1 //===-- ARMISelLowering.cpp - ARM DAG Lowering Implementation -------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the interfaces that ARM uses to lower LLVM code into a
11 // selection DAG.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #define DEBUG_TYPE "arm-isel"
16 #include "ARMISelLowering.h"
17 #include "ARM.h"
18 #include "ARMCallingConv.h"
19 #include "ARMConstantPoolValue.h"
20 #include "ARMMachineFunctionInfo.h"
21 #include "ARMPerfectShuffle.h"
22 #include "ARMSubtarget.h"
23 #include "ARMTargetMachine.h"
24 #include "ARMTargetObjectFile.h"
25 #include "MCTargetDesc/ARMAddressingModes.h"
26 #include "llvm/CallingConv.h"
27 #include "llvm/Constants.h"
28 #include "llvm/Function.h"
29 #include "llvm/GlobalValue.h"
30 #include "llvm/Instruction.h"
31 #include "llvm/Instructions.h"
32 #include "llvm/Intrinsics.h"
33 #include "llvm/Type.h"
34 #include "llvm/CodeGen/CallingConvLower.h"
35 #include "llvm/CodeGen/IntrinsicLowering.h"
36 #include "llvm/CodeGen/MachineBasicBlock.h"
37 #include "llvm/CodeGen/MachineFrameInfo.h"
38 #include "llvm/CodeGen/MachineFunction.h"
39 #include "llvm/CodeGen/MachineInstrBuilder.h"
40 #include "llvm/CodeGen/MachineModuleInfo.h"
41 #include "llvm/CodeGen/MachineRegisterInfo.h"
42 #include "llvm/CodeGen/SelectionDAG.h"
43 #include "llvm/MC/MCSectionMachO.h"
44 #include "llvm/Target/TargetOptions.h"
45 #include "llvm/ADT/StringExtras.h"
46 #include "llvm/ADT/Statistic.h"
47 #include "llvm/Support/CommandLine.h"
48 #include "llvm/Support/ErrorHandling.h"
49 #include "llvm/Support/MathExtras.h"
50 #include "llvm/Support/raw_ostream.h"
51 using namespace llvm;
52
53 STATISTIC(NumTailCalls, "Number of tail calls");
54 STATISTIC(NumMovwMovt, "Number of GAs materialized with movw + movt");
55 STATISTIC(NumLoopByVals, "Number of loops generated for byval arguments");
56
57 // This option should go away when tail calls fully work.
58 static cl::opt<bool>
59 EnableARMTailCalls("arm-tail-calls", cl::Hidden,
60 cl::desc("Generate tail calls (TEMPORARY OPTION)."),
61 cl::init(false));
62
63 cl::opt<bool>
64 EnableARMLongCalls("arm-long-calls", cl::Hidden,
65 cl::desc("Generate calls via indirect call instructions"),
66 cl::init(false));
67
68 static cl::opt<bool>
69 ARMInterworking("arm-interworking", cl::Hidden,
70 cl::desc("Enable / disable ARM interworking (for debugging only)"),
71 cl::init(true));
72
73 namespace {
74 class ARMCCState : public CCState {
75 public:
ARMCCState(CallingConv::ID CC,bool isVarArg,MachineFunction & MF,const TargetMachine & TM,SmallVector<CCValAssign,16> & locs,LLVMContext & C,ParmContext PC)76 ARMCCState(CallingConv::ID CC, bool isVarArg, MachineFunction &MF,
77 const TargetMachine &TM, SmallVector<CCValAssign, 16> &locs,
78 LLVMContext &C, ParmContext PC)
79 : CCState(CC, isVarArg, MF, TM, locs, C) {
80 assert(((PC == Call) || (PC == Prologue)) &&
81 "ARMCCState users must specify whether their context is call"
82 "or prologue generation.");
83 CallOrPrologue = PC;
84 }
85 };
86 }
87
88 // The APCS parameter registers.
89 static const uint16_t GPRArgRegs[] = {
90 ARM::R0, ARM::R1, ARM::R2, ARM::R3
91 };
92
addTypeForNEON(MVT VT,MVT PromotedLdStVT,MVT PromotedBitwiseVT)93 void ARMTargetLowering::addTypeForNEON(MVT VT, MVT PromotedLdStVT,
94 MVT PromotedBitwiseVT) {
95 if (VT != PromotedLdStVT) {
96 setOperationAction(ISD::LOAD, VT, Promote);
97 AddPromotedToType (ISD::LOAD, VT, PromotedLdStVT);
98
99 setOperationAction(ISD::STORE, VT, Promote);
100 AddPromotedToType (ISD::STORE, VT, PromotedLdStVT);
101 }
102
103 MVT ElemTy = VT.getVectorElementType();
104 if (ElemTy != MVT::i64 && ElemTy != MVT::f64)
105 setOperationAction(ISD::SETCC, VT, Custom);
106 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
107 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
108 if (ElemTy == MVT::i32) {
109 setOperationAction(ISD::SINT_TO_FP, VT, Custom);
110 setOperationAction(ISD::UINT_TO_FP, VT, Custom);
111 setOperationAction(ISD::FP_TO_SINT, VT, Custom);
112 setOperationAction(ISD::FP_TO_UINT, VT, Custom);
113 } else {
114 setOperationAction(ISD::SINT_TO_FP, VT, Expand);
115 setOperationAction(ISD::UINT_TO_FP, VT, Expand);
116 setOperationAction(ISD::FP_TO_SINT, VT, Expand);
117 setOperationAction(ISD::FP_TO_UINT, VT, Expand);
118 }
119 setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
120 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
121 setOperationAction(ISD::CONCAT_VECTORS, VT, Legal);
122 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Legal);
123 setOperationAction(ISD::SELECT, VT, Expand);
124 setOperationAction(ISD::SELECT_CC, VT, Expand);
125 setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
126 if (VT.isInteger()) {
127 setOperationAction(ISD::SHL, VT, Custom);
128 setOperationAction(ISD::SRA, VT, Custom);
129 setOperationAction(ISD::SRL, VT, Custom);
130 }
131
132 // Promote all bit-wise operations.
133 if (VT.isInteger() && VT != PromotedBitwiseVT) {
134 setOperationAction(ISD::AND, VT, Promote);
135 AddPromotedToType (ISD::AND, VT, PromotedBitwiseVT);
136 setOperationAction(ISD::OR, VT, Promote);
137 AddPromotedToType (ISD::OR, VT, PromotedBitwiseVT);
138 setOperationAction(ISD::XOR, VT, Promote);
139 AddPromotedToType (ISD::XOR, VT, PromotedBitwiseVT);
140 }
141
142 // Neon does not support vector divide/remainder operations.
143 setOperationAction(ISD::SDIV, VT, Expand);
144 setOperationAction(ISD::UDIV, VT, Expand);
145 setOperationAction(ISD::FDIV, VT, Expand);
146 setOperationAction(ISD::SREM, VT, Expand);
147 setOperationAction(ISD::UREM, VT, Expand);
148 setOperationAction(ISD::FREM, VT, Expand);
149 }
150
addDRTypeForNEON(MVT VT)151 void ARMTargetLowering::addDRTypeForNEON(MVT VT) {
152 addRegisterClass(VT, &ARM::DPRRegClass);
153 addTypeForNEON(VT, MVT::f64, MVT::v2i32);
154 }
155
addQRTypeForNEON(MVT VT)156 void ARMTargetLowering::addQRTypeForNEON(MVT VT) {
157 addRegisterClass(VT, &ARM::QPRRegClass);
158 addTypeForNEON(VT, MVT::v2f64, MVT::v4i32);
159 }
160
createTLOF(TargetMachine & TM)161 static TargetLoweringObjectFile *createTLOF(TargetMachine &TM) {
162 if (TM.getSubtarget<ARMSubtarget>().isTargetDarwin())
163 return new TargetLoweringObjectFileMachO();
164
165 return new ARMElfTargetObjectFile();
166 }
167
ARMTargetLowering(TargetMachine & TM)168 ARMTargetLowering::ARMTargetLowering(TargetMachine &TM)
169 : TargetLowering(TM, createTLOF(TM)) {
170 Subtarget = &TM.getSubtarget<ARMSubtarget>();
171 RegInfo = TM.getRegisterInfo();
172 Itins = TM.getInstrItineraryData();
173
174 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
175
176 if (Subtarget->isTargetDarwin()) {
177 // Uses VFP for Thumb libfuncs if available.
178 if (Subtarget->isThumb() && Subtarget->hasVFP2()) {
179 // Single-precision floating-point arithmetic.
180 setLibcallName(RTLIB::ADD_F32, "__addsf3vfp");
181 setLibcallName(RTLIB::SUB_F32, "__subsf3vfp");
182 setLibcallName(RTLIB::MUL_F32, "__mulsf3vfp");
183 setLibcallName(RTLIB::DIV_F32, "__divsf3vfp");
184
185 // Double-precision floating-point arithmetic.
186 setLibcallName(RTLIB::ADD_F64, "__adddf3vfp");
187 setLibcallName(RTLIB::SUB_F64, "__subdf3vfp");
188 setLibcallName(RTLIB::MUL_F64, "__muldf3vfp");
189 setLibcallName(RTLIB::DIV_F64, "__divdf3vfp");
190
191 // Single-precision comparisons.
192 setLibcallName(RTLIB::OEQ_F32, "__eqsf2vfp");
193 setLibcallName(RTLIB::UNE_F32, "__nesf2vfp");
194 setLibcallName(RTLIB::OLT_F32, "__ltsf2vfp");
195 setLibcallName(RTLIB::OLE_F32, "__lesf2vfp");
196 setLibcallName(RTLIB::OGE_F32, "__gesf2vfp");
197 setLibcallName(RTLIB::OGT_F32, "__gtsf2vfp");
198 setLibcallName(RTLIB::UO_F32, "__unordsf2vfp");
199 setLibcallName(RTLIB::O_F32, "__unordsf2vfp");
200
201 setCmpLibcallCC(RTLIB::OEQ_F32, ISD::SETNE);
202 setCmpLibcallCC(RTLIB::UNE_F32, ISD::SETNE);
203 setCmpLibcallCC(RTLIB::OLT_F32, ISD::SETNE);
204 setCmpLibcallCC(RTLIB::OLE_F32, ISD::SETNE);
205 setCmpLibcallCC(RTLIB::OGE_F32, ISD::SETNE);
206 setCmpLibcallCC(RTLIB::OGT_F32, ISD::SETNE);
207 setCmpLibcallCC(RTLIB::UO_F32, ISD::SETNE);
208 setCmpLibcallCC(RTLIB::O_F32, ISD::SETEQ);
209
210 // Double-precision comparisons.
211 setLibcallName(RTLIB::OEQ_F64, "__eqdf2vfp");
212 setLibcallName(RTLIB::UNE_F64, "__nedf2vfp");
213 setLibcallName(RTLIB::OLT_F64, "__ltdf2vfp");
214 setLibcallName(RTLIB::OLE_F64, "__ledf2vfp");
215 setLibcallName(RTLIB::OGE_F64, "__gedf2vfp");
216 setLibcallName(RTLIB::OGT_F64, "__gtdf2vfp");
217 setLibcallName(RTLIB::UO_F64, "__unorddf2vfp");
218 setLibcallName(RTLIB::O_F64, "__unorddf2vfp");
219
220 setCmpLibcallCC(RTLIB::OEQ_F64, ISD::SETNE);
221 setCmpLibcallCC(RTLIB::UNE_F64, ISD::SETNE);
222 setCmpLibcallCC(RTLIB::OLT_F64, ISD::SETNE);
223 setCmpLibcallCC(RTLIB::OLE_F64, ISD::SETNE);
224 setCmpLibcallCC(RTLIB::OGE_F64, ISD::SETNE);
225 setCmpLibcallCC(RTLIB::OGT_F64, ISD::SETNE);
226 setCmpLibcallCC(RTLIB::UO_F64, ISD::SETNE);
227 setCmpLibcallCC(RTLIB::O_F64, ISD::SETEQ);
228
229 // Floating-point to integer conversions.
230 // i64 conversions are done via library routines even when generating VFP
231 // instructions, so use the same ones.
232 setLibcallName(RTLIB::FPTOSINT_F64_I32, "__fixdfsivfp");
233 setLibcallName(RTLIB::FPTOUINT_F64_I32, "__fixunsdfsivfp");
234 setLibcallName(RTLIB::FPTOSINT_F32_I32, "__fixsfsivfp");
235 setLibcallName(RTLIB::FPTOUINT_F32_I32, "__fixunssfsivfp");
236
237 // Conversions between floating types.
238 setLibcallName(RTLIB::FPROUND_F64_F32, "__truncdfsf2vfp");
239 setLibcallName(RTLIB::FPEXT_F32_F64, "__extendsfdf2vfp");
240
241 // Integer to floating-point conversions.
242 // i64 conversions are done via library routines even when generating VFP
243 // instructions, so use the same ones.
244 // FIXME: There appears to be some naming inconsistency in ARM libgcc:
245 // e.g., __floatunsidf vs. __floatunssidfvfp.
246 setLibcallName(RTLIB::SINTTOFP_I32_F64, "__floatsidfvfp");
247 setLibcallName(RTLIB::UINTTOFP_I32_F64, "__floatunssidfvfp");
248 setLibcallName(RTLIB::SINTTOFP_I32_F32, "__floatsisfvfp");
249 setLibcallName(RTLIB::UINTTOFP_I32_F32, "__floatunssisfvfp");
250 }
251 }
252
253 // These libcalls are not available in 32-bit.
254 setLibcallName(RTLIB::SHL_I128, 0);
255 setLibcallName(RTLIB::SRL_I128, 0);
256 setLibcallName(RTLIB::SRA_I128, 0);
257
258 if (Subtarget->isAAPCS_ABI() && !Subtarget->isTargetDarwin()) {
259 // Double-precision floating-point arithmetic helper functions
260 // RTABI chapter 4.1.2, Table 2
261 setLibcallName(RTLIB::ADD_F64, "__aeabi_dadd");
262 setLibcallName(RTLIB::DIV_F64, "__aeabi_ddiv");
263 setLibcallName(RTLIB::MUL_F64, "__aeabi_dmul");
264 setLibcallName(RTLIB::SUB_F64, "__aeabi_dsub");
265 setLibcallCallingConv(RTLIB::ADD_F64, CallingConv::ARM_AAPCS);
266 setLibcallCallingConv(RTLIB::DIV_F64, CallingConv::ARM_AAPCS);
267 setLibcallCallingConv(RTLIB::MUL_F64, CallingConv::ARM_AAPCS);
268 setLibcallCallingConv(RTLIB::SUB_F64, CallingConv::ARM_AAPCS);
269
270 // Double-precision floating-point comparison helper functions
271 // RTABI chapter 4.1.2, Table 3
272 setLibcallName(RTLIB::OEQ_F64, "__aeabi_dcmpeq");
273 setCmpLibcallCC(RTLIB::OEQ_F64, ISD::SETNE);
274 setLibcallName(RTLIB::UNE_F64, "__aeabi_dcmpeq");
275 setCmpLibcallCC(RTLIB::UNE_F64, ISD::SETEQ);
276 setLibcallName(RTLIB::OLT_F64, "__aeabi_dcmplt");
277 setCmpLibcallCC(RTLIB::OLT_F64, ISD::SETNE);
278 setLibcallName(RTLIB::OLE_F64, "__aeabi_dcmple");
279 setCmpLibcallCC(RTLIB::OLE_F64, ISD::SETNE);
280 setLibcallName(RTLIB::OGE_F64, "__aeabi_dcmpge");
281 setCmpLibcallCC(RTLIB::OGE_F64, ISD::SETNE);
282 setLibcallName(RTLIB::OGT_F64, "__aeabi_dcmpgt");
283 setCmpLibcallCC(RTLIB::OGT_F64, ISD::SETNE);
284 setLibcallName(RTLIB::UO_F64, "__aeabi_dcmpun");
285 setCmpLibcallCC(RTLIB::UO_F64, ISD::SETNE);
286 setLibcallName(RTLIB::O_F64, "__aeabi_dcmpun");
287 setCmpLibcallCC(RTLIB::O_F64, ISD::SETEQ);
288 setLibcallCallingConv(RTLIB::OEQ_F64, CallingConv::ARM_AAPCS);
289 setLibcallCallingConv(RTLIB::UNE_F64, CallingConv::ARM_AAPCS);
290 setLibcallCallingConv(RTLIB::OLT_F64, CallingConv::ARM_AAPCS);
291 setLibcallCallingConv(RTLIB::OLE_F64, CallingConv::ARM_AAPCS);
292 setLibcallCallingConv(RTLIB::OGE_F64, CallingConv::ARM_AAPCS);
293 setLibcallCallingConv(RTLIB::OGT_F64, CallingConv::ARM_AAPCS);
294 setLibcallCallingConv(RTLIB::UO_F64, CallingConv::ARM_AAPCS);
295 setLibcallCallingConv(RTLIB::O_F64, CallingConv::ARM_AAPCS);
296
297 // Single-precision floating-point arithmetic helper functions
298 // RTABI chapter 4.1.2, Table 4
299 setLibcallName(RTLIB::ADD_F32, "__aeabi_fadd");
300 setLibcallName(RTLIB::DIV_F32, "__aeabi_fdiv");
301 setLibcallName(RTLIB::MUL_F32, "__aeabi_fmul");
302 setLibcallName(RTLIB::SUB_F32, "__aeabi_fsub");
303 setLibcallCallingConv(RTLIB::ADD_F32, CallingConv::ARM_AAPCS);
304 setLibcallCallingConv(RTLIB::DIV_F32, CallingConv::ARM_AAPCS);
305 setLibcallCallingConv(RTLIB::MUL_F32, CallingConv::ARM_AAPCS);
306 setLibcallCallingConv(RTLIB::SUB_F32, CallingConv::ARM_AAPCS);
307
308 // Single-precision floating-point comparison helper functions
309 // RTABI chapter 4.1.2, Table 5
310 setLibcallName(RTLIB::OEQ_F32, "__aeabi_fcmpeq");
311 setCmpLibcallCC(RTLIB::OEQ_F32, ISD::SETNE);
312 setLibcallName(RTLIB::UNE_F32, "__aeabi_fcmpeq");
313 setCmpLibcallCC(RTLIB::UNE_F32, ISD::SETEQ);
314 setLibcallName(RTLIB::OLT_F32, "__aeabi_fcmplt");
315 setCmpLibcallCC(RTLIB::OLT_F32, ISD::SETNE);
316 setLibcallName(RTLIB::OLE_F32, "__aeabi_fcmple");
317 setCmpLibcallCC(RTLIB::OLE_F32, ISD::SETNE);
318 setLibcallName(RTLIB::OGE_F32, "__aeabi_fcmpge");
319 setCmpLibcallCC(RTLIB::OGE_F32, ISD::SETNE);
320 setLibcallName(RTLIB::OGT_F32, "__aeabi_fcmpgt");
321 setCmpLibcallCC(RTLIB::OGT_F32, ISD::SETNE);
322 setLibcallName(RTLIB::UO_F32, "__aeabi_fcmpun");
323 setCmpLibcallCC(RTLIB::UO_F32, ISD::SETNE);
324 setLibcallName(RTLIB::O_F32, "__aeabi_fcmpun");
325 setCmpLibcallCC(RTLIB::O_F32, ISD::SETEQ);
326 setLibcallCallingConv(RTLIB::OEQ_F32, CallingConv::ARM_AAPCS);
327 setLibcallCallingConv(RTLIB::UNE_F32, CallingConv::ARM_AAPCS);
328 setLibcallCallingConv(RTLIB::OLT_F32, CallingConv::ARM_AAPCS);
329 setLibcallCallingConv(RTLIB::OLE_F32, CallingConv::ARM_AAPCS);
330 setLibcallCallingConv(RTLIB::OGE_F32, CallingConv::ARM_AAPCS);
331 setLibcallCallingConv(RTLIB::OGT_F32, CallingConv::ARM_AAPCS);
332 setLibcallCallingConv(RTLIB::UO_F32, CallingConv::ARM_AAPCS);
333 setLibcallCallingConv(RTLIB::O_F32, CallingConv::ARM_AAPCS);
334
335 // Floating-point to integer conversions.
336 // RTABI chapter 4.1.2, Table 6
337 setLibcallName(RTLIB::FPTOSINT_F64_I32, "__aeabi_d2iz");
338 setLibcallName(RTLIB::FPTOUINT_F64_I32, "__aeabi_d2uiz");
339 setLibcallName(RTLIB::FPTOSINT_F64_I64, "__aeabi_d2lz");
340 setLibcallName(RTLIB::FPTOUINT_F64_I64, "__aeabi_d2ulz");
341 setLibcallName(RTLIB::FPTOSINT_F32_I32, "__aeabi_f2iz");
342 setLibcallName(RTLIB::FPTOUINT_F32_I32, "__aeabi_f2uiz");
343 setLibcallName(RTLIB::FPTOSINT_F32_I64, "__aeabi_f2lz");
344 setLibcallName(RTLIB::FPTOUINT_F32_I64, "__aeabi_f2ulz");
345 setLibcallCallingConv(RTLIB::FPTOSINT_F64_I32, CallingConv::ARM_AAPCS);
346 setLibcallCallingConv(RTLIB::FPTOUINT_F64_I32, CallingConv::ARM_AAPCS);
347 setLibcallCallingConv(RTLIB::FPTOSINT_F64_I64, CallingConv::ARM_AAPCS);
348 setLibcallCallingConv(RTLIB::FPTOUINT_F64_I64, CallingConv::ARM_AAPCS);
349 setLibcallCallingConv(RTLIB::FPTOSINT_F32_I32, CallingConv::ARM_AAPCS);
350 setLibcallCallingConv(RTLIB::FPTOUINT_F32_I32, CallingConv::ARM_AAPCS);
351 setLibcallCallingConv(RTLIB::FPTOSINT_F32_I64, CallingConv::ARM_AAPCS);
352 setLibcallCallingConv(RTLIB::FPTOUINT_F32_I64, CallingConv::ARM_AAPCS);
353
354 // Conversions between floating types.
355 // RTABI chapter 4.1.2, Table 7
356 setLibcallName(RTLIB::FPROUND_F64_F32, "__aeabi_d2f");
357 setLibcallName(RTLIB::FPEXT_F32_F64, "__aeabi_f2d");
358 setLibcallCallingConv(RTLIB::FPROUND_F64_F32, CallingConv::ARM_AAPCS);
359 setLibcallCallingConv(RTLIB::FPEXT_F32_F64, CallingConv::ARM_AAPCS);
360
361 // Integer to floating-point conversions.
362 // RTABI chapter 4.1.2, Table 8
363 setLibcallName(RTLIB::SINTTOFP_I32_F64, "__aeabi_i2d");
364 setLibcallName(RTLIB::UINTTOFP_I32_F64, "__aeabi_ui2d");
365 setLibcallName(RTLIB::SINTTOFP_I64_F64, "__aeabi_l2d");
366 setLibcallName(RTLIB::UINTTOFP_I64_F64, "__aeabi_ul2d");
367 setLibcallName(RTLIB::SINTTOFP_I32_F32, "__aeabi_i2f");
368 setLibcallName(RTLIB::UINTTOFP_I32_F32, "__aeabi_ui2f");
369 setLibcallName(RTLIB::SINTTOFP_I64_F32, "__aeabi_l2f");
370 setLibcallName(RTLIB::UINTTOFP_I64_F32, "__aeabi_ul2f");
371 setLibcallCallingConv(RTLIB::SINTTOFP_I32_F64, CallingConv::ARM_AAPCS);
372 setLibcallCallingConv(RTLIB::UINTTOFP_I32_F64, CallingConv::ARM_AAPCS);
373 setLibcallCallingConv(RTLIB::SINTTOFP_I64_F64, CallingConv::ARM_AAPCS);
374 setLibcallCallingConv(RTLIB::UINTTOFP_I64_F64, CallingConv::ARM_AAPCS);
375 setLibcallCallingConv(RTLIB::SINTTOFP_I32_F32, CallingConv::ARM_AAPCS);
376 setLibcallCallingConv(RTLIB::UINTTOFP_I32_F32, CallingConv::ARM_AAPCS);
377 setLibcallCallingConv(RTLIB::SINTTOFP_I64_F32, CallingConv::ARM_AAPCS);
378 setLibcallCallingConv(RTLIB::UINTTOFP_I64_F32, CallingConv::ARM_AAPCS);
379
380 // Long long helper functions
381 // RTABI chapter 4.2, Table 9
382 setLibcallName(RTLIB::MUL_I64, "__aeabi_lmul");
383 setLibcallName(RTLIB::SHL_I64, "__aeabi_llsl");
384 setLibcallName(RTLIB::SRL_I64, "__aeabi_llsr");
385 setLibcallName(RTLIB::SRA_I64, "__aeabi_lasr");
386 setLibcallCallingConv(RTLIB::MUL_I64, CallingConv::ARM_AAPCS);
387 setLibcallCallingConv(RTLIB::SDIV_I64, CallingConv::ARM_AAPCS);
388 setLibcallCallingConv(RTLIB::UDIV_I64, CallingConv::ARM_AAPCS);
389 setLibcallCallingConv(RTLIB::SHL_I64, CallingConv::ARM_AAPCS);
390 setLibcallCallingConv(RTLIB::SRL_I64, CallingConv::ARM_AAPCS);
391 setLibcallCallingConv(RTLIB::SRA_I64, CallingConv::ARM_AAPCS);
392
393 // Integer division functions
394 // RTABI chapter 4.3.1
395 setLibcallName(RTLIB::SDIV_I8, "__aeabi_idiv");
396 setLibcallName(RTLIB::SDIV_I16, "__aeabi_idiv");
397 setLibcallName(RTLIB::SDIV_I32, "__aeabi_idiv");
398 setLibcallName(RTLIB::SDIV_I64, "__aeabi_ldivmod");
399 setLibcallName(RTLIB::UDIV_I8, "__aeabi_uidiv");
400 setLibcallName(RTLIB::UDIV_I16, "__aeabi_uidiv");
401 setLibcallName(RTLIB::UDIV_I32, "__aeabi_uidiv");
402 setLibcallName(RTLIB::UDIV_I64, "__aeabi_uldivmod");
403 setLibcallCallingConv(RTLIB::SDIV_I8, CallingConv::ARM_AAPCS);
404 setLibcallCallingConv(RTLIB::SDIV_I16, CallingConv::ARM_AAPCS);
405 setLibcallCallingConv(RTLIB::SDIV_I32, CallingConv::ARM_AAPCS);
406 setLibcallCallingConv(RTLIB::SDIV_I64, CallingConv::ARM_AAPCS);
407 setLibcallCallingConv(RTLIB::UDIV_I8, CallingConv::ARM_AAPCS);
408 setLibcallCallingConv(RTLIB::UDIV_I16, CallingConv::ARM_AAPCS);
409 setLibcallCallingConv(RTLIB::UDIV_I32, CallingConv::ARM_AAPCS);
410 setLibcallCallingConv(RTLIB::UDIV_I64, CallingConv::ARM_AAPCS);
411
412 // Memory operations
413 // RTABI chapter 4.3.4
414 setLibcallName(RTLIB::MEMCPY, "__aeabi_memcpy");
415 setLibcallName(RTLIB::MEMMOVE, "__aeabi_memmove");
416 setLibcallName(RTLIB::MEMSET, "__aeabi_memset");
417 setLibcallCallingConv(RTLIB::MEMCPY, CallingConv::ARM_AAPCS);
418 setLibcallCallingConv(RTLIB::MEMMOVE, CallingConv::ARM_AAPCS);
419 setLibcallCallingConv(RTLIB::MEMSET, CallingConv::ARM_AAPCS);
420 }
421
422 // Use divmod compiler-rt calls for iOS 5.0 and later.
423 if (Subtarget->getTargetTriple().getOS() == Triple::IOS &&
424 !Subtarget->getTargetTriple().isOSVersionLT(5, 0)) {
425 setLibcallName(RTLIB::SDIVREM_I32, "__divmodsi4");
426 setLibcallName(RTLIB::UDIVREM_I32, "__udivmodsi4");
427 }
428
429 if (Subtarget->isThumb1Only())
430 addRegisterClass(MVT::i32, &ARM::tGPRRegClass);
431 else
432 addRegisterClass(MVT::i32, &ARM::GPRRegClass);
433 if (!TM.Options.UseSoftFloat && Subtarget->hasVFP2() &&
434 !Subtarget->isThumb1Only()) {
435 addRegisterClass(MVT::f32, &ARM::SPRRegClass);
436 if (!Subtarget->isFPOnlySP())
437 addRegisterClass(MVT::f64, &ARM::DPRRegClass);
438
439 setTruncStoreAction(MVT::f64, MVT::f32, Expand);
440 }
441
442 for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
443 VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
444 for (unsigned InnerVT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
445 InnerVT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++InnerVT)
446 setTruncStoreAction((MVT::SimpleValueType)VT,
447 (MVT::SimpleValueType)InnerVT, Expand);
448 setLoadExtAction(ISD::SEXTLOAD, (MVT::SimpleValueType)VT, Expand);
449 setLoadExtAction(ISD::ZEXTLOAD, (MVT::SimpleValueType)VT, Expand);
450 setLoadExtAction(ISD::EXTLOAD, (MVT::SimpleValueType)VT, Expand);
451 }
452
453 setOperationAction(ISD::ConstantFP, MVT::f32, Custom);
454
455 if (Subtarget->hasNEON()) {
456 addDRTypeForNEON(MVT::v2f32);
457 addDRTypeForNEON(MVT::v8i8);
458 addDRTypeForNEON(MVT::v4i16);
459 addDRTypeForNEON(MVT::v2i32);
460 addDRTypeForNEON(MVT::v1i64);
461
462 addQRTypeForNEON(MVT::v4f32);
463 addQRTypeForNEON(MVT::v2f64);
464 addQRTypeForNEON(MVT::v16i8);
465 addQRTypeForNEON(MVT::v8i16);
466 addQRTypeForNEON(MVT::v4i32);
467 addQRTypeForNEON(MVT::v2i64);
468
469 // v2f64 is legal so that QR subregs can be extracted as f64 elements, but
470 // neither Neon nor VFP support any arithmetic operations on it.
