.getValueType()));
1265 // If the RHS is a constant, see if we can simplify it.
1266 if (TLO.ShrinkDemandedConstant(Op, ~KnownZero2 & NewMask))
1267 return true;
1268 // If the operation can be done in a smaller type, do so.
1269 if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
1270 return true;
1271
1272 // Output known-1 bits are only known if set in both the LHS & RHS.
1273 KnownOne &= KnownOne2;
1274 // Output known-0 are known to be clear if zero in either the LHS | RHS.
1275 KnownZero |= KnownZero2;
1276 break;
1277 case ISD::OR:
1278 if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
1279 KnownOne, TLO, Depth+1))
1280 return true;
1281 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1282 if (SimplifyDemandedBits(Op.getOperand(0), ~KnownOne & NewMask,
1283 KnownZero2, KnownOne2, TLO, Depth+1))
1284 return true;
1285 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1286
1287 // If all of the demanded bits are known zero on one side, return the other.
1288 // These bits cannot contribute to the result of the 'or'.
1289 if ((NewMask & ~KnownOne2 & KnownZero) == (~KnownOne2 & NewMask))
1290 return TLO.CombineTo(Op, Op.getOperand(0));
1291 if ((NewMask & ~KnownOne & KnownZero2) == (~KnownOne & NewMask))
1292 return TLO.CombineTo(Op, Op.getOperand(1));
1293 // If all of the potentially set bits on one side are known to be set on
1294 // the other side, just use the 'other' side.
1295 if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask))
1296 return TLO.CombineTo(Op, Op.getOperand(0));
1297 if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask))
1298 return TLO.CombineTo(Op, Op.getOperand(1));
1299 // If the RHS is a constant, see if we can simplify it.
1300 if (TLO.ShrinkDemandedConstant(Op, NewMask))
1301 return true;
1302 // If the operation can be done in a smaller type, do so.
1303 if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
1304 return true;
1305
1306 // Output known-0 bits are only known if clear in both the LHS & RHS.
1307 KnownZero &= KnownZero2;
1308 // Output known-1 are known to be set if set in either the LHS | RHS.
1309 KnownOne |= KnownOne2;
1310 break;
1311 case ISD::XOR:
1312 if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
1313 KnownOne, TLO, Depth+1))
1314 return true;
1315 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1316 if (SimplifyDemandedBits(Op.getOperand(0), NewMask, KnownZero2,
1317 KnownOne2, TLO, Depth+1))
1318 return true;
1319 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1320
1321 // If all of the demanded bits are known zero on one side, return the other.
1322 // These bits cannot contribute to the result of the 'xor'.
1323 if ((KnownZero & NewMask) == NewMask)
1324 return TLO.CombineTo(Op, Op.getOperand(0));
1325 if ((KnownZero2 & NewMask) == NewMask)
1326 return TLO.CombineTo(Op, Op.getOperand(1));
1327 // If the operation can be done in a smaller type, do so.
1328 if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
1329 return true;
1330
1331 // If all of the unknown bits are known to be zero on one side or the other
1332 // (but not both) turn this into an *inclusive* or.
1333 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
1334 if ((NewMask & ~KnownZero & ~KnownZero2) == 0)
1335 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, Op.getValueType(),
1336 Op.getOperand(0),
1337 Op.getOperand(1)));
1338
1339 // Output known-0 bits are known if clear or set in both the LHS & RHS.
1340 KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1341 // Output known-1 are known to be set if set in only one of the LHS, RHS.
1342 KnownOneOut = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1343
1344 // If all of the demanded bits on one side are known, and all of the set
1345 // bits on that side are also known to be set on the other side, turn this
1346 // into an AND, as we know the bits will be cleared.
1347 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
1348 // NB: it is okay if more bits are known than are requested
1349 if ((NewMask & (KnownZero|KnownOne)) == NewMask) { // all known on one side
1350 if (KnownOne == KnownOne2) { // set bits are the same on both sides
1351 EVT VT = Op.getValueType();
1352 SDValue ANDC = TLO.DAG.getConstant(~KnownOne & NewMask, VT);
1353 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT,
1354 Op.getOperand(0), ANDC));
1355 }
1356 }
1357
1358 // If the RHS is a constant, see if we can simplify it.
1359 // for XOR, we prefer to force bits to 1 if they will make a -1.
1360 // if we can't force bits, try to shrink constant
1361 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1362 APInt Expanded = C->getAPIntValue() | (~NewMask);
1363 // if we can expand it to have all bits set, do it
1364 if (Expanded.isAllOnesValue()) {
1365 if (Expanded != C->getAPIntValue()) {
1366 EVT VT = Op.getValueType();
1367 SDValue New = TLO.DAG.getNode(Op.getOpcode(), dl,VT, Op.getOperand(0),
1368 TLO.DAG.getConstant(Expanded, VT));
1369 return TLO.CombineTo(Op, New);
1370 }
1371 // if it already has all the bits set, nothing to change
1372 // but don't shrink either!
1373 } else if (TLO.ShrinkDemandedConstant(Op, NewMask)) {
1374 return true;
1375 }
1376 }
1377
1378 KnownZero = KnownZeroOut;
1379 KnownOne = KnownOneOut;
1380 break;
1381 case ISD::SELECT:
1382 if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero,
1383 KnownOne, TLO, Depth+1))
1384 return true;
1385 if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero2,
1386 KnownOne2, TLO, Depth+1))
1387 return true;
1388 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1389 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1390
1391 // If the operands are constants, see if we can simplify them.
1392 if (TLO.ShrinkDemandedConstant(Op, NewMask))
1393 return true;
1394
1395 // Only known if known in both the LHS and RHS.
1396 KnownOne &= KnownOne2;
1397 KnownZero &= KnownZero2;
1398 break;
1399 case ISD::SELECT_CC:
1400 if (SimplifyDemandedBits(Op.getOperand(3), NewMask, KnownZero,
1401 KnownOne, TLO, Depth+1))
1402 return true;
1403 if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero2,
1404 KnownOne2, TLO, Depth+1))
1405 return true;
1406 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1407 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1408
1409 // If the operands are constants, see if we can simplify them.
1410 if (TLO.ShrinkDemandedConstant(Op, NewMask))
1411 return true;
1412
1413 // Only known if known in both the LHS and RHS.
1414 KnownOne &= KnownOne2;
1415 KnownZero &= KnownZero2;
1416 break;
1417 case ISD::SHL:
1418 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1419 unsigned ShAmt = SA->getZExtValue();
1420 SDValue InOp = Op.getOperand(0);
1421
1422 // If the shift count is an invalid immediate, don't do anything.
1423 if (ShAmt >= BitWidth)
1424 break;
1425
1426 // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
1427 // single shift. We can do this if the bottom bits (which are shifted
1428 // out) are never demanded.
1429 if (InOp.getOpcode() == ISD::SRL &&
1430 isa<ConstantSDNode>(InOp.getOperand(1))) {
1431 if (ShAmt && (NewMask & APInt::getLowBitsSet(BitWidth, ShAmt)) == 0) {
1432 unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue();
1433 unsigned Opc = ISD::SHL;
1434 int Diff = ShAmt-C1;
1435 if (Diff < 0) {
1436 Diff = -Diff;
1437 Opc = ISD::SRL;
1438 }
1439
1440 SDValue NewSA =
1441 TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
1442 EVT VT = Op.getValueType();
1443 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT,
1444 InOp.getOperand(0), NewSA));
1445 }
1446 }
1447
1448 if (SimplifyDemandedBits(InOp, NewMask.lshr(ShAmt),
1449 KnownZero, KnownOne, TLO, Depth+1))
1450 return true;
1451
1452 // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits
1453 // are not demanded. This will likely allow the anyext to be folded away.
1454 if (InOp.getNode()->getOpcode() == ISD::ANY_EXTEND) {
1455 SDValue InnerOp = InOp.getNode()->getOperand(0);
1456 EVT InnerVT = InnerOp.getValueType();
1457 unsigned InnerBits = InnerVT.getSizeInBits();
1458 if (ShAmt < InnerBits && NewMask.lshr(InnerBits) == 0 &&
1459 isTypeDesirableForOp(ISD::SHL, InnerVT)) {
1460 EVT ShTy = getShiftAmountTy(InnerVT);
1461 if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits()))
1462 ShTy = InnerVT;
1463 SDValue NarrowShl =
1464 TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp,
1465 TLO.DAG.getConstant(ShAmt, ShTy));
1466 return
1467 TLO.CombineTo(Op,
1468 TLO.DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(),
1469 NarrowShl));
1470 }
1471 }
1472
1473 KnownZero <<= SA->getZExtValue();
1474 KnownOne <<= SA->getZExtValue();
1475 // low bits known zero.
1476 KnownZero |= APInt::getLowBitsSet(BitWidth, SA->getZExtValue());
1477 }
1478 break;
1479 case ISD::SRL:
1480 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1481 EVT VT = Op.getValueType();
1482 unsigned ShAmt = SA->getZExtValue();
1483 unsigned VTSize = VT.getSizeInBits();
1484 SDValue InOp = Op.getOperand(0);
1485
1486 // If the shift count is an invalid immediate, don't do anything.
1487 if (ShAmt >= BitWidth)
1488 break;
1489
1490 // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
1491 // single shift. We can do this if the top bits (which are shifted out)
1492 // are never demanded.
1493 if (InOp.getOpcode() == ISD::SHL &&
1494 isa<ConstantSDNode>(InOp.getOperand(1))) {
1495 if (ShAmt && (NewMask & APInt::getHighBitsSet(VTSize, ShAmt)) == 0) {
1496 unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue();
1497 unsigned Opc = ISD::SRL;
1498 int Diff = ShAmt-C1;
1499 if (Diff < 0) {
1500 Diff = -Diff;
1501 Opc = ISD::SHL;
1502 }
1503
1504 SDValue NewSA =
1505 TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
1506 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT,
1507 InOp.getOperand(0), NewSA));
1508 }
1509 }
1510
1511 // Compute the new bits that are at the top now.
1512 if (SimplifyDemandedBits(InOp, (NewMask << ShAmt),
1513 KnownZero, KnownOne, TLO, Depth+1))
1514 return true;
1515 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1516 KnownZero = KnownZero.lshr(ShAmt);
1517 KnownOne = KnownOne.lshr(ShAmt);
1518
1519 APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
1520 KnownZero |= HighBits; // High bits known zero.
1521 }
1522 break;
1523 case ISD::SRA:
1524 // If this is an arithmetic shift right and only the low-bit is set, we can
1525 // always convert this into a logical shr, even if the shift amount is
1526 // variable. The low bit of the shift cannot be an input sign bit unless
1527 // the shift amount is >= the size of the datatype, which is undefined.
1528 if (NewMask == 1)
1529 return TLO.CombineTo(Op,
1530 TLO.DAG.getNode(ISD::SRL, dl, Op.getValueType(),
1531 Op.getOperand(0), Op.getOperand(1)));
1532
1533 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1534 EVT VT = Op.getValueType();
1535 unsigned ShAmt = SA->getZExtValue();
1536
1537 // If the shift count is an invalid immediate, don't do anything.
1538 if (ShAmt >= BitWidth)
1539 break;
1540
1541 APInt InDemandedMask = (NewMask << ShAmt);
1542
1543 // If any of the demanded bits are produced by the sign extension, we also
1544 // demand the input sign bit.
1545 APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
1546 if (HighBits.intersects(NewMask))
1547 InDemandedMask |= APInt::getSignBit(VT.getScalarType().getSizeInBits());
1548
1549 if (SimplifyDemandedBits(Op.getOperand(0), InDemandedMask,
1550 KnownZero, KnownOne, TLO, Depth+1))
1551 return true;
1552 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1553 KnownZero = KnownZero.lshr(ShAmt);
1554 KnownOne = KnownOne.lshr(ShAmt);
1555
1556 // Handle the sign bit, adjusted to where it is now in the mask.
