1 //===-- DWARFDebugAranges.cpp -----------------------------------*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9
10 #include "DWARFDebugAranges.h"
11 #include "DWARFCompileUnit.h"
12 #include "DWARFContext.h"
13 #include "llvm/Support/Format.h"
14 #include "llvm/Support/raw_ostream.h"
15 #include <algorithm>
16 #include <cassert>
17 using namespace llvm;
18
19 // Compare function DWARFDebugAranges::Range structures
RangeLessThan(const DWARFDebugAranges::Range & range1,const DWARFDebugAranges::Range & range2)20 static bool RangeLessThan(const DWARFDebugAranges::Range &range1,
21 const DWARFDebugAranges::Range &range2) {
22 return range1.LoPC < range2.LoPC;
23 }
24
25 namespace {
26 class CountArangeDescriptors {
27 public:
CountArangeDescriptors(uint32_t & count_ref)28 CountArangeDescriptors(uint32_t &count_ref) : Count(count_ref) {}
operator ()(const DWARFDebugArangeSet & set)29 void operator()(const DWARFDebugArangeSet &set) {
30 Count += set.getNumDescriptors();
31 }
32 uint32_t &Count;
33 };
34
35 class AddArangeDescriptors {
36 public:
AddArangeDescriptors(DWARFDebugAranges::RangeColl & ranges)37 AddArangeDescriptors(DWARFDebugAranges::RangeColl &ranges)
38 : RangeCollection(ranges) {}
operator ()(const DWARFDebugArangeSet & set)39 void operator()(const DWARFDebugArangeSet& set) {
40 const DWARFDebugArangeSet::Descriptor* arange_desc_ptr;
41 DWARFDebugAranges::Range range;
42 range.Offset = set.getCompileUnitDIEOffset();
43
44 for (uint32_t i=0; (arange_desc_ptr = set.getDescriptor(i)) != NULL; ++i){
45 range.LoPC = arange_desc_ptr->Address;
46 range.Length = arange_desc_ptr->Length;
47
48 // Insert each item in increasing address order so binary searching
49 // can later be done!
50 DWARFDebugAranges::RangeColl::iterator insert_pos =
51 std::lower_bound(RangeCollection.begin(), RangeCollection.end(),
52 range, RangeLessThan);
53 RangeCollection.insert(insert_pos, range);
54 }
55 }
56 DWARFDebugAranges::RangeColl& RangeCollection;
57 };
58 }
59
extract(DataExtractor debug_aranges_data)60 bool DWARFDebugAranges::extract(DataExtractor debug_aranges_data) {
61 if (debug_aranges_data.isValidOffset(0)) {
62 uint32_t offset = 0;
63
64 typedef std::vector<DWARFDebugArangeSet> SetCollection;
65 SetCollection sets;
66
67 DWARFDebugArangeSet set;
68 Range range;
69 while (set.extract(debug_aranges_data, &offset))
70 sets.push_back(set);
71
72 uint32_t count = 0;
73
74 std::for_each(sets.begin(), sets.end(), CountArangeDescriptors(count));
75
76 if (count > 0) {
77 Aranges.reserve(count);
78 AddArangeDescriptors range_adder(Aranges);
79 std::for_each(sets.begin(), sets.end(), range_adder);
80 }
81 }
82 return false;
83 }
84
generate(DWARFContext * ctx)85 bool DWARFDebugAranges::generate(DWARFContext *ctx) {
86 clear();
87 if (ctx) {
88 const uint32_t num_compile_units = ctx->getNumCompileUnits();
89 for (uint32_t cu_idx = 0; cu_idx < num_compile_units; ++cu_idx) {
90 DWARFCompileUnit *cu = ctx->getCompileUnitAtIndex(cu_idx);
91 if (cu)
92 cu->buildAddressRangeTable(this, true);
93 }
94 }
95 sort(true, /* overlap size */ 0);
96 return !isEmpty();
97 }
98
dump(raw_ostream & OS) const99 void DWARFDebugAranges::dump(raw_ostream &OS) const {
100 const uint32_t num_ranges = getNumRanges();
101 for (uint32_t i = 0; i < num_ranges; ++i) {
102 const Range &range = Aranges[i];
103 OS << format("0x%8.8x: [0x%8.8" PRIx64 " - 0x%8.8" PRIx64 ")\n",
104 range.Offset, (uint64_t)range.LoPC, (uint64_t)range.HiPC());
105 }
106 }
107
dump(raw_ostream & OS) const108 void DWARFDebugAranges::Range::dump(raw_ostream &OS) const {
109 OS << format("{0x%8.8x}: [0x%8.8" PRIx64 " - 0x%8.8" PRIx64 ")\n",
110 Offset, LoPC, HiPC());
111 }
112
appendRange(uint32_t offset,uint64_t low_pc,uint64_t high_pc)113 void DWARFDebugAranges::appendRange(uint32_t offset, uint64_t low_pc,
114 uint64_t high_pc) {
115 if (!Aranges.empty()) {
116 if (Aranges.back().Offset == offset && Aranges.back().HiPC() == low_pc) {
117 Aranges.back().setHiPC(high_pc);
118 return;
119 }
120 }
121 Aranges.push_back(Range(low_pc, high_pc, offset));
122 }
123
sort(bool minimize,uint32_t n)124 void DWARFDebugAranges::sort(bool minimize, uint32_t n) {
125 const size_t orig_arange_size = Aranges.size();
126 // Size of one? If so, no sorting is needed
127 if (orig_arange_size <= 1)
128 return;
129 // Sort our address range entries
130 std::stable_sort(Aranges.begin(), Aranges.end(), RangeLessThan);
131
132 if (!minimize)
133 return;
134
135 // Most address ranges are contiguous from function to function
136 // so our new ranges will likely be smaller. We calculate the size
137 // of the new ranges since although std::vector objects can be resized,
138 // the will never reduce their allocated block size and free any excesss
139 // memory, so we might as well start a brand new collection so it is as
140 // small as possible.