471 // The same with v4f32. But keep in mind that vadd, vsub, vmul are natively
472 // supported for v4f32.
473 setOperationAction(ISD::FADD, MVT::v2f64, Expand);
474 setOperationAction(ISD::FSUB, MVT::v2f64, Expand);
475 setOperationAction(ISD::FMUL, MVT::v2f64, Expand);
476 // FIXME: Code duplication: FDIV and FREM are expanded always, see
477 // ARMTargetLowering::addTypeForNEON method for details.
478 setOperationAction(ISD::FDIV, MVT::v2f64, Expand);
479 setOperationAction(ISD::FREM, MVT::v2f64, Expand);
480 // FIXME: Create unittest.
481 // In another words, find a way when "copysign" appears in DAG with vector
482 // operands.
483 setOperationAction(ISD::FCOPYSIGN, MVT::v2f64, Expand);
484 // FIXME: Code duplication: SETCC has custom operation action, see
485 // ARMTargetLowering::addTypeForNEON method for details.
486 setOperationAction(ISD::SETCC, MVT::v2f64, Expand);
487 // FIXME: Create unittest for FNEG and for FABS.
488 setOperationAction(ISD::FNEG, MVT::v2f64, Expand);
489 setOperationAction(ISD::FABS, MVT::v2f64, Expand);
490 setOperationAction(ISD::FSQRT, MVT::v2f64, Expand);
491 setOperationAction(ISD::FSIN, MVT::v2f64, Expand);
492 setOperationAction(ISD::FCOS, MVT::v2f64, Expand);
493 setOperationAction(ISD::FPOWI, MVT::v2f64, Expand);
494 setOperationAction(ISD::FPOW, MVT::v2f64, Expand);
495 setOperationAction(ISD::FLOG, MVT::v2f64, Expand);
496 setOperationAction(ISD::FLOG2, MVT::v2f64, Expand);
497 setOperationAction(ISD::FLOG10, MVT::v2f64, Expand);
498 setOperationAction(ISD::FEXP, MVT::v2f64, Expand);
499 setOperationAction(ISD::FEXP2, MVT::v2f64, Expand);
500 // FIXME: Create unittest for FCEIL, FTRUNC, FRINT, FNEARBYINT, FFLOOR.
501 setOperationAction(ISD::FCEIL, MVT::v2f64, Expand);
502 setOperationAction(ISD::FTRUNC, MVT::v2f64, Expand);
503 setOperationAction(ISD::FRINT, MVT::v2f64, Expand);
504 setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Expand);
505 setOperationAction(ISD::FFLOOR, MVT::v2f64, Expand);
506
507 setOperationAction(ISD::FSQRT, MVT::v4f32, Expand);
508 setOperationAction(ISD::FSIN, MVT::v4f32, Expand);
509 setOperationAction(ISD::FCOS, MVT::v4f32, Expand);
510 setOperationAction(ISD::FPOWI, MVT::v4f32, Expand);
511 setOperationAction(ISD::FPOW, MVT::v4f32, Expand);
512 setOperationAction(ISD::FLOG, MVT::v4f32, Expand);
513 setOperationAction(ISD::FLOG2, MVT::v4f32, Expand);
514 setOperationAction(ISD::FLOG10, MVT::v4f32, Expand);
515 setOperationAction(ISD::FEXP, MVT::v4f32, Expand);
516 setOperationAction(ISD::FEXP2, MVT::v4f32, Expand);
517 setOperationAction(ISD::FFLOOR, MVT::v4f32, Expand);
518
519 // Neon does not support some operations on v1i64 and v2i64 types.
520 setOperationAction(ISD::MUL, MVT::v1i64, Expand);
521 // Custom handling for some quad-vector types to detect VMULL.
522 setOperationAction(ISD::MUL, MVT::v8i16, Custom);
523 setOperationAction(ISD::MUL, MVT::v4i32, Custom);
524 setOperationAction(ISD::MUL, MVT::v2i64, Custom);
525 // Custom handling for some vector types to avoid expensive expansions
526 setOperationAction(ISD::SDIV, MVT::v4i16, Custom);
527 setOperationAction(ISD::SDIV, MVT::v8i8, Custom);
528 setOperationAction(ISD::UDIV, MVT::v4i16, Custom);
529 setOperationAction(ISD::UDIV, MVT::v8i8, Custom);
530 setOperationAction(ISD::SETCC, MVT::v1i64, Expand);
531 setOperationAction(ISD::SETCC, MVT::v2i64, Expand);
532 // Neon does not have single instruction SINT_TO_FP and UINT_TO_FP with
533 // a destination type that is wider than the source, and nor does
534 // it have a FP_TO_[SU]INT instruction with a narrower destination than
535 // source.
536 setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Custom);
537 setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Custom);
538 setOperationAction(ISD::FP_TO_UINT, MVT::v4i16, Custom);
539 setOperationAction(ISD::FP_TO_SINT, MVT::v4i16, Custom);
540
541 setTargetDAGCombine(ISD::INTRINSIC_VOID);
542 setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
543 setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
544 setTargetDAGCombine(ISD::SHL);
545 setTargetDAGCombine(ISD::SRL);
546 setTargetDAGCombine(ISD::SRA);
547 setTargetDAGCombine(ISD::SIGN_EXTEND);
548 setTargetDAGCombine(ISD::ZERO_EXTEND);
549 setTargetDAGCombine(ISD::ANY_EXTEND);
550 setTargetDAGCombine(ISD::SELECT_CC);
551 setTargetDAGCombine(ISD::BUILD_VECTOR);
552 setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
553 setTargetDAGCombine(ISD::INSERT_VECTOR_ELT);
554 setTargetDAGCombine(ISD::STORE);
555 setTargetDAGCombine(ISD::FP_TO_SINT);
556 setTargetDAGCombine(ISD::FP_TO_UINT);
557 setTargetDAGCombine(ISD::FDIV);
558
559 // It is legal to extload from v4i8 to v4i16 or v4i32.
560 MVT Tys[6] = {MVT::v8i8, MVT::v4i8, MVT::v2i8,
561 MVT::v4i16, MVT::v2i16,
562 MVT::v2i32};
563 for (unsigned i = 0; i < 6; ++i) {
564 setLoadExtAction(ISD::EXTLOAD, Tys[i], Legal);
565 setLoadExtAction(ISD::ZEXTLOAD, Tys[i], Legal);
566 setLoadExtAction(ISD::SEXTLOAD, Tys[i], Legal);
567 }
568 }
569
570 // ARM and Thumb2 support UMLAL/SMLAL.
571 if (!Subtarget->isThumb1Only())
572 setTargetDAGCombine(ISD::ADDC);
573
574
575 computeRegisterProperties();
576
577 // ARM does not have f32 extending load.
578 setLoadExtAction(ISD::EXTLOAD, MVT::f32, Expand);
579
580 // ARM does not have i1 sign extending load.
581 setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
582
583 // ARM supports all 4 flavors of integer indexed load / store.
584 if (!Subtarget->isThumb1Only()) {
585 for (unsigned im = (unsigned)ISD::PRE_INC;
586 im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
587 setIndexedLoadAction(im, MVT::i1, Legal);
588 setIndexedLoadAction(im, MVT::i8, Legal);
589 setIndexedLoadAction(im, MVT::i16, Legal);
590 setIndexedLoadAction(im, MVT::i32, Legal);
591 setIndexedStoreAction(im, MVT::i1, Legal);
592 setIndexedStoreAction(im, MVT::i8, Legal);
593 setIndexedStoreAction(im, MVT::i16, Legal);
594 setIndexedStoreAction(im, MVT::i32, Legal);
595 }
596 }
597
598 // i64 operation support.
599 setOperationAction(ISD::MUL, MVT::i64, Expand);
600 setOperationAction(ISD::MULHU, MVT::i32, Expand);
601 if (Subtarget->isThumb1Only()) {
602 setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
603 setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
604 }
605 if (Subtarget->isThumb1Only() || !Subtarget->hasV6Ops()
606 || (Subtarget->isThumb2() && !Subtarget->hasThumb2DSP()))
607 setOperationAction(ISD::MULHS, MVT::i32, Expand);
608
609 setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
610 setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
611 setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
612 setOperationAction(ISD::SRL, MVT::i64, Custom);
613 setOperationAction(ISD::SRA, MVT::i64, Custom);
614
615 if (!Subtarget->isThumb1Only()) {
616 // FIXME: We should do this for Thumb1 as well.
617 setOperationAction(ISD::ADDC, MVT::i32, Custom);
618 setOperationAction(ISD::ADDE, MVT::i32, Custom);
619 setOperationAction(ISD::SUBC, MVT::i32, Custom);
620 setOperationAction(ISD::SUBE, MVT::i32, Custom);
621 }
622
623 // ARM does not have ROTL.
624 setOperationAction(ISD::ROTL, MVT::i32, Expand);
625 setOperationAction(ISD::CTTZ, MVT::i32, Custom);
626 setOperationAction(ISD::CTPOP, MVT::i32, Expand);
627 if (!Subtarget->hasV5TOps() || Subtarget->isThumb1Only())
628 setOperationAction(ISD::CTLZ, MVT::i32, Expand);
629
630 // These just redirect to CTTZ and CTLZ on ARM.
631 setOperationAction(ISD::CTTZ_ZERO_UNDEF , MVT::i32 , Expand);
632 setOperationAction(ISD::CTLZ_ZERO_UNDEF , MVT::i32 , Expand);
633
634 // Only ARMv6 has BSWAP.
635 if (!Subtarget->hasV6Ops())
636 setOperationAction(ISD::BSWAP, MVT::i32, Expand);
637
638 // These are expanded into libcalls.
639 if (!Subtarget->hasDivide() || !Subtarget->isThumb2()) {
640 // v7M has a hardware divider
641 setOperationAction(ISD::SDIV, MVT::i32, Expand);
642 setOperationAction(ISD::UDIV, MVT::i32, Expand);
643 }
644 setOperationAction(ISD::SREM, MVT::i32, Expand);
645 setOperationAction(ISD::UREM, MVT::i32, Expand);
646 setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
647 setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
648
649 setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
650 setOperationAction(ISD::ConstantPool, MVT::i32, Custom);
651 setOperationAction(ISD::GLOBAL_OFFSET_TABLE, MVT::i32, Custom);
652 setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
653 setOperationAction(ISD::BlockAddress, MVT::i32, Custom);
654
655 setOperationAction(ISD::TRAP, MVT::Other, Legal);
656
657 // Use the default implementation.
658 setOperationAction(ISD::VASTART, MVT::Other, Custom);
659 setOperationAction(ISD::VAARG, MVT::Other, Expand);
660 setOperationAction(ISD::VACOPY, MVT::Other, Expand);
661 setOperationAction(ISD::VAEND, MVT::Other, Expand);
662 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
663 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
664
665 if (!Subtarget->isTargetDarwin()) {
666 // Non-Darwin platforms may return values in these registers via the
667 // personality function.
668 setOperationAction(ISD::EHSELECTION, MVT::i32, Expand);
669 setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
670 setExceptionPointerRegister(ARM::R0);
671 setExceptionSelectorRegister(ARM::R1);
672 }
673
674 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
675 // ARMv6 Thumb1 (except for CPUs that support dmb / dsb) and earlier use
676 // the default expansion.
677 // FIXME: This should be checking for v6k, not just v6.
678 if (Subtarget->hasDataBarrier() ||
679 (Subtarget->hasV6Ops() && !Subtarget->isThumb())) {
680 // membarrier needs custom lowering; the rest are legal and handled
681 // normally.
682 setOperationAction(ISD::MEMBARRIER, MVT::Other, Custom);
683 setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom);
684 // Custom lowering for 64-bit ops
685 setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i64, Custom);
686 setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
687 setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i64, Custom);
688 setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i64, Custom);
689 setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i64, Custom);
690 setOperationAction(ISD::ATOMIC_SWAP, MVT::i64, Custom);
691 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i64, Custom);
692 // Automatically insert fences (dmb ist) around ATOMIC_SWAP etc.
693 setInsertFencesForAtomic(true);
694 } else {
695 // Set them all for expansion, which will force libcalls.
696 setOperationAction(ISD::MEMBARRIER, MVT::Other, Expand);
697 setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Expand);
698 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Expand);
699 setOperationAction(ISD::ATOMIC_SWAP, MVT::i32, Expand);
700 setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i32, Expand);
701 setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i32, Expand);
702 setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i32, Expand);
703 setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i32, Expand);
704 setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i32, Expand);
705 setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Expand);
706 setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i32, Expand);
707 setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i32, Expand);
708 setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Expand);
709 setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Expand);
710 // Mark ATOMIC_LOAD and ATOMIC_STORE custom so we can handle the
711 // Unordered/Monotonic case.
712 setOperationAction(ISD::ATOMIC_LOAD, MVT::i32, Custom);
713 setOperationAction(ISD::ATOMIC_STORE, MVT::i32, Custom);
714 // Since the libcalls include locking, fold in the fences
715 setShouldFoldAtomicFences(true);
716 }
717
718 setOperationAction(ISD::PREFETCH, MVT::Other, Custom);
719
720 // Requires SXTB/SXTH, available on v6 and up in both ARM and Thumb modes.
721 if (!Subtarget->hasV6Ops()) {
722 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
723 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand);
724 }
725 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
726
727 if (!TM.Options.UseSoftFloat && Subtarget->hasVFP2() &&
728 !Subtarget->isThumb1Only()) {
729 // Turn f64->i64 into VMOVRRD, i64 -> f64 to VMOVDRR
730 // iff target supports vfp2.
731 setOperationAction(ISD::BITCAST, MVT::i64, Custom);
732 setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
733 }
734
735 // We want to custom lower some of our intrinsics.
736 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
737 if (Subtarget->isTargetDarwin()) {
738 setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
739 setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
740 setLibcallName(RTLIB::UNWIND_RESUME, "_Unwind_SjLj_Resume");
741 }
742
743 setOperationAction(ISD::SETCC, MVT::i32, Expand);
744 setOperationAction(ISD::SETCC, MVT::f32, Expand);
745 setOperationAction(ISD::SETCC, MVT::f64, Expand);
746 setOperationAction(ISD::SELECT, MVT::i32, Custom);
747 setOperationAction(ISD::SELECT, MVT::f32, Custom);
748 setOperationAction(ISD::SELECT, MVT::f64, Custom);
749 setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
750 setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
751 setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
752
753 setOperationAction(ISD::BRCOND, MVT::Other, Expand);
754 setOperationAction(ISD::BR_CC, MVT::i32, Custom);
755 setOperationAction(ISD::BR_CC, MVT::f32, Custom);
756 setOperationAction(ISD::BR_CC, MVT::f64, Custom);
757 setOperationAction(ISD::BR_JT, MVT::Other, Custom);
758
759 // We don't support sin/cos/fmod/copysign/pow
760 setOperationAction(ISD::FSIN, MVT::f64, Expand);
761 setOperationAction(ISD::FSIN, MVT::f32, Expand);
762 setOperationAction(ISD::FCOS, MVT::f32, Expand);
763 setOperationAction(ISD::FCOS, MVT::f64, Expand);
764 setOperationAction(ISD::FREM, MVT::f64, Expand);
765 setOperationAction(ISD::FREM, MVT::f32, Expand);
766 if (!TM.Options.UseSoftFloat && Subtarget->hasVFP2() &&
767 !Subtarget->isThumb1Only()) {
768 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
769 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
770 }
771 setOperationAction(ISD::FPOW, MVT::f64, Expand);
772 setOperationAction(ISD::FPOW, MVT::f32, Expand);
773
774 if (!Subtarget->hasVFP4()) {
775 setOperationAction(ISD::FMA, MVT::f64, Expand);
776 setOperationAction(ISD::FMA, MVT::f32, Expand);
777 }
778
779 // Various VFP goodness
780 if (!TM.Options.UseSoftFloat && !Subtarget->isThumb1Only()) {
781 // int <-> fp are custom expanded into bit_convert + ARMISD ops.
782 if (Subtarget->hasVFP2()) {
783 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
784 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
785 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
786 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
787 }
788 // Special handling for half-precision FP.
789 if (!Subtarget->hasFP16()) {
790 setOperationAction(ISD::FP16_TO_FP32, MVT::f32, Expand);
791 setOperationAction(ISD::FP32_TO_FP16, MVT::i32, Expand);
792 }
793 }
794
795 // We have target-specific dag combine patterns for the following nodes:
796 // ARMISD::VMOVRRD - No need to call setTargetDAGCombine
797 setTargetDAGCombine(ISD::ADD);
798 setTargetDAGCombine(ISD::SUB);
799 setTargetDAGCombine(ISD::MUL);
800 setTargetDAGCombine(ISD::AND);
801 setTargetDAGCombine(ISD::OR);
802 setTargetDAGCombine(ISD::XOR);
803
804 if (Subtarget->hasV6Ops())
805 setTargetDAGCombine(ISD::SRL);
806
807 setStackPointerRegisterToSaveRestore(ARM::SP);
808
809 if (TM.Options.UseSoftFloat || Subtarget->isThumb1Only() ||
810 !Subtarget->hasVFP2())
811 setSchedulingPreference(Sched::RegPressure);
812 else
813 setSchedulingPreference(Sched::Hybrid);
814
815 //// temporary - rewrite interface to use type
816 maxStoresPerMemcpy = maxStoresPerMemcpyOptSize = 1;
817 maxStoresPerMemset = 16;
818 maxStoresPerMemsetOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
819
820 // On ARM arguments smaller than 4 bytes are extended, so all arguments
821 // are at least 4 bytes aligned.
822 setMinStackArgumentAlignment(4);
823
824 benefitFromCodePlacementOpt = true;
825
826 // Prefer likely predicted branches to selects on out-of-order cores.
827 predictableSelectIsExpensive = Subtarget->isCortexA9();
828
829 setMinFunctionAlignment(Subtarget->isThumb() ? 1 : 2);
830 }
831
832 // FIXME: It might make sense to define the representative register class as the
833 // nearest super-register that has a non-null superset. For example, DPR_VFP2 is
834 // a super-register of SPR, and DPR is a superset if DPR_VFP2. Consequently,
835 // SPR's representative would be DPR_VFP2. This should work well if register
836 // pressure tracking were modified such that a register use would increment the
837 // pressure of the register class's representative and all of it's super
838 // classes' representatives transitively. We have not implemented this because
839 // of the difficulty prior to coalescing of modeling operand register classes
840 // due to the common occurrence of cross class copies and subregister insertions
841 // and extractions.
842 std::pair<const TargetRegisterClass*, uint8_t>
findRepresentativeClass(EVT VT) const843 ARMTargetLowering::findRepresentativeClass(EVT VT) const{
844 const TargetRegisterClass *RRC = 0;
845 uint8_t Cost = 1;
846 switch (VT.getSimpleVT().SimpleTy) {
847 default:
848 return TargetLowering::findRepresentativeClass(VT);
849 // Use DPR as representative register class for all floating point
850 // and vector types. Since there are 32 SPR registers and 32 DPR registers so
851 // the cost is 1 for both f32 and f64.
852 case MVT::f32: case MVT::f64: case MVT::v8i8: case MVT::v4i16:
853 case MVT::v2i32: case MVT::v1i64: case MVT::v2f32:
854 RRC = &ARM::DPRRegClass;
855 // When NEON is used for SP, only half of the register file is available
856 // because operations that define both SP and DP results will be constrained
857 // to the VFP2 class (D0-D15). We currently model this constraint prior to
858 // coalescing by double-counting the SP regs. See the FIXME above.
859 if (Subtarget->useNEONForSinglePrecisionFP())
860 Cost = 2;
861 break;
862 case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64:
863 case MVT::v4f32: case MVT::v2f64:
864 RRC = &ARM::DPRRegClass;
865 Cost = 2;
866 break;
867 case MVT::v4i64:
868 RRC = &ARM::DPRRegClass;
869 Cost = 4;
870 break;
871 case MVT::v8i64:
872 RRC = &ARM::DPRRegClass;
873 Cost = 8;
874 break;
875 }
876 return std::make_pair(RRC, Cost);
877 }
878
getTargetNodeName(unsigned Opcode) const879 const char *ARMTargetLowering::getTargetNodeName(unsigned Opcode) const {
880 switch (Opcode) {
881 default: return 0;
882 case ARMISD::Wrapper: return "ARMISD::Wrapper";
883 case ARMISD::WrapperDYN: return "ARMISD::WrapperDYN";
884 case ARMISD::WrapperPIC: return "ARMISD::WrapperPIC";
885 case ARMISD::WrapperJT: return "ARMISD::WrapperJT";
886 case ARMISD::CALL: return "ARMISD::CALL";
887 case ARMISD::CALL_PRED: return "ARMISD::CALL_PRED";
888 case ARMISD::CALL_NOLINK: return "ARMISD::CALL_NOLINK";
889 case ARMISD::tCALL: return "ARMISD::tCALL";
890 case ARMISD::BRCOND: return "ARMISD::BRCOND";
891 case ARMISD::BR_JT: return "ARMISD::BR_JT";
892 case ARMISD::BR2_JT: return "ARMISD::BR2_JT";
893 case ARMISD::RET_FLAG: return "ARMISD::RET_FLAG";
894 case ARMISD::PIC_ADD: return "ARMISD::PIC_ADD";
895 case ARMISD::CMP: return "ARMISD::CMP";
896 case ARMISD::CMN: return "ARMISD::CMN";
897 case ARMISD::CMPZ: return "ARMISD::CMPZ";
898 case ARMISD::CMPFP: return "ARMISD::CMPFP";
899 case ARMISD::CMPFPw0: return "ARMISD::CMPFPw0";
900 case ARMISD::BCC_i64: return "ARMISD::BCC_i64";
901 case ARMISD::FMSTAT: return "ARMISD::FMSTAT";
902
903 case ARMISD::CMOV: return "ARMISD::CMOV";
904
905 case ARMISD::RBIT: return "ARMISD::RBIT";
906
907 case ARMISD::FTOSI: return "ARMISD::FTOSI";
908 case ARMISD::FTOUI: return "ARMISD::FTOUI";
909 case ARMISD::SITOF: return "ARMISD::SITOF";
910 case ARMISD::UITOF: return "ARMISD::UITOF";
911
912 case ARMISD::SRL_FLAG: return "ARMISD::SRL_FLAG";
913 case ARMISD::SRA_FLAG: return "ARMISD::SRA_FLAG";
914 case ARMISD::RRX: return "ARMISD::RRX";
915
916 case ARMISD::ADDC: return "ARMISD::ADDC";
917 case ARMISD::ADDE: return "ARMISD::ADDE";
918 case ARMISD::SUBC: return "ARMISD::SUBC";
919 case ARMISD::SUBE: return "ARMISD::SUBE";
920
921 case ARMISD::VMOVRRD: return "ARMISD::VMOVRRD";
922 case ARMISD::VMOVDRR: return "ARMISD::VMOVDRR";
923
924 case ARMISD::EH_SJLJ_SETJMP: return "ARMISD::EH_SJLJ_SETJMP";
925 case ARMISD::EH_SJLJ_LONGJMP:return "ARMISD::EH_SJLJ_LONGJMP";
926
927 case ARMISD::TC_RETURN: return "ARMISD::TC_RETURN";
928
929 case ARMISD::THREAD_POINTER:return "ARMISD::THREAD_POINTER";
930
931 case ARMISD::DYN_ALLOC: return "ARMISD::DYN_ALLOC";
932
933 case ARMISD::MEMBARRIER: return "ARMISD::MEMBARRIER";
934 case ARMISD::MEMBARRIER_MCR: return "ARMISD::MEMBARRIER_MCR";
935
936 case ARMISD::PRELOAD: return "ARMISD::PRELOAD";
937
938 case ARMISD::VCEQ: return "ARMISD::VCEQ";
939 case ARMISD::VCEQZ: return "ARMISD::VCEQZ";
940 case ARMISD::VCGE: return "ARMISD::VCGE";
941 case ARMISD::VCGEZ: return "ARMISD::VCGEZ";
942 case ARMISD::VCLEZ: return "ARMISD::VCLEZ";
943 case ARMISD::VCGEU: return "ARMISD::VCGEU";
944 case ARMISD::VCGT: return "ARMISD::VCGT";
945 case ARMISD::VCGTZ: return "ARMISD::VCGTZ";
946 case ARMISD::VCLTZ: return "ARMISD::VCLTZ";
947 case ARMISD::VCGTU: return "ARMISD::VCGTU";
948 case ARMISD::VTST: return "ARMISD::VTST";
949
950 case ARMISD::VSHL: return "ARMISD::VSHL";
951 case ARMISD::VSHRs: return "ARMISD::VSHRs";
952 case ARMISD::VSHRu: return "ARMISD::VSHRu";
953 case ARMISD::VSHLLs: return "ARMISD::VSHLLs";
954 case ARMISD::VSHLLu: return "ARMISD::VSHLLu";
955 case ARMISD::VSHLLi: return "ARMISD::VSHLLi";
956 case ARMISD::VSHRN: return "ARMISD::VSHRN";
957 case ARMISD::VRSHRs: return "ARMISD::VRSHRs";
958 case ARMISD::VRSHRu: return "ARMISD::VRSHRu";
959 case ARMISD::VRSHRN: return "ARMISD::VRSHRN";
960 case ARMISD::VQSHLs: return "ARMISD::VQSHLs";
961 case ARMISD::VQSHLu: return "ARMISD::VQSHLu";
962 case ARMISD::VQSHLsu: return "ARMISD::VQSHLsu";
963 case ARMISD::VQSHRNs: return "ARMISD::VQSHRNs";
964 case ARMISD::VQSHRNu: return "ARMISD::VQSHRNu";
965 case ARMISD::VQSHRNsu: return "ARMISD::VQSHRNsu";
966 case ARMISD::VQRSHRNs: return "ARMISD::VQRSHRNs";
967 case ARMISD::VQRSHRNu: return "ARMISD::VQRSHRNu";
968 case ARMISD::VQRSHRNsu: return "ARMISD::VQRSHRNsu";
969 case ARMISD::VGETLANEu: return "ARMISD::VGETLANEu";
970 case ARMISD::VGETLANEs: return "ARMISD::VGETLANEs";
971 case ARMISD::VMOVIMM: return "ARMISD::VMOVIMM";
972 case ARMISD::VMVNIMM: return "ARMISD::VMVNIMM";
973 case ARMISD::VMOVFPIMM: return "ARMISD::VMOVFPIMM";
974 case ARMISD::VDUP: return "ARMISD::VDUP";
975 case ARMISD::VDUPLANE: return "ARMISD::VDUPLANE";
976 case ARMISD::VEXT: return "ARMISD::VEXT";
977 case ARMISD::VREV64: return "ARMISD::VREV64";
978 case ARMISD::VREV32: return "ARMISD::VREV32";
979 case ARMISD::VREV16: return "ARMISD::VREV16";
980 case ARMISD::VZIP: return "ARMISD::VZIP";
981 case ARMISD::VUZP: return "ARMISD::VUZP";
982 case ARMISD::VTRN: return "ARMISD::VTRN";
983 case ARMISD::VTBL1: return "ARMISD::VTBL1";
984 case ARMISD::VTBL2: return "ARMISD::VTBL2";
985 case ARMISD::VMULLs: return "ARMISD::VMULLs";
986 case ARMISD::VMULLu: return "ARMISD::VMULLu";
987 case ARMISD::UMLAL: return "ARMISD::UMLAL";
988 case ARMISD::SMLAL: return "ARMISD::SMLAL";
989 case ARMISD::BUILD_VECTOR: return "ARMISD::BUILD_VECTOR";
990 case ARMISD::FMAX: return "ARMISD::FMAX";
991 case ARMISD::FMIN: return "ARMISD::FMIN";
992 case ARMISD::BFI: return "ARMISD::BFI";
993 case ARMISD::VORRIMM: return "ARMISD::VORRIMM";
994 case ARMISD::VBICIMM: return "ARMISD::VBICIMM";
995 case ARMISD::VBSL: return "ARMISD::VBSL";
996 case ARMISD::VLD2DUP: return "ARMISD::VLD2DUP";
997 case ARMISD::VLD3DUP: return "ARMISD::VLD3DUP";
998 case ARMISD::VLD4DUP: return "ARMISD::VLD4DUP";
999 case ARMISD::VLD1_UPD: return "ARMISD::VLD1_UPD";
1000 case ARMISD::VLD2_UPD: return "ARMISD::VLD2_UPD";
1001 case ARMISD::VLD3_UPD: return "ARMISD::VLD3_UPD";
1002 case ARMISD::VLD4_UPD: return "ARMISD::VLD4_UPD";
1003 case ARMISD::VLD2LN_UPD: return "ARMISD::VLD2LN_UPD";
1004 case ARMISD::VLD3LN_UPD: return "ARMISD::VLD3LN_UPD";
1005 case ARMISD::VLD4LN_UPD: return "ARMISD::VLD4LN_UPD";
1006 case ARMISD::VLD2DUP_UPD: return "ARMISD::VLD2DUP_UPD";
1007 case ARMISD::VLD3DUP_UPD: return "ARMISD::VLD3DUP_UPD";
1008 case ARMISD::VLD4DUP_UPD: return "ARMISD::VLD4DUP_UPD";
1009 case ARMISD::VST1_UPD: return "ARMISD::VST1_UPD";
1010 case ARMISD::VST2_UPD: return "ARMISD::VST2_UPD";
1011 case ARMISD::VST3_UPD: return "ARMISD::VST3_UPD";
1012 case ARMISD::VST4_UPD: return "ARMISD::VST4_UPD";
1013 case ARMISD::VST2LN_UPD: return "ARMISD::VST2LN_UPD";
1014 case ARMISD::VST3LN_UPD: return "ARMISD::VST3LN_UPD";
1015 case ARMISD::VST4LN_UPD: return "ARMISD::VST4LN_UPD";
1016 }
1017 }
1018
getSetCCResultType(EVT VT) const1019 EVT ARMTargetLowering::getSetCCResultType(EVT VT) const {
1020 if (!VT.isVector()) return getPointerTy();
1021 return VT.changeVectorElementTypeToInteger();
1022 }
1023
1024 /// getRegClassFor - Return the register class that should be used for the
1025 /// specified value type.
getRegClassFor(EVT VT) const1026 const TargetRegisterClass *ARMTargetLowering::getRegClassFor(EVT VT) const {
1027 // Map v4i64 to QQ registers but do not make the type legal. Similarly map
1028 // v8i64 to QQQQ registers. v4i64 and v8i64 are only used for REG_SEQUENCE to
1029 // load / store 4 to 8 consecutive D registers.