1557 APInt SignBit = APInt::getSignBit(BitWidth).lshr(ShAmt);
1558
1559 // If the input sign bit is known to be zero, or if none of the top bits
1560 // are demanded, turn this into an unsigned shift right.
1561 if (KnownZero.intersects(SignBit) || (HighBits & ~NewMask) == HighBits) {
1562 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT,
1563 Op.getOperand(0),
1564 Op.getOperand(1)));
1565 } else if (KnownOne.intersects(SignBit)) { // New bits are known one.
1566 KnownOne |= HighBits;
1567 }
1568 }
1569 break;
1570 case ISD::SIGN_EXTEND_INREG: {
1571 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1572
1573 APInt MsbMask = APInt::getHighBitsSet(BitWidth, 1);
1574 // If we only care about the highest bit, don't bother shifting right.
1575 if (MsbMask == DemandedMask) {
1576 unsigned ShAmt = ExVT.getScalarType().getSizeInBits();
1577 SDValue InOp = Op.getOperand(0);
1578
1579 // Compute the correct shift amount type, which must be getShiftAmountTy
1580 // for scalar types after legalization.
1581 EVT ShiftAmtTy = Op.getValueType();
1582 if (TLO.LegalTypes() && !ShiftAmtTy.isVector())
1583 ShiftAmtTy = getShiftAmountTy(ShiftAmtTy);
1584
1585 SDValue ShiftAmt = TLO.DAG.getConstant(BitWidth - ShAmt, ShiftAmtTy);
1586 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl,
1587 Op.getValueType(), InOp, ShiftAmt));
1588 }
1589
1590 // Sign extension. Compute the demanded bits in the result that are not
1591 // present in the input.
1592 APInt NewBits =
1593 APInt::getHighBitsSet(BitWidth,
1594 BitWidth - ExVT.getScalarType().getSizeInBits());
1595
1596 // If none of the extended bits are demanded, eliminate the sextinreg.
1597 if ((NewBits & NewMask) == 0)
1598 return TLO.CombineTo(Op, Op.getOperand(0));
1599
1600 APInt InSignBit =
1601 APInt::getSignBit(ExVT.getScalarType().getSizeInBits()).zext(BitWidth);
1602 APInt InputDemandedBits =
1603 APInt::getLowBitsSet(BitWidth,
1604 ExVT.getScalarType().getSizeInBits()) &
1605 NewMask;
1606
1607 // Since the sign extended bits are demanded, we know that the sign
1608 // bit is demanded.
1609 InputDemandedBits |= InSignBit;
1610
1611 if (SimplifyDemandedBits(Op.getOperand(0), InputDemandedBits,
1612 KnownZero, KnownOne, TLO, Depth+1))
1613 return true;
1614 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1615
1616 // If the sign bit of the input is known set or clear, then we know the
1617 // top bits of the result.
1618
1619 // If the input sign bit is known zero, convert this into a zero extension.
1620 if (KnownZero.intersects(InSignBit))
1621 return TLO.CombineTo(Op,
1622 TLO.DAG.getZeroExtendInReg(Op.getOperand(0),dl,ExVT));
1623
1624 if (KnownOne.intersects(InSignBit)) { // Input sign bit known set
1625 KnownOne |= NewBits;
1626 KnownZero &= ~NewBits;
1627 } else { // Input sign bit unknown
1628 KnownZero &= ~NewBits;
1629 KnownOne &= ~NewBits;
1630 }
1631 break;
1632 }
1633 case ISD::ZERO_EXTEND: {
1634 unsigned OperandBitWidth =
1635 Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
1636 APInt InMask = NewMask.trunc(OperandBitWidth);
1637
1638 // If none of the top bits are demanded, convert this into an any_extend.
1639 APInt NewBits =
1640 APInt::getHighBitsSet(BitWidth, BitWidth - OperandBitWidth) & NewMask;
1641 if (!NewBits.intersects(NewMask))
1642 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl,
1643 Op.getValueType(),
1644 Op.getOperand(0)));
1645
1646 if (SimplifyDemandedBits(Op.getOperand(0), InMask,
1647 KnownZero, KnownOne, TLO, Depth+1))
1648 return true;
1649 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1650 KnownZero = KnownZero.zext(BitWidth);
1651 KnownOne = KnownOne.zext(BitWidth);
1652 KnownZero |= NewBits;
1653 break;
1654 }
1655 case ISD::SIGN_EXTEND: {
1656 EVT InVT = Op.getOperand(0).getValueType();
1657 unsigned InBits = InVT.getScalarType().getSizeInBits();
1658 APInt InMask = APInt::getLowBitsSet(BitWidth, InBits);
1659 APInt InSignBit = APInt::getBitsSet(BitWidth, InBits - 1, InBits);
1660 APInt NewBits = ~InMask & NewMask;
1661
1662 // If none of the top bits are demanded, convert this into an any_extend.
1663 if (NewBits == 0)
1664 return TLO.CombineTo(Op,TLO.DAG.getNode(ISD::ANY_EXTEND, dl,
1665 Op.getValueType(),
1666 Op.getOperand(0)));
1667
1668 // Since some of the sign extended bits are demanded, we know that the sign
1669 // bit is demanded.
1670 APInt InDemandedBits = InMask & NewMask;
1671 InDemandedBits |= InSignBit;
1672 InDemandedBits = InDemandedBits.trunc(InBits);
1673
1674 if (SimplifyDemandedBits(Op.getOperand(0), InDemandedBits, KnownZero,
1675 KnownOne, TLO, Depth+1))
1676 return true;
1677 KnownZero = KnownZero.zext(BitWidth);
1678 KnownOne = KnownOne.zext(BitWidth);
1679
1680 // If the sign bit is known zero, convert this to a zero extend.
1681 if (KnownZero.intersects(InSignBit))
1682 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND, dl,
1683 Op.getValueType(),
1684 Op.getOperand(0)));
1685
1686 // If the sign bit is known one, the top bits match.
1687 if (KnownOne.intersects(InSignBit)) {
1688 KnownOne |= NewBits;
1689 assert((KnownZero & NewBits) == 0);
1690 } else { // Otherwise, top bits aren't known.
1691 assert((KnownOne & NewBits) == 0);
1692 assert((KnownZero & NewBits) == 0);
1693 }
1694 break;
1695 }
1696 case ISD::ANY_EXTEND: {
1697 unsigned OperandBitWidth =
1698 Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
1699 APInt InMask = NewMask.trunc(OperandBitWidth);
1700 if (SimplifyDemandedBits(Op.getOperand(0), InMask,
1701 KnownZero, KnownOne, TLO, Depth+1))
1702 return true;
1703 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1704 KnownZero = KnownZero.zext(BitWidth);
1705 KnownOne = KnownOne.zext(BitWidth);
1706 break;
1707 }
1708 case ISD::TRUNCATE: {
1709 // Simplify the input, using demanded bit information, and compute the known
1710 // zero/one bits live out.
1711 unsigned OperandBitWidth =
1712 Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
1713 APInt TruncMask = NewMask.zext(OperandBitWidth);
1714 if (SimplifyDemandedBits(Op.getOperand(0), TruncMask,
1715 KnownZero, KnownOne, TLO, Depth+1))
1716 return true;
1717 KnownZero = KnownZero.trunc(BitWidth);
1718 KnownOne = KnownOne.trunc(BitWidth);
1719
1720 // If the input is only used by this truncate, see if we can shrink it based
1721 // on the known demanded bits.
1722 if (Op.getOperand(0).getNode()->hasOneUse()) {
1723 SDValue In = Op.getOperand(0);
1724 switch (In.getOpcode()) {
1725 default: break;
1726 case ISD::SRL:
1727 // Shrink SRL by a constant if none of the high bits shifted in are
1728 // demanded.
1729 if (TLO.LegalTypes() &&
1730 !isTypeDesirableForOp(ISD::SRL, Op.getValueType()))
1731 // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is
1732 // undesirable.
1733 break;
1734 ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(In.getOperand(1));
1735 if (!ShAmt)
1736 break;
1737 SDValue Shift = In.getOperand(1);
1738 if (TLO.LegalTypes()) {
1739 uint64_t ShVal = ShAmt->getZExtValue();
1740 Shift =
1741 TLO.DAG.getConstant(ShVal, getShiftAmountTy(Op.getValueType()));
1742 }
1743
1744 APInt HighBits = APInt::getHighBitsSet(OperandBitWidth,
1745 OperandBitWidth - BitWidth);
1746 HighBits = HighBits.lshr(ShAmt->getZExtValue()).trunc(BitWidth);
1747
1748 if (ShAmt->getZExtValue() < BitWidth && !(HighBits & NewMask)) {
1749 // None of the shifted in bits are needed. Add a truncate of the
1750 // shift input, then shift it.
1751 SDValue NewTrunc = TLO.DAG.getNode(ISD::TRUNCATE, dl,
1752 Op.getValueType(),
1753 In.getOperand(0));
1754 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl,
1755 Op.getValueType(),
1756 NewTrunc,
1757 Shift));
1758 }
1759 break;
1760 }
1761 }
1762
1763 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1764 break;
1765 }
1766 case ISD::AssertZext: {
1767 // AssertZext demands all of the high bits, plus any of the low bits
1768 // demanded by its users.
1769 EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1770 APInt InMask = APInt::getLowBitsSet(BitWidth,
1771 VT.getSizeInBits());
1772 if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | NewMask,
1773 KnownZero, KnownOne, TLO, Depth+1))
1774 return true;
1775 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1776
1777 KnownZero |= ~InMask & NewMask;
1778 break;
1779 }
1780 case ISD::BITCAST:
1781 // If this is an FP->Int bitcast and if the sign bit is the only
1782 // thing demanded, turn this into a FGETSIGN.
1783 if (!TLO.LegalOperations() &&
1784 !Op.getValueType().isVector() &&
1785 !Op.getOperand(0).getValueType().isVector() &&
1786 NewMask == APInt::getSignBit(Op.getValueType().getSizeInBits()) &&
1787 Op.getOperand(0).getValueType().isFloatingPoint()) {
1788 bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, Op.getValueType());
1789 bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32);
1790 if ((OpVTLegal || i32Legal) && Op.getValueType().isSimple()) {
1791 EVT Ty = OpVTLegal ? Op.getValueType() : MVT::i32;
1792 // Make a FGETSIGN + SHL to move the sign bit into the appropriate
1793 // place. We expect the SHL to be eliminated by other optimizations.
1794 SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Op.getOperand(0));
1795 unsigned OpVTSizeInBits = Op.getValueType().getSizeInBits();
1796 if (!OpVTLegal && OpVTSizeInBits > 32)
1797 Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, Op.getValueType(), Sign);
1798 unsigned ShVal = Op.getValueType().getSizeInBits()-1;
1799 SDValue ShAmt = TLO.DAG.getConstant(ShVal, Op.getValueType());
1800 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl,
1801 Op.getValueType(),
1802 Sign, ShAmt));
1803 }
1804 }
1805 break;
1806 case ISD::ADD:
1807 case ISD::MUL:
1808 case ISD::SUB: {
1809 // Add, Sub, and Mul don't demand any bits in positions beyond that
1810 // of the highest bit demanded of them.
1811 APInt LoMask = APInt::getLowBitsSet(BitWidth,
1812 BitWidth - NewMask.countLeadingZeros());
1813 if (SimplifyDemandedBits(Op.getOperand(0), LoMask, KnownZero2,
1814 KnownOne2, TLO, Depth+1))
1815 return true;
1816 if (SimplifyDemandedBits(Op.getOperand(1), LoMask, KnownZero2,
1817 KnownOne2, TLO, Depth+1))
1818 return true;
1819 // See if the operation should be performed at a smaller bit width.
1820 if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
1821 return true;
1822 }
1823 // FALL THROUGH
1824 default:
1825 // Just use ComputeMaskedBits to compute output bits.
1826 TLO.DAG.ComputeMaskedBits(Op, KnownZero, KnownOne, Depth);
1827 break;
1828 }
1829
1830 // If we know the value of all of the demanded bits, return this as a
1831 // constant.
