1 //===-- RuntimeDyld.cpp - Run-time dynamic linker for MC-JIT ----*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Implementation of the MC-JIT runtime dynamic linker.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #define DEBUG_TYPE "dyld"
15 #include "RuntimeDyldImpl.h"
16 #include "RuntimeDyldELF.h"
17 #include "RuntimeDyldMachO.h"
18 #include "llvm/Support/Path.h"
19
20 using namespace llvm;
21 using namespace llvm::object;
22
23 // Empty out-of-line virtual destructor as the key function.
~RTDyldMemoryManager()24 RTDyldMemoryManager::~RTDyldMemoryManager() {}
~RuntimeDyldImpl()25 RuntimeDyldImpl::~RuntimeDyldImpl() {}
26
27 namespace llvm {
28
29 namespace {
30 // Helper for extensive error checking in debug builds.
Check(error_code Err)31 error_code Check(error_code Err) {
32 if (Err) {
33 report_fatal_error(Err.message());
34 }
35 return Err;
36 }
37 } // end anonymous namespace
38
39 // Resolve the relocations for all symbols we currently know about.
resolveRelocations()40 void RuntimeDyldImpl::resolveRelocations() {
41 // First, resolve relocations associated with external symbols.
42 resolveExternalSymbols();
43
44 // Just iterate over the sections we have and resolve all the relocations
45 // in them. Gross overkill, but it gets the job done.
46 for (int i = 0, e = Sections.size(); i != e; ++i) {
47 reassignSectionAddress(i, Sections[i].LoadAddress);
48 }
49 }
50
mapSectionAddress(void * LocalAddress,uint64_t TargetAddress)51 void RuntimeDyldImpl::mapSectionAddress(void *LocalAddress,
52 uint64_t TargetAddress) {
53 for (unsigned i = 0, e = Sections.size(); i != e; ++i) {
54 if (Sections[i].Address == LocalAddress) {
55 reassignSectionAddress(i, TargetAddress);
56 return;
57 }
58 }
59 llvm_unreachable("Attempting to remap address of unknown section!");
60 }
61
62 // Subclasses can implement this method to create specialized image instances.
63 // The caller owns the pointer that is returned.
createObjectImage(const MemoryBuffer * InputBuffer)64 ObjectImage *RuntimeDyldImpl::createObjectImage(const MemoryBuffer *InputBuffer) {
65 ObjectFile *ObjFile = ObjectFile::createObjectFile(const_cast<MemoryBuffer*>
66 (InputBuffer));
67 ObjectImage *Obj = new ObjectImage(ObjFile);
68 return Obj;
69 }
70
loadObject(const MemoryBuffer * InputBuffer)71 bool RuntimeDyldImpl::loadObject(const MemoryBuffer *InputBuffer) {
72 OwningPtr<ObjectImage> obj(createObjectImage(InputBuffer));
73 if (!obj)
74 report_fatal_error("Unable to create object image from memory buffer!");
75
76 Arch = (Triple::ArchType)obj->getArch();
77
78 // Symbols found in this object
79 StringMap<SymbolLoc> LocalSymbols;
80 // Used sections from the object file
81 ObjSectionToIDMap LocalSections;
82
83 // Common symbols requiring allocation, and the total size required to
84 // allocate all common symbols.
85 CommonSymbolMap CommonSymbols;
86 uint64_t CommonSize = 0;
87
88 error_code err;
89 // Parse symbols
90 DEBUG(dbgs() << "Parse symbols:\n");
91 for (symbol_iterator i = obj->begin_symbols(), e = obj->end_symbols();
92 i != e; i.increment(err)) {
93 Check(err);
94 object::SymbolRef::Type SymType;
95 StringRef Name;
96 Check(i->getType(SymType));
97 Check(i->getName(Name));
98
99 uint32_t flags;
100 Check(i->getFlags(flags));
101
102 bool isCommon = flags & SymbolRef::SF_Common;
103 if (isCommon) {
104 // Add the common symbols to a list. We'll allocate them all below.