1030 if (Subtarget->hasNEON()) {
1031 if (VT == MVT::v4i64)
1032 return &ARM::QQPRRegClass;
1033 if (VT == MVT::v8i64)
1034 return &ARM::QQQQPRRegClass;
1035 }
1036 return TargetLowering::getRegClassFor(VT);
1037 }
1038
1039 // Create a fast isel object.
1040 FastISel *
createFastISel(FunctionLoweringInfo & funcInfo,const TargetLibraryInfo * libInfo) const1041 ARMTargetLowering::createFastISel(FunctionLoweringInfo &funcInfo,
1042 const TargetLibraryInfo *libInfo) const {
1043 return ARM::createFastISel(funcInfo, libInfo);
1044 }
1045
1046 /// getMaximalGlobalOffset - Returns the maximal possible offset which can
1047 /// be used for loads / stores from the global.
getMaximalGlobalOffset() const1048 unsigned ARMTargetLowering::getMaximalGlobalOffset() const {
1049 return (Subtarget->isThumb1Only() ? 127 : 4095);
1050 }
1051
getSchedulingPreference(SDNode * N) const1052 Sched::Preference ARMTargetLowering::getSchedulingPreference(SDNode *N) const {
1053 unsigned NumVals = N->getNumValues();
1054 if (!NumVals)
1055 return Sched::RegPressure;
1056
1057 for (unsigned i = 0; i != NumVals; ++i) {
1058 EVT VT = N->getValueType(i);
1059 if (VT == MVT::Glue || VT == MVT::Other)
1060 continue;
1061 if (VT.isFloatingPoint() || VT.isVector())
1062 return Sched::ILP;
1063 }
1064
1065 if (!N->isMachineOpcode())
1066 return Sched::RegPressure;
1067
1068 // Load are scheduled for latency even if there instruction itinerary
1069 // is not available.
1070 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
1071 const MCInstrDesc &MCID = TII->get(N->getMachineOpcode());
1072
1073 if (MCID.getNumDefs() == 0)
1074 return Sched::RegPressure;
1075 if (!Itins->isEmpty() &&
1076 Itins->getOperandCycle(MCID.getSchedClass(), 0) > 2)
1077 return Sched::ILP;
1078
1079 return Sched::RegPressure;
1080 }
1081
1082 //===----------------------------------------------------------------------===//
1083 // Lowering Code
1084 //===----------------------------------------------------------------------===//
1085
1086 /// IntCCToARMCC - Convert a DAG integer condition code to an ARM CC
IntCCToARMCC(ISD::CondCode CC)1087 static ARMCC::CondCodes IntCCToARMCC(ISD::CondCode CC) {
1088 switch (CC) {
1089 default: llvm_unreachable("Unknown condition code!");
1090 case ISD::SETNE: return ARMCC::NE;
1091 case ISD::SETEQ: return ARMCC::EQ;
1092 case ISD::SETGT: return ARMCC::GT;
1093 case ISD::SETGE: return ARMCC::GE;
1094 case ISD::SETLT: return ARMCC::LT;
1095 case ISD::SETLE: return ARMCC::LE;
1096 case ISD::SETUGT: return ARMCC::HI;
1097 case ISD::SETUGE: return ARMCC::HS;
1098 case ISD::SETULT: return ARMCC::LO;
1099 case ISD::SETULE: return ARMCC::LS;
1100 }
1101 }
1102
1103 /// FPCCToARMCC - Convert a DAG fp condition code to an ARM CC.
FPCCToARMCC(ISD::CondCode CC,ARMCC::CondCodes & CondCode,ARMCC::CondCodes & CondCode2)1104 static void FPCCToARMCC(ISD::CondCode CC, ARMCC::CondCodes &CondCode,
1105 ARMCC::CondCodes &CondCode2) {
1106 CondCode2 = ARMCC::AL;
1107 switch (CC) {
1108 default: llvm_unreachable("Unknown FP condition!");
1109 case ISD::SETEQ:
1110 case ISD::SETOEQ: CondCode = ARMCC::EQ; break;
1111 case ISD::SETGT:
1112 case ISD::SETOGT: CondCode = ARMCC::GT; break;
1113 case ISD::SETGE:
1114 case ISD::SETOGE: CondCode = ARMCC::GE; break;
1115 case ISD::SETOLT: CondCode = ARMCC::MI; break;
1116 case ISD::SETOLE: CondCode = ARMCC::LS; break;
1117 case ISD::SETONE: CondCode = ARMCC::MI; CondCode2 = ARMCC::GT; break;
1118 case ISD::SETO: CondCode = ARMCC::VC; break;
1119 case ISD::SETUO: CondCode = ARMCC::VS; break;
1120 case ISD::SETUEQ: CondCode = ARMCC::EQ; CondCode2 = ARMCC::VS; break;
1121 case ISD::SETUGT: CondCode = ARMCC::HI; break;
1122 case ISD::SETUGE: CondCode = ARMCC::PL; break;
1123 case ISD::SETLT:
1124 case ISD::SETULT: CondCode = ARMCC::LT; break;
1125 case ISD::SETLE:
1126 case ISD::SETULE: CondCode = ARMCC::LE; break;
1127 case ISD::SETNE:
1128 case ISD::SETUNE: CondCode = ARMCC::NE; break;
1129 }
1130 }
1131
1132 //===----------------------------------------------------------------------===//
1133 // Calling Convention Implementation
1134 //===----------------------------------------------------------------------===//
1135
1136 #include "ARMGenCallingConv.inc"
1137
1138 /// CCAssignFnForNode - Selects the correct CCAssignFn for a the
1139 /// given CallingConvention value.
CCAssignFnForNode(CallingConv::ID CC,bool Return,bool isVarArg) const1140 CCAssignFn *ARMTargetLowering::CCAssignFnForNode(CallingConv::ID CC,
1141 bool Return,
1142 bool isVarArg) const {
1143 switch (CC) {
1144 default:
1145 llvm_unreachable("Unsupported calling convention");
1146 case CallingConv::Fast:
1147 if (Subtarget->hasVFP2() && !isVarArg) {
1148 if (!Subtarget->isAAPCS_ABI())
1149 return (Return ? RetFastCC_ARM_APCS : FastCC_ARM_APCS);
1150 // For AAPCS ABI targets, just use VFP variant of the calling convention.
1151 return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP);
1152 }
1153 // Fallthrough
1154 case CallingConv::C: {
1155 // Use target triple & subtarget features to do actual dispatch.
1156 if (!Subtarget->isAAPCS_ABI())
1157 return (Return ? RetCC_ARM_APCS : CC_ARM_APCS);
1158 else if (Subtarget->hasVFP2() &&
1159 getTargetMachine().Options.FloatABIType == FloatABI::Hard &&
1160 !isVarArg)
1161 return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP);
1162 return (Return ? RetCC_ARM_AAPCS : CC_ARM_AAPCS);
1163 }
1164 case CallingConv::ARM_AAPCS_VFP:
1165 if (!isVarArg)
1166 return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP);
1167 // Fallthrough
1168 case CallingConv::ARM_AAPCS:
1169 return (Return ? RetCC_ARM_AAPCS : CC_ARM_AAPCS);
1170 case CallingConv::ARM_APCS:
1171 return (Return ? RetCC_ARM_APCS : CC_ARM_APCS);
1172 case CallingConv::GHC:
1173 return (Return ? RetCC_ARM_APCS : CC_ARM_APCS_GHC);
1174 }
1175 }
1176
1177 /// LowerCallResult - Lower the result values of a call into the
1178 /// appropriate copies out of appropriate physical registers.
1179 SDValue
LowerCallResult(SDValue Chain,SDValue InFlag,CallingConv::ID CallConv,bool isVarArg,const SmallVectorImpl<ISD::InputArg> & Ins,DebugLoc dl,SelectionDAG & DAG,SmallVectorImpl<SDValue> & InVals) const1180 ARMTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
1181 CallingConv::ID CallConv, bool isVarArg,
1182 const SmallVectorImpl<ISD::InputArg> &Ins,
1183 DebugLoc dl, SelectionDAG &DAG,
1184 SmallVectorImpl<SDValue> &InVals) const {
1185
1186 // Assign locations to each value returned by this call.
1187 SmallVector<CCValAssign, 16> RVLocs;
1188 ARMCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1189 getTargetMachine(), RVLocs, *DAG.getContext(), Call);
1190 CCInfo.AnalyzeCallResult(Ins,
1191 CCAssignFnForNode(CallConv, /* Return*/ true,
1192 isVarArg));
1193
1194 // Copy all of the result registers out of their specified physreg.
1195 for (unsigned i = 0; i != RVLocs.size(); ++i) {
1196 CCValAssign VA = RVLocs[i];
1197
1198 SDValue Val;
1199 if (VA.needsCustom()) {
1200 // Handle f64 or half of a v2f64.
1201 SDValue Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
1202 InFlag);
1203 Chain = Lo.getValue(1);
1204 InFlag = Lo.getValue(2);
1205 VA = RVLocs[++i]; // skip ahead to next loc
1206 SDValue Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
1207 InFlag);
1208 Chain = Hi.getValue(1);
1209 InFlag = Hi.getValue(2);
1210 Val = DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
1211
1212 if (VA.getLocVT() == MVT::v2f64) {
1213 SDValue Vec = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64);
1214 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val,
1215 DAG.getConstant(0, MVT::i32));
1216
1217 VA = RVLocs[++i]; // skip ahead to next loc
1218 Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag);
1219 Chain = Lo.getValue(1);
1220 InFlag = Lo.getValue(2);
1221 VA = RVLocs[++i]; // skip ahead to next loc
1222 Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag);
1223 Chain = Hi.getValue(1);
1224 InFlag = Hi.getValue(2);
1225 Val = DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
1226 Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val,
1227 DAG.getConstant(1, MVT::i32));
1228 }
1229 } else {
1230 Val = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), VA.getLocVT(),
1231 InFlag);
1232 Chain = Val.getValue(1);
1233 InFlag = Val.getValue(2);
1234 }
1235
1236 switch (VA.getLocInfo()) {
1237 default: llvm_unreachable("Unknown loc info!");
1238 case CCValAssign::Full: break;
1239 case CCValAssign::BCvt:
1240 Val = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), Val);
1241 break;
1242 }
1243
1244 InVals.push_back(Val);
1245 }
1246
1247 return Chain;
1248 }
1249
1250 /// LowerMemOpCallTo - Store the argument to the stack.
1251 SDValue
LowerMemOpCallTo(SDValue Chain,SDValue StackPtr,SDValue Arg,DebugLoc dl,SelectionDAG & DAG,const CCValAssign & VA,ISD::ArgFlagsTy Flags) const1252 ARMTargetLowering::LowerMemOpCallTo(SDValue Chain,
1253 SDValue StackPtr, SDValue Arg,
1254 DebugLoc dl, SelectionDAG &DAG,
1255 const CCValAssign &VA,
1256 ISD::ArgFlagsTy Flags) const {
1257 unsigned LocMemOffset = VA.getLocMemOffset();
1258 SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
1259 PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
1260 return DAG.getStore(Chain, dl, Arg, PtrOff,
1261 MachinePointerInfo::getStack(LocMemOffset),
1262 false, false, 0);
1263 }
1264
PassF64ArgInRegs(DebugLoc dl,SelectionDAG & DAG,SDValue Chain,SDValue & Arg,RegsToPassVector & RegsToPass,CCValAssign & VA,CCValAssign & NextVA,SDValue & StackPtr,SmallVector<SDValue,8> & MemOpChains,ISD::ArgFlagsTy Flags) const1265 void ARMTargetLowering::PassF64ArgInRegs(DebugLoc dl, SelectionDAG &DAG,
1266 SDValue Chain, SDValue &Arg,
1267 RegsToPassVector &RegsToPass,
1268 CCValAssign &VA, CCValAssign &NextVA,
1269 SDValue &StackPtr,
1270 SmallVector<SDValue, 8> &MemOpChains,
1271 ISD::ArgFlagsTy Flags) const {
1272
1273 SDValue fmrrd = DAG.getNode(ARMISD::VMOVRRD, dl,
1274 DAG.getVTList(MVT::i32, MVT::i32), Arg);
1275 RegsToPass.push_back(std::make_pair(VA.getLocReg(), fmrrd));
1276
1277 if (NextVA.isRegLoc())
1278 RegsToPass.push_back(std::make_pair(NextVA.getLocReg(), fmrrd.getValue(1)));
1279 else {
1280 assert(NextVA.isMemLoc());
1281 if (StackPtr.getNode() == 0)
1282 StackPtr = DAG.getCopyFromReg(Chain, dl, ARM::SP, getPointerTy());
1283
1284 MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, fmrrd.getValue(1),
1285 dl, DAG, NextVA,
1286 Flags));
1287 }
1288 }
1289
1290 /// LowerCall - Lowering a call into a callseq_start <-
1291 /// ARMISD:CALL <- callseq_end chain. Also add input and output parameter
1292 /// nodes.
1293 SDValue
LowerCall(TargetLowering::CallLoweringInfo & CLI,SmallVectorImpl<SDValue> & InVals) const1294 ARMTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
1295 SmallVectorImpl<SDValue> &InVals) const {
1296 SelectionDAG &DAG = CLI.DAG;
1297 DebugLoc &dl = CLI.DL;
1298 SmallVector<ISD::OutputArg, 32> &Outs = CLI.Outs;
1299 SmallVector<SDValue, 32> &OutVals = CLI.OutVals;
1300 SmallVector<ISD::InputArg, 32> &Ins = CLI.Ins;
1301 SDValue Chain = CLI.Chain;
1302 SDValue Callee = CLI.Callee;
1303 bool &isTailCall = CLI.IsTailCall;
1304 CallingConv::ID CallConv = CLI.CallConv;
1305 bool doesNotRet = CLI.DoesNotReturn;
1306 bool isVarArg = CLI.IsVarArg;
1307
1308 MachineFunction &MF = DAG.getMachineFunction();
1309 bool IsStructRet = (Outs.empty()) ? false : Outs[0].Flags.isSRet();
1310 bool IsSibCall = false;
1311 // Disable tail calls if they're not supported.
1312 if (!EnableARMTailCalls && !Subtarget->supportsTailCall())
1313 isTailCall = false;
1314 if (isTailCall) {
1315 // Check if it's really possible to do a tail call.
1316 isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
1317 isVarArg, IsStructRet, MF.getFunction()->hasStructRetAttr(),
1318 Outs, OutVals, Ins, DAG);
1319 // We don't support GuaranteedTailCallOpt for ARM, only automatically
1320 // detected sibcalls.
1321 if (isTailCall) {
1322 ++NumTailCalls;
1323 IsSibCall = true;
1324 }
1325 }
1326
1327 // Analyze operands of the call, assigning locations to each operand.
1328 SmallVector<CCValAssign, 16> ArgLocs;
1329 ARMCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1330 getTargetMachine(), ArgLocs, *DAG.getContext(), Call);
1331 CCInfo.AnalyzeCallOperands(Outs,
1332 CCAssignFnForNode(CallConv, /* Return*/ false,
1333 isVarArg));
1334
1335 // Get a count of how many bytes are to be pushed on the stack.
1336 unsigned NumBytes = CCInfo.getNextStackOffset();
1337
1338 // For tail calls, memory operands are available in our caller's stack.
1339 if (IsSibCall)
1340 NumBytes = 0;
1341
1342 // Adjust the stack pointer for the new arguments...
1343 // These operations are automatically eliminated by the prolog/epilog pass
1344 if (!IsSibCall)
1345 Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
1346
1347 SDValue StackPtr = DAG.getCopyFromReg(Chain, dl, ARM::SP, getPointerTy());
1348
1349 RegsToPassVector RegsToPass;
1350 SmallVector<SDValue, 8> MemOpChains;
1351
1352 // Walk the register/memloc assignments, inserting copies/loads. In the case
1353 // of tail call optimization, arguments are handled later.
1354 for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size();
1355 i != e;
1356 ++i, ++realArgIdx) {
1357 CCValAssign &VA = ArgLocs[i];
1358 SDValue Arg = OutVals[realArgIdx];
1359 ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
1360 bool isByVal = Flags.isByVal();
1361
1362 // Promote the value if needed.
1363 switch (VA.getLocInfo()) {
1364 default: llvm_unreachable("Unknown loc info!");
1365 case CCValAssign::Full: break;
1366 case CCValAssign::SExt:
1367 Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
1368 break;
1369 case CCValAssign::ZExt:
1370 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
1371 break;
1372 case CCValAssign::AExt:
1373 Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
1374 break;
1375 case CCValAssign::BCvt:
1376 Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
1377 break;
1378 }
1379
1380 // f64 and v2f64 might be passed in i32 pairs and must be split into pieces
1381 if (VA.needsCustom()) {
1382 if (VA.getLocVT() == MVT::v2f64) {
1383 SDValue Op0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
1384 DAG.getConstant(0, MVT::i32));
1385 SDValue Op1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
1386 DAG.getConstant(1, MVT::i32));
1387
1388 PassF64ArgInRegs(dl, DAG, Chain, Op0, RegsToPass,
1389 VA, ArgLocs[++i], StackPtr, MemOpChains, Flags);
1390
1391 VA = ArgLocs[++i]; // skip ahead to next loc
1392 if (VA.isRegLoc()) {
1393 PassF64ArgInRegs(dl, DAG, Chain, Op1, RegsToPass,
1394 VA, ArgLocs[++i], StackPtr, MemOpChains, Flags);
1395 } else {
1396 assert(VA.isMemLoc());
1397
1398 MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Op1,
1399 dl, DAG, VA, Flags));
1400 }
1401 } else {
1402 PassF64ArgInRegs(dl, DAG, Chain, Arg, RegsToPass, VA, ArgLocs[++i],
1403 StackPtr, MemOpChains, Flags);
1404 }
1405 } else if (VA.isRegLoc()) {
1406 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1407 } else if (isByVal) {
1408 assert(VA.isMemLoc());
1409 unsigned offset = 0;
1410
1411 // True if this byval aggregate will be split between registers
1412 // and memory.
1413 if (CCInfo.isFirstByValRegValid()) {
1414 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1415 unsigned int i, j;
1416 for (i = 0, j = CCInfo.getFirstByValReg(); j < ARM::R4; i++, j++) {
1417 SDValue Const = DAG.getConstant(4*i, MVT::i32);
1418 SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
1419 SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg,
1420 MachinePointerInfo(),
1421 false, false, false, 0);
1422 MemOpChains.push_back(Load.getValue(1));
1423 RegsToPass.push_back(std::make_pair(j, Load));
1424 }
1425 offset = ARM::R4 - CCInfo.getFirstByValReg();
1426 CCInfo.clearFirstByValReg();
1427 }
1428
1429 if (Flags.getByValSize() - 4*offset > 0) {
1430 unsigned LocMemOffset = VA.getLocMemOffset();
1431 SDValue StkPtrOff = DAG.getIntPtrConstant(LocMemOffset);
1432 SDValue Dst = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr,
1433 StkPtrOff);
1434 SDValue SrcOffset = DAG.getIntPtrConstant(4*offset);
1435 SDValue Src = DAG.getNode(ISD::ADD, dl, getPointerTy(), Arg, SrcOffset);
1436 SDValue SizeNode = DAG.getConstant(Flags.getByValSize() - 4*offset,
1437 MVT::i32);
1438 SDValue AlignNode = DAG.getConstant(Flags.getByValAlign(), MVT::i32);
1439
1440 SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
1441 SDValue Ops[] = { Chain, Dst, Src, SizeNode, AlignNode};
1442 MemOpChains.push_back(DAG.getNode(ARMISD::COPY_STRUCT_BYVAL, dl, VTs,
1443 Ops, array_lengthof(Ops)));
1444 }
1445 } else if (!IsSibCall) {
1446 assert(VA.isMemLoc());
1447
1448 MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
1449 dl, DAG, VA, Flags));
1450 }
1451 }
1452
1453 if (!MemOpChains.empty())
1454 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1455 &MemOpChains[0], MemOpChains.size());
1456
1457 // Build a sequence of copy-to-reg nodes chained together with token chain
1458 // and flag operands which copy the outgoing args into the appropriate regs.
1459 SDValue InFlag;
1460 // Tail call byval lowering might overwrite argument registers so in case of
1461 // tail call optimization the copies to registers are lowered later.
1462 if (!isTailCall)
1463 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1464 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
1465 RegsToPass[i].second, InFlag);
1466 InFlag = Chain.getValue(1);
1467 }
1468
1469 // For tail calls lower the arguments to the 'real' stack slot.
1470 if (isTailCall) {
1471 // Force all the incoming stack arguments to be loaded from the stack
1472 // before any new outgoing arguments are stored to the stack, because the
1473 // outgoing stack slots may alias the incoming argument stack slots, and
1474 // the alias isn't otherwise explicit. This is slightly more conservative
1475 // than necessary, because it means that each store effectively depends
1476 // on every argument instead of just those arguments it would clobber.
1477
1478 // Do not flag preceding copytoreg stuff together with the following stuff.
1479 InFlag = SDValue();
1480 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1481 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
1482 RegsToPass[i].second, InFlag);
1483 InFlag = Chain.getValue(1);
1484 }
1485 InFlag =SDValue();
1486 }
1487
1488 // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
1489 // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
1490 // node so that legalize doesn't hack it.
1491 bool isDirect = false;
1492 bool isARMFunc = false;
1493 bool isLocalARMFunc = false;
1494 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1495
1496 if (EnableARMLongCalls) {
1497 assert (getTargetMachine().getRelocationModel() == Reloc::Static
1498 && "long-calls with non-static relocation model!");
1499 // Handle a global address or an external symbol. If it's not one of
1500 // those, the target's already in a register, so we don't need to do
1501 // anything extra.
1502 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1503 const GlobalValue *GV = G->getGlobal();
1504 // Create a constant pool entry for the callee address
1505 unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
1506 ARMConstantPoolValue *CPV =
1507 ARMConstantPoolConstant::Create(GV, ARMPCLabelIndex, ARMCP::CPValue, 0);
1508
1509 // Get the address of the callee into a register
1510 SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
1511 CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1512 Callee = DAG.getLoad(getPointerTy(), dl,
1513 DAG.getEntryNode(), CPAddr,
1514 MachinePointerInfo::getConstantPool(),
1515 false, false, false, 0);
1516 } else if (ExternalSymbolSDNode *S=dyn_cast<ExternalSymbolSDNode>(Callee)) {
1517 const char *Sym = S->getSymbol();
1518
1519 // Create a constant pool entry for the callee address
1520 unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
1521 ARMConstantPoolValue *CPV =
1522 ARMConstantPoolSymbol::Create(*DAG.getContext(), Sym,
1523 ARMPCLabelIndex, 0);
1524 // Get the address of the callee into a register
1525 SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
1526 CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1527 Callee = DAG.getLoad(getPointerTy(), dl,
1528 DAG.getEntryNode(), CPAddr,
1529 MachinePointerInfo::getConstantPool(),
1530 false, false, false, 0);
1531 }
1532 } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1533 const GlobalValue *GV = G->getGlobal();
1534 isDirect = true;
1535 bool isExt = GV->isDeclaration() || GV->isWeakForLinker();
1536 bool isStub = (isExt && Subtarget->isTargetDarwin()) &&
1537 getTargetMachine().getRelocationModel() != Reloc::Static;
1538 isARMFunc = !Subtarget->isThumb() || isStub;
1539 // ARM call to a local ARM function is predicable.
1540 isLocalARMFunc = !Subtarget->isThumb() && (!isExt || !ARMInterworking);
1541 // tBX takes a register source operand.
1542 if (isARMFunc && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) {
1543 unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
1544 ARMConstantPoolValue *CPV =
1545 ARMConstantPoolConstant::Create(GV, ARMPCLabelIndex, ARMCP::CPValue, 4);
1546 SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
1547 CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1548 Callee = DAG.getLoad(getPointerTy(), dl,
1549 DAG.getEntryNode(), CPAddr,
1550 MachinePointerInfo::getConstantPool(),
1551 false, false, false, 0);
1552 SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
1553 Callee = DAG.getNode(ARMISD::PIC_ADD, dl,
1554 getPointerTy(), Callee, PICLabel);
1555 } else {
1556 // On ELF targets for PIC code, direct calls should go through the PLT
1557 unsigned OpFlags = 0;
1558 if (Subtarget->isTargetELF() &&
1559 getTargetMachine().getRelocationModel() == Reloc::PIC_)
1560 OpFlags = ARMII::MO_PLT;
1561 Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), 0, OpFlags);
1562 }
1563 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
1564 isDirect = true;
1565 bool isStub = Subtarget->isTargetDarwin() &&
1566 getTargetMachine().getRelocationModel() != Reloc::Static;
1567 isARMFunc = !Subtarget->isThumb() || isStub;
1568 // tBX takes a register source operand.
1569 const char *Sym = S->getSymbol();
1570 if (isARMFunc && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) {
1571 unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
1572 ARMConstantPoolValue *CPV =
1573 ARMConstantPoolSymbol::Create(*DAG.getContext(), Sym,
1574 ARMPCLabelIndex, 4);
1575 SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
1576 CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1577 Callee = DAG.getLoad(getPointerTy(), dl,
1578 DAG.getEntryNode(), CPAddr,
1579 MachinePointerInfo::getConstantPool(),
1580 false, false, false, 0);
1581 SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
1582 Callee = DAG.getNode(ARMISD::PIC_ADD, dl,
1583 getPointerTy(), Callee, PICLabel);
1584 } else {
1585 unsigned OpFlags = 0;
1586 // On ELF targets for PIC code, direct calls should go through the PLT
1587 if (Subtarget->isTargetELF() &&
1588 getTargetMachine().getRelocationModel() == Reloc::PIC_)
1589 OpFlags = ARMII::MO_PLT;
1590 Callee = DAG.getTargetExternalSymbol(Sym, getPointerTy(), OpFlags);
1591 }
1592 }
1593
1594 // FIXME: handle tail calls differently.
1595 unsigned CallOpc;
1596 if (Subtarget->isThumb()) {
1597 if ((!isDirect || isARMFunc) && !Subtarget->hasV5TOps())
1598 CallOpc = ARMISD::CALL_NOLINK;
1599 else if (doesNotRet && isDirect && !isARMFunc &&
1600 Subtarget->hasRAS() && !Subtarget->isThumb1Only())
1601 // "mov lr, pc; b _foo" to avoid confusing the RSP
1602 CallOpc = ARMISD::CALL_NOLINK;
1603 else
1604 CallOpc = isARMFunc ? ARMISD::CALL : ARMISD::tCALL;
1605 } else {
1606 if (!isDirect && !Subtarget->hasV5TOps()) {
1607 CallOpc = ARMISD::CALL_NOLINK;
1608 } else if (doesNotRet && isDirect && Subtarget->hasRAS())
1609 // "mov lr, pc; b _foo" to avoid confusing the RSP
1610 CallOpc = ARMISD::CALL_NOLINK;
1611 else
1612 CallOpc = isLocalARMFunc ? ARMISD::CALL_PRED : ARMISD::CALL;
1613 }
1614
1615 std::vector<SDValue> Ops;
1616 Ops.push_back(Chain);
1617 Ops.push_back(Callee);
1618
1619 // Add argument registers to the end of the list so that they are known live
1620 // into the call.
1621 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1622 Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1623 RegsToPass[i].second.getValueType()));
1624
1625 // Add a register mask operand representing the call-preserved registers.
1626 const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
1627 const uint32_t *Mask = TRI->getCallPreservedMask(CallConv);
1628 assert(Mask && "Missing call preserved mask for calling convention");
1629 Ops.push_back(DAG.getRegisterMask(Mask));
1630
1631 if (InFlag.getNode())
1632 Ops.push_back(InFlag);
1633
1634 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
1635 if (isTailCall)
1636 return DAG.getNode(ARMISD::TC_RETURN, dl, NodeTys, &Ops[0], Ops.size());
1637
1638 // Returns a chain and a flag for retval copy to use.
1639 Chain = DAG.getNode(CallOpc, dl, NodeTys, &Ops[0], Ops.size());
1640 InFlag = Chain.getValue(1);
1641
1642 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
1643 DAG.getIntPtrConstant(0, true), InFlag);
1644 if (!Ins.empty())
1645 InFlag = Chain.getValue(1);
1646
1647 // Handle result values, copying them out of physregs into vregs that we
1648 // return.
1649 return LowerCallResult(Chain, InFlag, CallConv, isVarArg, Ins,
1650 dl, DAG, InVals);
1651 }
1652
1653 /// HandleByVal - Every parameter *after* a byval parameter is passed
1654 /// on the stack. Remember the next parameter register to allocate,
1655 /// and then confiscate the rest of the parameter registers to insure
1656 /// this.
1657 void
HandleByVal(CCState * State,unsigned & size) const1658 ARMTargetLowering::HandleByVal(CCState *State, unsigned &size) const {
1659 unsigned reg = State->AllocateReg(GPRArgRegs, 4);
1660 assert((State->getCallOrPrologue() == Prologue ||
1661 State->getCallOrPrologue() == Call) &&
1662 "unhandled ParmContext");
1663 if ((!State->isFirstByValRegValid()) &&
1664 (ARM::R0 <= reg) && (reg <= ARM::R3)) {
1665 State->setFirstByValReg(reg);
1666 // At a call site, a byval parameter that is split between
1667 // registers and memory needs its size truncated here. In a
1668 // function prologue, such byval parameters are reassembled in
1669 // memory, and are not truncated.
1670 if (State->getCallOrPrologue() == Call) {
1671 unsigned excess = 4 * (ARM::R4 - reg);
1672 assert(size >= excess && "expected larger existing stack allocation");
1673 size -= excess;
1674 }
1675 }
1676 // Confiscate any remaining parameter registers to preclude their
1677 // assignment to subsequent parameters.
1678 while (State->AllocateReg(GPRArgRegs, 4))
1679 ;
1680 }
1681
1682 /// MatchingStackOffset - Return true if the given stack call argument is
1683 /// already available in the same position (relatively) of the caller's
1684 /// incoming argument stack.