1832 if ((NewMask & (KnownZero|KnownOne)) == NewMask)
1833 return TLO.CombineTo(Op, TLO.DAG.getConstant(KnownOne, Op.getValueType()));
1834
1835 return false;
1836 }
1837
1838 /// computeMaskedBitsForTargetNode - Determine which of the bits specified
1839 /// in Mask are known to be either zero or one and return them in the
1840 /// KnownZero/KnownOne bitsets.
computeMaskedBitsForTargetNode(const SDValue Op,APInt & KnownZero,APInt & KnownOne,const SelectionDAG & DAG,unsigned Depth) const1841 void TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
1842 APInt &KnownZero,
1843 APInt &KnownOne,
1844 const SelectionDAG &DAG,
1845 unsigned Depth) const {
1846 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1847 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1848 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1849 Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1850 "Should use MaskedValueIsZero if you don't know whether Op"
1851 " is a target node!");
1852 KnownZero = KnownOne = APInt(KnownOne.getBitWidth(), 0);
1853 }
1854
1855 /// ComputeNumSignBitsForTargetNode - This method can be implemented by
1856 /// targets that want to expose additional information about sign bits to the
1857 /// DAG Combiner.
ComputeNumSignBitsForTargetNode(SDValue Op,unsigned Depth) const1858 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
1859 unsigned Depth) const {
1860 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1861 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1862 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1863 Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1864 "Should use ComputeNumSignBits if you don't know whether Op"
1865 " is a target node!");
1866 return 1;
1867 }
1868
1869 /// ValueHasExactlyOneBitSet - Test if the given value is known to have exactly
1870 /// one bit set. This differs from ComputeMaskedBits in that it doesn't need to
1871 /// determine which bit is set.
1872 ///
ValueHasExactlyOneBitSet(SDValue Val,const SelectionDAG & DAG)1873 static bool ValueHasExactlyOneBitSet(SDValue Val, const SelectionDAG &DAG) {
1874 // A left-shift of a constant one will have exactly one bit set, because
1875 // shifting the bit off the end is undefined.
1876 if (Val.getOpcode() == ISD::SHL)
1877 if (ConstantSDNode *C =
1878 dyn_cast<ConstantSDNode>(Val.getNode()->getOperand(0)))
1879 if (C->getAPIntValue() == 1)
1880 return true;
1881
1882 // Similarly, a right-shift of a constant sign-bit will have exactly
1883 // one bit set.
1884 if (Val.getOpcode() == ISD::SRL)
1885 if (ConstantSDNode *C =
1886 dyn_cast<ConstantSDNode>(Val.getNode()->getOperand(0)))
1887 if (C->getAPIntValue().isSignBit())
1888 return true;
1889
1890 // More could be done here, though the above checks are enough
1891 // to handle some common cases.
1892
1893 // Fall back to ComputeMaskedBits to catch other known cases.
1894 EVT OpVT = Val.getValueType();
1895 unsigned BitWidth = OpVT.getScalarType().getSizeInBits();
1896 APInt KnownZero, KnownOne;
1897 DAG.ComputeMaskedBits(Val, KnownZero, KnownOne);
1898 return (KnownZero.countPopulation() == BitWidth - 1) &&
1899 (KnownOne.countPopulation() == 1);
1900 }
1901
1902 /// SimplifySetCC - Try to simplify a setcc built with the specified operands
1903 /// and cc. If it is unable to simplify it, return a null SDValue.
1904 SDValue
SimplifySetCC(EVT VT,SDValue N0,SDValue N1,ISD::CondCode Cond,bool foldBooleans,DAGCombinerInfo & DCI,DebugLoc dl) const1905 TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
1906 ISD::CondCode Cond, bool foldBooleans,
1907 DAGCombinerInfo &DCI, DebugLoc dl) const {
1908 SelectionDAG &DAG = DCI.DAG;
1909
1910 // These setcc operations always fold.
1911 switch (Cond) {
1912 default: break;
1913 case ISD::SETFALSE:
1914 case ISD::SETFALSE2: return DAG.getConstant(0, VT);
1915 case ISD::SETTRUE:
1916 case ISD::SETTRUE2: return DAG.getConstant(1, VT);
1917 }
1918
1919 // Ensure that the constant occurs on the RHS, and fold constant
1920 // comparisons.
1921 if (isa<ConstantSDNode>(N0.getNode()))
1922 return DAG.getSetCC(dl, VT, N1, N0, ISD::getSetCCSwappedOperands(Cond));
1923
1924 if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
1925 const APInt &C1 = N1C->getAPIntValue();
1926
1927 // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
1928 // equality comparison, then we're just comparing whether X itself is
1929 // zero.
1930 if (N0.getOpcode() == ISD::SRL && (C1 == 0 || C1 == 1) &&
1931 N0.getOperand(0).getOpcode() == ISD::CTLZ &&
1932 N0.getOperand(1).getOpcode() == ISD::Constant) {
1933 const APInt &ShAmt
1934 = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
1935 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1936 ShAmt == Log2_32(N0.getValueType().getSizeInBits())) {
1937 if ((C1 == 0) == (Cond == ISD::SETEQ)) {
1938 // (srl (ctlz x), 5) == 0 -> X != 0
1939 // (srl (ctlz x), 5) != 1 -> X != 0
1940 Cond = ISD::SETNE;
1941 } else {
1942 // (srl (ctlz x), 5) != 0 -> X == 0
1943 // (srl (ctlz x), 5) == 1 -> X == 0
1944 Cond = ISD::SETEQ;
1945 }
1946 SDValue Zero = DAG.getConstant(0, N0.getValueType());
1947 return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0),
1948 Zero, Cond);
1949 }
1950 }
1951
1952 SDValue CTPOP = N0;
1953 // Look through truncs that don't change the value of a ctpop.
1954 if (N0.hasOneUse() && N0.getOpcode() == ISD::TRUNCATE)
1955 CTPOP = N0.getOperand(0);
1956
1957 if (CTPOP.hasOneUse() && CTPOP.getOpcode() == ISD::CTPOP &&
1958 (N0 == CTPOP || N0.getValueType().getSizeInBits() >
1959 Log2_32_Ceil(CTPOP.getValueType().getSizeInBits()))) {
1960 EVT CTVT = CTPOP.getValueType();
1961 SDValue CTOp = CTPOP.getOperand(0);
1962
1963 // (ctpop x) u< 2 -> (x & x-1) == 0
1964 // (ctpop x) u> 1 -> (x & x-1) != 0
1965 if ((Cond == ISD::SETULT && C1 == 2) || (Cond == ISD::SETUGT && C1 == 1)){
1966 SDValue Sub = DAG.getNode(ISD::SUB, dl, CTVT, CTOp,
1967 DAG.getConstant(1, CTVT));
1968 SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Sub);
1969 ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE;
1970 return DAG.getSetCC(dl, VT, And, DAG.getConstant(0, CTVT), CC);
1971 }
1972
1973 // TODO: (ctpop x) == 1 -> x && (x & x-1) == 0 iff ctpop is illegal.
1974 }
1975
1976 // (zext x) == C --> x == (trunc C)
1977 if (DCI.isBeforeLegalize() && N0->hasOneUse() &&
1978 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
1979 unsigned MinBits = N0.getValueSizeInBits();
1980 SDValue PreZExt;
1981 if (N0->getOpcode() == ISD::ZERO_EXTEND) {
1982 // ZExt
1983 MinBits = N0->getOperand(0).getValueSizeInBits();
1984 PreZExt = N0->getOperand(0);
1985 } else if (N0->getOpcode() == ISD::AND) {
1986 // DAGCombine turns costly ZExts into ANDs
1987 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0->getOperand(1)))
1988 if ((C->getAPIntValue()+1).isPowerOf2()) {
1989 MinBits = C->getAPIntValue().countTrailingOnes();
1990 PreZExt = N0->getOperand(0);
1991 }
1992 } else if (LoadSDNode *LN0 = dyn_cast<LoadSDNode>(N0)) {
1993 // ZEXTLOAD
1994 if (LN0->getExtensionType() == ISD::ZEXTLOAD) {
1995 MinBits = LN0->getMemoryVT().getSizeInBits();
1996 PreZExt = N0;
1997 }
1998 }
1999
2000 // Make sure we're not losing bits from the constant.
2001 if (MinBits < C1.getBitWidth() && MinBits > C1.getActiveBits()) {
2002 EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits);
2003 if (isTypeDesirableForOp(ISD::SETCC, MinVT)) {
2004 // Will get folded away.
2005 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreZExt);
2006 SDValue C = DAG.getConstant(C1.trunc(MinBits), MinVT);
2007 return DAG.getSetCC(dl, VT, Trunc, C, Cond);
2008 }
2009 }
2010 }
2011
2012 // If the LHS is '(and load, const)', the RHS is 0,
2013 // the test is for equality or unsigned, and all 1 bits of the const are
2014 // in the same partial word, see if we can shorten the load.
2015 if (DCI.isBeforeLegalize() &&
2016 N0.getOpcode() == ISD::AND && C1 == 0 &&
2017 N0.getNode()->hasOneUse() &&
2018 isa<LoadSDNode>(N0.getOperand(0)) &&
2019 N0.getOperand(0).getNode()->hasOneUse() &&
2020 isa<ConstantSDNode>(N0.getOperand(1))) {
2021 LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0));
2022 APInt bestMask;
2023 unsigned bestWidth = 0, bestOffset = 0;
2024 if (!Lod->isVolatile() && Lod->isUnindexed()) {
2025 unsigned origWidth = N0.getValueType().getSizeInBits();
2026 unsigned maskWidth = origWidth;
2027 // We can narrow (e.g.) 16-bit extending loads on 32-bit target to
2028 // 8 bits, but have to be careful...
2029 if (Lod->getExtensionType() != ISD::NON_EXTLOAD)
2030 origWidth = Lod->getMemoryVT().getSizeInBits();
2031 const APInt &Mask =
2032 cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
2033 for (unsigned width = origWidth / 2; width>=8; width /= 2) {
2034 APInt newMask = APInt::getLowBitsSet(maskWidth, width);
2035 for (unsigned offset=0; offset<origWidth/width; offset++) {
2036 if ((newMask & Mask) == Mask) {
2037 if (!TD->isLittleEndian())
2038 bestOffset = (origWidth/width - offset - 1) * (width/8);
2039 else
2040 bestOffset = (uint64_t)offset * (width/8);
2041 bestMask = Mask.lshr(offset * (width/8) * 8);
2042 bestWidth = width;
2043 break;
2044 }
2045 newMask = newMask << width;
2046 }
2047 }
2048 }
2049 if (bestWidth) {
2050 EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth);
2051 if (newVT.isRound()) {
2052 EVT PtrType = Lod->getOperand(1).getValueType();
2053 SDValue Ptr = Lod->getBasePtr();
2054 if (bestOffset != 0)
2055 Ptr = DAG.getNode(ISD::ADD, dl, PtrType, Lod->getBasePtr(),
2056 DAG.getConstant(bestOffset, PtrType));
2057 unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset);
2058 SDValue NewLoad = DAG.getLoad(newVT, dl, Lod->getChain(), Ptr,
2059 Lod->getPointerInfo().getWithOffset(bestOffset),
2060 false, false, false, NewAlign);
2061 return DAG.getSetCC(dl, VT,
2062 DAG.getNode(ISD::AND, dl, newVT, NewLoad,
2063 DAG.getConstant(bestMask.trunc(bestWidth),
2064 newVT)),
2065 DAG.getConstant(0LL, newVT), Cond);
2066 }
2067 }
2068 }
2069
2070 // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
2071 if (N0.getOpcode() == ISD::ZERO_EXTEND) {
2072 unsigned InSize = N0.getOperand(0).getValueType().getSizeInBits();
2073
2074 // If the comparison constant has bits in the upper part, the
2075 // zero-extended value could never match.