105 uint64_t Size = 0;
106 Check(i->getSize(Size));
107 CommonSize += Size;
108 CommonSymbols[*i] = Size;
109 } else {
110 if (SymType == object::SymbolRef::ST_Function ||
111 SymType == object::SymbolRef::ST_Data ||
112 SymType == object::SymbolRef::ST_Unknown) {
113 uint64_t FileOffset;
114 StringRef SectionData;
115 section_iterator si = obj->end_sections();
116 Check(i->getFileOffset(FileOffset));
117 Check(i->getSection(si));
118 if (si == obj->end_sections()) continue;
119 Check(si->getContents(SectionData));
120 const uint8_t* SymPtr = (const uint8_t*)InputBuffer->getBufferStart() +
121 (uintptr_t)FileOffset;
122 uintptr_t SectOffset = (uintptr_t)(SymPtr -
123 (const uint8_t*)SectionData.begin());
124 unsigned SectionID =
125 findOrEmitSection(*obj,
126 *si,
127 SymType == object::SymbolRef::ST_Function,
128 LocalSections);
129 LocalSymbols[Name.data()] = SymbolLoc(SectionID, SectOffset);
130 DEBUG(dbgs() << "\tFileOffset: " << format("%p", (uintptr_t)FileOffset)
131 << " flags: " << flags
132 << " SID: " << SectionID
133 << " Offset: " << format("%p", SectOffset));
134 bool isGlobal = flags & SymbolRef::SF_Global;
135 if (isGlobal)
136 GlobalSymbolTable[Name] = SymbolLoc(SectionID, SectOffset);
137 }
138 }
139 DEBUG(dbgs() << "\tType: " << SymType << " Name: " << Name << "\n");
140 }
141
142 // Allocate common symbols
143 if (CommonSize != 0)
144 emitCommonSymbols(*obj, CommonSymbols, CommonSize, LocalSymbols);
145
146 // Parse and process relocations
147 DEBUG(dbgs() << "Parse relocations:\n");
148 for (section_iterator si = obj->begin_sections(),
149 se = obj->end_sections(); si != se; si.increment(err)) {
150 Check(err);
151 bool isFirstRelocation = true;
152 unsigned SectionID = 0;
153 StubMap Stubs;
154
155 for (relocation_iterator i = si->begin_relocations(),
156 e = si->end_relocations(); i != e; i.increment(err)) {
157 Check(err);
158
159 // If it's the first relocation in this section, find its SectionID
160 if (isFirstRelocation) {
161 SectionID = findOrEmitSection(*obj, *si, true, LocalSections);
162 DEBUG(dbgs() << "\tSectionID: " << SectionID << "\n");
163 isFirstRelocation = false;
164 }
165
166 ObjRelocationInfo RI;
167 RI.SectionID = SectionID;
168 Check(i->getAdditionalInfo(RI.AdditionalInfo));
169 Check(i->getOffset(RI.Offset));
170 Check(i->getSymbol(RI.Symbol));
171 Check(i->getType(RI.Type));
172
173 DEBUG(dbgs() << "\t\tAddend: " << RI.AdditionalInfo
174 << " Offset: " << format("%p", (uintptr_t)RI.Offset)
175 << " Type: " << (uint32_t)(RI.Type & 0xffffffffL)
176 << "\n");
177 processRelocationRef(RI, *obj, LocalSections, LocalSymbols, Stubs);
178 }
179 }
180
181 handleObjectLoaded(obj.take());
182
183 return false;
184 }
185
emitCommonSymbols(ObjectImage & Obj,const CommonSymbolMap & CommonSymbols,uint64_t TotalSize,SymbolTableMap & SymbolTable)186 void RuntimeDyldImpl::emitCommonSymbols(ObjectImage &Obj,
187 const CommonSymbolMap &CommonSymbols,
188 uint64_t TotalSize,
189 SymbolTableMap &SymbolTable) {
190 // Allocate memory for the section
191 unsigned SectionID = Sections.size();
192 uint8_t *Addr = MemMgr->allocateDataSection(TotalSize, sizeof(void*),
193 SectionID);
194 if (!Addr)
195 report_fatal_error("Unable to allocate memory for common symbols!");
196 uint64_t Offset = 0;
197 Sections.push_back(SectionEntry(Addr, TotalSize, TotalSize, 0));
198 memset(Addr, 0, TotalSize);
199
200 DEBUG(dbgs() << "emitCommonSection SectionID: " << SectionID
201 << " new addr: " << format("%p", Addr)
202 << " DataSize: " << TotalSize
203 << "\n");
204
205 // Assign the address of each symbol
206 for (CommonSymbolMap::const_iterator it = CommonSymbols.begin(),
207 itEnd = CommonSymbols.end(); it != itEnd; it++) {
208 StringRef Name;
209 it->first.getName(Name);
210 Obj.updateSymbolAddress(it->first, (uint64_t)Addr);
211 SymbolTable[Name.data()] = SymbolLoc(SectionID, Offset);