1685 static
MatchingStackOffset(SDValue Arg,unsigned Offset,ISD::ArgFlagsTy Flags,MachineFrameInfo * MFI,const MachineRegisterInfo * MRI,const TargetInstrInfo * TII)1686 bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
1687 MachineFrameInfo *MFI, const MachineRegisterInfo *MRI,
1688 const TargetInstrInfo *TII) {
1689 unsigned Bytes = Arg.getValueType().getSizeInBits() / 8;
1690 int FI = INT_MAX;
1691 if (Arg.getOpcode() == ISD::CopyFromReg) {
1692 unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
1693 if (!TargetRegisterInfo::isVirtualRegister(VR))
1694 return false;
1695 MachineInstr *Def = MRI->getVRegDef(VR);
1696 if (!Def)
1697 return false;
1698 if (!Flags.isByVal()) {
1699 if (!TII->isLoadFromStackSlot(Def, FI))
1700 return false;
1701 } else {
1702 return false;
1703 }
1704 } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
1705 if (Flags.isByVal())
1706 // ByVal argument is passed in as a pointer but it's now being
1707 // dereferenced. e.g.
1708 // define @foo(%struct.X* %A) {
1709 // tail call @bar(%struct.X* byval %A)
1710 // }
1711 return false;
1712 SDValue Ptr = Ld->getBasePtr();
1713 FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
1714 if (!FINode)
1715 return false;
1716 FI = FINode->getIndex();
1717 } else
1718 return false;
1719
1720 assert(FI != INT_MAX);
1721 if (!MFI->isFixedObjectIndex(FI))
1722 return false;
1723 return Offset == MFI->getObjectOffset(FI) && Bytes == MFI->getObjectSize(FI);
1724 }
1725
1726 /// IsEligibleForTailCallOptimization - Check whether the call is eligible
1727 /// for tail call optimization. Targets which want to do tail call
1728 /// optimization should implement this function.
1729 bool
IsEligibleForTailCallOptimization(SDValue Callee,CallingConv::ID CalleeCC,bool isVarArg,bool isCalleeStructRet,bool isCallerStructRet,const SmallVectorImpl<ISD::OutputArg> & Outs,const SmallVectorImpl<SDValue> & OutVals,const SmallVectorImpl<ISD::InputArg> & Ins,SelectionDAG & DAG) const1730 ARMTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
1731 CallingConv::ID CalleeCC,
1732 bool isVarArg,
1733 bool isCalleeStructRet,
1734 bool isCallerStructRet,
1735 const SmallVectorImpl<ISD::OutputArg> &Outs,
1736 const SmallVectorImpl<SDValue> &OutVals,
1737 const SmallVectorImpl<ISD::InputArg> &Ins,
1738 SelectionDAG& DAG) const {
1739 const Function *CallerF = DAG.getMachineFunction().getFunction();
1740 CallingConv::ID CallerCC = CallerF->getCallingConv();
1741 bool CCMatch = CallerCC == CalleeCC;
1742
1743 // Look for obvious safe cases to perform tail call optimization that do not
1744 // require ABI changes. This is what gcc calls sibcall.
1745
1746 // Do not sibcall optimize vararg calls unless the call site is not passing
1747 // any arguments.
1748 if (isVarArg && !Outs.empty())
1749 return false;
1750
1751 // Also avoid sibcall optimization if either caller or callee uses struct
1752 // return semantics.
1753 if (isCalleeStructRet || isCallerStructRet)
1754 return false;
1755
1756 // FIXME: Completely disable sibcall for Thumb1 since Thumb1RegisterInfo::
1757 // emitEpilogue is not ready for them. Thumb tail calls also use t2B, as
1758 // the Thumb1 16-bit unconditional branch doesn't have sufficient relocation
1759 // support in the assembler and linker to be used. This would need to be
1760 // fixed to fully support tail calls in Thumb1.
1761 //
1762 // Doing this is tricky, since the LDM/POP instruction on Thumb doesn't take
1763 // LR. This means if we need to reload LR, it takes an extra instructions,
1764 // which outweighs the value of the tail call; but here we don't know yet
1765 // whether LR is going to be used. Probably the right approach is to
1766 // generate the tail call here and turn it back into CALL/RET in
1767 // emitEpilogue if LR is used.
1768
1769 // Thumb1 PIC calls to external symbols use BX, so they can be tail calls,
1770 // but we need to make sure there are enough registers; the only valid
1771 // registers are the 4 used for parameters. We don't currently do this
1772 // case.
1773 if (Subtarget->isThumb1Only())
1774 return false;
1775
1776 // If the calling conventions do not match, then we'd better make sure the
1777 // results are returned in the same way as what the caller expects.
1778 if (!CCMatch) {
1779 SmallVector<CCValAssign, 16> RVLocs1;
1780 ARMCCState CCInfo1(CalleeCC, false, DAG.getMachineFunction(),
1781 getTargetMachine(), RVLocs1, *DAG.getContext(), Call);
1782 CCInfo1.AnalyzeCallResult(Ins, CCAssignFnForNode(CalleeCC, true, isVarArg));
1783
1784 SmallVector<CCValAssign, 16> RVLocs2;
1785 ARMCCState CCInfo2(CallerCC, false, DAG.getMachineFunction(),
1786 getTargetMachine(), RVLocs2, *DAG.getContext(), Call);
1787 CCInfo2.AnalyzeCallResult(Ins, CCAssignFnForNode(CallerCC, true, isVarArg));
1788
1789 if (RVLocs1.size() != RVLocs2.size())
1790 return false;
1791 for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
1792 if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
1793 return false;
1794 if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
1795 return false;
1796 if (RVLocs1[i].isRegLoc()) {
1797 if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
1798 return false;
1799 } else {
1800 if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
1801 return false;
1802 }
1803 }
1804 }
1805
1806 // If the callee takes no arguments then go on to check the results of the
1807 // call.
1808 if (!Outs.empty()) {
1809 // Check if stack adjustment is needed. For now, do not do this if any
1810 // argument is passed on the stack.
1811 SmallVector<CCValAssign, 16> ArgLocs;
1812 ARMCCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
1813 getTargetMachine(), ArgLocs, *DAG.getContext(), Call);
1814 CCInfo.AnalyzeCallOperands(Outs,
1815 CCAssignFnForNode(CalleeCC, false, isVarArg));
1816 if (CCInfo.getNextStackOffset()) {
1817 MachineFunction &MF = DAG.getMachineFunction();
1818
1819 // Check if the arguments are already laid out in the right way as
1820 // the caller's fixed stack objects.
1821 MachineFrameInfo *MFI = MF.getFrameInfo();
1822 const MachineRegisterInfo *MRI = &MF.getRegInfo();
1823 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
1824 for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size();
1825 i != e;
1826 ++i, ++realArgIdx) {
1827 CCValAssign &VA = ArgLocs[i];
1828 EVT RegVT = VA.getLocVT();
1829 SDValue Arg = OutVals[realArgIdx];
1830 ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
1831 if (VA.getLocInfo() == CCValAssign::Indirect)
1832 return false;
1833 if (VA.needsCustom()) {
1834 // f64 and vector types are split into multiple registers or
1835 // register/stack-slot combinations. The types will not match
1836 // the registers; give up on memory f64 refs until we figure
1837 // out what to do about this.
1838 if (!VA.isRegLoc())
1839 return false;
1840 if (!ArgLocs[++i].isRegLoc())
1841 return false;
1842 if (RegVT == MVT::v2f64) {
1843 if (!ArgLocs[++i].isRegLoc())
1844 return false;
1845 if (!ArgLocs[++i].isRegLoc())
1846 return false;
1847 }
1848 } else if (!VA.isRegLoc()) {
1849 if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
1850 MFI, MRI, TII))
1851 return false;
1852 }
1853 }
1854 }
1855 }
1856
1857 return true;
1858 }
1859
1860 SDValue
LowerReturn(SDValue Chain,CallingConv::ID CallConv,bool isVarArg,const SmallVectorImpl<ISD::OutputArg> & Outs,const SmallVectorImpl<SDValue> & OutVals,DebugLoc dl,SelectionDAG & DAG) const1861 ARMTargetLowering::LowerReturn(SDValue Chain,
1862 CallingConv::ID CallConv, bool isVarArg,
1863 const SmallVectorImpl<ISD::OutputArg> &Outs,
1864 const SmallVectorImpl<SDValue> &OutVals,
1865 DebugLoc dl, SelectionDAG &DAG) const {
1866
1867 // CCValAssign - represent the assignment of the return value to a location.
1868 SmallVector<CCValAssign, 16> RVLocs;
1869
1870 // CCState - Info about the registers and stack slots.
1871 ARMCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1872 getTargetMachine(), RVLocs, *DAG.getContext(), Call);
1873
1874 // Analyze outgoing return values.
1875 CCInfo.AnalyzeReturn(Outs, CCAssignFnForNode(CallConv, /* Return */ true,
1876 isVarArg));
1877
1878 // If this is the first return lowered for this function, add
1879 // the regs to the liveout set for the function.
1880 if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
1881 for (unsigned i = 0; i != RVLocs.size(); ++i)
1882 if (RVLocs[i].isRegLoc())
1883 DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
1884 }
1885
1886 SDValue Flag;
1887
1888 // Copy the result values into the output registers.
1889 for (unsigned i = 0, realRVLocIdx = 0;
1890 i != RVLocs.size();
1891 ++i, ++realRVLocIdx) {
1892 CCValAssign &VA = RVLocs[i];
1893 assert(VA.isRegLoc() && "Can only return in registers!");
1894
1895 SDValue Arg = OutVals[realRVLocIdx];
1896
1897 switch (VA.getLocInfo()) {
1898 default: llvm_unreachable("Unknown loc info!");
1899 case CCValAssign::Full: break;
1900 case CCValAssign::BCvt:
1901 Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
1902 break;
1903 }
1904
1905 if (VA.needsCustom()) {
1906 if (VA.getLocVT() == MVT::v2f64) {
1907 // Extract the first half and return it in two registers.
1908 SDValue Half = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
1909 DAG.getConstant(0, MVT::i32));
1910 SDValue HalfGPRs = DAG.getNode(ARMISD::VMOVRRD, dl,
1911 DAG.getVTList(MVT::i32, MVT::i32), Half);
1912
1913 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), HalfGPRs, Flag);
1914 Flag = Chain.getValue(1);
1915 VA = RVLocs[++i]; // skip ahead to next loc
1916 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
1917 HalfGPRs.getValue(1), Flag);
1918 Flag = Chain.getValue(1);
1919 VA = RVLocs[++i]; // skip ahead to next loc
1920
1921 // Extract the 2nd half and fall through to handle it as an f64 value.
1922 Arg = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
1923 DAG.getConstant(1, MVT::i32));
1924 }
1925 // Legalize ret f64 -> ret 2 x i32. We always have fmrrd if f64 is
1926 // available.
1927 SDValue fmrrd = DAG.getNode(ARMISD::VMOVRRD, dl,
1928 DAG.getVTList(MVT::i32, MVT::i32), &Arg, 1);
1929 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), fmrrd, Flag);
1930 Flag = Chain.getValue(1);
1931 VA = RVLocs[++i]; // skip ahead to next loc
1932 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), fmrrd.getValue(1),
1933 Flag);
1934 } else
1935 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag);
1936
1937 // Guarantee that all emitted copies are
1938 // stuck together, avoiding something bad.
1939 Flag = Chain.getValue(1);
1940 }
1941
1942 SDValue result;
1943 if (Flag.getNode())
1944 result = DAG.getNode(ARMISD::RET_FLAG, dl, MVT::Other, Chain, Flag);
1945 else // Return Void
1946 result = DAG.getNode(ARMISD::RET_FLAG, dl, MVT::Other, Chain);
1947
1948 return result;
1949 }
1950
isUsedByReturnOnly(SDNode * N,SDValue & Chain) const1951 bool ARMTargetLowering::isUsedByReturnOnly(SDNode *N, SDValue &Chain) const {
1952 if (N->getNumValues() != 1)
1953 return false;
1954 if (!N->hasNUsesOfValue(1, 0))
1955 return false;
1956
1957 SDValue TCChain = Chain;
1958 SDNode *Copy = *N->use_begin();
1959 if (Copy->getOpcode() == ISD::CopyToReg) {
1960 // If the copy has a glue operand, we conservatively assume it isn't safe to
1961 // perform a tail call.
1962 if (Copy->getOperand(Copy->getNumOperands()-1).getValueType() == MVT::Glue)
1963 return false;
1964 TCChain = Copy->getOperand(0);
1965 } else if (Copy->getOpcode() == ARMISD::VMOVRRD) {
1966 SDNode *VMov = Copy;
1967 // f64 returned in a pair of GPRs.
1968 SmallPtrSet<SDNode*, 2> Copies;
1969 for (SDNode::use_iterator UI = VMov->use_begin(), UE = VMov->use_end();
1970 UI != UE; ++UI) {
1971 if (UI->getOpcode() != ISD::CopyToReg)
1972 return false;
1973 Copies.insert(*UI);
1974 }
1975 if (Copies.size() > 2)
1976 return false;
1977
1978 for (SDNode::use_iterator UI = VMov->use_begin(), UE = VMov->use_end();
1979 UI != UE; ++UI) {
1980 SDValue UseChain = UI->getOperand(0);
1981 if (Copies.count(UseChain.getNode()))
1982 // Second CopyToReg
1983 Copy = *UI;
1984 else
1985 // First CopyToReg
1986 TCChain = UseChain;
1987 }
1988 } else if (Copy->getOpcode() == ISD::BITCAST) {
1989 // f32 returned in a single GPR.
1990 if (!Copy->hasOneUse())
1991 return false;
1992 Copy = *Copy->use_begin();
1993 if (Copy->getOpcode() != ISD::CopyToReg || !Copy->hasNUsesOfValue(1, 0))
1994 return false;
1995 Chain = Copy->getOperand(0);
1996 } else {
1997 return false;
1998 }
1999
2000 bool HasRet = false;
2001 for (SDNode::use_iterator UI = Copy->use_begin(), UE = Copy->use_end();
2002 UI != UE; ++UI) {
2003 if (UI->getOpcode() != ARMISD::RET_FLAG)
2004 return false;
2005 HasRet = true;
2006 }
2007
2008 if (!HasRet)
2009 return false;
2010
2011 Chain = TCChain;
2012 return true;
2013 }
2014
mayBeEmittedAsTailCall(CallInst * CI) const2015 bool ARMTargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const {
2016 if (!EnableARMTailCalls && !Subtarget->supportsTailCall())
2017 return false;
2018
2019 if (!CI->isTailCall())
2020 return false;
2021
2022 return !Subtarget->isThumb1Only();
2023 }
2024
2025 // ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
2026 // their target counterpart wrapped in the ARMISD::Wrapper node. Suppose N is
2027 // one of the above mentioned nodes. It has to be wrapped because otherwise
2028 // Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
2029 // be used to form addressing mode. These wrapped nodes will be selected
2030 // into MOVi.
LowerConstantPool(SDValue Op,SelectionDAG & DAG)2031 static SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG) {
2032 EVT PtrVT = Op.getValueType();
2033 // FIXME there is no actual debug info here
2034 DebugLoc dl = Op.getDebugLoc();
2035 ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
2036 SDValue Res;
2037 if (CP->isMachineConstantPoolEntry())
2038 Res = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT,
2039 CP->getAlignment());
2040 else
2041 Res = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT,
2042 CP->getAlignment());
2043 return DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Res);
2044 }
2045
getJumpTableEncoding() const2046 unsigned ARMTargetLowering::getJumpTableEncoding() const {
2047 return MachineJumpTableInfo::EK_Inline;
2048 }
2049
LowerBlockAddress(SDValue Op,SelectionDAG & DAG) const2050 SDValue ARMTargetLowering::LowerBlockAddress(SDValue Op,
2051 SelectionDAG &DAG) const {
2052 MachineFunction &MF = DAG.getMachineFunction();
2053 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2054 unsigned ARMPCLabelIndex = 0;
2055 DebugLoc DL = Op.getDebugLoc();
2056 EVT PtrVT = getPointerTy();
2057 const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
2058 Reloc::Model RelocM = getTargetMachine().getRelocationModel();
2059 SDValue CPAddr;
2060 if (RelocM == Reloc::Static) {
2061 CPAddr = DAG.getTargetConstantPool(BA, PtrVT, 4);
2062 } else {
2063 unsigned PCAdj = Subtarget->isThumb() ? 4 : 8;
2064 ARMPCLabelIndex = AFI->createPICLabelUId();
2065 ARMConstantPoolValue *CPV =
2066 ARMConstantPoolConstant::Create(BA, ARMPCLabelIndex,
2067 ARMCP::CPBlockAddress, PCAdj);
2068 CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2069 }
2070 CPAddr = DAG.getNode(ARMISD::Wrapper, DL, PtrVT, CPAddr);
2071 SDValue Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), CPAddr,
2072 MachinePointerInfo::getConstantPool(),
2073 false, false, false, 0);
2074 if (RelocM == Reloc::Static)
2075 return Result;
2076 SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
2077 return DAG.getNode(ARMISD::PIC_ADD, DL, PtrVT, Result, PICLabel);
2078 }
2079
2080 // Lower ISD::GlobalTLSAddress using the "general dynamic" model
2081 SDValue
LowerToTLSGeneralDynamicModel(GlobalAddressSDNode * GA,SelectionDAG & DAG) const2082 ARMTargetLowering::LowerToTLSGeneralDynamicModel(GlobalAddressSDNode *GA,
2083 SelectionDAG &DAG) const {
2084 DebugLoc dl = GA->getDebugLoc();
2085 EVT PtrVT = getPointerTy();
2086 unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8;
2087 MachineFunction &MF = DAG.getMachineFunction();
2088 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2089 unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
2090 ARMConstantPoolValue *CPV =
2091 ARMConstantPoolConstant::Create(GA->getGlobal(), ARMPCLabelIndex,
2092 ARMCP::CPValue, PCAdj, ARMCP::TLSGD, true);
2093 SDValue Argument = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2094 Argument = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Argument);
2095 Argument = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Argument,
2096 MachinePointerInfo::getConstantPool(),
2097 false, false, false, 0);
2098 SDValue Chain = Argument.getValue(1);
2099
2100 SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
2101 Argument = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Argument, PICLabel);
2102
2103 // call __tls_get_addr.
2104 ArgListTy Args;
2105 ArgListEntry Entry;
2106 Entry.Node = Argument;
2107 Entry.Ty = (Type *) Type::getInt32Ty(*DAG.getContext());
2108 Args.push_back(Entry);
2109 // FIXME: is there useful debug info available here?
2110 TargetLowering::CallLoweringInfo CLI(Chain,
2111 (Type *) Type::getInt32Ty(*DAG.getContext()),
2112 false, false, false, false,
2113 0, CallingConv::C, /*isTailCall=*/false,
2114 /*doesNotRet=*/false, /*isReturnValueUsed=*/true,
2115 DAG.getExternalSymbol("__tls_get_addr", PtrVT), Args, DAG, dl);
2116 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
2117 return CallResult.first;
2118 }
2119
2120 // Lower ISD::GlobalTLSAddress using the "initial exec" or
2121 // "local exec" model.
2122 SDValue
LowerToTLSExecModels(GlobalAddressSDNode * GA,SelectionDAG & DAG,TLSModel::Model model) const2123 ARMTargetLowering::LowerToTLSExecModels(GlobalAddressSDNode *GA,
2124 SelectionDAG &DAG,
2125 TLSModel::Model model) const {
2126 const GlobalValue *GV = GA->getGlobal();
2127 DebugLoc dl = GA->getDebugLoc();
2128 SDValue Offset;
2129 SDValue Chain = DAG.getEntryNode();
2130 EVT PtrVT = getPointerTy();
2131 // Get the Thread Pointer
2132 SDValue ThreadPointer = DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT);
2133
2134 if (model == TLSModel::InitialExec) {
2135 MachineFunction &MF = DAG.getMachineFunction();
2136 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2137 unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
2138 // Initial exec model.
2139 unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8;
2140 ARMConstantPoolValue *CPV =
2141 ARMConstantPoolConstant::Create(GA->getGlobal(), ARMPCLabelIndex,
2142 ARMCP::CPValue, PCAdj, ARMCP::GOTTPOFF,
2143 true);
2144 Offset = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2145 Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset);
2146 Offset = DAG.getLoad(PtrVT, dl, Chain, Offset,
2147 MachinePointerInfo::getConstantPool(),
2148 false, false, false, 0);
2149 Chain = Offset.getValue(1);
2150
2151 SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
2152 Offset = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Offset, PICLabel);
2153
2154 Offset = DAG.getLoad(PtrVT, dl, Chain, Offset,
2155 MachinePointerInfo::getConstantPool(),
2156 false, false, false, 0);
2157 } else {
2158 // local exec model
2159 assert(model == TLSModel::LocalExec);
2160 ARMConstantPoolValue *CPV =
2161 ARMConstantPoolConstant::Create(GV, ARMCP::TPOFF);
2162 Offset = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2163 Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset);
2164 Offset = DAG.getLoad(PtrVT, dl, Chain, Offset,
2165 MachinePointerInfo::getConstantPool(),
2166 false, false, false, 0);
2167 }
2168
2169 // The address of the thread local variable is the add of the thread
2170 // pointer with the offset of the variable.
2171 return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
2172 }
2173
2174 SDValue
LowerGlobalTLSAddress(SDValue Op,SelectionDAG & DAG) const2175 ARMTargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
2176 // TODO: implement the "local dynamic" model
2177 assert(Subtarget->isTargetELF() &&
2178 "TLS not implemented for non-ELF targets");
2179 GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
2180
2181 TLSModel::Model model = getTargetMachine().getTLSModel(GA->getGlobal());
2182
2183 switch (model) {
2184 case TLSModel::GeneralDynamic:
2185 case TLSModel::LocalDynamic:
2186 return LowerToTLSGeneralDynamicModel(GA, DAG);
2187 case TLSModel::InitialExec:
2188 case TLSModel::LocalExec:
2189 return LowerToTLSExecModels(GA, DAG, model);
2190 }
2191 llvm_unreachable("bogus TLS model");
2192 }
2193
LowerGlobalAddressELF(SDValue Op,SelectionDAG & DAG) const2194 SDValue ARMTargetLowering::LowerGlobalAddressELF(SDValue Op,
2195 SelectionDAG &DAG) const {
2196 EVT PtrVT = getPointerTy();
2197 DebugLoc dl = Op.getDebugLoc();
2198 const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
2199 Reloc::Model RelocM = getTargetMachine().getRelocationModel();
2200 if (RelocM == Reloc::PIC_) {
2201 bool UseGOTOFF = GV->hasLocalLinkage() || GV->hasHiddenVisibility();
2202 ARMConstantPoolValue *CPV =
2203 ARMConstantPoolConstant::Create(GV,
2204 UseGOTOFF ? ARMCP::GOTOFF : ARMCP::GOT);
2205 SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2206 CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
2207 SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
2208 CPAddr,
2209 MachinePointerInfo::getConstantPool(),
2210 false, false, false, 0);
2211 SDValue Chain = Result.getValue(1);
2212 SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT);
2213 Result = DAG.getNode(ISD::ADD, dl, PtrVT, Result, GOT);
2214 if (!UseGOTOFF)
2215 Result = DAG.getLoad(PtrVT, dl, Chain, Result,
2216 MachinePointerInfo::getGOT(),
2217 false, false, false, 0);
2218 return Result;
2219 }
2220
2221 // If we have T2 ops, we can materialize the address directly via movt/movw
2222 // pair. This is always cheaper.
2223 if (Subtarget->useMovt()) {
2224 ++NumMovwMovt;
2225 // FIXME: Once remat is capable of dealing with instructions with register
2226 // operands, expand this into two nodes.
2227 return DAG.getNode(ARMISD::Wrapper, dl, PtrVT,
2228 DAG.getTargetGlobalAddress(GV, dl, PtrVT));
2229 } else {
2230 SDValue CPAddr = DAG.getTargetConstantPool(GV, PtrVT, 4);
2231 CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
2232 return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
2233 MachinePointerInfo::getConstantPool(),
2234 false, false, false, 0);
2235 }
2236 }
2237
LowerGlobalAddressDarwin(SDValue Op,SelectionDAG & DAG) const2238 SDValue ARMTargetLowering::LowerGlobalAddressDarwin(SDValue Op,
2239 SelectionDAG &DAG) const {
2240 EVT PtrVT = getPointerTy();
2241 DebugLoc dl = Op.getDebugLoc();
2242 const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
2243 Reloc::Model RelocM = getTargetMachine().getRelocationModel();
2244 MachineFunction &MF = DAG.getMachineFunction();
2245 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2246
2247 // FIXME: Enable this for static codegen when tool issues are fixed. Also
2248 // update ARMFastISel::ARMMaterializeGV.
2249 if (Subtarget->useMovt() && RelocM != Reloc::Static) {
2250 ++NumMovwMovt;
2251 // FIXME: Once remat is capable of dealing with instructions with register
2252 // operands, expand this into two nodes.
2253 if (RelocM == Reloc::Static)
2254 return DAG.getNode(ARMISD::Wrapper, dl, PtrVT,
2255 DAG.getTargetGlobalAddress(GV, dl, PtrVT));
2256
2257 unsigned Wrapper = (RelocM == Reloc::PIC_)
2258 ? ARMISD::WrapperPIC : ARMISD::WrapperDYN;
2259 SDValue Result = DAG.getNode(Wrapper, dl, PtrVT,
2260 DAG.getTargetGlobalAddress(GV, dl, PtrVT));
2261 if (Subtarget->GVIsIndirectSymbol(GV, RelocM))
2262 Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Result,
2263 MachinePointerInfo::getGOT(),
2264 false, false, false, 0);
2265 return Result;
2266 }
2267
2268 unsigned ARMPCLabelIndex = 0;
2269 SDValue CPAddr;
2270 if (RelocM == Reloc::Static) {
2271 CPAddr = DAG.getTargetConstantPool(GV, PtrVT, 4);
2272 } else {
2273 ARMPCLabelIndex = AFI->createPICLabelUId();
2274 unsigned PCAdj = (RelocM != Reloc::PIC_) ? 0 : (Subtarget->isThumb()?4:8);
2275 ARMConstantPoolValue *CPV =
2276 ARMConstantPoolConstant::Create(GV, ARMPCLabelIndex, ARMCP::CPValue,
2277 PCAdj);
2278 CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2279 }
2280 CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
2281
2282 SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
2283 MachinePointerInfo::getConstantPool(),
2284 false, false, false, 0);
2285 SDValue Chain = Result.getValue(1);
2286
2287 if (RelocM == Reloc::PIC_) {
2288 SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
2289 Result = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
2290 }
2291
2292 if (Subtarget->GVIsIndirectSymbol(GV, RelocM))
2293 Result = DAG.getLoad(PtrVT, dl, Chain, Result, MachinePointerInfo::getGOT(),
2294 false, false, false, 0);
2295
2296 return Result;
2297 }
2298
LowerGLOBAL_OFFSET_TABLE(SDValue Op,SelectionDAG & DAG) const2299 SDValue ARMTargetLowering::LowerGLOBAL_OFFSET_TABLE(SDValue Op,
2300 SelectionDAG &DAG) const {
2301 assert(Subtarget->isTargetELF() &&
2302 "GLOBAL OFFSET TABLE not implemented for non-ELF targets");
2303 MachineFunction &MF = DAG.getMachineFunction();
2304 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2305 unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
2306 EVT PtrVT = getPointerTy();
2307 DebugLoc dl = Op.getDebugLoc();
2308 unsigned PCAdj = Subtarget->isThumb() ? 4 : 8;
2309 ARMConstantPoolValue *CPV =
2310 ARMConstantPoolSymbol::Create(*DAG.getContext(), "_GLOBAL_OFFSET_TABLE_",
2311 ARMPCLabelIndex, PCAdj);
2312 SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2313 CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
2314 SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
2315 MachinePointerInfo::getConstantPool(),
2316 false, false, false, 0);
2317 SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
2318 return DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
2319 }
2320
2321 SDValue
LowerEH_SJLJ_SETJMP(SDValue Op,SelectionDAG & DAG) const2322 ARMTargetLowering::LowerEH_SJLJ_SETJMP(SDValue Op, SelectionDAG &DAG) const {
2323 DebugLoc dl = Op.getDebugLoc();
2324 SDValue Val = DAG.getConstant(0, MVT::i32);
2325 return DAG.getNode(ARMISD::EH_SJLJ_SETJMP, dl,
2326 DAG.getVTList(MVT::i32, MVT::Other), Op.getOperand(0),
2327 Op.getOperand(1), Val);
2328 }
2329
2330 SDValue
LowerEH_SJLJ_LONGJMP(SDValue Op,SelectionDAG & DAG) const2331 ARMTargetLowering::LowerEH_SJLJ_LONGJMP(SDValue Op, SelectionDAG &DAG) const {
2332 DebugLoc dl = Op.getDebugLoc();
2333 return DAG.getNode(ARMISD::EH_SJLJ_LONGJMP, dl, MVT::Other, Op.getOperand(0),
2334 Op.getOperand(1), DAG.getConstant(0, MVT::i32));
2335 }
2336
2337 SDValue
LowerINTRINSIC_WO_CHAIN(SDValue Op,SelectionDAG & DAG,const ARMSubtarget * Subtarget) const2338 ARMTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG,
2339 const ARMSubtarget *Subtarget) const {
2340 unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
2341 DebugLoc dl = Op.getDebugLoc();
2342 switch (IntNo) {
2343 default: return SDValue(); // Don't custom lower most intrinsics.