2076 if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
2077 C1.getBitWidth() - InSize))) {
2078 switch (Cond) {
2079 case ISD::SETUGT:
2080 case ISD::SETUGE:
2081 case ISD::SETEQ: return DAG.getConstant(0, VT);
2082 case ISD::SETULT:
2083 case ISD::SETULE:
2084 case ISD::SETNE: return DAG.getConstant(1, VT);
2085 case ISD::SETGT:
2086 case ISD::SETGE:
2087 // True if the sign bit of C1 is set.
2088 return DAG.getConstant(C1.isNegative(), VT);
2089 case ISD::SETLT:
2090 case ISD::SETLE:
2091 // True if the sign bit of C1 isn't set.
2092 return DAG.getConstant(C1.isNonNegative(), VT);
2093 default:
2094 break;
2095 }
2096 }
2097
2098 // Otherwise, we can perform the comparison with the low bits.
2099 switch (Cond) {
2100 case ISD::SETEQ:
2101 case ISD::SETNE:
2102 case ISD::SETUGT:
2103 case ISD::SETUGE:
2104 case ISD::SETULT:
2105 case ISD::SETULE: {
2106 EVT newVT = N0.getOperand(0).getValueType();
2107 if (DCI.isBeforeLegalizeOps() ||
2108 (isOperationLegal(ISD::SETCC, newVT) &&
2109 getCondCodeAction(Cond, newVT)==Legal))
2110 return DAG.getSetCC(dl, VT, N0.getOperand(0),
2111 DAG.getConstant(C1.trunc(InSize), newVT),
2112 Cond);
2113 break;
2114 }
2115 default:
2116 break; // todo, be more careful with signed comparisons
2117 }
2118 } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
2119 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
2120 EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
2121 unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
2122 EVT ExtDstTy = N0.getValueType();
2123 unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
2124
2125 // If the constant doesn't fit into the number of bits for the source of
2126 // the sign extension, it is impossible for both sides to be equal.
2127 if (C1.getMinSignedBits() > ExtSrcTyBits)
2128 return DAG.getConstant(Cond == ISD::SETNE, VT);
2129
2130 SDValue ZextOp;
2131 EVT Op0Ty = N0.getOperand(0).getValueType();
2132 if (Op0Ty == ExtSrcTy) {
2133 ZextOp = N0.getOperand(0);
2134 } else {
2135 APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
2136 ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0),
2137 DAG.getConstant(Imm, Op0Ty));
2138 }
2139 if (!DCI.isCalledByLegalizer())
2140 DCI.AddToWorklist(ZextOp.getNode());
2141 // Otherwise, make this a use of a zext.
2142 return DAG.getSetCC(dl, VT, ZextOp,
2143 DAG.getConstant(C1 & APInt::getLowBitsSet(
2144 ExtDstTyBits,
2145 ExtSrcTyBits),
2146 ExtDstTy),
2147 Cond);
2148 } else if ((N1C->isNullValue() || N1C->getAPIntValue() == 1) &&
2149 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
2150 // SETCC (SETCC), [0|1], [EQ|NE] -> SETCC
2151 if (N0.getOpcode() == ISD::SETCC &&
2152 isTypeLegal(VT) && VT.bitsLE(N0.getValueType())) {
2153 bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (N1C->getAPIntValue() != 1);
2154 if (TrueWhenTrue)
2155 return DAG.getNode(ISD::TRUNCATE, dl, VT, N0);
2156 // Invert the condition.
2157 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
2158 CC = ISD::getSetCCInverse(CC,
2159 N0.getOperand(0).getValueType().isInteger());
2160 return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC);
2161 }
2162
2163 if ((N0.getOpcode() == ISD::XOR ||
2164 (N0.getOpcode() == ISD::AND &&
2165 N0.getOperand(0).getOpcode() == ISD::XOR &&
2166 N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
2167 isa<ConstantSDNode>(N0.getOperand(1)) &&
2168 cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue() == 1) {
2169 // If this is (X^1) == 0/1, swap the RHS and eliminate the xor. We
2170 // can only do this if the top bits are known zero.
2171 unsigned BitWidth = N0.getValueSizeInBits();
2172 if (DAG.MaskedValueIsZero(N0,
2173 APInt::getHighBitsSet(BitWidth,
2174 BitWidth-1))) {
2175 // Okay, get the un-inverted input value.
2176 SDValue Val;
2177 if (N0.getOpcode() == ISD::XOR)
2178 Val = N0.getOperand(0);
2179 else {
2180 assert(N0.getOpcode() == ISD::AND &&
2181 N0.getOperand(0).getOpcode() == ISD::XOR);
2182 // ((X^1)&1)^1 -> X & 1
2183 Val = DAG.getNode(ISD::AND, dl, N0.getValueType(),
2184 N0.getOperand(0).getOperand(0),
2185 N0.getOperand(1));
2186 }
2187
2188 return DAG.getSetCC(dl, VT, Val, N1,
2189 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
2190 }
2191 } else if (N1C->getAPIntValue() == 1 &&
2192 (VT == MVT::i1 ||
2193 getBooleanContents(false) == ZeroOrOneBooleanContent)) {
2194 SDValue Op0 = N0;
2195 if (Op0.getOpcode() == ISD::TRUNCATE)
2196 Op0 = Op0.getOperand(0);
2197
2198 if ((Op0.getOpcode() == ISD::XOR) &&
2199 Op0.getOperand(0).getOpcode() == ISD::SETCC &&
2200 Op0.getOperand(1).getOpcode() == ISD::SETCC) {
2201 // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc)
2202 Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ;
2203 return DAG.getSetCC(dl, VT, Op0.getOperand(0), Op0.getOperand(1),
2204 Cond);
2205 } else if (Op0.getOpcode() == ISD::AND &&
2206 isa<ConstantSDNode>(Op0.getOperand(1)) &&
2207 cast<ConstantSDNode>(Op0.getOperand(1))->getAPIntValue() == 1) {
2208 // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0.
2209 if (Op0.getValueType().bitsGT(VT))
2210 Op0 = DAG.getNode(ISD::AND, dl, VT,
2211 DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)),
2212 DAG.getConstant(1, VT));
2213 else if (Op0.getValueType().bitsLT(VT))
2214 Op0 = DAG.getNode(ISD::AND, dl, VT,
2215 DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)),
2216 DAG.getConstant(1, VT));
2217
2218 return DAG.getSetCC(dl, VT, Op0,
2219 DAG.getConstant(0, Op0.getValueType()),
2220 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
2221 }
2222 }
2223 }
2224
2225 APInt MinVal, MaxVal;
2226 unsigned OperandBitSize = N1C->getValueType(0).getSizeInBits();
2227 if (ISD::isSignedIntSetCC(Cond)) {
2228 MinVal = APInt::getSignedMinValue(OperandBitSize);
2229 MaxVal = APInt::getSignedMaxValue(OperandBitSize);
2230 } else {
2231 MinVal = APInt::getMinValue(OperandBitSize);
2232 MaxVal = APInt::getMaxValue(OperandBitSize);
2233 }
2234
2235 // Canonicalize GE/LE comparisons to use GT/LT comparisons.
2236 if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
2237 if (C1 == MinVal) return DAG.getConstant(1, VT); // X >= MIN --> true
2238 // X >= C0 --> X > (C0-1)
2239 return DAG.getSetCC(dl, VT, N0,
2240 DAG.getConstant(C1-1, N1.getValueType()),
2241 (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT);
2242 }
2243
2244 if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
2245 if (C1 == MaxVal) return DAG.getConstant(1, VT); // X <= MAX --> true
2246 // X <= C0 --> X < (C0+1)
2247 return DAG.getSetCC(dl, VT, N0,
2248 DAG.getConstant(C1+1, N1.getValueType()),
2249 (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT);
2250 }
2251
2252 if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal)
2253 return DAG.getConstant(0, VT); // X < MIN --> false
2254 if ((Cond == ISD::SETGE || Cond == ISD::SETUGE) && C1 == MinVal)
2255 return DAG.getConstant(1, VT); // X >= MIN --> true
2256 if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal)
2257 return DAG.getConstant(0, VT); // X > MAX --> false
2258 if ((Cond == ISD::SETLE || Cond == ISD::SETULE) && C1 == MaxVal)
2259 return DAG.getConstant(1, VT); // X <= MAX --> true
2260
2261 // Canonicalize setgt X, Min --> setne X, Min
2262 if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MinVal)
2263 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
2264 // Canonicalize setlt X, Max --> setne X, Max
2265 if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MaxVal)
2266 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
2267
2268 // If we have setult X, 1, turn it into seteq X, 0
2269 if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal+1)
2270 return DAG.getSetCC(dl, VT, N0,
2271 DAG.getConstant(MinVal, N0.getValueType()),
2272 ISD::SETEQ);
2273 // If we have setugt X, Max-1, turn it into seteq X, Max
2274 else if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal-1)
2275 return DAG.getSetCC(dl, VT, N0,
2276 DAG.getConstant(MaxVal, N0.getValueType()),
2277 ISD::SETEQ);
2278
2279 // If we have "setcc X, C0", check to see if we can shrink the immediate
2280 // by changing cc.
2281
2282 // SETUGT X, SINTMAX -> SETLT X, 0
2283 if (Cond == ISD::SETUGT &&
2284 C1 == APInt::getSignedMaxValue(OperandBitSize))
2285 return DAG.getSetCC(dl, VT, N0,
2286 DAG.getConstant(0, N1.getValueType()),
2287 ISD::SETLT);
2288
2289 // SETULT X, SINTMIN -> SETGT X, -1
2290 if (Cond == ISD::SETULT &&
2291 C1 == APInt::getSignedMinValue(OperandBitSize)) {
2292 SDValue ConstMinusOne =
2293 DAG.getConstant(APInt::getAllOnesValue(OperandBitSize),
2294 N1.getValueType());
2295 return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT);
2296 }
2297
2298 // Fold bit comparisons when we can.
2299 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
2300 (VT == N0.getValueType() ||
2301 (isTypeLegal(VT) && VT.bitsLE(N0.getValueType()))) &&
2302 N0.getOpcode() == ISD::AND)
2303 if (ConstantSDNode *AndRHS =
2304 dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
2305 EVT ShiftTy = DCI.isBeforeLegalizeOps() ?
2306 getPointerTy() : getShiftAmountTy(N0.getValueType());
2307 if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0 --> (X & 8) >> 3
2308 // Perform the xform if the AND RHS is a single bit.
2309 if (AndRHS->getAPIntValue().isPowerOf2()) {
2310 return DAG.getNode(ISD::TRUNCATE, dl, VT,
2311 DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0,
2312 DAG.getConstant(AndRHS->getAPIntValue().logBase2(), ShiftTy)));
2313 }
2314 } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) {
2315 // (X & 8) == 8 --> (X & 8) >> 3
2316 // Perform the xform if C1 is a single bit.