141
142 // First calculate the size of the new minimal arange vector
143 // so we don't have to do a bunch of re-allocations as we
144 // copy the new minimal stuff over to the new collection.
145 size_t minimal_size = 1;
146 for (size_t i = 1; i < orig_arange_size; ++i) {
147 if (!Range::SortedOverlapCheck(Aranges[i-1], Aranges[i], n))
148 ++minimal_size;
149 }
150
151 // If the sizes are the same, then no consecutive aranges can be
152 // combined, we are done.
153 if (minimal_size == orig_arange_size)
154 return;
155
156 // Else, make a new RangeColl that _only_ contains what we need.
157 RangeColl minimal_aranges;
158 minimal_aranges.resize(minimal_size);
159 uint32_t j = 0;
160 minimal_aranges[j] = Aranges[0];
161 for (size_t i = 1; i < orig_arange_size; ++i) {
162 if(Range::SortedOverlapCheck (minimal_aranges[j], Aranges[i], n)) {
163 minimal_aranges[j].setHiPC (Aranges[i].HiPC());
164 } else {
165 // Only increment j if we aren't merging
166 minimal_aranges[++j] = Aranges[i];
167 }
168 }
169 assert (j+1 == minimal_size);
170
171 // Now swap our new minimal aranges into place. The local
172 // minimal_aranges will then contian the old big collection
173 // which will get freed.
174 minimal_aranges.swap(Aranges);
175 }
176
findAddress(uint64_t address) const177 uint32_t DWARFDebugAranges::findAddress(uint64_t address) const {
178 if (!Aranges.empty()) {
179 Range range(address);
180 RangeCollIterator begin = Aranges.begin();
181 RangeCollIterator end = Aranges.end();
182 RangeCollIterator pos = lower_bound(begin, end, range, RangeLessThan);
183
184 if (pos != end && pos->LoPC <= address && address < pos->HiPC()) {
185 return pos->Offset;
186 } else if (pos != begin) {
187 --pos;
188 if (pos->LoPC <= address && address < pos->HiPC())
189 return (*pos).Offset;
190 }
191 }
192 return -1U;
193 }
194
195 bool
allRangesAreContiguous(uint64_t & LoPC,uint64_t & HiPC) const196 DWARFDebugAranges::allRangesAreContiguous(uint64_t &LoPC, uint64_t &HiPC) const{
197 if (Aranges.empty())
198 return false;
199
200 uint64_t next_addr = 0;
201 RangeCollIterator begin = Aranges.begin();
202 for (RangeCollIterator pos = begin, end = Aranges.end(); pos != end;
203 ++pos) {
204 if (pos != begin && pos->LoPC != next_addr)
205 return false;
206 next_addr = pos->HiPC();
207 }
208 // We checked for empty at the start of function so front() will be valid.
209 LoPC = Aranges.front().LoPC;
210 // We checked for empty at the start of function so back() will be valid.
211 HiPC = Aranges.back().HiPC();
212 return true;
213 }
214
getMaxRange(uint64_t & LoPC,uint64_t & HiPC) const215 bool DWARFDebugAranges::getMaxRange(uint64_t &LoPC, uint64_t &HiPC) const {
216 if (Aranges.empty())
217 return false;
218 // We checked for empty at the start of function so front() will be valid.
219 LoPC = Aranges.front().LoPC;
220 // We checked for empty at the start of function so back() will be valid.
221 HiPC = Aranges.back().HiPC();
222 return true;
223 }
224