2344 case Intrinsic::arm_thread_pointer: {
2345 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2346 return DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT);
2347 }
2348 case Intrinsic::eh_sjlj_lsda: {
2349 MachineFunction &MF = DAG.getMachineFunction();
2350 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2351 unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
2352 EVT PtrVT = getPointerTy();
2353 DebugLoc dl = Op.getDebugLoc();
2354 Reloc::Model RelocM = getTargetMachine().getRelocationModel();
2355 SDValue CPAddr;
2356 unsigned PCAdj = (RelocM != Reloc::PIC_)
2357 ? 0 : (Subtarget->isThumb() ? 4 : 8);
2358 ARMConstantPoolValue *CPV =
2359 ARMConstantPoolConstant::Create(MF.getFunction(), ARMPCLabelIndex,
2360 ARMCP::CPLSDA, PCAdj);
2361 CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2362 CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
2363 SDValue Result =
2364 DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
2365 MachinePointerInfo::getConstantPool(),
2366 false, false, false, 0);
2367
2368 if (RelocM == Reloc::PIC_) {
2369 SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
2370 Result = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
2371 }
2372 return Result;
2373 }
2374 case Intrinsic::arm_neon_vmulls:
2375 case Intrinsic::arm_neon_vmullu: {
2376 unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vmulls)
2377 ? ARMISD::VMULLs : ARMISD::VMULLu;
2378 return DAG.getNode(NewOpc, Op.getDebugLoc(), Op.getValueType(),
2379 Op.getOperand(1), Op.getOperand(2));
2380 }
2381 }
2382 }
2383
LowerMEMBARRIER(SDValue Op,SelectionDAG & DAG,const ARMSubtarget * Subtarget)2384 static SDValue LowerMEMBARRIER(SDValue Op, SelectionDAG &DAG,
2385 const ARMSubtarget *Subtarget) {
2386 DebugLoc dl = Op.getDebugLoc();
2387 if (!Subtarget->hasDataBarrier()) {
2388 // Some ARMv6 cpus can support data barriers with an mcr instruction.
2389 // Thumb1 and pre-v6 ARM mode use a libcall instead and should never get
2390 // here.
2391 assert(Subtarget->hasV6Ops() && !Subtarget->isThumb() &&
2392 "Unexpected ISD::MEMBARRIER encountered. Should be libcall!");
2393 return DAG.getNode(ARMISD::MEMBARRIER_MCR, dl, MVT::Other, Op.getOperand(0),
2394 DAG.getConstant(0, MVT::i32));
2395 }
2396
2397 SDValue Op5 = Op.getOperand(5);
2398 bool isDeviceBarrier = cast<ConstantSDNode>(Op5)->getZExtValue() != 0;
2399 unsigned isLL = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
2400 unsigned isLS = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
2401 bool isOnlyStoreBarrier = (isLL == 0 && isLS == 0);
2402
2403 ARM_MB::MemBOpt DMBOpt;
2404 if (isDeviceBarrier)
2405 DMBOpt = isOnlyStoreBarrier ? ARM_MB::ST : ARM_MB::SY;
2406 else
2407 DMBOpt = isOnlyStoreBarrier ? ARM_MB::ISHST : ARM_MB::ISH;
2408 return DAG.getNode(ARMISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0),
2409 DAG.getConstant(DMBOpt, MVT::i32));
2410 }
2411
2412
LowerATOMIC_FENCE(SDValue Op,SelectionDAG & DAG,const ARMSubtarget * Subtarget)2413 static SDValue LowerATOMIC_FENCE(SDValue Op, SelectionDAG &DAG,
2414 const ARMSubtarget *Subtarget) {
2415 // FIXME: handle "fence singlethread" more efficiently.
2416 DebugLoc dl = Op.getDebugLoc();
2417 if (!Subtarget->hasDataBarrier()) {
2418 // Some ARMv6 cpus can support data barriers with an mcr instruction.
2419 // Thumb1 and pre-v6 ARM mode use a libcall instead and should never get
2420 // here.
2421 assert(Subtarget->hasV6Ops() && !Subtarget->isThumb() &&
2422 "Unexpected ISD::MEMBARRIER encountered. Should be libcall!");
2423 return DAG.getNode(ARMISD::MEMBARRIER_MCR, dl, MVT::Other, Op.getOperand(0),
2424 DAG.getConstant(0, MVT::i32));
2425 }
2426
2427 return DAG.getNode(ARMISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0),
2428 DAG.getConstant(ARM_MB::ISH, MVT::i32));
2429 }
2430
LowerPREFETCH(SDValue Op,SelectionDAG & DAG,const ARMSubtarget * Subtarget)2431 static SDValue LowerPREFETCH(SDValue Op, SelectionDAG &DAG,
2432 const ARMSubtarget *Subtarget) {
2433 // ARM pre v5TE and Thumb1 does not have preload instructions.
2434 if (!(Subtarget->isThumb2() ||
2435 (!Subtarget->isThumb1Only() && Subtarget->hasV5TEOps())))
2436 // Just preserve the chain.
2437 return Op.getOperand(0);
2438
2439 DebugLoc dl = Op.getDebugLoc();
2440 unsigned isRead = ~cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue() & 1;
2441 if (!isRead &&
2442 (!Subtarget->hasV7Ops() || !Subtarget->hasMPExtension()))
2443 // ARMv7 with MP extension has PLDW.
2444 return Op.getOperand(0);
2445
2446 unsigned isData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
2447 if (Subtarget->isThumb()) {
2448 // Invert the bits.
2449 isRead = ~isRead & 1;
2450 isData = ~isData & 1;
2451 }
2452
2453 return DAG.getNode(ARMISD::PRELOAD, dl, MVT::Other, Op.getOperand(0),
2454 Op.getOperand(1), DAG.getConstant(isRead, MVT::i32),
2455 DAG.getConstant(isData, MVT::i32));
2456 }
2457
LowerVASTART(SDValue Op,SelectionDAG & DAG)2458 static SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG) {
2459 MachineFunction &MF = DAG.getMachineFunction();
2460 ARMFunctionInfo *FuncInfo = MF.getInfo<ARMFunctionInfo>();
2461
2462 // vastart just stores the address of the VarArgsFrameIndex slot into the
2463 // memory location argument.
2464 DebugLoc dl = Op.getDebugLoc();
2465 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2466 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
2467 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
2468 return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1),
2469 MachinePointerInfo(SV), false, false, 0);
2470 }
2471
2472 SDValue
GetF64FormalArgument(CCValAssign & VA,CCValAssign & NextVA,SDValue & Root,SelectionDAG & DAG,DebugLoc dl) const2473 ARMTargetLowering::GetF64FormalArgument(CCValAssign &VA, CCValAssign &NextVA,
2474 SDValue &Root, SelectionDAG &DAG,
2475 DebugLoc dl) const {
2476 MachineFunction &MF = DAG.getMachineFunction();
2477 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2478
2479 const TargetRegisterClass *RC;
2480 if (AFI->isThumb1OnlyFunction())
2481 RC = &ARM::tGPRRegClass;
2482 else
2483 RC = &ARM::GPRRegClass;
2484
2485 // Transform the arguments stored in physical registers into virtual ones.
2486 unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
2487 SDValue ArgValue = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32);
2488
2489 SDValue ArgValue2;
2490 if (NextVA.isMemLoc()) {
2491 MachineFrameInfo *MFI = MF.getFrameInfo();
2492 int FI = MFI->CreateFixedObject(4, NextVA.getLocMemOffset(), true);
2493
2494 // Create load node to retrieve arguments from the stack.
2495 SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
2496 ArgValue2 = DAG.getLoad(MVT::i32, dl, Root, FIN,
2497 MachinePointerInfo::getFixedStack(FI),
2498 false, false, false, 0);
2499 } else {
2500 Reg = MF.addLiveIn(NextVA.getLocReg(), RC);
2501 ArgValue2 = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32);
2502 }
2503
2504 return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, ArgValue, ArgValue2);
2505 }
2506
2507 void
computeRegArea(CCState & CCInfo,MachineFunction & MF,unsigned & VARegSize,unsigned & VARegSaveSize) const2508 ARMTargetLowering::computeRegArea(CCState &CCInfo, MachineFunction &MF,
2509 unsigned &VARegSize, unsigned &VARegSaveSize)
2510 const {
2511 unsigned NumGPRs;
2512 if (CCInfo.isFirstByValRegValid())
2513 NumGPRs = ARM::R4 - CCInfo.getFirstByValReg();
2514 else {
2515 unsigned int firstUnalloced;
2516 firstUnalloced = CCInfo.getFirstUnallocated(GPRArgRegs,
2517 sizeof(GPRArgRegs) /
2518 sizeof(GPRArgRegs[0]));
2519 NumGPRs = (firstUnalloced <= 3) ? (4 - firstUnalloced) : 0;
2520 }
2521
2522 unsigned Align = MF.getTarget().getFrameLowering()->getStackAlignment();
2523 VARegSize = NumGPRs * 4;
2524 VARegSaveSize = (VARegSize + Align - 1) & ~(Align - 1);
2525 }
2526
2527 // The remaining GPRs hold either the beginning of variable-argument
2528 // data, or the beginning of an aggregate passed by value (usuall
2529 // byval). Either way, we allocate stack slots adjacent to the data
2530 // provided by our caller, and store the unallocated registers there.
2531 // If this is a variadic function, the va_list pointer will begin with
2532 // these values; otherwise, this reassembles a (byval) structure that
2533 // was split between registers and memory.
2534 void
VarArgStyleRegisters(CCState & CCInfo,SelectionDAG & DAG,DebugLoc dl,SDValue & Chain,unsigned ArgOffset) const2535 ARMTargetLowering::VarArgStyleRegisters(CCState &CCInfo, SelectionDAG &DAG,
2536 DebugLoc dl, SDValue &Chain,
2537 unsigned ArgOffset) const {
2538 MachineFunction &MF = DAG.getMachineFunction();
2539 MachineFrameInfo *MFI = MF.getFrameInfo();
2540 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2541 unsigned firstRegToSaveIndex;
2542 if (CCInfo.isFirstByValRegValid())
2543 firstRegToSaveIndex = CCInfo.getFirstByValReg() - ARM::R0;
2544 else {
2545 firstRegToSaveIndex = CCInfo.getFirstUnallocated
2546 (GPRArgRegs, sizeof(GPRArgRegs) / sizeof(GPRArgRegs[0]));
2547 }
2548
2549 unsigned VARegSize, VARegSaveSize;
2550 computeRegArea(CCInfo, MF, VARegSize, VARegSaveSize);
2551 if (VARegSaveSize) {
2552 // If this function is vararg, store any remaining integer argument regs
2553 // to their spots on the stack so that they may be loaded by deferencing
2554 // the result of va_next.
2555 AFI->setVarArgsRegSaveSize(VARegSaveSize);
2556 AFI->setVarArgsFrameIndex(MFI->CreateFixedObject(VARegSaveSize,
2557 ArgOffset + VARegSaveSize
2558 - VARegSize,
2559 false));
2560 SDValue FIN = DAG.getFrameIndex(AFI->getVarArgsFrameIndex(),
2561 getPointerTy());
2562
2563 SmallVector<SDValue, 4> MemOps;
2564 for (; firstRegToSaveIndex < 4; ++firstRegToSaveIndex) {
2565 const TargetRegisterClass *RC;
2566 if (AFI->isThumb1OnlyFunction())
2567 RC = &ARM::tGPRRegClass;
2568 else
2569 RC = &ARM::GPRRegClass;
2570
2571 unsigned VReg = MF.addLiveIn(GPRArgRegs[firstRegToSaveIndex], RC);
2572 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
2573 SDValue Store =
2574 DAG.getStore(Val.getValue(1), dl, Val, FIN,
2575 MachinePointerInfo::getFixedStack(AFI->getVarArgsFrameIndex()),
2576 false, false, 0);
2577 MemOps.push_back(Store);
2578 FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), FIN,
2579 DAG.getConstant(4, getPointerTy()));
2580 }
2581 if (!MemOps.empty())
2582 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2583 &MemOps[0], MemOps.size());
2584 } else
2585 // This will point to the next argument passed via stack.
2586 AFI->setVarArgsFrameIndex(MFI->CreateFixedObject(4, ArgOffset, true));
2587 }
2588
2589 SDValue
LowerFormalArguments(SDValue Chain,CallingConv::ID CallConv,bool isVarArg,const SmallVectorImpl<ISD::InputArg> & Ins,DebugLoc dl,SelectionDAG & DAG,SmallVectorImpl<SDValue> & InVals) const2590 ARMTargetLowering::LowerFormalArguments(SDValue Chain,
2591 CallingConv::ID CallConv, bool isVarArg,
2592 const SmallVectorImpl<ISD::InputArg>
2593 &Ins,
2594 DebugLoc dl, SelectionDAG &DAG,
2595 SmallVectorImpl<SDValue> &InVals)
2596 const {
2597 MachineFunction &MF = DAG.getMachineFunction();
2598 MachineFrameInfo *MFI = MF.getFrameInfo();
2599
2600 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2601
2602 // Assign locations to all of the incoming arguments.
2603 SmallVector<CCValAssign, 16> ArgLocs;
2604 ARMCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
2605 getTargetMachine(), ArgLocs, *DAG.getContext(), Prologue);
2606 CCInfo.AnalyzeFormalArguments(Ins,
2607 CCAssignFnForNode(CallConv, /* Return*/ false,
2608 isVarArg));
2609
2610 SmallVector<SDValue, 16> ArgValues;
2611 int lastInsIndex = -1;
2612
2613 SDValue ArgValue;
2614 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2615 CCValAssign &VA = ArgLocs[i];
2616
2617 // Arguments stored in registers.
2618 if (VA.isRegLoc()) {
2619 EVT RegVT = VA.getLocVT();
2620
2621 if (VA.needsCustom()) {
2622 // f64 and vector types are split up into multiple registers or
2623 // combinations of registers and stack slots.
2624 if (VA.getLocVT() == MVT::v2f64) {
2625 SDValue ArgValue1 = GetF64FormalArgument(VA, ArgLocs[++i],
2626 Chain, DAG, dl);
2627 VA = ArgLocs[++i]; // skip ahead to next loc
2628 SDValue ArgValue2;
2629 if (VA.isMemLoc()) {
2630 int FI = MFI->CreateFixedObject(8, VA.getLocMemOffset(), true);
2631 SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
2632 ArgValue2 = DAG.getLoad(MVT::f64, dl, Chain, FIN,
2633 MachinePointerInfo::getFixedStack(FI),
2634 false, false, false, 0);
2635 } else {
2636 ArgValue2 = GetF64FormalArgument(VA, ArgLocs[++i],
2637 Chain, DAG, dl);
2638 }
2639 ArgValue = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64);
2640 ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64,
2641 ArgValue, ArgValue1, DAG.getIntPtrConstant(0));
2642 ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64,
2643 ArgValue, ArgValue2, DAG.getIntPtrConstant(1));
2644 } else
2645 ArgValue = GetF64FormalArgument(VA, ArgLocs[++i], Chain, DAG, dl);
2646
2647 } else {
2648 const TargetRegisterClass *RC;
2649
2650 if (RegVT == MVT::f32)
2651 RC = &ARM::SPRRegClass;
2652 else if (RegVT == MVT::f64)
2653 RC = &ARM::DPRRegClass;
2654 else if (RegVT == MVT::v2f64)
2655 RC = &ARM::QPRRegClass;
2656 else if (RegVT == MVT::i32)
2657 RC = AFI->isThumb1OnlyFunction() ?
2658 (const TargetRegisterClass*)&ARM::tGPRRegClass :
2659 (const TargetRegisterClass*)&ARM::GPRRegClass;
2660 else
2661 llvm_unreachable("RegVT not supported by FORMAL_ARGUMENTS Lowering");
2662
2663 // Transform the arguments in physical registers into virtual ones.
2664 unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
2665 ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
2666 }
2667
2668 // If this is an 8 or 16-bit value, it is really passed promoted
2669 // to 32 bits. Insert an assert[sz]ext to capture this, then
2670 // truncate to the right size.
2671 switch (VA.getLocInfo()) {
2672 default: llvm_unreachable("Unknown loc info!");
2673 case CCValAssign::Full: break;
2674 case CCValAssign::BCvt:
2675 ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue);
2676 break;
2677 case CCValAssign::SExt:
2678 ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
2679 DAG.getValueType(VA.getValVT()));
2680 ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
2681 break;
2682 case CCValAssign::ZExt:
2683 ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
2684 DAG.getValueType(VA.getValVT()));
2685 ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
2686 break;
2687 }
2688
2689 InVals.push_back(ArgValue);
2690
2691 } else { // VA.isRegLoc()
2692
2693 // sanity check
2694 assert(VA.isMemLoc());
2695 assert(VA.getValVT() != MVT::i64 && "i64 should already be lowered");
2696
2697 int index = ArgLocs[i].getValNo();
2698
2699 // Some Ins[] entries become multiple ArgLoc[] entries.
2700 // Process them only once.
2701 if (index != lastInsIndex)
2702 {
2703 ISD::ArgFlagsTy Flags = Ins[index].Flags;
2704 // FIXME: For now, all byval parameter objects are marked mutable.
2705 // This can be changed with more analysis.
2706 // In case of tail call optimization mark all arguments mutable.
2707 // Since they could be overwritten by lowering of arguments in case of
2708 // a tail call.
2709 if (Flags.isByVal()) {
2710 unsigned VARegSize, VARegSaveSize;
2711 computeRegArea(CCInfo, MF, VARegSize, VARegSaveSize);
2712 VarArgStyleRegisters(CCInfo, DAG, dl, Chain, 0);
2713 unsigned Bytes = Flags.getByValSize() - VARegSize;
2714 if (Bytes == 0) Bytes = 1; // Don't create zero-sized stack objects.
2715 int FI = MFI->CreateFixedObject(Bytes,
2716 VA.getLocMemOffset(), false);
2717 InVals.push_back(DAG.getFrameIndex(FI, getPointerTy()));
2718 } else {
2719 int FI = MFI->CreateFixedObject(VA.getLocVT().getSizeInBits()/8,
2720 VA.getLocMemOffset(), true);
2721
2722 // Create load nodes to retrieve arguments from the stack.
2723 SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
2724 InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN,
2725 MachinePointerInfo::getFixedStack(FI),
2726 false, false, false, 0));
2727 }
2728 lastInsIndex = index;
2729 }
2730 }
2731 }
2732
2733 // varargs
2734 if (isVarArg)
2735 VarArgStyleRegisters(CCInfo, DAG, dl, Chain, CCInfo.getNextStackOffset());
2736
2737 return Chain;
2738 }
2739
2740 /// isFloatingPointZero - Return true if this is +0.0.
isFloatingPointZero(SDValue Op)2741 static bool isFloatingPointZero(SDValue Op) {
2742 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
2743 return CFP->getValueAPF().isPosZero();
2744 else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
2745 // Maybe this has already been legalized into the constant pool?
2746 if (Op.getOperand(1).getOpcode() == ARMISD::Wrapper) {
2747 SDValue WrapperOp = Op.getOperand(1).getOperand(0);
2748 if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(WrapperOp))
2749 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
2750 return CFP->getValueAPF().isPosZero();
2751 }
2752 }
2753 return false;
2754 }
2755
2756 /// Returns appropriate ARM CMP (cmp) and corresponding condition code for
2757 /// the given operands.
2758 SDValue
getARMCmp(SDValue LHS,SDValue RHS,ISD::CondCode CC,SDValue & ARMcc,SelectionDAG & DAG,DebugLoc dl) const2759 ARMTargetLowering::getARMCmp(SDValue LHS, SDValue RHS, ISD::CondCode CC,
2760 SDValue &ARMcc, SelectionDAG &DAG,
2761 DebugLoc dl) const {
2762 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS.getNode())) {
2763 unsigned C = RHSC->getZExtValue();
2764 if (!isLegalICmpImmediate(C)) {
2765 // Constant does not fit, try adjusting it by one?
2766 switch (CC) {
2767 default: break;
2768 case ISD::SETLT:
2769 case ISD::SETGE:
2770 if (C != 0x80000000 && isLegalICmpImmediate(C-1)) {
2771 CC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGT;
2772 RHS = DAG.getConstant(C-1, MVT::i32);
2773 }
2774 break;
2775 case ISD::SETULT:
2776 case ISD::SETUGE:
2777 if (C != 0 && isLegalICmpImmediate(C-1)) {
2778 CC = (CC == ISD::SETULT) ? ISD::SETULE : ISD::SETUGT;
2779 RHS = DAG.getConstant(C-1, MVT::i32);
2780 }
2781 break;
2782 case ISD::SETLE:
2783 case ISD::SETGT:
2784 if (C != 0x7fffffff && isLegalICmpImmediate(C+1)) {
2785 CC = (CC == ISD::SETLE) ? ISD::SETLT : ISD::SETGE;
2786 RHS = DAG.getConstant(C+1, MVT::i32);
2787 }
2788 break;
2789 case ISD::SETULE:
2790 case ISD::SETUGT:
2791 if (C != 0xffffffff && isLegalICmpImmediate(C+1)) {
2792 CC = (CC == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
2793 RHS = DAG.getConstant(C+1, MVT::i32);
2794 }
2795 break;
2796 }
2797 }
2798 }
2799
2800 ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
2801 ARMISD::NodeType CompareType;
2802 switch (CondCode) {
2803 default:
2804 CompareType = ARMISD::CMP;
2805 break;
2806 case ARMCC::EQ:
2807 case ARMCC::NE:
2808 // Uses only Z Flag
2809 CompareType = ARMISD::CMPZ;
2810 break;
2811 }
2812 ARMcc = DAG.getConstant(CondCode, MVT::i32);
2813 return DAG.getNode(CompareType, dl, MVT::Glue, LHS, RHS);
2814 }
2815
2816 /// Returns a appropriate VFP CMP (fcmp{s|d}+fmstat) for the given operands.
2817 SDValue
getVFPCmp(SDValue LHS,SDValue RHS,SelectionDAG & DAG,DebugLoc dl) const2818 ARMTargetLowering::getVFPCmp(SDValue LHS, SDValue RHS, SelectionDAG &DAG,
2819 DebugLoc dl) const {
2820 SDValue Cmp;
2821 if (!isFloatingPointZero(RHS))
2822 Cmp = DAG.getNode(ARMISD::CMPFP, dl, MVT::Glue, LHS, RHS);
2823 else
2824 Cmp = DAG.getNode(ARMISD::CMPFPw0, dl, MVT::Glue, LHS);
2825 return DAG.getNode(ARMISD::FMSTAT, dl, MVT::Glue, Cmp);
2826 }
2827
2828 /// duplicateCmp - Glue values can have only one use, so this function
2829 /// duplicates a comparison node.
2830 SDValue
duplicateCmp(SDValue Cmp,SelectionDAG & DAG) const2831 ARMTargetLowering::duplicateCmp(SDValue Cmp, SelectionDAG &DAG) const {
2832 unsigned Opc = Cmp.getOpcode();
2833 DebugLoc DL = Cmp.getDebugLoc();
2834 if (Opc == ARMISD::CMP || Opc == ARMISD::CMPZ)
2835 return DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0),Cmp.getOperand(1));
2836
2837 assert(Opc == ARMISD::FMSTAT && "unexpected comparison operation");
2838 Cmp = Cmp.getOperand(0);
2839 Opc = Cmp.getOpcode();
2840 if (Opc == ARMISD::CMPFP)
2841 Cmp = DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0),Cmp.getOperand(1));
2842 else {
2843 assert(Opc == ARMISD::CMPFPw0 && "unexpected operand of FMSTAT");
2844 Cmp = DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0));
2845 }
2846 return DAG.getNode(ARMISD::FMSTAT, DL, MVT::Glue, Cmp);
2847 }
2848
LowerSELECT(SDValue Op,SelectionDAG & DAG) const2849 SDValue ARMTargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
2850 SDValue Cond = Op.getOperand(0);
2851 SDValue SelectTrue = Op.getOperand(1);
2852 SDValue SelectFalse = Op.getOperand(2);
2853 DebugLoc dl = Op.getDebugLoc();
2854
2855 // Convert:
2856 //
2857 // (select (cmov 1, 0, cond), t, f) -> (cmov t, f, cond)
2858 // (select (cmov 0, 1, cond), t, f) -> (cmov f, t, cond)
2859 //
2860 if (Cond.getOpcode() == ARMISD::CMOV && Cond.hasOneUse()) {
2861 const ConstantSDNode *CMOVTrue =
2862 dyn_cast<ConstantSDNode>(Cond.getOperand(0));
2863 const ConstantSDNode *CMOVFalse =
2864 dyn_cast<ConstantSDNode>(Cond.getOperand(1));
2865
2866 if (CMOVTrue && CMOVFalse) {
2867 unsigned CMOVTrueVal = CMOVTrue->getZExtValue();
2868 unsigned CMOVFalseVal = CMOVFalse->getZExtValue();
2869
2870 SDValue True;
2871 SDValue False;
2872 if (CMOVTrueVal == 1 && CMOVFalseVal == 0) {
2873 True = SelectTrue;
2874 False = SelectFalse;
2875 } else if (CMOVTrueVal == 0 && CMOVFalseVal == 1) {
2876 True = SelectFalse;
2877 False = SelectTrue;
2878 }
2879
2880 if (True.getNode() && False.getNode()) {
2881 EVT VT = Op.getValueType();
2882 SDValue ARMcc = Cond.getOperand(2);
2883 SDValue CCR = Cond.getOperand(3);
2884 SDValue Cmp = duplicateCmp(Cond.getOperand(4), DAG);
2885 assert(True.getValueType() == VT);
2886 return DAG.getNode(ARMISD::CMOV, dl, VT, True, False, ARMcc, CCR, Cmp);
2887 }
2888 }
2889 }
2890
2891 // ARM's BooleanContents value is UndefinedBooleanContent. Mask out the
2892 // undefined bits before doing a full-word comparison with zero.
2893 Cond = DAG.getNode(ISD::AND, dl, Cond.getValueType(), Cond,
2894 DAG.getConstant(1, Cond.getValueType()));
2895
2896 return DAG.getSelectCC(dl, Cond,
2897 DAG.getConstant(0, Cond.getValueType()),
2898 SelectTrue, SelectFalse, ISD::SETNE);
2899 }
2900
LowerSELECT_CC(SDValue Op,SelectionDAG & DAG) const2901 SDValue ARMTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
2902 EVT VT = Op.getValueType();
2903 SDValue LHS = Op.getOperand(0);
2904 SDValue RHS = Op.getOperand(1);
2905 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
2906 SDValue TrueVal = Op.getOperand(2);
2907 SDValue FalseVal = Op.getOperand(3);
2908 DebugLoc dl = Op.getDebugLoc();
2909
2910 if (LHS.getValueType() == MVT::i32) {
2911 SDValue ARMcc;
2912 SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
2913 SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
2914 return DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal, ARMcc, CCR,Cmp);
2915 }
2916
2917 ARMCC::CondCodes CondCode, CondCode2;
2918 FPCCToARMCC(CC, CondCode, CondCode2);
2919
2920 SDValue ARMcc = DAG.getConstant(CondCode, MVT::i32);
2921 SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl);
2922 SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
2923 SDValue Result = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal,
2924 ARMcc, CCR, Cmp);
2925 if (CondCode2 != ARMCC::AL) {
2926 SDValue ARMcc2 = DAG.getConstant(CondCode2, MVT::i32);
2927 // FIXME: Needs another CMP because flag can have but one use.
2928 SDValue Cmp2 = getVFPCmp(LHS, RHS, DAG, dl);
2929 Result = DAG.getNode(ARMISD::CMOV, dl, VT,
2930 Result, TrueVal, ARMcc2, CCR, Cmp2);
2931 }
2932 return Result;
2933 }
2934
2935 /// canChangeToInt - Given the fp compare operand, return true if it is suitable
2936 /// to morph to an integer compare sequence.
canChangeToInt(SDValue Op,bool & SeenZero,const ARMSubtarget * Subtarget)2937 static bool canChangeToInt(SDValue Op, bool &SeenZero,
2938 const ARMSubtarget *Subtarget) {
2939 SDNode *N = Op.getNode();
2940 if (!N->hasOneUse())
2941 // Otherwise it requires moving the value from fp to integer registers.
2942 return false;
2943 if (!N->getNumValues())
2944 return false;
2945 EVT VT = Op.getValueType();
2946 if (VT != MVT::f32 && !Subtarget->isFPBrccSlow())
2947 // f32 case is generally profitable. f64 case only makes sense when vcmpe +
2948 // vmrs are very slow, e.g. cortex-a8.
2949 return false;
2950
2951 if (isFloatingPointZero(Op)) {
2952 SeenZero = true;
2953 return true;
2954 }
2955 return ISD::isNormalLoad(N);
2956 }
2957
bitcastf32Toi32(SDValue Op,SelectionDAG & DAG)2958 static SDValue bitcastf32Toi32(SDValue Op, SelectionDAG &DAG) {
2959 if (isFloatingPointZero(Op))
2960 return DAG.getConstant(0, MVT::i32);
2961
2962 if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Op))
2963 return DAG.getLoad(MVT::i32, Op.getDebugLoc(),
2964 Ld->getChain(), Ld->getBasePtr(), Ld->getPointerInfo(),
2965 Ld->isVolatile(), Ld->isNonTemporal(),
2966 Ld->isInvariant(), Ld->getAlignment());
2967
2968 llvm_unreachable("Unknown VFP cmp argument!");
2969 }
2970
expandf64Toi32(SDValue Op,SelectionDAG & DAG,SDValue & RetVal1,SDValue & RetVal2)2971 static void expandf64Toi32(SDValue Op, SelectionDAG &DAG,
2972 SDValue &RetVal1, SDValue &RetVal2) {
2973 if (isFloatingPointZero(Op)) {
2974 RetVal1 = DAG.getConstant(0, MVT::i32);
2975 RetVal2 = DAG.getConstant(0, MVT::i32);
2976 return;
2977 }
2978
2979 if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Op)) {
2980 SDValue Ptr = Ld->getBasePtr();
2981 RetVal1 = DAG.getLoad(MVT::i32, Op.getDebugLoc(),
2982 Ld->getChain(), Ptr,
2983 Ld->getPointerInfo(),
2984 Ld->isVolatile(), Ld->isNonTemporal(),
2985 Ld->isInvariant(), Ld->getAlignment());
2986
2987 EVT PtrType = Ptr.getValueType();
2988 unsigned NewAlign = MinAlign(Ld->getAlignment(), 4);
2989 SDValue NewPtr = DAG.getNode(ISD::ADD, Op.getDebugLoc(),
2990 PtrType, Ptr, DAG.getConstant(4, PtrType));
2991 RetVal2 = DAG.getLoad(MVT::i32, Op.getDebugLoc(),
2992 Ld->getChain(), NewPtr,
2993 Ld->getPointerInfo().getWithOffset(4),
2994 Ld->isVolatile(), Ld->isNonTemporal(),
2995 Ld->isInvariant(), NewAlign);
2996 return;
2997 }
2998
2999 llvm_unreachable("Unknown VFP cmp argument!");
3000 }
3001
3002 /// OptimizeVFPBrcond - With -enable-unsafe-fp-math, it's legal to optimize some
3003 /// f32 and even f64 comparisons to integer ones.