2317 if (C1.isPowerOf2()) {
2318 return DAG.getNode(ISD::TRUNCATE, dl, VT,
2319 DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0,
2320 DAG.getConstant(C1.logBase2(), ShiftTy)));
2321 }
2322 }
2323 }
2324
2325 if (C1.getMinSignedBits() <= 64 &&
2326 !isLegalICmpImmediate(C1.getSExtValue())) {
2327 // (X & -256) == 256 -> (X >> 8) == 1
2328 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
2329 N0.getOpcode() == ISD::AND && N0.hasOneUse()) {
2330 if (ConstantSDNode *AndRHS =
2331 dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
2332 const APInt &AndRHSC = AndRHS->getAPIntValue();
2333 if ((-AndRHSC).isPowerOf2() && (AndRHSC & C1) == C1) {
2334 unsigned ShiftBits = AndRHSC.countTrailingZeros();
2335 EVT ShiftTy = DCI.isBeforeLegalizeOps() ?
2336 getPointerTy() : getShiftAmountTy(N0.getValueType());
2337 EVT CmpTy = N0.getValueType();
2338 SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0.getOperand(0),
2339 DAG.getConstant(ShiftBits, ShiftTy));
2340 SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), CmpTy);
2341 return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond);
2342 }
2343 }
2344 } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE ||
2345 Cond == ISD::SETULE || Cond == ISD::SETUGT) {
2346 bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT);
2347 // X < 0x100000000 -> (X >> 32) < 1
2348 // X >= 0x100000000 -> (X >> 32) >= 1
2349 // X <= 0x0ffffffff -> (X >> 32) < 1
2350 // X > 0x0ffffffff -> (X >> 32) >= 1
2351 unsigned ShiftBits;
2352 APInt NewC = C1;
2353 ISD::CondCode NewCond = Cond;
2354 if (AdjOne) {
2355 ShiftBits = C1.countTrailingOnes();
2356 NewC = NewC + 1;
2357 NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
2358 } else {
2359 ShiftBits = C1.countTrailingZeros();
2360 }
2361 NewC = NewC.lshr(ShiftBits);
2362 if (ShiftBits && isLegalICmpImmediate(NewC.getSExtValue())) {
2363 EVT ShiftTy = DCI.isBeforeLegalizeOps() ?
2364 getPointerTy() : getShiftAmountTy(N0.getValueType());
2365 EVT CmpTy = N0.getValueType();
2366 SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0,
2367 DAG.getConstant(ShiftBits, ShiftTy));
2368 SDValue CmpRHS = DAG.getConstant(NewC, CmpTy);
2369 return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond);
2370 }
2371 }
2372 }
2373 }
2374
2375 if (isa<ConstantFPSDNode>(N0.getNode())) {
2376 // Constant fold or commute setcc.
2377 SDValue O = DAG.FoldSetCC(VT, N0, N1, Cond, dl);
2378 if (O.getNode()) return O;
2379 } else if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
2380 // If the RHS of an FP comparison is a constant, simplify it away in
2381 // some cases.
2382 if (CFP->getValueAPF().isNaN()) {
2383 // If an operand is known to be a nan, we can fold it.
2384 switch (ISD::getUnorderedFlavor(Cond)) {
2385 default: llvm_unreachable("Unknown flavor!");
2386 case 0: // Known false.
2387 return DAG.getConstant(0, VT);
2388 case 1: // Known true.
2389 return DAG.getConstant(1, VT);
2390 case 2: // Undefined.
2391 return DAG.getUNDEF(VT);
2392 }
2393 }
2394
2395 // Otherwise, we know the RHS is not a NaN. Simplify the node to drop the
2396 // constant if knowing that the operand is non-nan is enough. We prefer to
2397 // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
2398 // materialize 0.0.
2399 if (Cond == ISD::SETO || Cond == ISD::SETUO)
2400 return DAG.getSetCC(dl, VT, N0, N0, Cond);
2401
2402 // If the condition is not legal, see if we can find an equivalent one
2403 // which is legal.
2404 if (!isCondCodeLegal(Cond, N0.getValueType())) {
2405 // If the comparison was an awkward floating-point == or != and one of
2406 // the comparison operands is infinity or negative infinity, convert the
2407 // condition to a less-awkward <= or >=.
2408 if (CFP->getValueAPF().isInfinity()) {
2409 if (CFP->getValueAPF().isNegative()) {
2410 if (Cond == ISD::SETOEQ &&
2411 isCondCodeLegal(ISD::SETOLE, N0.getValueType()))
2412 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLE);
2413 if (Cond == ISD::SETUEQ &&
2414 isCondCodeLegal(ISD::SETOLE, N0.getValueType()))
2415 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULE);
2416 if (Cond == ISD::SETUNE &&
2417 isCondCodeLegal(ISD::SETUGT, N0.getValueType()))
2418 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGT);
2419 if (Cond == ISD::SETONE &&
2420 isCondCodeLegal(ISD::SETUGT, N0.getValueType()))
2421 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGT);
2422 } else {
2423 if (Cond == ISD::SETOEQ &&
2424 isCondCodeLegal(ISD::SETOGE, N0.getValueType()))
2425 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGE);
2426 if (Cond == ISD::SETUEQ &&
2427 isCondCodeLegal(ISD::SETOGE, N0.getValueType()))
2428 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGE);
2429 if (Cond == ISD::SETUNE &&
2430 isCondCodeLegal(ISD::SETULT, N0.getValueType()))
2431 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULT);
2432 if (Cond == ISD::SETONE &&
2433 isCondCodeLegal(ISD::SETULT, N0.getValueType()))
2434 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLT);
2435 }
2436 }
2437 }
2438 }
2439
2440 if (N0 == N1) {
2441 // The sext(setcc()) => setcc() optimization relies on the appropriate
2442 // constant being emitted.
2443 uint64_t EqVal = 0;
2444 switch (getBooleanContents(N0.getValueType().isVector())) {
2445 case UndefinedBooleanContent:
2446 case ZeroOrOneBooleanContent:
2447 EqVal = ISD::isTrueWhenEqual(Cond);
2448 break;
2449 case ZeroOrNegativeOneBooleanContent:
2450 EqVal = ISD::isTrueWhenEqual(Cond) ? -1 : 0;
2451 break;
2452 }
2453
2454 // We can always fold X == X for integer setcc's.
2455 if (N0.getValueType().isInteger()) {
2456 return DAG.getConstant(EqVal, VT);
2457 }
2458 unsigned UOF = ISD::getUnorderedFlavor(Cond);
2459 if (UOF == 2) // FP operators that are undefined on NaNs.
2460 return DAG.getConstant(EqVal, VT);
2461 if (UOF == unsigned(ISD::isTrueWhenEqual(Cond)))
2462 return DAG.getConstant(EqVal, VT);
2463 // Otherwise, we can't fold it. However, we can simplify it to SETUO/SETO
2464 // if it is not already.
2465 ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
2466 if (NewCond != Cond && (DCI.isBeforeLegalizeOps() ||
2467 getCondCodeAction(NewCond, N0.getValueType()) == Legal))
2468 return DAG.getSetCC(dl, VT, N0, N1, NewCond);
2469 }
2470
2471 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
2472 N0.getValueType().isInteger()) {
2473 if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
2474 N0.getOpcode() == ISD::XOR) {
2475 // Simplify (X+Y) == (X+Z) --> Y == Z
2476 if (N0.getOpcode() == N1.getOpcode()) {
2477 if (N0.getOperand(0) == N1.getOperand(0))
2478 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond);
2479 if (N0.getOperand(1) == N1.getOperand(1))
2480 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond);
2481 if (DAG.isCommutativeBinOp(N0.getOpcode())) {
2482 // If X op Y == Y op X, try other combinations.
2483 if (N0.getOperand(0) == N1.getOperand(1))
2484 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0),
2485 Cond);
2486 if (N0.getOperand(1) == N1.getOperand(0))
2487 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1),
2488 Cond);
2489 }
2490 }
2491
2492 // If RHS is a legal immediate value for a compare instruction, we need
2493 // to be careful about increasing register pressure needlessly.
2494 bool LegalRHSImm = false;
2495
2496 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(N1)) {
2497 if (ConstantSDNode *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
2498 // Turn (X+C1) == C2 --> X == C2-C1
2499 if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) {
2500 return DAG.getSetCC(dl, VT, N0.getOperand(0),
2501 DAG.getConstant(RHSC->getAPIntValue()-
2502 LHSR->getAPIntValue(),
2503 N0.getValueType()), Cond);
2504 }
2505
2506 // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
2507 if (N0.getOpcode() == ISD::XOR)
2508 // If we know that all of the inverted bits are zero, don't bother
2509 // performing the inversion.
2510 if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue()))
2511 return
2512 DAG.getSetCC(dl, VT, N0.getOperand(0),
2513 DAG.getConstant(LHSR->getAPIntValue() ^
2514 RHSC->getAPIntValue(),
2515 N0.getValueType()),
2516 Cond);
2517 }
2518
2519 // Turn (C1-X) == C2 --> X == C1-C2
2520 if (ConstantSDNode *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) {
2521 if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) {
2522 return
2523 DAG.getSetCC(dl, VT, N0.getOperand(1),
2524 DAG.getConstant(SUBC->getAPIntValue() -
2525 RHSC->getAPIntValue(),
2526 N0.getValueType()),
2527 Cond);
2528 }
2529 }
2530
2531 // Could RHSC fold directly into a compare?
2532 if (RHSC->getValueType(0).getSizeInBits() <= 64)
2533 LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue());
2534 }
2535
2536 // Simplify (X+Z) == X --> Z == 0
2537 // Don't do this if X is an immediate that can fold into a cmp
2538 // instruction and X+Z has other uses. It could be an induction variable
2539 // chain, and the transform would increase register pressure.
2540 if (!LegalRHSImm || N0.getNode()->hasOneUse()) {
2541 if (N0.getOperand(0) == N1)
2542 return DAG.getSetCC(dl, VT, N0.getOperand(1),
2543 DAG.getConstant(0, N0.getValueType()), Cond);
2544 if (N0.getOperand(1) == N1) {
2545 if (DAG.isCommutativeBinOp(N0.getOpcode()))
2546 return DAG.getSetCC(dl, VT, N0.getOperand(0),
2547 DAG.getConstant(0, N0.getValueType()), Cond);
2548 else if (N0.getNode()->hasOneUse()) {
2549 assert(N0.getOpcode() == ISD::SUB && "Unexpected operation!");
2550 // (Z-X) == X --> Z == X<<1
2551 SDValue SH = DAG.getNode(ISD::SHL, dl, N1.getValueType(), N1,
2552 DAG.getConstant(1, getShiftAmountTy(N1.getValueType())));
2553 if (!DCI.isCalledByLegalizer())
2554 DCI.AddToWorklist(SH.getNode());
2555 return DAG.getSetCC(dl, VT, N0.getOperand(0), SH, Cond);
2556 }
2557 }
2558 }
2559 }
2560
2561 if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
2562 N1.getOpcode() == ISD::XOR) {
2563 // Simplify X == (X+Z) --> Z == 0
2564 if (N1.getOperand(0) == N0) {
2565 return DAG.getSetCC(dl, VT, N1.getOperand(1),
2566 DAG.getConstant(0, N1.getValueType()), Cond);
2567 } else if (N1.getOperand(1) == N0) {
2568 if (DAG.isCommutativeBinOp(N1.getOpcode())) {
2569 return DAG.getSetCC(dl, VT, N1.getOperand(0),
2570 DAG.getConstant(0, N1.getValueType()), Cond);
2571 } else if (N1.getNode()->hasOneUse()) {
2572 assert(N1.getOpcode() == ISD::SUB && "Unexpected operation!");
2573 // X == (Z-X) --> X<<1 == Z
2574 SDValue SH = DAG.getNode(ISD::SHL, dl, N1.getValueType(), N0,
2575 DAG.getConstant(1, getShiftAmountTy(N0.getValueType())));
2576 if (!DCI.isCalledByLegalizer())
2577 DCI.AddToWorklist(SH.getNode());
2578 return DAG.getSetCC(dl, VT, SH, N1.getOperand(0), Cond);
2579 }
2580 }
2581 }
2582
2583 // Simplify x&y == y to x&y != 0 if y has exactly one bit set.
2584 // Note that where y is variable and is known to have at most
2585 // one bit set (for example, if it is z&1) we cannot do this;
2586 // the expressions are not equivalent when y==0.
2587 if (N0.getOpcode() == ISD::AND)
2588 if (N0.getOperand(0) == N1 || N0.getOperand(1) == N1) {
2589 if (ValueHasExactlyOneBitSet(N1, DAG)) {
2590 Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true);
2591 SDValue Zero = DAG.getConstant(0, N1.getValueType());
2592 return DAG.getSetCC(dl, VT, N0, Zero, Cond);
2593 }
2594 }
2595 if (N1.getOpcode() == ISD::AND)
2596 if (N1.getOperand(0) == N0 || N1.getOperand(1) == N0) {
2597 if (ValueHasExactlyOneBitSet(N0, DAG)) {
2598 Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true);
2599 SDValue Zero = DAG.getConstant(0, N0.getValueType());
2600 return DAG.getSetCC(dl, VT, N1, Zero, Cond);
2601 }
2602 }
2603 }
2604
2605 // Fold away ALL boolean setcc's.