212 uint64_t Size = it->second;
213 Offset += Size;
214 Addr += Size;
215 }
216 }
217
emitSection(ObjectImage & Obj,const SectionRef & Section,bool IsCode)218 unsigned RuntimeDyldImpl::emitSection(ObjectImage &Obj,
219 const SectionRef &Section,
220 bool IsCode) {
221
222 unsigned StubBufSize = 0,
223 StubSize = getMaxStubSize();
224 error_code err;
225 if (StubSize > 0) {
226 for (relocation_iterator i = Section.begin_relocations(),
227 e = Section.end_relocations(); i != e; i.increment(err), Check(err))
228 StubBufSize += StubSize;
229 }
230 StringRef data;
231 uint64_t Alignment64;
232 Check(Section.getContents(data));
233 Check(Section.getAlignment(Alignment64));
234
235 unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL;
236 bool IsRequired;
237 bool IsVirtual;
238 bool IsZeroInit;
239 uint64_t DataSize;
240 Check(Section.isRequiredForExecution(IsRequired));
241 Check(Section.isVirtual(IsVirtual));
242 Check(Section.isZeroInit(IsZeroInit));
243 Check(Section.getSize(DataSize));
244
245 unsigned Allocate;
246 unsigned SectionID = Sections.size();
247 uint8_t *Addr;
248 const char *pData = 0;
249
250 // Some sections, such as debug info, don't need to be loaded for execution.
251 // Leave those where they are.
252 if (IsRequired) {
253 Allocate = DataSize + StubBufSize;
254 Addr = IsCode
255 ? MemMgr->allocateCodeSection(Allocate, Alignment, SectionID)
256 : MemMgr->allocateDataSection(Allocate, Alignment, SectionID);
257 if (!Addr)
258 report_fatal_error("Unable to allocate section memory!");
259
260 // Virtual sections have no data in the object image, so leave pData = 0
261 if (!IsVirtual)
262 pData = data.data();
263
264 // Zero-initialize or copy the data from the image
265 if (IsZeroInit || IsVirtual)
266 memset(Addr, 0, DataSize);
267 else
268 memcpy(Addr, pData, DataSize);
269
270 DEBUG(dbgs() << "emitSection SectionID: " << SectionID
271 << " obj addr: " << format("%p", pData)
272 << " new addr: " << format("%p", Addr)
273 << " DataSize: " << DataSize
274 << " StubBufSize: " << StubBufSize
275 << " Allocate: " << Allocate
276 << "\n");
277 Obj.updateSectionAddress(Section, (uint64_t)Addr);
278 }
279 else {
280 // Even if we didn't load the section, we need to record an entry for it
281 // to handle later processing (and by 'handle' I mean don't do anything
282 // with these sections).
283 Allocate = 0;
284 Addr = 0;
285 DEBUG(dbgs() << "emitSection SectionID: " << SectionID
286 << " obj addr: " << format("%p", data.data())
287 << " new addr: 0"
288 << " DataSize: " << DataSize
289 << " StubBufSize: " << StubBufSize
290 << " Allocate: " << Allocate
291 << "\n");
292 }
293
294 Sections.push_back(SectionEntry(Addr, Allocate, DataSize,(uintptr_t)pData));
295 return SectionID;
296 }
297
findOrEmitSection(ObjectImage & Obj,const SectionRef & Section,bool IsCode,ObjSectionToIDMap & LocalSections)298 unsigned RuntimeDyldImpl::findOrEmitSection(ObjectImage &Obj,
299 const SectionRef &Section,
300 bool IsCode,
301 ObjSectionToIDMap &LocalSections) {
302
303 unsigned SectionID = 0;
304 ObjSectionToIDMap::iterator i = LocalSections.find(Section);
305 if (i != LocalSections.end())
306 SectionID = i->second;
307 else {
308 SectionID = emitSection(Obj, Section, IsCode);
309 LocalSections[Section] = SectionID;
310 }
311 return SectionID;
312 }
313
addRelocationForSection(const RelocationEntry & RE,unsigned SectionID)314 void RuntimeDyldImpl::addRelocationForSection(const RelocationEntry &RE,
315 unsigned SectionID) {
316 Relocations[SectionID].push_back(RE);
317 }
318
addRelocationForSymbol(const RelocationEntry & RE,StringRef SymbolName)319 void RuntimeDyldImpl::addRelocationForSymbol(const RelocationEntry &RE,
320 StringRef SymbolName) {
321 // Relocation by symbol. If the symbol is found in the global symbol table,
322 // create an appropriate section relocation. Otherwise, add it to
323 // ExternalSymbolRelocations.