3004 SDValue
OptimizeVFPBrcond(SDValue Op,SelectionDAG & DAG) const3005 ARMTargetLowering::OptimizeVFPBrcond(SDValue Op, SelectionDAG &DAG) const {
3006 SDValue Chain = Op.getOperand(0);
3007 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
3008 SDValue LHS = Op.getOperand(2);
3009 SDValue RHS = Op.getOperand(3);
3010 SDValue Dest = Op.getOperand(4);
3011 DebugLoc dl = Op.getDebugLoc();
3012
3013 bool LHSSeenZero = false;
3014 bool LHSOk = canChangeToInt(LHS, LHSSeenZero, Subtarget);
3015 bool RHSSeenZero = false;
3016 bool RHSOk = canChangeToInt(RHS, RHSSeenZero, Subtarget);
3017 if (LHSOk && RHSOk && (LHSSeenZero || RHSSeenZero)) {
3018 // If unsafe fp math optimization is enabled and there are no other uses of
3019 // the CMP operands, and the condition code is EQ or NE, we can optimize it
3020 // to an integer comparison.
3021 if (CC == ISD::SETOEQ)
3022 CC = ISD::SETEQ;
3023 else if (CC == ISD::SETUNE)
3024 CC = ISD::SETNE;
3025
3026 SDValue Mask = DAG.getConstant(0x7fffffff, MVT::i32);
3027 SDValue ARMcc;
3028 if (LHS.getValueType() == MVT::f32) {
3029 LHS = DAG.getNode(ISD::AND, dl, MVT::i32,
3030 bitcastf32Toi32(LHS, DAG), Mask);
3031 RHS = DAG.getNode(ISD::AND, dl, MVT::i32,
3032 bitcastf32Toi32(RHS, DAG), Mask);
3033 SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
3034 SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
3035 return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other,
3036 Chain, Dest, ARMcc, CCR, Cmp);
3037 }
3038
3039 SDValue LHS1, LHS2;
3040 SDValue RHS1, RHS2;
3041 expandf64Toi32(LHS, DAG, LHS1, LHS2);
3042 expandf64Toi32(RHS, DAG, RHS1, RHS2);
3043 LHS2 = DAG.getNode(ISD::AND, dl, MVT::i32, LHS2, Mask);
3044 RHS2 = DAG.getNode(ISD::AND, dl, MVT::i32, RHS2, Mask);
3045 ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
3046 ARMcc = DAG.getConstant(CondCode, MVT::i32);
3047 SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Glue);
3048 SDValue Ops[] = { Chain, ARMcc, LHS1, LHS2, RHS1, RHS2, Dest };
3049 return DAG.getNode(ARMISD::BCC_i64, dl, VTList, Ops, 7);
3050 }
3051
3052 return SDValue();
3053 }
3054
LowerBR_CC(SDValue Op,SelectionDAG & DAG) const3055 SDValue ARMTargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
3056 SDValue Chain = Op.getOperand(0);
3057 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
3058 SDValue LHS = Op.getOperand(2);
3059 SDValue RHS = Op.getOperand(3);
3060 SDValue Dest = Op.getOperand(4);
3061 DebugLoc dl = Op.getDebugLoc();
3062
3063 if (LHS.getValueType() == MVT::i32) {
3064 SDValue ARMcc;
3065 SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
3066 SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
3067 return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other,
3068 Chain, Dest, ARMcc, CCR, Cmp);
3069 }
3070
3071 assert(LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64);
3072
3073 if (getTargetMachine().Options.UnsafeFPMath &&
3074 (CC == ISD::SETEQ || CC == ISD::SETOEQ ||
3075 CC == ISD::SETNE || CC == ISD::SETUNE)) {
3076 SDValue Result = OptimizeVFPBrcond(Op, DAG);
3077 if (Result.getNode())
3078 return Result;
3079 }
3080
3081 ARMCC::CondCodes CondCode, CondCode2;
3082 FPCCToARMCC(CC, CondCode, CondCode2);
3083
3084 SDValue ARMcc = DAG.getConstant(CondCode, MVT::i32);
3085 SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl);
3086 SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
3087 SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Glue);
3088 SDValue Ops[] = { Chain, Dest, ARMcc, CCR, Cmp };
3089 SDValue Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops, 5);
3090 if (CondCode2 != ARMCC::AL) {
3091 ARMcc = DAG.getConstant(CondCode2, MVT::i32);
3092 SDValue Ops[] = { Res, Dest, ARMcc, CCR, Res.getValue(1) };
3093 Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops, 5);
3094 }
3095 return Res;
3096 }
3097
LowerBR_JT(SDValue Op,SelectionDAG & DAG) const3098 SDValue ARMTargetLowering::LowerBR_JT(SDValue Op, SelectionDAG &DAG) const {
3099 SDValue Chain = Op.getOperand(0);
3100 SDValue Table = Op.getOperand(1);
3101 SDValue Index = Op.getOperand(2);
3102 DebugLoc dl = Op.getDebugLoc();
3103
3104 EVT PTy = getPointerTy();
3105 JumpTableSDNode *JT = cast<JumpTableSDNode>(Table);
3106 ARMFunctionInfo *AFI = DAG.getMachineFunction().getInfo<ARMFunctionInfo>();
3107 SDValue UId = DAG.getConstant(AFI->createJumpTableUId(), PTy);
3108 SDValue JTI = DAG.getTargetJumpTable(JT->getIndex(), PTy);
3109 Table = DAG.getNode(ARMISD::WrapperJT, dl, MVT::i32, JTI, UId);
3110 Index = DAG.getNode(ISD::MUL, dl, PTy, Index, DAG.getConstant(4, PTy));
3111 SDValue Addr = DAG.getNode(ISD::ADD, dl, PTy, Index, Table);
3112 if (Subtarget->isThumb2()) {
3113 // Thumb2 uses a two-level jump. That is, it jumps into the jump table
3114 // which does another jump to the destination. This also makes it easier
3115 // to translate it to TBB / TBH later.
3116 // FIXME: This might not work if the function is extremely large.
3117 return DAG.getNode(ARMISD::BR2_JT, dl, MVT::Other, Chain,
3118 Addr, Op.getOperand(2), JTI, UId);
3119 }
3120 if (getTargetMachine().getRelocationModel() == Reloc::PIC_) {
3121 Addr = DAG.getLoad((EVT)MVT::i32, dl, Chain, Addr,
3122 MachinePointerInfo::getJumpTable(),
3123 false, false, false, 0);
3124 Chain = Addr.getValue(1);
3125 Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr, Table);
3126 return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI, UId);
3127 } else {
3128 Addr = DAG.getLoad(PTy, dl, Chain, Addr,
3129 MachinePointerInfo::getJumpTable(),
3130 false, false, false, 0);
3131 Chain = Addr.getValue(1);
3132 return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI, UId);
3133 }
3134 }
3135
LowerVectorFP_TO_INT(SDValue Op,SelectionDAG & DAG)3136 static SDValue LowerVectorFP_TO_INT(SDValue Op, SelectionDAG &DAG) {
3137 EVT VT = Op.getValueType();
3138 DebugLoc dl = Op.getDebugLoc();
3139
3140 if (Op.getValueType().getVectorElementType() == MVT::i32) {
3141 if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::f32)
3142 return Op;
3143 return DAG.UnrollVectorOp(Op.getNode());
3144 }
3145
3146 assert(Op.getOperand(0).getValueType() == MVT::v4f32 &&
3147 "Invalid type for custom lowering!");
3148 if (VT != MVT::v4i16)
3149 return DAG.UnrollVectorOp(Op.getNode());
3150
3151 Op = DAG.getNode(Op.getOpcode(), dl, MVT::v4i32, Op.getOperand(0));
3152 return DAG.getNode(ISD::TRUNCATE, dl, VT, Op);
3153 }
3154
LowerFP_TO_INT(SDValue Op,SelectionDAG & DAG)3155 static SDValue LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG) {
3156 EVT VT = Op.getValueType();
3157 if (VT.isVector())
3158 return LowerVectorFP_TO_INT(Op, DAG);
3159
3160 DebugLoc dl = Op.getDebugLoc();
3161 unsigned Opc;
3162
3163 switch (Op.getOpcode()) {
3164 default: llvm_unreachable("Invalid opcode!");
3165 case ISD::FP_TO_SINT:
3166 Opc = ARMISD::FTOSI;
3167 break;
3168 case ISD::FP_TO_UINT:
3169 Opc = ARMISD::FTOUI;
3170 break;
3171 }
3172 Op = DAG.getNode(Opc, dl, MVT::f32, Op.getOperand(0));
3173 return DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3174 }
3175
LowerVectorINT_TO_FP(SDValue Op,SelectionDAG & DAG)3176 static SDValue LowerVectorINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
3177 EVT VT = Op.getValueType();
3178 DebugLoc dl = Op.getDebugLoc();
3179
3180 if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::i32) {
3181 if (VT.getVectorElementType() == MVT::f32)
3182 return Op;
3183 return DAG.UnrollVectorOp(Op.getNode());
3184 }
3185
3186 assert(Op.getOperand(0).getValueType() == MVT::v4i16 &&
3187 "Invalid type for custom lowering!");
3188 if (VT != MVT::v4f32)
3189 return DAG.UnrollVectorOp(Op.getNode());
3190
3191 unsigned CastOpc;
3192 unsigned Opc;
3193 switch (Op.getOpcode()) {
3194 default: llvm_unreachable("Invalid opcode!");
3195 case ISD::SINT_TO_FP:
3196 CastOpc = ISD::SIGN_EXTEND;
3197 Opc = ISD::SINT_TO_FP;
3198 break;
3199 case ISD::UINT_TO_FP:
3200 CastOpc = ISD::ZERO_EXTEND;
3201 Opc = ISD::UINT_TO_FP;
3202 break;
3203 }
3204
3205 Op = DAG.getNode(CastOpc, dl, MVT::v4i32, Op.getOperand(0));
3206 return DAG.getNode(Opc, dl, VT, Op);
3207 }
3208
LowerINT_TO_FP(SDValue Op,SelectionDAG & DAG)3209 static SDValue LowerINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
3210 EVT VT = Op.getValueType();
3211 if (VT.isVector())
3212 return LowerVectorINT_TO_FP(Op, DAG);
3213
3214 DebugLoc dl = Op.getDebugLoc();
3215 unsigned Opc;
3216
3217 switch (Op.getOpcode()) {
3218 default: llvm_unreachable("Invalid opcode!");
3219 case ISD::SINT_TO_FP:
3220 Opc = ARMISD::SITOF;
3221 break;
3222 case ISD::UINT_TO_FP:
3223 Opc = ARMISD::UITOF;
3224 break;
3225 }
3226
3227 Op = DAG.getNode(ISD::BITCAST, dl, MVT::f32, Op.getOperand(0));
3228 return DAG.getNode(Opc, dl, VT, Op);
3229 }
3230
LowerFCOPYSIGN(SDValue Op,SelectionDAG & DAG) const3231 SDValue ARMTargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
3232 // Implement fcopysign with a fabs and a conditional fneg.
3233 SDValue Tmp0 = Op.getOperand(0);
3234 SDValue Tmp1 = Op.getOperand(1);
3235 DebugLoc dl = Op.getDebugLoc();
3236 EVT VT = Op.getValueType();
3237 EVT SrcVT = Tmp1.getValueType();
3238 bool InGPR = Tmp0.getOpcode() == ISD::BITCAST ||
3239 Tmp0.getOpcode() == ARMISD::VMOVDRR;
3240 bool UseNEON = !InGPR && Subtarget->hasNEON();
3241
3242 if (UseNEON) {
3243 // Use VBSL to copy the sign bit.
3244 unsigned EncodedVal = ARM_AM::createNEONModImm(0x6, 0x80);
3245 SDValue Mask = DAG.getNode(ARMISD::VMOVIMM, dl, MVT::v2i32,
3246 DAG.getTargetConstant(EncodedVal, MVT::i32));
3247 EVT OpVT = (VT == MVT::f32) ? MVT::v2i32 : MVT::v1i64;
3248 if (VT == MVT::f64)
3249 Mask = DAG.getNode(ARMISD::VSHL, dl, OpVT,
3250 DAG.getNode(ISD::BITCAST, dl, OpVT, Mask),
3251 DAG.getConstant(32, MVT::i32));
3252 else /*if (VT == MVT::f32)*/
3253 Tmp0 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f32, Tmp0);
3254 if (SrcVT == MVT::f32) {
3255 Tmp1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f32, Tmp1);
3256 if (VT == MVT::f64)
3257 Tmp1 = DAG.getNode(ARMISD::VSHL, dl, OpVT,
3258 DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp1),
3259 DAG.getConstant(32, MVT::i32));
3260 } else if (VT == MVT::f32)
3261 Tmp1 = DAG.getNode(ARMISD::VSHRu, dl, MVT::v1i64,
3262 DAG.getNode(ISD::BITCAST, dl, MVT::v1i64, Tmp1),
3263 DAG.getConstant(32, MVT::i32));
3264 Tmp0 = DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp0);
3265 Tmp1 = DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp1);
3266
3267 SDValue AllOnes = DAG.getTargetConstant(ARM_AM::createNEONModImm(0xe, 0xff),
3268 MVT::i32);
3269 AllOnes = DAG.getNode(ARMISD::VMOVIMM, dl, MVT::v8i8, AllOnes);
3270 SDValue MaskNot = DAG.getNode(ISD::XOR, dl, OpVT, Mask,
3271 DAG.getNode(ISD::BITCAST, dl, OpVT, AllOnes));
3272
3273 SDValue Res = DAG.getNode(ISD::OR, dl, OpVT,
3274 DAG.getNode(ISD::AND, dl, OpVT, Tmp1, Mask),
3275 DAG.getNode(ISD::AND, dl, OpVT, Tmp0, MaskNot));
3276 if (VT == MVT::f32) {
3277 Res = DAG.getNode(ISD::BITCAST, dl, MVT::v2f32, Res);
3278 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, Res,
3279 DAG.getConstant(0, MVT::i32));
3280 } else {
3281 Res = DAG.getNode(ISD::BITCAST, dl, MVT::f64, Res);
3282 }
3283
3284 return Res;
3285 }
3286
3287 // Bitcast operand 1 to i32.
3288 if (SrcVT == MVT::f64)
3289 Tmp1 = DAG.getNode(ARMISD::VMOVRRD, dl, DAG.getVTList(MVT::i32, MVT::i32),
3290 &Tmp1, 1).getValue(1);
3291 Tmp1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Tmp1);
3292
3293 // Or in the signbit with integer operations.
3294 SDValue Mask1 = DAG.getConstant(0x80000000, MVT::i32);
3295 SDValue Mask2 = DAG.getConstant(0x7fffffff, MVT::i32);
3296 Tmp1 = DAG.getNode(ISD::AND, dl, MVT::i32, Tmp1, Mask1);
3297 if (VT == MVT::f32) {
3298 Tmp0 = DAG.getNode(ISD::AND, dl, MVT::i32,
3299 DAG.getNode(ISD::BITCAST, dl, MVT::i32, Tmp0), Mask2);
3300 return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
3301 DAG.getNode(ISD::OR, dl, MVT::i32, Tmp0, Tmp1));
3302 }
3303
3304 // f64: Or the high part with signbit and then combine two parts.
3305 Tmp0 = DAG.getNode(ARMISD::VMOVRRD, dl, DAG.getVTList(MVT::i32, MVT::i32),
3306 &Tmp0, 1);
3307 SDValue Lo = Tmp0.getValue(0);
3308 SDValue Hi = DAG.getNode(ISD::AND, dl, MVT::i32, Tmp0.getValue(1), Mask2);
3309 Hi = DAG.getNode(ISD::OR, dl, MVT::i32, Hi, Tmp1);
3310 return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
3311 }
3312
LowerRETURNADDR(SDValue Op,SelectionDAG & DAG) const3313 SDValue ARMTargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const{
3314 MachineFunction &MF = DAG.getMachineFunction();
3315 MachineFrameInfo *MFI = MF.getFrameInfo();
3316 MFI->setReturnAddressIsTaken(true);
3317
3318 EVT VT = Op.getValueType();
3319 DebugLoc dl = Op.getDebugLoc();
3320 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3321 if (Depth) {
3322 SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
3323 SDValue Offset = DAG.getConstant(4, MVT::i32);
3324 return DAG.getLoad(VT, dl, DAG.getEntryNode(),
3325 DAG.getNode(ISD::ADD, dl, VT, FrameAddr, Offset),
3326 MachinePointerInfo(), false, false, false, 0);
3327 }
3328
3329 // Return LR, which contains the return address. Mark it an implicit live-in.
3330 unsigned Reg = MF.addLiveIn(ARM::LR, getRegClassFor(MVT::i32));
3331 return DAG.getCopyFromReg(DAG.getEntryNode(), dl, Reg, VT);
3332 }
3333
LowerFRAMEADDR(SDValue Op,SelectionDAG & DAG) const3334 SDValue ARMTargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
3335 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
3336 MFI->setFrameAddressIsTaken(true);
3337
3338 EVT VT = Op.getValueType();
3339 DebugLoc dl = Op.getDebugLoc(); // FIXME probably not meaningful
3340 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3341 unsigned FrameReg = (Subtarget->isThumb() || Subtarget->isTargetDarwin())
3342 ? ARM::R7 : ARM::R11;
3343 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
3344 while (Depth--)
3345 FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
3346 MachinePointerInfo(),
3347 false, false, false, 0);
3348 return FrameAddr;
3349 }
3350
3351 /// ExpandBITCAST - If the target supports VFP, this function is called to
3352 /// expand a bit convert where either the source or destination type is i64 to
3353 /// use a VMOVDRR or VMOVRRD node. This should not be done when the non-i64
3354 /// operand type is illegal (e.g., v2f32 for a target that doesn't support
3355 /// vectors), since the legalizer won't know what to do with that.
ExpandBITCAST(SDNode * N,SelectionDAG & DAG)3356 static SDValue ExpandBITCAST(SDNode *N, SelectionDAG &DAG) {
3357 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3358 DebugLoc dl = N->getDebugLoc();
3359 SDValue Op = N->getOperand(0);
3360
3361 // This function is only supposed to be called for i64 types, either as the
3362 // source or destination of the bit convert.
3363 EVT SrcVT = Op.getValueType();
3364 EVT DstVT = N->getValueType(0);
3365 assert((SrcVT == MVT::i64 || DstVT == MVT::i64) &&
3366 "ExpandBITCAST called for non-i64 type");
3367
3368 // Turn i64->f64 into VMOVDRR.
3369 if (SrcVT == MVT::i64 && TLI.isTypeLegal(DstVT)) {
3370 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op,
3371 DAG.getConstant(0, MVT::i32));
3372 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op,
3373 DAG.getConstant(1, MVT::i32));
3374 return DAG.getNode(ISD::BITCAST, dl, DstVT,
3375 DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi));
3376 }
3377
3378 // Turn f64->i64 into VMOVRRD.
3379 if (DstVT == MVT::i64 && TLI.isTypeLegal(SrcVT)) {
3380 SDValue Cvt = DAG.getNode(ARMISD::VMOVRRD, dl,
3381 DAG.getVTList(MVT::i32, MVT::i32), &Op, 1);
3382 // Merge the pieces into a single i64 value.
3383 return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Cvt, Cvt.getValue(1));
3384 }
3385
3386 return SDValue();
3387 }
3388
3389 /// getZeroVector - Returns a vector of specified type with all zero elements.
3390 /// Zero vectors are used to represent vector negation and in those cases
3391 /// will be implemented with the NEON VNEG instruction. However, VNEG does
3392 /// not support i64 elements, so sometimes the zero vectors will need to be
3393 /// explicitly constructed. Regardless, use a canonical VMOV to create the
3394 /// zero vector.
getZeroVector(EVT VT,SelectionDAG & DAG,DebugLoc dl)3395 static SDValue getZeroVector(EVT VT, SelectionDAG &DAG, DebugLoc dl) {
3396 assert(VT.isVector() && "Expected a vector type");
3397 // The canonical modified immediate encoding of a zero vector is....0!
3398 SDValue EncodedVal = DAG.getTargetConstant(0, MVT::i32);
3399 EVT VmovVT = VT.is128BitVector() ? MVT::v4i32 : MVT::v2i32;
3400 SDValue Vmov = DAG.getNode(ARMISD::VMOVIMM, dl, VmovVT, EncodedVal);
3401 return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
3402 }
3403
3404 /// LowerShiftRightParts - Lower SRA_PARTS, which returns two
3405 /// i32 values and take a 2 x i32 value to shift plus a shift amount.
LowerShiftRightParts(SDValue Op,SelectionDAG & DAG) const3406 SDValue ARMTargetLowering::LowerShiftRightParts(SDValue Op,
3407 SelectionDAG &DAG) const {
3408 assert(Op.getNumOperands() == 3 && "Not a double-shift!");
3409 EVT VT = Op.getValueType();
3410 unsigned VTBits = VT.getSizeInBits();
3411 DebugLoc dl = Op.getDebugLoc();
3412 SDValue ShOpLo = Op.getOperand(0);
3413 SDValue ShOpHi = Op.getOperand(1);
3414 SDValue ShAmt = Op.getOperand(2);
3415 SDValue ARMcc;
3416 unsigned Opc = (Op.getOpcode() == ISD::SRA_PARTS) ? ISD::SRA : ISD::SRL;
3417
3418 assert(Op.getOpcode() == ISD::SRA_PARTS || Op.getOpcode() == ISD::SRL_PARTS);
3419
3420 SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
3421 DAG.getConstant(VTBits, MVT::i32), ShAmt);
3422 SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, ShAmt);
3423 SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
3424 DAG.getConstant(VTBits, MVT::i32));
3425 SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, RevShAmt);
3426 SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
3427 SDValue TrueVal = DAG.getNode(Opc, dl, VT, ShOpHi, ExtraShAmt);
3428
3429 SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
3430 SDValue Cmp = getARMCmp(ExtraShAmt, DAG.getConstant(0, MVT::i32), ISD::SETGE,
3431 ARMcc, DAG, dl);
3432 SDValue Hi = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt);
3433 SDValue Lo = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal, ARMcc,
3434 CCR, Cmp);
3435
3436 SDValue Ops[2] = { Lo, Hi };
3437 return DAG.getMergeValues(Ops, 2, dl);
3438 }
3439
3440 /// LowerShiftLeftParts - Lower SHL_PARTS, which returns two
3441 /// i32 values and take a 2 x i32 value to shift plus a shift amount.
LowerShiftLeftParts(SDValue Op,SelectionDAG & DAG) const3442 SDValue ARMTargetLowering::LowerShiftLeftParts(SDValue Op,
3443 SelectionDAG &DAG) const {
3444 assert(Op.getNumOperands() == 3 && "Not a double-shift!");
3445 EVT VT = Op.getValueType();
3446 unsigned VTBits = VT.getSizeInBits();
3447 DebugLoc dl = Op.getDebugLoc();
3448 SDValue ShOpLo = Op.getOperand(0);
3449 SDValue ShOpHi = Op.getOperand(1);
3450 SDValue ShAmt = Op.getOperand(2);
3451 SDValue ARMcc;
3452
3453 assert(Op.getOpcode() == ISD::SHL_PARTS);
3454 SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
3455 DAG.getConstant(VTBits, MVT::i32), ShAmt);
3456 SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, RevShAmt);
3457 SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
3458 DAG.getConstant(VTBits, MVT::i32));
3459 SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, ShAmt);
3460 SDValue Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ExtraShAmt);
3461
3462 SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
3463 SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
3464 SDValue Cmp = getARMCmp(ExtraShAmt, DAG.getConstant(0, MVT::i32), ISD::SETGE,
3465 ARMcc, DAG, dl);
3466 SDValue Lo = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
3467 SDValue Hi = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, Tmp3, ARMcc,
3468 CCR, Cmp);
3469
3470 SDValue Ops[2] = { Lo, Hi };
3471 return DAG.getMergeValues(Ops, 2, dl);
3472 }
3473
LowerFLT_ROUNDS_(SDValue Op,SelectionDAG & DAG) const3474 SDValue ARMTargetLowering::LowerFLT_ROUNDS_(SDValue Op,
3475 SelectionDAG &DAG) const {
3476 // The rounding mode is in bits 23:22 of the FPSCR.
3477 // The ARM rounding mode value to FLT_ROUNDS mapping is 0->1, 1->2, 2->3, 3->0
3478 // The formula we use to implement this is (((FPSCR + 1 << 22) >> 22) & 3)
3479 // so that the shift + and get folded into a bitfield extract.
3480 DebugLoc dl = Op.getDebugLoc();
3481 SDValue FPSCR = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::i32,
3482 DAG.getConstant(Intrinsic::arm_get_fpscr,
3483 MVT::i32));
3484 SDValue FltRounds = DAG.getNode(ISD::ADD, dl, MVT::i32, FPSCR,
3485 DAG.getConstant(1U << 22, MVT::i32));
3486 SDValue RMODE = DAG.getNode(ISD::SRL, dl, MVT::i32, FltRounds,
3487 DAG.getConstant(22, MVT::i32));
3488 return DAG.getNode(ISD::AND, dl, MVT::i32, RMODE,
3489 DAG.getConstant(3, MVT::i32));
3490 }
3491
LowerCTTZ(SDNode * N,SelectionDAG & DAG,const ARMSubtarget * ST)3492 static SDValue LowerCTTZ(SDNode *N, SelectionDAG &DAG,
3493 const ARMSubtarget *ST) {
3494 EVT VT = N->getValueType(0);
3495 DebugLoc dl = N->getDebugLoc();
3496
3497 if (!ST->hasV6T2Ops())
3498 return SDValue();
3499
3500 SDValue rbit = DAG.getNode(ARMISD::RBIT, dl, VT, N->getOperand(0));
3501 return DAG.getNode(ISD::CTLZ, dl, VT, rbit);
3502 }
3503
LowerShift(SDNode * N,SelectionDAG & DAG,const ARMSubtarget * ST)3504 static SDValue LowerShift(SDNode *N, SelectionDAG &DAG,
3505 const ARMSubtarget *ST) {
3506 EVT VT = N->getValueType(0);
3507 DebugLoc dl = N->getDebugLoc();
3508
3509 if (!VT.isVector())
3510 return SDValue();
3511
3512 // Lower vector shifts on NEON to use VSHL.
3513 assert(ST->hasNEON() && "unexpected vector shift");
3514
3515 // Left shifts translate directly to the vshiftu intrinsic.
3516 if (N->getOpcode() == ISD::SHL)
3517 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
3518 DAG.getConstant(Intrinsic::arm_neon_vshiftu, MVT::i32),
3519 N->getOperand(0), N->getOperand(1));
3520
3521 assert((N->getOpcode() == ISD::SRA ||
3522 N->getOpcode() == ISD::SRL) && "unexpected vector shift opcode");
3523
3524 // NEON uses the same intrinsics for both left and right shifts. For
3525 // right shifts, the shift amounts are negative, so negate the vector of
3526 // shift amounts.
3527 EVT ShiftVT = N->getOperand(1).getValueType();
3528 SDValue NegatedCount = DAG.getNode(ISD::SUB, dl, ShiftVT,
3529 getZeroVector(ShiftVT, DAG, dl),
3530 N->getOperand(1));
3531 Intrinsic::ID vshiftInt = (N->getOpcode() == ISD::SRA ?
3532 Intrinsic::arm_neon_vshifts :
3533 Intrinsic::arm_neon_vshiftu);
3534 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
3535 DAG.getConstant(vshiftInt, MVT::i32),
3536 N->getOperand(0), NegatedCount);
3537 }
3538
Expand64BitShift(SDNode * N,SelectionDAG & DAG,const ARMSubtarget * ST)3539 static SDValue Expand64BitShift(SDNode *N, SelectionDAG &DAG,
3540 const ARMSubtarget *ST) {
3541 EVT VT = N->getValueType(0);
3542 DebugLoc dl = N->getDebugLoc();
3543
3544 // We can get here for a node like i32 = ISD::SHL i32, i64
3545 if (VT != MVT::i64)
3546 return SDValue();
3547
3548 assert((N->getOpcode() == ISD::SRL || N->getOpcode() == ISD::SRA) &&
3549 "Unknown shift to lower!");
3550
3551 // We only lower SRA, SRL of 1 here, all others use generic lowering.
3552 if (!isa<ConstantSDNode>(N->getOperand(1)) ||
3553 cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() != 1)
3554 return SDValue();
3555
3556 // If we are in thumb mode, we don't have RRX.
3557 if (ST->isThumb1Only()) return SDValue();
3558
3559 // Okay, we have a 64-bit SRA or SRL of 1. Lower this to an RRX expr.
3560 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
3561 DAG.getConstant(0, MVT::i32));
3562 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
3563 DAG.getConstant(1, MVT::i32));
3564
3565 // First, build a SRA_FLAG/SRL_FLAG op, which shifts the top part by one and
3566 // captures the result into a carry flag.
3567 unsigned Opc = N->getOpcode() == ISD::SRL ? ARMISD::SRL_FLAG:ARMISD::SRA_FLAG;
3568 Hi = DAG.getNode(Opc, dl, DAG.getVTList(MVT::i32, MVT::Glue), &Hi, 1);
3569
3570 // The low part is an ARMISD::RRX operand, which shifts the carry in.
3571 Lo = DAG.getNode(ARMISD::RRX, dl, MVT::i32, Lo, Hi.getValue(1));
3572
3573 // Merge the pieces into a single i64 value.