2606 SDValue Temp;
2607 if (N0.getValueType() == MVT::i1 && foldBooleans) {
2608 switch (Cond) {
2609 default: llvm_unreachable("Unknown integer setcc!");
2610 case ISD::SETEQ: // X == Y -> ~(X^Y)
2611 Temp = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1);
2612 N0 = DAG.getNOT(dl, Temp, MVT::i1);
2613 if (!DCI.isCalledByLegalizer())
2614 DCI.AddToWorklist(Temp.getNode());
2615 break;
2616 case ISD::SETNE: // X != Y --> (X^Y)
2617 N0 = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1);
2618 break;
2619 case ISD::SETGT: // X >s Y --> X == 0 & Y == 1 --> ~X & Y
2620 case ISD::SETULT: // X <u Y --> X == 0 & Y == 1 --> ~X & Y
2621 Temp = DAG.getNOT(dl, N0, MVT::i1);
2622 N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N1, Temp);
2623 if (!DCI.isCalledByLegalizer())
2624 DCI.AddToWorklist(Temp.getNode());
2625 break;
2626 case ISD::SETLT: // X <s Y --> X == 1 & Y == 0 --> ~Y & X
2627 case ISD::SETUGT: // X >u Y --> X == 1 & Y == 0 --> ~Y & X
2628 Temp = DAG.getNOT(dl, N1, MVT::i1);
2629 N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N0, Temp);
2630 if (!DCI.isCalledByLegalizer())
2631 DCI.AddToWorklist(Temp.getNode());
2632 break;
2633 case ISD::SETULE: // X <=u Y --> X == 0 | Y == 1 --> ~X | Y
2634 case ISD::SETGE: // X >=s Y --> X == 0 | Y == 1 --> ~X | Y
2635 Temp = DAG.getNOT(dl, N0, MVT::i1);
2636 N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N1, Temp);
2637 if (!DCI.isCalledByLegalizer())
2638 DCI.AddToWorklist(Temp.getNode());
2639 break;
2640 case ISD::SETUGE: // X >=u Y --> X == 1 | Y == 0 --> ~Y | X
2641 case ISD::SETLE: // X <=s Y --> X == 1 | Y == 0 --> ~Y | X
2642 Temp = DAG.getNOT(dl, N1, MVT::i1);
2643 N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N0, Temp);
2644 break;
2645 }
2646 if (VT != MVT::i1) {
2647 if (!DCI.isCalledByLegalizer())
2648 DCI.AddToWorklist(N0.getNode());
2649 // FIXME: If running after legalize, we probably can't do this.
2650 N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, N0);
2651 }
2652 return N0;
2653 }
2654
2655 // Could not fold it.
2656 return SDValue();
2657 }
2658
2659 /// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
2660 /// node is a GlobalAddress + offset.
isGAPlusOffset(SDNode * N,const GlobalValue * & GA,int64_t & Offset) const2661 bool TargetLowering::isGAPlusOffset(SDNode *N, const GlobalValue *&GA,
2662 int64_t &Offset) const {
2663 if (isa<GlobalAddressSDNode>(N)) {
2664 GlobalAddressSDNode *GASD = cast<GlobalAddressSDNode>(N);
2665 GA = GASD->getGlobal();
2666 Offset += GASD->getOffset();
2667 return true;
2668 }
2669
2670 if (N->getOpcode() == ISD::ADD) {
2671 SDValue N1 = N->getOperand(0);
2672 SDValue N2 = N->getOperand(1);
2673 if (isGAPlusOffset(N1.getNode(), GA, Offset)) {
2674 ConstantSDNode *V = dyn_cast<ConstantSDNode>(N2);
2675 if (V) {
2676 Offset += V->getSExtValue();
2677 return true;
2678 }
2679 } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) {
2680 ConstantSDNode *V = dyn_cast<ConstantSDNode>(N1);
2681 if (V) {
2682 Offset += V->getSExtValue();
2683 return true;
2684 }
2685 }
2686 }
2687
2688 return false;
2689 }
2690
2691
2692 SDValue TargetLowering::
PerformDAGCombine(SDNode * N,DAGCombinerInfo & DCI) const2693 PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const {
2694 // Default implementation: no optimization.
2695 return SDValue();
2696 }
2697
2698 //===----------------------------------------------------------------------===//
2699 // Inline Assembler Implementation Methods
2700 //===----------------------------------------------------------------------===//
2701
2702
2703 TargetLowering::ConstraintType
getConstraintType(const std::string & Constraint) const2704 TargetLowering::getConstraintType(const std::string &Constraint) const {
2705 if (Constraint.size() == 1) {
2706 switch (Constraint[0]) {
2707 default: break;
2708 case 'r': return C_RegisterClass;
2709 case 'm': // memory
2710 case 'o': // offsetable
2711 case 'V': // not offsetable
2712 return C_Memory;
2713 case 'i': // Simple Integer or Relocatable Constant
2714 case 'n': // Simple Integer
2715 case 'E': // Floating Point Constant
2716 case 'F': // Floating Point Constant
2717 case 's': // Relocatable Constant
2718 case 'p': // Address.
2719 case 'X': // Allow ANY value.
2720 case 'I': // Target registers.
2721 case 'J':
2722 case 'K':
2723 case 'L':
2724 case 'M':
2725 case 'N':
2726 case 'O':
2727 case 'P':
2728 case '<':
2729 case '>':
2730 return C_Other;
2731 }
2732 }
2733
2734 if (Constraint.size() > 1 && Constraint[0] == '{' &&
2735 Constraint[Constraint.size()-1] == '}')
2736 return C_Register;
2737 return C_Unknown;
2738 }
2739
2740 /// LowerXConstraint - try to replace an X constraint, which matches anything,
2741 /// with another that has more specific requirements based on the type of the
2742 /// corresponding operand.
LowerXConstraint(EVT ConstraintVT) const2743 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const{
2744 if (ConstraintVT.isInteger())
2745 return "r";
2746 if (ConstraintVT.isFloatingPoint())
2747 return "f"; // works for many targets
2748 return 0;
2749 }
2750
2751 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
2752 /// vector. If it is invalid, don't add anything to Ops.
LowerAsmOperandForConstraint(SDValue Op,std::string & Constraint,std::vector<SDValue> & Ops,SelectionDAG & DAG) const2753 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
2754 std::string &Constraint,
2755 std::vector<SDValue> &Ops,
2756 SelectionDAG &DAG) const {
2757
2758 if (Constraint.length() > 1) return;
2759
2760 char ConstraintLetter = Constraint[0];
2761 switch (ConstraintLetter) {
2762 default: break;
2763 case 'X': // Allows any operand; labels (basic block) use this.
2764 if (Op.getOpcode() == ISD::BasicBlock) {
2765 Ops.push_back(Op);
2766 return;
2767 }
2768 // fall through
2769 case 'i': // Simple Integer or Relocatable Constant
2770 case 'n': // Simple Integer
2771 case 's': { // Relocatable Constant
2772 // These operands are interested in values of the form (GV+C), where C may
2773 // be folded in as an offset of GV, or it may be explicitly added. Also, it
2774 // is possible and fine if either GV or C are missing.
2775 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
2776 GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
2777
2778 // If we have "(add GV, C)", pull out GV/C
2779 if (Op.getOpcode() == ISD::ADD) {
2780 C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
2781 GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
2782 if (C == 0 || GA == 0) {
2783 C = dyn_cast<ConstantSDNode>(Op.getOperand(0));
2784 GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(1));
2785 }
2786 if (C == 0 || GA == 0)
2787 C = 0, GA = 0;
2788 }
2789
2790 // If we find a valid operand, map to the TargetXXX version so that the
2791 // value itself doesn't get selected.
2792 if (GA) { // Either &GV or &GV+C
2793 if (ConstraintLetter != 'n') {
2794 int64_t Offs = GA->getOffset();
2795 if (C) Offs += C->getZExtValue();
2796 Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(),
2797 C ? C->getDebugLoc() : DebugLoc(),
2798 Op.getValueType(), Offs));
2799 return;
2800 }
2801 }
2802 if (C) { // just C, no GV.
2803 // Simple constants are not allowed for 's'.
2804 if (ConstraintLetter != 's') {
2805 // gcc prints these as sign extended. Sign extend value to 64 bits
2806 // now; without this it would get ZExt'd later in
2807 // ScheduleDAGSDNodes::EmitNode, which is very generic.
2808 Ops.push_back(DAG.getTargetConstant(C->getAPIntValue().getSExtValue(),
2809 MVT::i64));
2810 return;
2811 }
2812 }
2813 break;
2814 }
2815 }
2816 }
2817
2818 std::pair<unsigned, const TargetRegisterClass*> TargetLowering::
getRegForInlineAsmConstraint(const std::string & Constraint,EVT VT) const2819 getRegForInlineAsmConstraint(const std::string &Constraint,
2820 EVT VT) const {
2821 if (Constraint[0] != '{')
2822 return std::make_pair(0u, static_cast<TargetRegisterClass*>(0));
2823 assert(*(Constraint.end()-1) == '}' && "Not a brace enclosed constraint?");
2824
2825 // Remove the braces from around the name.
2826 StringRef RegName(Constraint.data()+1, Constraint.size()-2);
2827
2828 // Figure out which register class contains this reg.
2829 const TargetRegisterInfo *RI = TM.getRegisterInfo();
2830 for (TargetRegisterInfo::regclass_iterator RCI = RI->regclass_begin(),
2831 E = RI->regclass_end(); RCI != E; ++RCI) {
2832 const TargetRegisterClass *RC = *RCI;
2833
2834 // If none of the value types for this register class are valid, we
2835 // can't use it. For example, 64-bit reg classes on 32-bit targets.
2836 if (!isLegalRC(RC))
2837 continue;
2838
2839 for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
2840 I != E; ++I) {
2841 if (RegName.equals_lower(RI->getName(*I)))
2842 return std::make_pair(*I, RC);
2843 }
2844 }
2845
2846 return std::make_pair(0u, static_cast<const TargetRegisterClass*>(0));
2847 }
2848
2849 //===----------------------------------------------------------------------===//
2850 // Constraint Selection.
2851
2852 /// isMatchingInputConstraint - Return true of this is an input operand that is
2853 /// a matching constraint like "4".
isMatchingInputConstraint() const2854 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const {
2855 assert(!ConstraintCode.empty() && "No known constraint!");
2856 return isdigit(ConstraintCode[0]);
2857 }
2858
2859 /// getMatchedOperand - If this is an input matching constraint, this method
2860 /// returns the output operand it matches.
getMatchedOperand() const2861 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
2862 assert(!ConstraintCode.empty() && "No known constraint!");
2863 return atoi(ConstraintCode.c_str());
2864 }
2865
2866
2867 /// ParseConstraints - Split up the constraint string from the inline
2868 /// assembly value into the specific constraints and their prefixes,
2869 /// and also tie in the associated operand values.
2870 /// If this returns an empty vector, and if the constraint string itself
2871 /// isn't empty, there was an error parsing.
ParseConstraints(ImmutableCallSite CS) const2872 TargetLowering::AsmOperandInfoVector TargetLowering::ParseConstraints(
2873 ImmutableCallSite CS) const {
2874 /// ConstraintOperands - Information about all of the constraints.
2875 AsmOperandInfoVector ConstraintOperands;
2876 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
2877 unsigned maCount = 0; // Largest number of multiple alternative constraints.
2878
2879 // Do a prepass over the constraints, canonicalizing them, and building up the
2880 // ConstraintOperands list.
2881 InlineAsm::ConstraintInfoVector
2882 ConstraintInfos = IA->ParseConstraints();
2883
2884 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst.
2885 unsigned ResNo = 0; // ResNo - The result number of the next output.
2886
2887 for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) {
2888 ConstraintOperands.push_back(AsmOperandInfo(ConstraintInfos[i]));
2889 AsmOperandInfo &OpInfo = ConstraintOperands.back();
2890
2891 // Update multiple alternative constraint count.