324 SymbolTableMap::const_iterator Loc =
325 GlobalSymbolTable.find(SymbolName);
326 if (Loc == GlobalSymbolTable.end()) {
327 ExternalSymbolRelocations[SymbolName].push_back(RE);
328 } else {
329 // Copy the RE since we want to modify its addend.
330 RelocationEntry RECopy = RE;
331 RECopy.Addend += Loc->second.second;
332 Relocations[Loc->second.first].push_back(RECopy);
333 }
334 }
335
createStubFunction(uint8_t * Addr)336 uint8_t *RuntimeDyldImpl::createStubFunction(uint8_t *Addr) {
337 if (Arch == Triple::arm) {
338 // TODO: There is only ARM far stub now. We should add the Thumb stub,
339 // and stubs for branches Thumb - ARM and ARM - Thumb.
340 uint32_t *StubAddr = (uint32_t*)Addr;
341 *StubAddr = 0xe51ff004; // ldr pc,<label>
342 return (uint8_t*)++StubAddr;
343 } else if (Arch == Triple::mipsel) {
344 uint32_t *StubAddr = (uint32_t*)Addr;
345 // 0: 3c190000 lui t9,%hi(addr).
346 // 4: 27390000 addiu t9,t9,%lo(addr).
347 // 8: 03200008 jr t9.
348 // c: 00000000 nop.
349 const unsigned LuiT9Instr = 0x3c190000, AdduiT9Instr = 0x27390000;
350 const unsigned JrT9Instr = 0x03200008, NopInstr = 0x0;
351
352 *StubAddr = LuiT9Instr;
353 StubAddr++;
354 *StubAddr = AdduiT9Instr;
355 StubAddr++;
356 *StubAddr = JrT9Instr;
357 StubAddr++;
358 *StubAddr = NopInstr;
359 return Addr;
360 }
361 return Addr;
362 }
363
364 // Assign an address to a symbol name and resolve all the relocations
365 // associated with it.
reassignSectionAddress(unsigned SectionID,uint64_t Addr)366 void RuntimeDyldImpl::reassignSectionAddress(unsigned SectionID,
367 uint64_t Addr) {
368 // The address to use for relocation resolution is not
369 // the address of the local section buffer. We must be doing
370 // a remote execution environment of some sort. Re-apply any
371 // relocations referencing this section with the given address.
372 //
373 // Addr is a uint64_t because we can't assume the pointer width
374 // of the target is the same as that of the host. Just use a generic
375 // "big enough" type.
376 Sections[SectionID].LoadAddress = Addr;
377 DEBUG(dbgs() << "Resolving relocations Section #" << SectionID
378 << "\t" << format("%p", (uint8_t *)Addr)
379 << "\n");
380 resolveRelocationList(Relocations[SectionID], Addr);
381 }
382
resolveRelocationEntry(const RelocationEntry & RE,uint64_t Value)383 void RuntimeDyldImpl::resolveRelocationEntry(const RelocationEntry &RE,
384 uint64_t Value) {
385 // Ignore relocations for sections that were not loaded
386 if (Sections[RE.SectionID].Address != 0) {
387 uint8_t *Target = Sections[RE.SectionID].Address + RE.Offset;
388 DEBUG(dbgs() << "\tSectionID: " << RE.SectionID
389 << " + " << RE.Offset << " (" << format("%p", Target) << ")"
390 << " RelType: " << RE.RelType
391 << " Addend: " << RE.Addend
392 << "\n");
393
394 resolveRelocation(Target, Sections[RE.SectionID].LoadAddress + RE.Offset,
395 Value, RE.RelType, RE.Addend);
396 }
397 }
398
resolveRelocationList(const RelocationList & Relocs,uint64_t Value)399 void RuntimeDyldImpl::resolveRelocationList(const RelocationList &Relocs,
400 uint64_t Value) {
401 for (unsigned i = 0, e = Relocs.size(); i != e; ++i) {
402 resolveRelocationEntry(Relocs[i], Value);
403 }
404 }
405
resolveExternalSymbols()406 void RuntimeDyldImpl::resolveExternalSymbols() {
407 StringMap<RelocationList>::iterator i = ExternalSymbolRelocations.begin(),
408 e = ExternalSymbolRelocations.end();
409 for (; i != e; i++) {
410 StringRef Name = i->first();
411 RelocationList &Relocs = i->second;
412 SymbolTableMap::const_iterator Loc = GlobalSymbolTable.find(Name);
413 if (Loc == GlobalSymbolTable.end()) {
414 // This is an external symbol, try to get it address from
415 // MemoryManager.