3574 return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
3575 }
3576
LowerVSETCC(SDValue Op,SelectionDAG & DAG)3577 static SDValue LowerVSETCC(SDValue Op, SelectionDAG &DAG) {
3578 SDValue TmpOp0, TmpOp1;
3579 bool Invert = false;
3580 bool Swap = false;
3581 unsigned Opc = 0;
3582
3583 SDValue Op0 = Op.getOperand(0);
3584 SDValue Op1 = Op.getOperand(1);
3585 SDValue CC = Op.getOperand(2);
3586 EVT VT = Op.getValueType();
3587 ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
3588 DebugLoc dl = Op.getDebugLoc();
3589
3590 if (Op.getOperand(1).getValueType().isFloatingPoint()) {
3591 switch (SetCCOpcode) {
3592 default: llvm_unreachable("Illegal FP comparison");
3593 case ISD::SETUNE:
3594 case ISD::SETNE: Invert = true; // Fallthrough
3595 case ISD::SETOEQ:
3596 case ISD::SETEQ: Opc = ARMISD::VCEQ; break;
3597 case ISD::SETOLT:
3598 case ISD::SETLT: Swap = true; // Fallthrough
3599 case ISD::SETOGT:
3600 case ISD::SETGT: Opc = ARMISD::VCGT; break;
3601 case ISD::SETOLE:
3602 case ISD::SETLE: Swap = true; // Fallthrough
3603 case ISD::SETOGE:
3604 case ISD::SETGE: Opc = ARMISD::VCGE; break;
3605 case ISD::SETUGE: Swap = true; // Fallthrough
3606 case ISD::SETULE: Invert = true; Opc = ARMISD::VCGT; break;
3607 case ISD::SETUGT: Swap = true; // Fallthrough
3608 case ISD::SETULT: Invert = true; Opc = ARMISD::VCGE; break;
3609 case ISD::SETUEQ: Invert = true; // Fallthrough
3610 case ISD::SETONE:
3611 // Expand this to (OLT | OGT).
3612 TmpOp0 = Op0;
3613 TmpOp1 = Op1;
3614 Opc = ISD::OR;
3615 Op0 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp1, TmpOp0);
3616 Op1 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp0, TmpOp1);
3617 break;
3618 case ISD::SETUO: Invert = true; // Fallthrough
3619 case ISD::SETO:
3620 // Expand this to (OLT | OGE).
3621 TmpOp0 = Op0;
3622 TmpOp1 = Op1;
3623 Opc = ISD::OR;
3624 Op0 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp1, TmpOp0);
3625 Op1 = DAG.getNode(ARMISD::VCGE, dl, VT, TmpOp0, TmpOp1);
3626 break;
3627 }
3628 } else {
3629 // Integer comparisons.
3630 switch (SetCCOpcode) {
3631 default: llvm_unreachable("Illegal integer comparison");
3632 case ISD::SETNE: Invert = true;
3633 case ISD::SETEQ: Opc = ARMISD::VCEQ; break;
3634 case ISD::SETLT: Swap = true;
3635 case ISD::SETGT: Opc = ARMISD::VCGT; break;
3636 case ISD::SETLE: Swap = true;
3637 case ISD::SETGE: Opc = ARMISD::VCGE; break;
3638 case ISD::SETULT: Swap = true;
3639 case ISD::SETUGT: Opc = ARMISD::VCGTU; break;
3640 case ISD::SETULE: Swap = true;
3641 case ISD::SETUGE: Opc = ARMISD::VCGEU; break;
3642 }
3643
3644 // Detect VTST (Vector Test Bits) = icmp ne (and (op0, op1), zero).
3645 if (Opc == ARMISD::VCEQ) {
3646
3647 SDValue AndOp;
3648 if (ISD::isBuildVectorAllZeros(Op1.getNode()))
3649 AndOp = Op0;
3650 else if (ISD::isBuildVectorAllZeros(Op0.getNode()))
3651 AndOp = Op1;
3652
3653 // Ignore bitconvert.
3654 if (AndOp.getNode() && AndOp.getOpcode() == ISD::BITCAST)
3655 AndOp = AndOp.getOperand(0);
3656
3657 if (AndOp.getNode() && AndOp.getOpcode() == ISD::AND) {
3658 Opc = ARMISD::VTST;
3659 Op0 = DAG.getNode(ISD::BITCAST, dl, VT, AndOp.getOperand(0));
3660 Op1 = DAG.getNode(ISD::BITCAST, dl, VT, AndOp.getOperand(1));
3661 Invert = !Invert;
3662 }
3663 }
3664 }
3665
3666 if (Swap)
3667 std::swap(Op0, Op1);
3668
3669 // If one of the operands is a constant vector zero, attempt to fold the
3670 // comparison to a specialized compare-against-zero form.
3671 SDValue SingleOp;
3672 if (ISD::isBuildVectorAllZeros(Op1.getNode()))
3673 SingleOp = Op0;
3674 else if (ISD::isBuildVectorAllZeros(Op0.getNode())) {
3675 if (Opc == ARMISD::VCGE)
3676 Opc = ARMISD::VCLEZ;
3677 else if (Opc == ARMISD::VCGT)
3678 Opc = ARMISD::VCLTZ;
3679 SingleOp = Op1;
3680 }
3681
3682 SDValue Result;
3683 if (SingleOp.getNode()) {
3684 switch (Opc) {
3685 case ARMISD::VCEQ:
3686 Result = DAG.getNode(ARMISD::VCEQZ, dl, VT, SingleOp); break;
3687 case ARMISD::VCGE:
3688 Result = DAG.getNode(ARMISD::VCGEZ, dl, VT, SingleOp); break;
3689 case ARMISD::VCLEZ:
3690 Result = DAG.getNode(ARMISD::VCLEZ, dl, VT, SingleOp); break;
3691 case ARMISD::VCGT:
3692 Result = DAG.getNode(ARMISD::VCGTZ, dl, VT, SingleOp); break;
3693 case ARMISD::VCLTZ:
3694 Result = DAG.getNode(ARMISD::VCLTZ, dl, VT, SingleOp); break;
3695 default:
3696 Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
3697 }
3698 } else {
3699 Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
3700 }
3701
3702 if (Invert)
3703 Result = DAG.getNOT(dl, Result, VT);
3704
3705 return Result;
3706 }
3707
3708 /// isNEONModifiedImm - Check if the specified splat value corresponds to a
3709 /// valid vector constant for a NEON instruction with a "modified immediate"
3710 /// operand (e.g., VMOV). If so, return the encoded value.
isNEONModifiedImm(uint64_t SplatBits,uint64_t SplatUndef,unsigned SplatBitSize,SelectionDAG & DAG,EVT & VT,bool is128Bits,NEONModImmType type)3711 static SDValue isNEONModifiedImm(uint64_t SplatBits, uint64_t SplatUndef,
3712 unsigned SplatBitSize, SelectionDAG &DAG,
3713 EVT &VT, bool is128Bits, NEONModImmType type) {
3714 unsigned OpCmode, Imm;
3715
3716 // SplatBitSize is set to the smallest size that splats the vector, so a
3717 // zero vector will always have SplatBitSize == 8. However, NEON modified
3718 // immediate instructions others than VMOV do not support the 8-bit encoding
3719 // of a zero vector, and the default encoding of zero is supposed to be the
3720 // 32-bit version.
3721 if (SplatBits == 0)
3722 SplatBitSize = 32;
3723
3724 switch (SplatBitSize) {
3725 case 8:
3726 if (type != VMOVModImm)
3727 return SDValue();
3728 // Any 1-byte value is OK. Op=0, Cmode=1110.
3729 assert((SplatBits & ~0xff) == 0 && "one byte splat value is too big");
3730 OpCmode = 0xe;
3731 Imm = SplatBits;
3732 VT = is128Bits ? MVT::v16i8 : MVT::v8i8;
3733 break;
3734
3735 case 16:
3736 // NEON's 16-bit VMOV supports splat values where only one byte is nonzero.
3737 VT = is128Bits ? MVT::v8i16 : MVT::v4i16;
3738 if ((SplatBits & ~0xff) == 0) {
3739 // Value = 0x00nn: Op=x, Cmode=100x.
3740 OpCmode = 0x8;
3741 Imm = SplatBits;
3742 break;
3743 }
3744 if ((SplatBits & ~0xff00) == 0) {
3745 // Value = 0xnn00: Op=x, Cmode=101x.
3746 OpCmode = 0xa;
3747 Imm = SplatBits >> 8;
3748 break;
3749 }
3750 return SDValue();
3751
3752 case 32:
3753 // NEON's 32-bit VMOV supports splat values where:
3754 // * only one byte is nonzero, or
3755 // * the least significant byte is 0xff and the second byte is nonzero, or
3756 // * the least significant 2 bytes are 0xff and the third is nonzero.
3757 VT = is128Bits ? MVT::v4i32 : MVT::v2i32;
3758 if ((SplatBits & ~0xff) == 0) {
3759 // Value = 0x000000nn: Op=x, Cmode=000x.
3760 OpCmode = 0;
3761 Imm = SplatBits;
3762 break;
3763 }
3764 if ((SplatBits & ~0xff00) == 0) {
3765 // Value = 0x0000nn00: Op=x, Cmode=001x.
3766 OpCmode = 0x2;
3767 Imm = SplatBits >> 8;
3768 break;
3769 }
3770 if ((SplatBits & ~0xff0000) == 0) {
3771 // Value = 0x00nn0000: Op=x, Cmode=010x.
3772 OpCmode = 0x4;
3773 Imm = SplatBits >> 16;
3774 break;
3775 }
3776 if ((SplatBits & ~0xff000000) == 0) {
3777 // Value = 0xnn000000: Op=x, Cmode=011x.
3778 OpCmode = 0x6;
3779 Imm = SplatBits >> 24;
3780 break;
3781 }
3782
3783 // cmode == 0b1100 and cmode == 0b1101 are not supported for VORR or VBIC
3784 if (type == OtherModImm) return SDValue();
3785
3786 if ((SplatBits & ~0xffff) == 0 &&
3787 ((SplatBits | SplatUndef) & 0xff) == 0xff) {
3788 // Value = 0x0000nnff: Op=x, Cmode=1100.
3789 OpCmode = 0xc;
3790 Imm = SplatBits >> 8;
3791 SplatBits |= 0xff;
3792 break;
3793 }
3794
3795 if ((SplatBits & ~0xffffff) == 0 &&
3796 ((SplatBits | SplatUndef) & 0xffff) == 0xffff) {
3797 // Value = 0x00nnffff: Op=x, Cmode=1101.
3798 OpCmode = 0xd;
3799 Imm = SplatBits >> 16;
3800 SplatBits |= 0xffff;
3801 break;
3802 }
3803
3804 // Note: there are a few 32-bit splat values (specifically: 00ffff00,
3805 // ff000000, ff0000ff, and ffff00ff) that are valid for VMOV.I64 but not
3806 // VMOV.I32. A (very) minor optimization would be to replicate the value
3807 // and fall through here to test for a valid 64-bit splat. But, then the
3808 // caller would also need to check and handle the change in size.
3809 return SDValue();
3810
3811 case 64: {
3812 if (type != VMOVModImm)
3813 return SDValue();
3814 // NEON has a 64-bit VMOV splat where each byte is either 0 or 0xff.
3815 uint64_t BitMask = 0xff;
3816 uint64_t Val = 0;
3817 unsigned ImmMask = 1;
3818 Imm = 0;
3819 for (int ByteNum = 0; ByteNum < 8; ++ByteNum) {
3820 if (((SplatBits | SplatUndef) & BitMask) == BitMask) {
3821 Val |= BitMask;
3822 Imm |= ImmMask;
3823 } else if ((SplatBits & BitMask) != 0) {
3824 return SDValue();
3825 }
3826 BitMask <<= 8;
3827 ImmMask <<= 1;
3828 }
3829 // Op=1, Cmode=1110.
3830 OpCmode = 0x1e;
3831 SplatBits = Val;
3832 VT = is128Bits ? MVT::v2i64 : MVT::v1i64;
3833 break;
3834 }
3835
3836 default:
3837 llvm_unreachable("unexpected size for isNEONModifiedImm");
3838 }
3839
3840 unsigned EncodedVal = ARM_AM::createNEONModImm(OpCmode, Imm);
3841 return DAG.getTargetConstant(EncodedVal, MVT::i32);
3842 }
3843
LowerConstantFP(SDValue Op,SelectionDAG & DAG,const ARMSubtarget * ST) const3844 SDValue ARMTargetLowering::LowerConstantFP(SDValue Op, SelectionDAG &DAG,
3845 const ARMSubtarget *ST) const {
3846 if (!ST->useNEONForSinglePrecisionFP() || !ST->hasVFP3() || ST->hasD16())
3847 return SDValue();
3848
3849 ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Op);
3850 assert(Op.getValueType() == MVT::f32 &&
3851 "ConstantFP custom lowering should only occur for f32.");
3852
3853 // Try splatting with a VMOV.f32...
3854 APFloat FPVal = CFP->getValueAPF();
3855 int ImmVal = ARM_AM::getFP32Imm(FPVal);
3856 if (ImmVal != -1) {
3857 DebugLoc DL = Op.getDebugLoc();
3858 SDValue NewVal = DAG.getTargetConstant(ImmVal, MVT::i32);
3859 SDValue VecConstant = DAG.getNode(ARMISD::VMOVFPIMM, DL, MVT::v2f32,
3860 NewVal);
3861 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, VecConstant,
3862 DAG.getConstant(0, MVT::i32));
3863 }
3864
3865 // If that fails, try a VMOV.i32
3866 EVT VMovVT;
3867 unsigned iVal = FPVal.bitcastToAPInt().getZExtValue();
3868 SDValue NewVal = isNEONModifiedImm(iVal, 0, 32, DAG, VMovVT, false,
3869 VMOVModImm);
3870 if (NewVal != SDValue()) {
3871 DebugLoc DL = Op.getDebugLoc();
3872 SDValue VecConstant = DAG.getNode(ARMISD::VMOVIMM, DL, VMovVT,
3873 NewVal);
3874 SDValue VecFConstant = DAG.getNode(ISD::BITCAST, DL, MVT::v2f32,
3875 VecConstant);
3876 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, VecFConstant,
3877 DAG.getConstant(0, MVT::i32));
3878 }
3879
3880 // Finally, try a VMVN.i32
3881 NewVal = isNEONModifiedImm(~iVal & 0xffffffff, 0, 32, DAG, VMovVT, false,
3882 VMVNModImm);
3883 if (NewVal != SDValue()) {
3884 DebugLoc DL = Op.getDebugLoc();
3885 SDValue VecConstant = DAG.getNode(ARMISD::VMVNIMM, DL, VMovVT, NewVal);
3886 SDValue VecFConstant = DAG.getNode(ISD::BITCAST, DL, MVT::v2f32,
3887 VecConstant);
3888 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, VecFConstant,
3889 DAG.getConstant(0, MVT::i32));
3890 }
3891
3892 return SDValue();
3893 }
3894
3895
isVEXTMask(ArrayRef<int> M,EVT VT,bool & ReverseVEXT,unsigned & Imm)3896 static bool isVEXTMask(ArrayRef<int> M, EVT VT,
3897 bool &ReverseVEXT, unsigned &Imm) {
3898 unsigned NumElts = VT.getVectorNumElements();
3899 ReverseVEXT = false;
3900
3901 // Assume that the first shuffle index is not UNDEF. Fail if it is.
3902 if (M[0] < 0)
3903 return false;
3904
3905 Imm = M[0];
3906
3907 // If this is a VEXT shuffle, the immediate value is the index of the first
3908 // element. The other shuffle indices must be the successive elements after
3909 // the first one.
3910 unsigned ExpectedElt = Imm;
3911 for (unsigned i = 1; i < NumElts; ++i) {
3912 // Increment the expected index. If it wraps around, it may still be
3913 // a VEXT but the source vectors must be swapped.
3914 ExpectedElt += 1;
3915 if (ExpectedElt == NumElts * 2) {
3916 ExpectedElt = 0;
3917 ReverseVEXT = true;
3918 }
3919
3920 if (M[i] < 0) continue; // ignore UNDEF indices
3921 if (ExpectedElt != static_cast<unsigned>(M[i]))
3922 return false;
3923 }
3924
3925 // Adjust the index value if the source operands will be swapped.
3926 if (ReverseVEXT)
3927 Imm -= NumElts;
3928
3929 return true;
3930 }
3931
3932 /// isVREVMask - Check if a vector shuffle corresponds to a VREV
3933 /// instruction with the specified blocksize. (The order of the elements
3934 /// within each block of the vector is reversed.)
isVREVMask(ArrayRef<int> M,EVT VT,unsigned BlockSize)3935 static bool isVREVMask(ArrayRef<int> M, EVT VT, unsigned BlockSize) {
3936 assert((BlockSize==16 || BlockSize==32 || BlockSize==64) &&
3937 "Only possible block sizes for VREV are: 16, 32, 64");
3938
3939 unsigned EltSz = VT.getVectorElementType().getSizeInBits();
3940 if (EltSz == 64)
3941 return false;
3942
3943 unsigned NumElts = VT.getVectorNumElements();
3944 unsigned BlockElts = M[0] + 1;
3945 // If the first shuffle index is UNDEF, be optimistic.
3946 if (M[0] < 0)
3947 BlockElts = BlockSize / EltSz;
3948
3949 if (BlockSize <= EltSz || BlockSize != BlockElts * EltSz)
3950 return false;
3951
3952 for (unsigned i = 0; i < NumElts; ++i) {
3953 if (M[i] < 0) continue; // ignore UNDEF indices
3954 if ((unsigned) M[i] != (i - i%BlockElts) + (BlockElts - 1 - i%BlockElts))
3955 return false;
3956 }
3957
3958 return true;
3959 }
3960
isVTBLMask(ArrayRef<int> M,EVT VT)3961 static bool isVTBLMask(ArrayRef<int> M, EVT VT) {
3962 // We can handle <8 x i8> vector shuffles. If the index in the mask is out of
3963 // range, then 0 is placed into the resulting vector. So pretty much any mask
3964 // of 8 elements can work here.
3965 return VT == MVT::v8i8 && M.size() == 8;
3966 }
3967
isVTRNMask(ArrayRef<int> M,EVT VT,unsigned & WhichResult)3968 static bool isVTRNMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
3969 unsigned EltSz = VT.getVectorElementType().getSizeInBits();
3970 if (EltSz == 64)
3971 return false;
3972
3973 unsigned NumElts = VT.getVectorNumElements();
3974 WhichResult = (M[0] == 0 ? 0 : 1);
3975 for (unsigned i = 0; i < NumElts; i += 2) {
3976 if ((M[i] >= 0 && (unsigned) M[i] != i + WhichResult) ||
3977 (M[i+1] >= 0 && (unsigned) M[i+1] != i + NumElts + WhichResult))
3978 return false;
3979 }
3980 return true;
3981 }
3982
3983 /// isVTRN_v_undef_Mask - Special case of isVTRNMask for canonical form of
3984 /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
3985 /// Mask is e.g., <0, 0, 2, 2> instead of <0, 4, 2, 6>.
isVTRN_v_undef_Mask(ArrayRef<int> M,EVT VT,unsigned & WhichResult)3986 static bool isVTRN_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult){
3987 unsigned EltSz = VT.getVectorElementType().getSizeInBits();
3988 if (EltSz == 64)
3989 return false;
3990
3991 unsigned NumElts = VT.getVectorNumElements();
3992 WhichResult = (M[0] == 0 ? 0 : 1);
3993 for (unsigned i = 0; i < NumElts; i += 2) {
3994 if ((M[i] >= 0 && (unsigned) M[i] != i + WhichResult) ||
3995 (M[i+1] >= 0 && (unsigned) M[i+1] != i + WhichResult))
3996 return false;
3997 }
3998 return true;
3999 }
4000
isVUZPMask(ArrayRef<int> M,EVT VT,unsigned & WhichResult)4001 static bool isVUZPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
4002 unsigned EltSz = VT.getVectorElementType().getSizeInBits();
4003 if (EltSz == 64)
4004 return false;
4005
4006 unsigned NumElts = VT.getVectorNumElements();
4007 WhichResult = (M[0] == 0 ? 0 : 1);
4008 for (unsigned i = 0; i != NumElts; ++i) {
4009 if (M[i] < 0) continue; // ignore UNDEF indices
4010 if ((unsigned) M[i] != 2 * i + WhichResult)
4011 return false;
4012 }
4013
4014 // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
4015 if (VT.is64BitVector() && EltSz == 32)
4016 return false;
4017
4018 return true;
4019 }
4020
4021 /// isVUZP_v_undef_Mask - Special case of isVUZPMask for canonical form of
4022 /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
4023 /// Mask is e.g., <0, 2, 0, 2> instead of <0, 2, 4, 6>,
isVUZP_v_undef_Mask(ArrayRef<int> M,EVT VT,unsigned & WhichResult)4024 static bool isVUZP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult){
4025 unsigned EltSz = VT.getVectorElementType().getSizeInBits();
4026 if (EltSz == 64)
4027 return false;
4028
4029 unsigned Half = VT.getVectorNumElements() / 2;
4030 WhichResult = (M[0] == 0 ? 0 : 1);
4031 for (unsigned j = 0; j != 2; ++j) {
4032 unsigned Idx = WhichResult;
4033 for (unsigned i = 0; i != Half; ++i) {
4034 int MIdx = M[i + j * Half];
4035 if (MIdx >= 0 && (unsigned) MIdx != Idx)
4036 return false;
4037 Idx += 2;
4038 }
4039 }
4040
4041 // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
4042 if (VT.is64BitVector() && EltSz == 32)
4043 return false;
4044
4045 return true;
4046 }
4047
isVZIPMask(ArrayRef<int> M,EVT VT,unsigned & WhichResult)4048 static bool isVZIPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
4049 unsigned EltSz = VT.getVectorElementType().getSizeInBits();
4050 if (EltSz == 64)
4051 return false;
4052
4053 unsigned NumElts = VT.getVectorNumElements();
4054 WhichResult = (M[0] == 0 ? 0 : 1);
4055 unsigned Idx = WhichResult * NumElts / 2;
4056 for (unsigned i = 0; i != NumElts; i += 2) {
4057 if ((M[i] >= 0 && (unsigned) M[i] != Idx) ||
4058 (M[i+1] >= 0 && (unsigned) M[i+1] != Idx + NumElts))
4059 return false;
4060 Idx += 1;
4061 }
4062
4063 // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
4064 if (VT.is64BitVector() && EltSz == 32)
4065 return false;
4066
4067 return true;
4068 }
4069
4070 /// isVZIP_v_undef_Mask - Special case of isVZIPMask for canonical form of
4071 /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
4072 /// Mask is e.g., <0, 0, 1, 1> instead of <0, 4, 1, 5>.
isVZIP_v_undef_Mask(ArrayRef<int> M,EVT VT,unsigned & WhichResult)4073 static bool isVZIP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult){
4074 unsigned EltSz = VT.getVectorElementType().getSizeInBits();
4075 if (EltSz == 64)
4076 return false;
4077
4078 unsigned NumElts = VT.getVectorNumElements();
4079 WhichResult = (M[0] == 0 ? 0 : 1);
4080 unsigned Idx = WhichResult * NumElts / 2;
4081 for (unsigned i = 0; i != NumElts; i += 2) {
4082 if ((M[i] >= 0 && (unsigned) M[i] != Idx) ||
4083 (M[i+1] >= 0 && (unsigned) M[i+1] != Idx))
4084 return false;
4085 Idx += 1;
4086 }
4087
4088 // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
4089 if (VT.is64BitVector() && EltSz == 32)
4090 return false;
4091
4092 return true;
4093 }
4094
4095 // If N is an integer constant that can be moved into a register in one
4096 // instruction, return an SDValue of such a constant (will become a MOV
4097 // instruction). Otherwise return null.
IsSingleInstrConstant(SDValue N,SelectionDAG & DAG,const ARMSubtarget * ST,DebugLoc dl)4098 static SDValue IsSingleInstrConstant(SDValue N, SelectionDAG &DAG,
4099 const ARMSubtarget *ST, DebugLoc dl) {
4100 uint64_t Val;
4101 if (!isa<ConstantSDNode>(N))
4102 return SDValue();
4103 Val = cast<ConstantSDNode>(N)->getZExtValue();
4104
4105 if (ST->isThumb1Only()) {
4106 if (Val <= 255 || ~Val <= 255)
4107 return DAG.getConstant(Val, MVT::i32);
4108 } else {
4109 if (ARM_AM::getSOImmVal(Val) != -1 || ARM_AM::getSOImmVal(~Val) != -1)
4110 return DAG.getConstant(Val, MVT::i32);
4111 }
4112 return SDValue();
4113 }
4114
4115 // If this is a case we can't handle, return null and let the default
4116 // expansion code take care of it.
LowerBUILD_VECTOR(SDValue Op,SelectionDAG & DAG,const ARMSubtarget * ST) const4117 SDValue ARMTargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG,
4118 const ARMSubtarget *ST) const {
4119 BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Op.getNode());
4120 DebugLoc dl = Op.getDebugLoc();
4121 EVT VT = Op.getValueType();
4122
4123 APInt SplatBits, SplatUndef;
4124 unsigned SplatBitSize;
4125 bool HasAnyUndefs;
4126 if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
4127 if (SplatBitSize <= 64) {
4128 // Check if an immediate VMOV works.
4129 EVT VmovVT;
4130 SDValue Val = isNEONModifiedImm(SplatBits.getZExtValue(),
4131 SplatUndef.getZExtValue(), SplatBitSize,
4132 DAG, VmovVT, VT.is128BitVector(),
4133 VMOVModImm);
4134 if (Val.getNode()) {
4135 SDValue Vmov = DAG.getNode(ARMISD::VMOVIMM, dl, VmovVT, Val);
4136 return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
4137 }
4138
4139 // Try an immediate VMVN.
4140 uint64_t NegatedImm = (~SplatBits).getZExtValue();
4141 Val = isNEONModifiedImm(NegatedImm,
4142 SplatUndef.getZExtValue(), SplatBitSize,
4143 DAG, VmovVT, VT.is128BitVector(),
4144 VMVNModImm);
4145 if (Val.getNode()) {
4146 SDValue Vmov = DAG.getNode(ARMISD::VMVNIMM, dl, VmovVT, Val);
4147 return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
4148 }
4149
4150 // Use vmov.f32 to materialize other v2f32 and v4f32 splats.
4151 if ((VT == MVT::v2f32 || VT == MVT::v4f32) && SplatBitSize == 32) {
4152 int ImmVal = ARM_AM::getFP32Imm(SplatBits);
4153 if (ImmVal != -1) {
4154 SDValue Val = DAG.getTargetConstant(ImmVal, MVT::i32);
4155 return DAG.getNode(ARMISD::VMOVFPIMM, dl, VT, Val);
4156 }
4157 }
4158 }
4159 }
4160
4161 // Scan through the operands to see if only one value is used.
4162 //
4163 // As an optimisation, even if more than one value is used it may be more
4164 // profitable to splat with one value then change some lanes.
4165 //
4166 // Heuristically we decide to do this if the vector has a "dominant" value,
4167 // defined as splatted to more than half of the lanes.
4168 unsigned NumElts = VT.getVectorNumElements();
4169 bool isOnlyLowElement = true;
4170 bool usesOnlyOneValue = true;
4171 bool hasDominantValue = false;
4172 bool isConstant = true;
4173
4174 // Map of the number of times a particular SDValue appears in the
4175 // element list.
4176 DenseMap<SDValue, unsigned> ValueCounts;
4177 SDValue Value;
4178 for (unsigned i = 0; i < NumElts; ++i) {
4179 SDValue V = Op.getOperand(i);
4180 if (V.getOpcode() == ISD::UNDEF)
4181 continue;
4182 if (i > 0)
4183 isOnlyLowElement = false;
4184 if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V))
4185 isConstant = false;
4186
4187 ValueCounts.insert(std::make_pair(V, 0));
4188 unsigned &Count = ValueCounts[V];
4189
4190 // Is this value dominant? (takes up more than half of the lanes)
4191 if (++Count > (NumElts / 2)) {
4192 hasDominantValue = true;
4193 Value = V;
4194 }
4195 }
4196 if (ValueCounts.size() != 1)
4197 usesOnlyOneValue = false;
4198 if (!Value.getNode() && ValueCounts.size() > 0)
4199 Value = ValueCounts.begin()->first;
4200
4201 if (ValueCounts.size() == 0)
4202 return DAG.getUNDEF(VT);
4203
4204 if (isOnlyLowElement)
4205 return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value);
4206
4207 unsigned EltSize = VT.getVectorElementType().getSizeInBits();
4208
4209 // Use VDUP for non-constant splats. For f32 constant splats, reduce to
4210 // i32 and try again.
4211 if (hasDominantValue && EltSize <= 32) {
4212 if (!isConstant) {
4213 SDValue N;
4214
4215 // If we are VDUPing a value that comes directly from a vector, that will
4216 // cause an unnecessary move to and from a GPR, where instead we could
4217 // just use VDUPLANE.
4218 if (Value->getOpcode() == ISD::EXTRACT_VECTOR_ELT)
4219 N = DAG.getNode(ARMISD::VDUPLANE, dl, VT,
4220 Value->getOperand(0), Value->getOperand(1));
4221 else
4222 N = DAG.getNode(ARMISD::VDUP, dl, VT, Value);
4223
4224 if (!usesOnlyOneValue) {
4225 // The dominant value was splatted as 'N', but we now have to insert
4226 // all differing elements.
4227 for (unsigned I = 0; I < NumElts; ++I) {
4228 if (Op.getOperand(I) == Value)
4229 continue;
4230 SmallVector<SDValue, 3> Ops;
4231 Ops.push_back(N);
4232 Ops.push_back(Op.getOperand(I));
4233 Ops.push_back(DAG.getConstant(I, MVT::i32));
4234 N = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, &Ops[0], 3);
4235 }
4236 }
4237 return N;
4238 }
4239 if (VT.getVectorElementType().isFloatingPoint()) {
4240 SmallVector<SDValue, 8> Ops;
4241 for (unsigned i = 0; i < NumElts; ++i)
4242 Ops.push_back(DAG.getNode(ISD::BITCAST, dl, MVT::i32,
4243 Op.getOperand(i)));
4244 EVT VecVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32, NumElts);
4245 SDValue Val = DAG.getNode(ISD::BUILD_VECTOR, dl, VecVT, &Ops[0], NumElts);
4246 Val = LowerBUILD_VECTOR(Val, DAG, ST);
4247 if (Val.getNode())
4248 return DAG.getNode(ISD::BITCAST, dl, VT, Val);
4249 }
4250 if (usesOnlyOneValue) {
4251 SDValue Val = IsSingleInstrConstant(Value, DAG, ST, dl);
4252 if (isConstant && Val.getNode())
4253 return DAG.getNode(ARMISD::VDUP, dl, VT, Val);
4254 }
4255 }
4256
4257 // If all elements are constants and the case above didn't get hit, fall back
4258 // to the default expansion, which will generate a load from the constant
4259 // pool.