2892 if (OpInfo.multipleAlternatives.size() > maCount)
2893 maCount = OpInfo.multipleAlternatives.size();
2894
2895 OpInfo.ConstraintVT = MVT::Other;
2896
2897 // Compute the value type for each operand.
2898 switch (OpInfo.Type) {
2899 case InlineAsm::isOutput:
2900 // Indirect outputs just consume an argument.
2901 if (OpInfo.isIndirect) {
2902 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
2903 break;
2904 }
2905
2906 // The return value of the call is this value. As such, there is no
2907 // corresponding argument.
2908 assert(!CS.getType()->isVoidTy() &&
2909 "Bad inline asm!");
2910 if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
2911 OpInfo.ConstraintVT = getValueType(STy->getElementType(ResNo));
2912 } else {
2913 assert(ResNo == 0 && "Asm only has one result!");
2914 OpInfo.ConstraintVT = getValueType(CS.getType());
2915 }
2916 ++ResNo;
2917 break;
2918 case InlineAsm::isInput:
2919 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
2920 break;
2921 case InlineAsm::isClobber:
2922 // Nothing to do.
2923 break;
2924 }
2925
2926 if (OpInfo.CallOperandVal) {
2927 llvm::Type *OpTy = OpInfo.CallOperandVal->getType();
2928 if (OpInfo.isIndirect) {
2929 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
2930 if (!PtrTy)
2931 report_fatal_error("Indirect operand for inline asm not a pointer!");
2932 OpTy = PtrTy->getElementType();
2933 }
2934
2935 // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
2936 if (StructType *STy = dyn_cast<StructType>(OpTy))
2937 if (STy->getNumElements() == 1)
2938 OpTy = STy->getElementType(0);
2939
2940 // If OpTy is not a single value, it may be a struct/union that we
2941 // can tile with integers.
2942 if (!OpTy->isSingleValueType() && OpTy->isSized()) {
2943 unsigned BitSize = TD->getTypeSizeInBits(OpTy);
2944 switch (BitSize) {
2945 default: break;
2946 case 1:
2947 case 8:
2948 case 16:
2949 case 32:
2950 case 64:
2951 case 128:
2952 OpInfo.ConstraintVT =
2953 EVT::getEVT(IntegerType::get(OpTy->getContext(), BitSize), true);
2954 break;
2955 }
2956 } else if (dyn_cast<PointerType>(OpTy)) {
2957 OpInfo.ConstraintVT = MVT::getIntegerVT(8*TD->getPointerSize());
2958 } else {
2959 OpInfo.ConstraintVT = EVT::getEVT(OpTy, true);
2960 }
2961 }
2962 }
2963
2964 // If we have multiple alternative constraints, select the best alternative.
2965 if (ConstraintInfos.size()) {
2966 if (maCount) {
2967 unsigned bestMAIndex = 0;
2968 int bestWeight = -1;
2969 // weight: -1 = invalid match, and 0 = so-so match to 5 = good match.
2970 int weight = -1;
2971 unsigned maIndex;
2972 // Compute the sums of the weights for each alternative, keeping track
2973 // of the best (highest weight) one so far.
2974 for (maIndex = 0; maIndex < maCount; ++maIndex) {
2975 int weightSum = 0;
2976 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
2977 cIndex != eIndex; ++cIndex) {
2978 AsmOperandInfo& OpInfo = ConstraintOperands[cIndex];
2979 if (OpInfo.Type == InlineAsm::isClobber)
2980 continue;
2981
2982 // If this is an output operand with a matching input operand,
2983 // look up the matching input. If their types mismatch, e.g. one
2984 // is an integer, the other is floating point, or their sizes are
2985 // different, flag it as an maCantMatch.
2986 if (OpInfo.hasMatchingInput()) {
2987 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
2988 if (OpInfo.ConstraintVT != Input.ConstraintVT) {
2989 if ((OpInfo.ConstraintVT.isInteger() !=
2990 Input.ConstraintVT.isInteger()) ||
2991 (OpInfo.ConstraintVT.getSizeInBits() !=
2992 Input.ConstraintVT.getSizeInBits())) {
2993 weightSum = -1; // Can't match.
2994 break;
2995 }
2996 }
2997 }
2998 weight = getMultipleConstraintMatchWeight(OpInfo, maIndex);
2999 if (weight == -1) {
3000 weightSum = -1;
3001 break;
3002 }
3003 weightSum += weight;
3004 }
3005 // Update best.
3006 if (weightSum > bestWeight) {
3007 bestWeight = weightSum;
3008 bestMAIndex = maIndex;
3009 }
3010 }
3011
3012 // Now select chosen alternative in each constraint.
3013 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
3014 cIndex != eIndex; ++cIndex) {
3015 AsmOperandInfo& cInfo = ConstraintOperands[cIndex];
3016 if (cInfo.Type == InlineAsm::isClobber)
3017 continue;
3018 cInfo.selectAlternative(bestMAIndex);
3019 }
3020 }
3021 }
3022
3023 // Check and hook up tied operands, choose constraint code to use.
3024 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
3025 cIndex != eIndex; ++cIndex) {
3026 AsmOperandInfo& OpInfo = ConstraintOperands[cIndex];
3027
3028 // If this is an output operand with a matching input operand, look up the
3029 // matching input. If their types mismatch, e.g. one is an integer, the
3030 // other is floating point, or their sizes are different, flag it as an
3031 // error.
3032 if (OpInfo.hasMatchingInput()) {
3033 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
3034
3035 if (OpInfo.ConstraintVT != Input.ConstraintVT) {
3036 std::pair<unsigned, const TargetRegisterClass*> MatchRC =
3037 getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
3038 OpInfo.ConstraintVT);
3039 std::pair<unsigned, const TargetRegisterClass*> InputRC =
3040 getRegForInlineAsmConstraint(Input.ConstraintCode,
3041 Input.ConstraintVT);
3042 if ((OpInfo.ConstraintVT.isInteger() !=
3043 Input.ConstraintVT.isInteger()) ||
3044 (MatchRC.second != InputRC.second)) {
3045 report_fatal_error("Unsupported asm: input constraint"
3046 " with a matching output constraint of"
3047 " incompatible type!");
3048 }
3049 }
3050
3051 }
3052 }
3053
3054 return ConstraintOperands;
3055 }
3056
3057
3058 /// getConstraintGenerality - Return an integer indicating how general CT
3059 /// is.
getConstraintGenerality(TargetLowering::ConstraintType CT)3060 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
3061 switch (CT) {
3062 case TargetLowering::C_Other:
3063 case TargetLowering::C_Unknown:
3064 return 0;
3065 case TargetLowering::C_Register:
3066 return 1;
3067 case TargetLowering::C_RegisterClass:
3068 return 2;
3069 case TargetLowering::C_Memory:
3070 return 3;
3071 }
3072 llvm_unreachable("Invalid constraint type");
3073 }
3074
3075 /// Examine constraint type and operand type and determine a weight value.
3076 /// This object must already have been set up with the operand type
3077 /// and the current alternative constraint selected.
3078 TargetLowering::ConstraintWeight
getMultipleConstraintMatchWeight(AsmOperandInfo & info,int maIndex) const3079 TargetLowering::getMultipleConstraintMatchWeight(
3080 AsmOperandInfo &info, int maIndex) const {
3081 InlineAsm::ConstraintCodeVector *rCodes;
3082 if (maIndex >= (int)info.multipleAlternatives.size())
3083 rCodes = &info.Codes;
3084 else
3085 rCodes = &info.multipleAlternatives[maIndex].Codes;
3086 ConstraintWeight BestWeight = CW_Invalid;
3087
3088 // Loop over the options, keeping track of the most general one.
3089 for (unsigned i = 0, e = rCodes->size(); i != e; ++i) {
3090 ConstraintWeight weight =
3091 getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str());
3092 if (weight > BestWeight)
3093 BestWeight = weight;
3094 }
3095
3096 return BestWeight;
3097 }
3098
3099 /// Examine constraint type and operand type and determine a weight value.
3100 /// This object must already have been set up with the operand type
3101 /// and the current alternative constraint selected.
3102 TargetLowering::ConstraintWeight
getSingleConstraintMatchWeight(AsmOperandInfo & info,const char * constraint) const3103 TargetLowering::getSingleConstraintMatchWeight(
3104 AsmOperandInfo &info, const char *constraint) const {
3105 ConstraintWeight weight = CW_Invalid;
3106 Value *CallOperandVal = info.CallOperandVal;
3107 // If we don't have a value, we can't do a match,
3108 // but allow it at the lowest weight.
3109 if (CallOperandVal == NULL)
3110 return CW_Default;
3111 // Look at the constraint type.
3112 switch (*constraint) {
3113 case 'i': // immediate integer.
3114 case 'n': // immediate integer with a known value.
3115 if (isa<ConstantInt>(CallOperandVal))
3116 weight = CW_Constant;
3117 break;
3118 case 's': // non-explicit intregal immediate.
3119 if (isa<GlobalValue>(CallOperandVal))
3120 weight = CW_Constant;
3121 break;
3122 case 'E': // immediate float if host format.
3123 case 'F': // immediate float.
3124 if (isa<ConstantFP>(CallOperandVal))
3125 weight = CW_Constant;
3126 break;
3127 case '<': // memory operand with autodecrement.
3128 case '>': // memory operand with autoincrement.
3129 case 'm': // memory operand.
3130 case 'o': // offsettable memory operand
3131 case 'V': // non-offsettable memory operand
3132 weight = CW_Memory;
3133 break;
3134 case 'r': // general register.
3135 case 'g': // general register, memory operand or immediate integer.
3136 // note: Clang converts "g" to "imr".
3137 if (CallOperandVal->getType()->isIntegerTy())
3138 weight = CW_Register;
3139 break;
3140 case 'X': // any operand.
3141 default:
3142 weight = CW_Default;
3143 break;
3144 }
3145 return weight;
3146 }
3147
3148 /// ChooseConstraint - If there are multiple different constraints that we
3149 /// could pick for this operand (e.g. "imr") try to pick the 'best' one.
3150 /// This is somewhat tricky: constraints fall into four classes:
3151 /// Other -> immediates and magic values
3152 /// Register -> one specific register
3153 /// RegisterClass -> a group of regs
3154 /// Memory -> memory
3155 /// Ideally, we would pick the most specific constraint possible: if we have
3156 /// something that fits into a register, we would pick it. The problem here
3157 /// is that if we have something that could either be in a register or in
3158 /// memory that use of the register could cause selection of *other*
3159 /// operands to fail: they might only succeed if we pick memory. Because of
3160 /// this the heuristic we use is:
3161 ///
3162 /// 1) If there is an 'other' constraint, and if the operand is valid for
3163 /// that constraint, use it. This makes us take advantage of 'i'
3164 /// constraints when available.
3165 /// 2) Otherwise, pick the most general constraint present. This prefers
3166 /// 'm' over 'r', for example.
3167 ///
ChooseConstraint(TargetLowering::AsmOperandInfo & OpInfo,const TargetLowering & TLI,SDValue Op,SelectionDAG * DAG)3168 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
3169 const TargetLowering &TLI,
3170 SDValue Op, SelectionDAG *DAG) {
3171 assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options");
3172 unsigned BestIdx = 0;
3173 TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
3174 int BestGenerality = -1;
3175
3176 // Loop over the options, keeping track of the most general one.
3177 for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
3178 TargetLowering::ConstraintType CType =
3179 TLI.getConstraintType(OpInfo.Codes[i]);
3180
3181 // If this is an 'other' constraint, see if the operand is valid for it.
3182 // For example, on X86 we might have an 'rI' constraint. If the operand
3183 // is an integer in the range [0..31] we want to use I (saving a load
3184 // of a register), otherwise we must use 'r'.