416 uint8_t *Addr = (uint8_t*) MemMgr->getPointerToNamedFunction(Name.data(),
417 true);
418 DEBUG(dbgs() << "Resolving relocations Name: " << Name
419 << "\t" << format("%p", Addr)
420 << "\n");
421 resolveRelocationList(Relocs, (uintptr_t)Addr);
422 } else {
423 report_fatal_error("Expected external symbol");
424 }
425 }
426 }
427
428
429 //===----------------------------------------------------------------------===//
430 // RuntimeDyld class implementation
RuntimeDyld(RTDyldMemoryManager * mm)431 RuntimeDyld::RuntimeDyld(RTDyldMemoryManager *mm) {
432 Dyld = 0;
433 MM = mm;
434 }
435
~RuntimeDyld()436 RuntimeDyld::~RuntimeDyld() {
437 delete Dyld;
438 }
439
loadObject(MemoryBuffer * InputBuffer)440 bool RuntimeDyld::loadObject(MemoryBuffer *InputBuffer) {
441 if (!Dyld) {
442 sys::LLVMFileType type = sys::IdentifyFileType(
443 InputBuffer->getBufferStart(),
444 static_cast<unsigned>(InputBuffer->getBufferSize()));
445 switch (type) {
446 case sys::ELF_Relocatable_FileType:
447 case sys::ELF_Executable_FileType:
448 case sys::ELF_SharedObject_FileType:
449 case sys::ELF_Core_FileType:
450 Dyld = new RuntimeDyldELF(MM);
451 break;
452 case sys::Mach_O_Object_FileType:
453 case sys::Mach_O_Executable_FileType:
454 case sys::Mach_O_FixedVirtualMemorySharedLib_FileType:
455 case sys::Mach_O_Core_FileType:
456 case sys::Mach_O_PreloadExecutable_FileType:
457 case sys::Mach_O_DynamicallyLinkedSharedLib_FileType:
458 case sys::Mach_O_DynamicLinker_FileType:
459 case sys::Mach_O_Bundle_FileType:
460 case sys::Mach_O_DynamicallyLinkedSharedLibStub_FileType:
461 case sys::Mach_O_DSYMCompanion_FileType:
462 Dyld = new RuntimeDyldMachO(MM);
463 break;
464 case sys::Unknown_FileType:
465 case sys::Bitcode_FileType:
466 case sys::Archive_FileType:
467 case sys::COFF_FileType:
468 report_fatal_error("Incompatible object format!");
469 }
470 } else {
471 if (!Dyld->isCompatibleFormat(InputBuffer))
472 report_fatal_error("Incompatible object format!");
473 }
474
475 return Dyld->loadObject(InputBuffer);
476 }
477
getSymbolAddress(StringRef Name)478 void *RuntimeDyld::getSymbolAddress(StringRef Name) {
479 return Dyld->getSymbolAddress(Name);
480 }
481
getSymbolLoadAddress(StringRef Name)482 uint64_t RuntimeDyld::getSymbolLoadAddress(StringRef Name) {
483 return Dyld->getSymbolLoadAddress(Name);
484 }
485
resolveRelocations()486 void RuntimeDyld::resolveRelocations() {
487 Dyld->resolveRelocations();
488 }
489
reassignSectionAddress(unsigned SectionID,uint64_t Addr)490 void RuntimeDyld::reassignSectionAddress(unsigned SectionID,
491 uint64_t Addr) {
492 Dyld->reassignSectionAddress(SectionID, Addr);
493 }
494
mapSectionAddress(void * LocalAddress,uint64_t TargetAddress)495 void RuntimeDyld::mapSectionAddress(void *LocalAddress,
496 uint64_t TargetAddress) {
497 Dyld->mapSectionAddress(LocalAddress, TargetAddress);
498 }
499
getErrorString()500 StringRef RuntimeDyld::getErrorString() {
501 return Dyld->getErrorString();
502 }
503
504 } // end namespace llvm
505