3185 if (CType == TargetLowering::C_Other && Op.getNode()) {
3186 assert(OpInfo.Codes[i].size() == 1 &&
3187 "Unhandled multi-letter 'other' constraint");
3188 std::vector<SDValue> ResultOps;
3189 TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i],
3190 ResultOps, *DAG);
3191 if (!ResultOps.empty()) {
3192 BestType = CType;
3193 BestIdx = i;
3194 break;
3195 }
3196 }
3197
3198 // Things with matching constraints can only be registers, per gcc
3199 // documentation. This mainly affects "g" constraints.
3200 if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput())
3201 continue;
3202
3203 // This constraint letter is more general than the previous one, use it.
3204 int Generality = getConstraintGenerality(CType);
3205 if (Generality > BestGenerality) {
3206 BestType = CType;
3207 BestIdx = i;
3208 BestGenerality = Generality;
3209 }
3210 }
3211
3212 OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
3213 OpInfo.ConstraintType = BestType;
3214 }
3215
3216 /// ComputeConstraintToUse - Determines the constraint code and constraint
3217 /// type to use for the specific AsmOperandInfo, setting
3218 /// OpInfo.ConstraintCode and OpInfo.ConstraintType.
ComputeConstraintToUse(AsmOperandInfo & OpInfo,SDValue Op,SelectionDAG * DAG) const3219 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
3220 SDValue Op,
3221 SelectionDAG *DAG) const {
3222 assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
3223
3224 // Single-letter constraints ('r') are very common.
3225 if (OpInfo.Codes.size() == 1) {
3226 OpInfo.ConstraintCode = OpInfo.Codes[0];
3227 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
3228 } else {
3229 ChooseConstraint(OpInfo, *this, Op, DAG);
3230 }
3231
3232 // 'X' matches anything.
3233 if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
3234 // Labels and constants are handled elsewhere ('X' is the only thing
3235 // that matches labels). For Functions, the type here is the type of
3236 // the result, which is not what we want to look at; leave them alone.
3237 Value *v = OpInfo.CallOperandVal;
3238 if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) {
3239 OpInfo.CallOperandVal = v;
3240 return;
3241 }
3242
3243 // Otherwise, try to resolve it to something we know about by looking at
3244 // the actual operand type.
3245 if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
3246 OpInfo.ConstraintCode = Repl;
3247 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
3248 }
3249 }
3250 }
3251
3252 //===----------------------------------------------------------------------===//
3253 // Loop Strength Reduction hooks
3254 //===----------------------------------------------------------------------===//
3255
3256 /// isLegalAddressingMode - Return true if the addressing mode represented
3257 /// by AM is legal for this target, for a load/store of the specified type.
isLegalAddressingMode(const AddrMode & AM,Type * Ty) const3258 bool TargetLowering::isLegalAddressingMode(const AddrMode &AM,
3259 Type *Ty) const {
3260 // The default implementation of this implements a conservative RISCy, r+r and
3261 // r+i addr mode.
3262
3263 // Allows a sign-extended 16-bit immediate field.
3264 if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
3265 return false;
3266
3267 // No global is ever allowed as a base.
3268 if (AM.BaseGV)
3269 return false;
3270
3271 // Only support r+r,
3272 switch (AM.Scale) {
3273 case 0: // "r+i" or just "i", depending on HasBaseReg.
3274 break;
3275 case 1:
3276 if (AM.HasBaseReg && AM.BaseOffs) // "r+r+i" is not allowed.
3277 return false;
3278 // Otherwise we have r+r or r+i.
3279 break;
3280 case 2:
3281 if (AM.HasBaseReg || AM.BaseOffs) // 2*r+r or 2*r+i is not allowed.
3282 return false;
3283 // Allow 2*r as r+r.
3284 break;
3285 }
3286
3287 return true;
3288 }
3289
3290 /// BuildExactDiv - Given an exact SDIV by a constant, create a multiplication
3291 /// with the multiplicative inverse of the constant.
BuildExactSDIV(SDValue Op1,SDValue Op2,DebugLoc dl,SelectionDAG & DAG) const3292 SDValue TargetLowering::BuildExactSDIV(SDValue Op1, SDValue Op2, DebugLoc dl,
3293 SelectionDAG &DAG) const {
3294 ConstantSDNode *C = cast<ConstantSDNode>(Op2);
3295 APInt d = C->getAPIntValue();
3296 assert(d != 0 && "Division by zero!");
3297
3298 // Shift the value upfront if it is even, so the LSB is one.
3299 unsigned ShAmt = d.countTrailingZeros();
3300 if (ShAmt) {
3301 // TODO: For UDIV use SRL instead of SRA.
3302 SDValue Amt = DAG.getConstant(ShAmt, getShiftAmountTy(Op1.getValueType()));
3303 Op1 = DAG.getNode(ISD::SRA, dl, Op1.getValueType(), Op1, Amt);
3304 d = d.ashr(ShAmt);
3305 }
3306
3307 // Calculate the multiplicative inverse, using Newton's method.
3308 APInt t, xn = d;
3309 while ((t = d*xn) != 1)
3310 xn *= APInt(d.getBitWidth(), 2) - t;
3311
3312 Op2 = DAG.getConstant(xn, Op1.getValueType());
3313 return DAG.getNode(ISD::MUL, dl, Op1.getValueType(), Op1, Op2);
3314 }
3315
3316 /// BuildSDIVSequence - Given an ISD::SDIV node expressing a divide by constant,
3317 /// return a DAG expression to select that will generate the same value by
3318 /// multiplying by a magic number. See:
3319 /// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
3320 SDValue TargetLowering::
BuildSDIV(SDNode * N,SelectionDAG & DAG,bool IsAfterLegalization,std::vector<SDNode * > * Created) const3321 BuildSDIV(SDNode *N, SelectionDAG &DAG, bool IsAfterLegalization,
3322 std::vector<SDNode*>* Created) const {
3323 EVT VT = N->getValueType(0);
3324 DebugLoc dl= N->getDebugLoc();
3325
3326 // Check to see if we can do this.
3327 // FIXME: We should be more aggressive here.
3328 if (!isTypeLegal(VT))
3329 return SDValue();
3330
3331 APInt d = cast<ConstantSDNode>(N->getOperand(1))->getAPIntValue();
3332 APInt::ms magics = d.magic();
3333
3334 // Multiply the numerator (operand 0) by the magic value
3335 // FIXME: We should support doing a MUL in a wider type
3336 SDValue Q;
3337 if (IsAfterLegalization ? isOperationLegal(ISD::MULHS, VT) :
3338 isOperationLegalOrCustom(ISD::MULHS, VT))
3339 Q = DAG.getNode(ISD::MULHS, dl, VT, N->getOperand(0),
3340 DAG.getConstant(magics.m, VT));
3341 else if (IsAfterLegalization ? isOperationLegal(ISD::SMUL_LOHI, VT) :
3342 isOperationLegalOrCustom(ISD::SMUL_LOHI, VT))
3343 Q = SDValue(DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT),
3344 N->getOperand(0),
3345 DAG.getConstant(magics.m, VT)).getNode(), 1);
3346 else
3347 return SDValue(); // No mulhs or equvialent
3348 // If d > 0 and m < 0, add the numerator
3349 if (d.isStrictlyPositive() && magics.m.isNegative()) {
3350 Q = DAG.getNode(ISD::ADD, dl, VT, Q, N->getOperand(0));
3351 if (Created)
3352 Created->push_back(Q.getNode());
3353 }
3354 // If d < 0 and m > 0, subtract the numerator.
3355 if (d.isNegative() && magics.m.isStrictlyPositive()) {
3356 Q = DAG.getNode(ISD::SUB, dl, VT, Q, N->getOperand(0));
3357 if (Created)
3358 Created->push_back(Q.getNode());
3359 }
3360 // Shift right algebraic if shift value is nonzero
3361 if (magics.s > 0) {
3362 Q = DAG.getNode(ISD::SRA, dl, VT, Q,
3363 DAG.getConstant(magics.s, getShiftAmountTy(Q.getValueType())));
3364 if (Created)
3365 Created->push_back(Q.getNode());
3366 }
3367 // Extract the sign bit and add it to the quotient
3368 SDValue T =
3369 DAG.getNode(ISD::SRL, dl, VT, Q, DAG.getConstant(VT.getSizeInBits()-1,
3370 getShiftAmountTy(Q.getValueType())));
3371 if (Created)
3372 Created->push_back(T.getNode());
3373 return DAG.getNode(ISD::ADD, dl, VT, Q, T);
3374 }
3375
3376 /// BuildUDIVSequence - Given an ISD::UDIV node expressing a divide by constant,
3377 /// return a DAG expression to select that will generate the same value by
3378 /// multiplying by a magic number. See:
3379 /// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
3380 SDValue TargetLowering::
BuildUDIV(SDNode * N,SelectionDAG & DAG,bool IsAfterLegalization,std::vector<SDNode * > * Created) const3381 BuildUDIV(SDNode *N, SelectionDAG &DAG, bool IsAfterLegalization,
3382 std::vector<SDNode*>* Created) const {
3383 EVT VT = N->getValueType(0);
3384 DebugLoc dl = N->getDebugLoc();
3385
3386 // Check to see if we can do this.
3387 // FIXME: We should be more aggressive here.
3388 if (!isTypeLegal(VT))
3389 return SDValue();
3390
3391 // FIXME: We should use a narrower constant when the upper
3392 // bits are known to be zero.
3393 const APInt &N1C = cast<ConstantSDNode>(N->getOperand(1))->getAPIntValue();
3394 APInt::mu magics = N1C.magicu();
3395
3396 SDValue Q = N->getOperand(0);
3397
3398 // If the divisor is even, we can avoid using the expensive fixup by shifting
3399 // the divided value upfront.
3400 if (magics.a != 0 && !N1C[0]) {
3401 unsigned Shift = N1C.countTrailingZeros();
3402 Q = DAG.getNode(ISD::SRL, dl, VT, Q,
3403 DAG.getConstant(Shift, getShiftAmountTy(Q.getValueType())));
3404 if (Created)
3405 Created->push_back(Q.getNode());
3406
3407 // Get magic number for the shifted divisor.
3408 magics = N1C.lshr(Shift).magicu(Shift);
3409 assert(magics.a == 0 && "Should use cheap fixup now");
3410 }
3411
3412 // Multiply the numerator (operand 0) by the magic value
3413 // FIXME: We should support doing a MUL in a wider type
3414 if (IsAfterLegalization ? isOperationLegal(ISD::MULHU, VT) :
3415 isOperationLegalOrCustom(ISD::MULHU, VT))
3416 Q = DAG.getNode(ISD::MULHU, dl, VT, Q, DAG.getConstant(magics.m, VT));
3417 else if (IsAfterLegalization ? isOperationLegal(ISD::UMUL_LOHI, VT) :
3418 isOperationLegalOrCustom(ISD::UMUL_LOHI, VT))
3419 Q = SDValue(DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), Q,
3420 DAG.getConstant(magics.m, VT)).getNode(), 1);
3421 else
3422 return SDValue(); // No mulhu or equvialent
3423 if (Created)
3424 Created->push_back(Q.getNode());
3425
3426 if (magics.a == 0) {
3427 assert(magics.s < N1C.getBitWidth() &&
3428 "We shouldn't generate an undefined shift!");
3429 return DAG.getNode(ISD::SRL, dl, VT, Q,
3430 DAG.getConstant(magics.s, getShiftAmountTy(Q.getValueType())));
3431 } else {
3432 SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N->getOperand(0), Q);
3433 if (Created)
3434 Created->push_back(NPQ.getNode());
3435 NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ,
3436 DAG.getConstant(1, getShiftAmountTy(NPQ.getValueType())));
3437 if (Created)
3438 Created->push_back(NPQ.getNode());
3439 NPQ = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q);
3440 if (Created)
3441 Created->push_back(NPQ.getNode());
3442 return DAG.getNode(ISD::SRL, dl, VT, NPQ,
3443 DAG.getConstant(magics.s-1, getShiftAmountTy(NPQ.getValueType())));
3444 }
3445 }
3446