4260 if (isConstant)
4261 return SDValue();
4262
4263 // Empirical tests suggest this is rarely worth it for vectors of length <= 2.
4264 if (NumElts >= 4) {
4265 SDValue shuffle = ReconstructShuffle(Op, DAG);
4266 if (shuffle != SDValue())
4267 return shuffle;
4268 }
4269
4270 // Vectors with 32- or 64-bit elements can be built by directly assigning
4271 // the subregisters. Lower it to an ARMISD::BUILD_VECTOR so the operands
4272 // will be legalized.
4273 if (EltSize >= 32) {
4274 // Do the expansion with floating-point types, since that is what the VFP
4275 // registers are defined to use, and since i64 is not legal.
4276 EVT EltVT = EVT::getFloatingPointVT(EltSize);
4277 EVT VecVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts);
4278 SmallVector<SDValue, 8> Ops;
4279 for (unsigned i = 0; i < NumElts; ++i)
4280 Ops.push_back(DAG.getNode(ISD::BITCAST, dl, EltVT, Op.getOperand(i)));
4281 SDValue Val = DAG.getNode(ARMISD::BUILD_VECTOR, dl, VecVT, &Ops[0],NumElts);
4282 return DAG.getNode(ISD::BITCAST, dl, VT, Val);
4283 }
4284
4285 return SDValue();
4286 }
4287
4288 // Gather data to see if the operation can be modelled as a
4289 // shuffle in combination with VEXTs.
ReconstructShuffle(SDValue Op,SelectionDAG & DAG) const4290 SDValue ARMTargetLowering::ReconstructShuffle(SDValue Op,
4291 SelectionDAG &DAG) const {
4292 DebugLoc dl = Op.getDebugLoc();
4293 EVT VT = Op.getValueType();
4294 unsigned NumElts = VT.getVectorNumElements();
4295
4296 SmallVector<SDValue, 2> SourceVecs;
4297 SmallVector<unsigned, 2> MinElts;
4298 SmallVector<unsigned, 2> MaxElts;
4299
4300 for (unsigned i = 0; i < NumElts; ++i) {
4301 SDValue V = Op.getOperand(i);
4302 if (V.getOpcode() == ISD::UNDEF)
4303 continue;
4304 else if (V.getOpcode() != ISD::EXTRACT_VECTOR_ELT) {
4305 // A shuffle can only come from building a vector from various
4306 // elements of other vectors.
4307 return SDValue();
4308 } else if (V.getOperand(0).getValueType().getVectorElementType() !=
4309 VT.getVectorElementType()) {
4310 // This code doesn't know how to handle shuffles where the vector
4311 // element types do not match (this happens because type legalization
4312 // promotes the return type of EXTRACT_VECTOR_ELT).
4313 // FIXME: It might be appropriate to extend this code to handle
4314 // mismatched types.
4315 return SDValue();
4316 }
4317
4318 // Record this extraction against the appropriate vector if possible...
4319 SDValue SourceVec = V.getOperand(0);
4320 // If the element number isn't a constant, we can't effectively
4321 // analyze what's going on.
4322 if (!isa<ConstantSDNode>(V.getOperand(1)))
4323 return SDValue();
4324 unsigned EltNo = cast<ConstantSDNode>(V.getOperand(1))->getZExtValue();
4325 bool FoundSource = false;
4326 for (unsigned j = 0; j < SourceVecs.size(); ++j) {
4327 if (SourceVecs[j] == SourceVec) {
4328 if (MinElts[j] > EltNo)
4329 MinElts[j] = EltNo;
4330 if (MaxElts[j] < EltNo)
4331 MaxElts[j] = EltNo;
4332 FoundSource = true;
4333 break;
4334 }
4335 }
4336
4337 // Or record a new source if not...
4338 if (!FoundSource) {
4339 SourceVecs.push_back(SourceVec);
4340 MinElts.push_back(EltNo);
4341 MaxElts.push_back(EltNo);
4342 }
4343 }
4344
4345 // Currently only do something sane when at most two source vectors
4346 // involved.
4347 if (SourceVecs.size() > 2)
4348 return SDValue();
4349
4350 SDValue ShuffleSrcs[2] = {DAG.getUNDEF(VT), DAG.getUNDEF(VT) };
4351 int VEXTOffsets[2] = {0, 0};
4352
4353 // This loop extracts the usage patterns of the source vectors
4354 // and prepares appropriate SDValues for a shuffle if possible.
4355 for (unsigned i = 0; i < SourceVecs.size(); ++i) {
4356 if (SourceVecs[i].getValueType() == VT) {
4357 // No VEXT necessary
4358 ShuffleSrcs[i] = SourceVecs[i];
4359 VEXTOffsets[i] = 0;
4360 continue;
4361 } else if (SourceVecs[i].getValueType().getVectorNumElements() < NumElts) {
4362 // It probably isn't worth padding out a smaller vector just to
4363 // break it down again in a shuffle.
4364 return SDValue();
4365 }
4366
4367 // Since only 64-bit and 128-bit vectors are legal on ARM and
4368 // we've eliminated the other cases...
4369 assert(SourceVecs[i].getValueType().getVectorNumElements() == 2*NumElts &&
4370 "unexpected vector sizes in ReconstructShuffle");
4371
4372 if (MaxElts[i] - MinElts[i] >= NumElts) {
4373 // Span too large for a VEXT to cope
4374 return SDValue();
4375 }
4376
4377 if (MinElts[i] >= NumElts) {
4378 // The extraction can just take the second half
4379 VEXTOffsets[i] = NumElts;
4380 ShuffleSrcs[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT,
4381 SourceVecs[i],
4382 DAG.getIntPtrConstant(NumElts));
4383 } else if (MaxElts[i] < NumElts) {
4384 // The extraction can just take the first half
4385 VEXTOffsets[i] = 0;
4386 ShuffleSrcs[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT,
4387 SourceVecs[i],
4388 DAG.getIntPtrConstant(0));
4389 } else {
4390 // An actual VEXT is needed
4391 VEXTOffsets[i] = MinElts[i];
4392 SDValue VEXTSrc1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT,
4393 SourceVecs[i],
4394 DAG.getIntPtrConstant(0));
4395 SDValue VEXTSrc2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT,
4396 SourceVecs[i],
4397 DAG.getIntPtrConstant(NumElts));
4398 ShuffleSrcs[i] = DAG.getNode(ARMISD::VEXT, dl, VT, VEXTSrc1, VEXTSrc2,
4399 DAG.getConstant(VEXTOffsets[i], MVT::i32));
4400 }
4401 }
4402
4403 SmallVector<int, 8> Mask;
4404
4405 for (unsigned i = 0; i < NumElts; ++i) {
4406 SDValue Entry = Op.getOperand(i);
4407 if (Entry.getOpcode() == ISD::UNDEF) {
4408 Mask.push_back(-1);
4409 continue;
4410 }
4411
4412 SDValue ExtractVec = Entry.getOperand(0);
4413 int ExtractElt = cast<ConstantSDNode>(Op.getOperand(i)
4414 .getOperand(1))->getSExtValue();
4415 if (ExtractVec == SourceVecs[0]) {
4416 Mask.push_back(ExtractElt - VEXTOffsets[0]);
4417 } else {
4418 Mask.push_back(ExtractElt + NumElts - VEXTOffsets[1]);
4419 }
4420 }
4421
4422 // Final check before we try to produce nonsense...
4423 if (isShuffleMaskLegal(Mask, VT))
4424 return DAG.getVectorShuffle(VT, dl, ShuffleSrcs[0], ShuffleSrcs[1],
4425 &Mask[0]);
4426
4427 return SDValue();
4428 }
4429
4430 /// isShuffleMaskLegal - Targets can use this to indicate that they only
4431 /// support *some* VECTOR_SHUFFLE operations, those with specific masks.
4432 /// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
4433 /// are assumed to be legal.
4434 bool
isShuffleMaskLegal(const SmallVectorImpl<int> & M,EVT VT) const4435 ARMTargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
4436 EVT VT) const {
4437 if (VT.getVectorNumElements() == 4 &&
4438 (VT.is128BitVector() || VT.is64BitVector())) {
4439 unsigned PFIndexes[4];
4440 for (unsigned i = 0; i != 4; ++i) {
4441 if (M[i] < 0)
4442 PFIndexes[i] = 8;
4443 else
4444 PFIndexes[i] = M[i];
4445 }
4446
4447 // Compute the index in the perfect shuffle table.
4448 unsigned PFTableIndex =
4449 PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
4450 unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
4451 unsigned Cost = (PFEntry >> 30);
4452
4453 if (Cost <= 4)
4454 return true;
4455 }
4456
4457 bool ReverseVEXT;
4458 unsigned Imm, WhichResult;
4459
4460 unsigned EltSize = VT.getVectorElementType().getSizeInBits();
4461 return (EltSize >= 32 ||
4462 ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
4463 isVREVMask(M, VT, 64) ||
4464 isVREVMask(M, VT, 32) ||
4465 isVREVMask(M, VT, 16) ||
4466 isVEXTMask(M, VT, ReverseVEXT, Imm) ||
4467 isVTBLMask(M, VT) ||
4468 isVTRNMask(M, VT, WhichResult) ||
4469 isVUZPMask(M, VT, WhichResult) ||
4470 isVZIPMask(M, VT, WhichResult) ||
4471 isVTRN_v_undef_Mask(M, VT, WhichResult) ||
4472 isVUZP_v_undef_Mask(M, VT, WhichResult) ||
4473 isVZIP_v_undef_Mask(M, VT, WhichResult));
4474 }
4475
4476 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
4477 /// the specified operations to build the shuffle.
GeneratePerfectShuffle(unsigned PFEntry,SDValue LHS,SDValue RHS,SelectionDAG & DAG,DebugLoc dl)4478 static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
4479 SDValue RHS, SelectionDAG &DAG,
4480 DebugLoc dl) {
4481 unsigned OpNum = (PFEntry >> 26) & 0x0F;
4482 unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
4483 unsigned RHSID = (PFEntry >> 0) & ((1 << 13)-1);
4484
4485 enum {
4486 OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
4487 OP_VREV,
4488 OP_VDUP0,
4489 OP_VDUP1,
4490 OP_VDUP2,
4491 OP_VDUP3,
4492 OP_VEXT1,
4493 OP_VEXT2,
4494 OP_VEXT3,
4495 OP_VUZPL, // VUZP, left result
4496 OP_VUZPR, // VUZP, right result
4497 OP_VZIPL, // VZIP, left result
4498 OP_VZIPR, // VZIP, right result
4499 OP_VTRNL, // VTRN, left result
4500 OP_VTRNR // VTRN, right result
4501 };
4502
4503 if (OpNum == OP_COPY) {
4504 if (LHSID == (1*9+2)*9+3) return LHS;
4505 assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
4506 return RHS;
4507 }
4508
4509 SDValue OpLHS, OpRHS;
4510 OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
4511 OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
4512 EVT VT = OpLHS.getValueType();
4513
4514 switch (OpNum) {
4515 default: llvm_unreachable("Unknown shuffle opcode!");
4516 case OP_VREV:
4517 // VREV divides the vector in half and swaps within the half.
4518 if (VT.getVectorElementType() == MVT::i32 ||
4519 VT.getVectorElementType() == MVT::f32)
4520 return DAG.getNode(ARMISD::VREV64, dl, VT, OpLHS);
4521 // vrev <4 x i16> -> VREV32
4522 if (VT.getVectorElementType() == MVT::i16)
4523 return DAG.getNode(ARMISD::VREV32, dl, VT, OpLHS);
4524 // vrev <4 x i8> -> VREV16
4525 assert(VT.getVectorElementType() == MVT::i8);
4526 return DAG.getNode(ARMISD::VREV16, dl, VT, OpLHS);
4527 case OP_VDUP0:
4528 case OP_VDUP1:
4529 case OP_VDUP2:
4530 case OP_VDUP3:
4531 return DAG.getNode(ARMISD::VDUPLANE, dl, VT,
4532 OpLHS, DAG.getConstant(OpNum-OP_VDUP0, MVT::i32));
4533 case OP_VEXT1:
4534 case OP_VEXT2:
4535 case OP_VEXT3:
4536 return DAG.getNode(ARMISD::VEXT, dl, VT,
4537 OpLHS, OpRHS,
4538 DAG.getConstant(OpNum-OP_VEXT1+1, MVT::i32));
4539 case OP_VUZPL:
4540 case OP_VUZPR:
4541 return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
4542 OpLHS, OpRHS).getValue(OpNum-OP_VUZPL);
4543 case OP_VZIPL:
4544 case OP_VZIPR:
4545 return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
4546 OpLHS, OpRHS).getValue(OpNum-OP_VZIPL);
4547 case OP_VTRNL:
4548 case OP_VTRNR:
4549 return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
4550 OpLHS, OpRHS).getValue(OpNum-OP_VTRNL);
4551 }
4552 }
4553
LowerVECTOR_SHUFFLEv8i8(SDValue Op,ArrayRef<int> ShuffleMask,SelectionDAG & DAG)4554 static SDValue LowerVECTOR_SHUFFLEv8i8(SDValue Op,
4555 ArrayRef<int> ShuffleMask,
4556 SelectionDAG &DAG) {
4557 // Check to see if we can use the VTBL instruction.
4558 SDValue V1 = Op.getOperand(0);
4559 SDValue V2 = Op.getOperand(1);
4560 DebugLoc DL = Op.getDebugLoc();
4561
4562 SmallVector<SDValue, 8> VTBLMask;
4563 for (ArrayRef<int>::iterator
4564 I = ShuffleMask.begin(), E = ShuffleMask.end(); I != E; ++I)
4565 VTBLMask.push_back(DAG.getConstant(*I, MVT::i32));
4566
4567 if (V2.getNode()->getOpcode() == ISD::UNDEF)
4568 return DAG.getNode(ARMISD::VTBL1, DL, MVT::v8i8, V1,
4569 DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v8i8,
4570 &VTBLMask[0], 8));
4571
4572 return DAG.getNode(ARMISD::VTBL2, DL, MVT::v8i8, V1, V2,
4573 DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v8i8,
4574 &VTBLMask[0], 8));
4575 }
4576
LowerVECTOR_SHUFFLE(SDValue Op,SelectionDAG & DAG)4577 static SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) {
4578 SDValue V1 = Op.getOperand(0);
4579 SDValue V2 = Op.getOperand(1);
4580 DebugLoc dl = Op.getDebugLoc();
4581 EVT VT = Op.getValueType();
4582 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
4583
4584 // Convert shuffles that are directly supported on NEON to target-specific
4585 // DAG nodes, instead of keeping them as shuffles and matching them again
4586 // during code selection. This is more efficient and avoids the possibility
4587 // of inconsistencies between legalization and selection.
4588 // FIXME: floating-point vectors should be canonicalized to integer vectors
4589 // of the same time so that they get CSEd properly.
4590 ArrayRef<int> ShuffleMask = SVN->getMask();
4591
4592 unsigned EltSize = VT.getVectorElementType().getSizeInBits();
4593 if (EltSize <= 32) {
4594 if (ShuffleVectorSDNode::isSplatMask(&ShuffleMask[0], VT)) {
4595 int Lane = SVN->getSplatIndex();
4596 // If this is undef splat, generate it via "just" vdup, if possible.
4597 if (Lane == -1) Lane = 0;
4598
4599 // Test if V1 is a SCALAR_TO_VECTOR.
4600 if (Lane == 0 && V1.getOpcode() == ISD::SCALAR_TO_VECTOR) {
4601 return DAG.getNode(ARMISD::VDUP, dl, VT, V1.getOperand(0));
4602 }
4603 // Test if V1 is a BUILD_VECTOR which is equivalent to a SCALAR_TO_VECTOR
4604 // (and probably will turn into a SCALAR_TO_VECTOR once legalization
4605 // reaches it).
4606 if (Lane == 0 && V1.getOpcode() == ISD::BUILD_VECTOR &&
4607 !isa<ConstantSDNode>(V1.getOperand(0))) {
4608 bool IsScalarToVector = true;
4609 for (unsigned i = 1, e = V1.getNumOperands(); i != e; ++i)
4610 if (V1.getOperand(i).getOpcode() != ISD::UNDEF) {
4611 IsScalarToVector = false;
4612 break;
4613 }
4614 if (IsScalarToVector)
4615 return DAG.getNode(ARMISD::VDUP, dl, VT, V1.getOperand(0));
4616 }
4617 return DAG.getNode(ARMISD::VDUPLANE, dl, VT, V1,
4618 DAG.getConstant(Lane, MVT::i32));
4619 }
4620
4621 bool ReverseVEXT;
4622 unsigned Imm;
4623 if (isVEXTMask(ShuffleMask, VT, ReverseVEXT, Imm)) {
4624 if (ReverseVEXT)
4625 std::swap(V1, V2);
4626 return DAG.getNode(ARMISD::VEXT, dl, VT, V1, V2,
4627 DAG.getConstant(Imm, MVT::i32));
4628 }
4629
4630 if (isVREVMask(ShuffleMask, VT, 64))
4631 return DAG.getNode(ARMISD::VREV64, dl, VT, V1);
4632 if (isVREVMask(ShuffleMask, VT, 32))
4633 return DAG.getNode(ARMISD::VREV32, dl, VT, V1);
4634 if (isVREVMask(ShuffleMask, VT, 16))
4635 return DAG.getNode(ARMISD::VREV16, dl, VT, V1);
4636
4637 // Check for Neon shuffles that modify both input vectors in place.
4638 // If both results are used, i.e., if there are two shuffles with the same
4639 // source operands and with masks corresponding to both results of one of
4640 // these operations, DAG memoization will ensure that a single node is
4641 // used for both shuffles.
4642 unsigned WhichResult;
4643 if (isVTRNMask(ShuffleMask, VT, WhichResult))
4644 return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
4645 V1, V2).getValue(WhichResult);
4646 if (isVUZPMask(ShuffleMask, VT, WhichResult))
4647 return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
4648 V1, V2).getValue(WhichResult);
4649 if (isVZIPMask(ShuffleMask, VT, WhichResult))
4650 return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
4651 V1, V2).getValue(WhichResult);
4652
4653 if (isVTRN_v_undef_Mask(ShuffleMask, VT, WhichResult))
4654 return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
4655 V1, V1).getValue(WhichResult);
4656 if (isVUZP_v_undef_Mask(ShuffleMask, VT, WhichResult))
4657 return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
4658 V1, V1).getValue(WhichResult);
4659 if (isVZIP_v_undef_Mask(ShuffleMask, VT, WhichResult))
4660 return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
4661 V1, V1).getValue(WhichResult);
4662 }
4663
4664 // If the shuffle is not directly supported and it has 4 elements, use
4665 // the PerfectShuffle-generated table to synthesize it from other shuffles.
4666 unsigned NumElts = VT.getVectorNumElements();
4667 if (NumElts == 4) {
4668 unsigned PFIndexes[4];
4669 for (unsigned i = 0; i != 4; ++i) {
4670 if (ShuffleMask[i] < 0)
4671 PFIndexes[i] = 8;
4672 else
4673 PFIndexes[i] = ShuffleMask[i];
4674 }
4675
4676 // Compute the index in the perfect shuffle table.
4677 unsigned PFTableIndex =
4678 PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
4679 unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
4680 unsigned Cost = (PFEntry >> 30);
4681
4682 if (Cost <= 4)
4683 return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
4684 }
4685
4686 // Implement shuffles with 32- or 64-bit elements as ARMISD::BUILD_VECTORs.
4687 if (EltSize >= 32) {
4688 // Do the expansion with floating-point types, since that is what the VFP
4689 // registers are defined to use, and since i64 is not legal.
4690 EVT EltVT = EVT::getFloatingPointVT(EltSize);
4691 EVT VecVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts);
4692 V1 = DAG.getNode(ISD::BITCAST, dl, VecVT, V1);
4693 V2 = DAG.getNode(ISD::BITCAST, dl, VecVT, V2);
4694 SmallVector<SDValue, 8> Ops;
4695 for (unsigned i = 0; i < NumElts; ++i) {
4696 if (ShuffleMask[i] < 0)
4697 Ops.push_back(DAG.getUNDEF(EltVT));
4698 else
4699 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
4700 ShuffleMask[i] < (int)NumElts ? V1 : V2,
4701 DAG.getConstant(ShuffleMask[i] & (NumElts-1),
4702 MVT::i32)));
4703 }
4704 SDValue Val = DAG.getNode(ARMISD::BUILD_VECTOR, dl, VecVT, &Ops[0],NumElts);
4705 return DAG.getNode(ISD::BITCAST, dl, VT, Val);
4706 }
4707
4708 if (VT == MVT::v8i8) {
4709 SDValue NewOp = LowerVECTOR_SHUFFLEv8i8(Op, ShuffleMask, DAG);
4710 if (NewOp.getNode())
4711 return NewOp;
4712 }
4713
4714 return SDValue();
4715 }
4716
LowerINSERT_VECTOR_ELT(SDValue Op,SelectionDAG & DAG)4717 static SDValue LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
4718 // INSERT_VECTOR_ELT is legal only for immediate indexes.
4719 SDValue Lane = Op.getOperand(2);
4720 if (!isa<ConstantSDNode>(Lane))
4721 return SDValue();
4722
4723 return Op;
4724 }
4725
LowerEXTRACT_VECTOR_ELT(SDValue Op,SelectionDAG & DAG)4726 static SDValue LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
4727 // EXTRACT_VECTOR_ELT is legal only for immediate indexes.
4728 SDValue Lane = Op.getOperand(1);
4729 if (!isa<ConstantSDNode>(Lane))
4730 return SDValue();
4731
4732 SDValue Vec = Op.getOperand(0);
4733 if (Op.getValueType() == MVT::i32 &&
4734 Vec.getValueType().getVectorElementType().getSizeInBits() < 32) {
4735 DebugLoc dl = Op.getDebugLoc();
4736 return DAG.getNode(ARMISD::VGETLANEu, dl, MVT::i32, Vec, Lane);
4737 }
4738
4739 return Op;
4740 }
4741
LowerCONCAT_VECTORS(SDValue Op,SelectionDAG & DAG)4742 static SDValue LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
4743 // The only time a CONCAT_VECTORS operation can have legal types is when
4744 // two 64-bit vectors are concatenated to a 128-bit vector.
4745 assert(Op.getValueType().is128BitVector() && Op.getNumOperands() == 2 &&
4746 "unexpected CONCAT_VECTORS");
4747 DebugLoc dl = Op.getDebugLoc();
4748 SDValue Val = DAG.getUNDEF(MVT::v2f64);
4749 SDValue Op0 = Op.getOperand(0);
4750 SDValue Op1 = Op.getOperand(1);
4751 if (Op0.getOpcode() != ISD::UNDEF)
4752 Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val,
4753 DAG.getNode(ISD::BITCAST, dl, MVT::f64, Op0),
4754 DAG.getIntPtrConstant(0));
4755 if (Op1.getOpcode() != ISD::UNDEF)
4756 Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val,
4757 DAG.getNode(ISD::BITCAST, dl, MVT::f64, Op1),
4758 DAG.getIntPtrConstant(1));
4759 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Val);
4760 }
4761
4762 /// isExtendedBUILD_VECTOR - Check if N is a constant BUILD_VECTOR where each
4763 /// element has been zero/sign-extended, depending on the isSigned parameter,
4764 /// from an integer type half its size.
isExtendedBUILD_VECTOR(SDNode * N,SelectionDAG & DAG,bool isSigned)4765 static bool isExtendedBUILD_VECTOR(SDNode *N, SelectionDAG &DAG,
4766 bool isSigned) {
4767 // A v2i64 BUILD_VECTOR will have been legalized to a BITCAST from v4i32.
4768 EVT VT = N->getValueType(0);
4769 if (VT == MVT::v2i64 && N->getOpcode() == ISD::BITCAST) {
4770 SDNode *BVN = N->getOperand(0).getNode();
4771 if (BVN->getValueType(0) != MVT::v4i32 ||
4772 BVN->getOpcode() != ISD::BUILD_VECTOR)
4773 return false;
4774 unsigned LoElt = DAG.getTargetLoweringInfo().isBigEndian() ? 1 : 0;
4775 unsigned HiElt = 1 - LoElt;
4776 ConstantSDNode *Lo0 = dyn_cast<ConstantSDNode>(BVN->getOperand(LoElt));
4777 ConstantSDNode *Hi0 = dyn_cast<ConstantSDNode>(BVN->getOperand(HiElt));
4778 ConstantSDNode *Lo1 = dyn_cast<ConstantSDNode>(BVN->getOperand(LoElt+2));
4779 ConstantSDNode *Hi1 = dyn_cast<ConstantSDNode>(BVN->getOperand(HiElt+2));
4780 if (!Lo0 || !Hi0 || !Lo1 || !Hi1)
4781 return false;
4782 if (isSigned) {
4783 if (Hi0->getSExtValue() == Lo0->getSExtValue() >> 32 &&
4784 Hi1->getSExtValue() == Lo1->getSExtValue() >> 32)
4785 return true;
4786 } else {
4787 if (Hi0->isNullValue() && Hi1->isNullValue())
4788 return true;
4789 }
4790 return false;
4791 }
4792
4793 if (N->getOpcode() != ISD::BUILD_VECTOR)
4794 return false;
4795
4796 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
4797 SDNode *Elt = N->getOperand(i).getNode();
4798 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Elt)) {
4799 unsigned EltSize = VT.getVectorElementType().getSizeInBits();
4800 unsigned HalfSize = EltSize / 2;
4801 if (isSigned) {
4802 if (!isIntN(HalfSize, C->getSExtValue()))
4803 return false;
4804 } else {
4805 if (!isUIntN(HalfSize, C->getZExtValue()))
4806 return false;
4807 }
4808 continue;
4809 }
4810 return false;
4811 }
4812
4813 return true;
4814 }
4815
4816 /// isSignExtended - Check if a node is a vector value that is sign-extended
4817 /// or a constant BUILD_VECTOR with sign-extended elements.
isSignExtended(SDNode * N,SelectionDAG & DAG)4818 static bool isSignExtended(SDNode *N, SelectionDAG &DAG) {
4819 if (N->getOpcode() == ISD::SIGN_EXTEND || ISD::isSEXTLoad(N))
4820 return true;
4821 if (isExtendedBUILD_VECTOR(N, DAG, true))
4822 return true;
4823 return false;
4824 }
4825
4826 /// isZeroExtended - Check if a node is a vector value that is zero-extended
4827 /// or a constant BUILD_VECTOR with zero-extended elements.
isZeroExtended(SDNode * N,SelectionDAG & DAG)4828 static bool isZeroExtended(SDNode *N, SelectionDAG &DAG) {
4829 if (N->getOpcode() == ISD::ZERO_EXTEND || ISD::isZEXTLoad(N))
4830 return true;
4831 if (isExtendedBUILD_VECTOR(N, DAG, false))
4832 return true;
4833 return false;
4834 }
4835
4836 /// SkipExtension - For a node that is a SIGN_EXTEND, ZERO_EXTEND, extending
4837 /// load, or BUILD_VECTOR with extended elements, return the unextended value.
SkipExtension(SDNode * N,SelectionDAG & DAG)4838 static SDValue SkipExtension(SDNode *N, SelectionDAG &DAG) {
4839 if (N->getOpcode() == ISD::SIGN_EXTEND || N->getOpcode() == ISD::ZERO_EXTEND)
4840 return N->getOperand(0);
4841 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N))
4842 return DAG.getLoad(LD->getMemoryVT(), N->getDebugLoc(), LD->getChain(),
4843 LD->getBasePtr(), LD->getPointerInfo(), LD->isVolatile(),
4844 LD->isNonTemporal(), LD->isInvariant(),
4845 LD->getAlignment());
4846 // Otherwise, the value must be a BUILD_VECTOR. For v2i64, it will
4847 // have been legalized as a BITCAST from v4i32.
4848 if (N->getOpcode() == ISD::BITCAST) {
4849 SDNode *BVN = N->getOperand(0).getNode();
4850 assert(BVN->getOpcode() == ISD::BUILD_VECTOR &&
4851 BVN->getValueType(0) == MVT::v4i32 && "expected v4i32 BUILD_VECTOR");
4852 unsigned LowElt = DAG.getTargetLoweringInfo().isBigEndian() ? 1 : 0;
4853 return DAG.getNode(ISD::BUILD_VECTOR, N->getDebugLoc(), MVT::v2i32,
4854 BVN->getOperand(LowElt), BVN->getOperand(LowElt+2));
4855 }
4856 // Construct a new BUILD_VECTOR with elements truncated to half the size.
4857 assert(N->getOpcode() == ISD::BUILD_VECTOR && "expected BUILD_VECTOR");
4858 EVT VT = N->getValueType(0);
4859 unsigned EltSize = VT.getVectorElementType().getSizeInBits() / 2;
4860 unsigned NumElts = VT.getVectorNumElements();
4861 MVT TruncVT = MVT::getIntegerVT(EltSize);
4862 SmallVector<SDValue, 8> Ops;
4863 for (unsigned i = 0; i != NumElts; ++i) {
4864 ConstantSDNode *C = cast<ConstantSDNode>(N->getOperand(i));
4865 const APInt &CInt = C->getAPIntValue();
4866 // Element types smaller than 32 bits are not legal, so use i32 elements.
4867 // The values are implicitly truncated so sext vs. zext doesn't matter.
4868 Ops.push_back(DAG.getConstant(CInt.zextOrTrunc(32), MVT::i32));
4869 }
4870 return DAG.getNode(ISD::BUILD_VECTOR, N->getDebugLoc(),
4871 MVT::getVectorVT(TruncVT, NumElts), Ops.data(), NumElts);
4872 }
4873
isAddSubSExt(SDNode * N,SelectionDAG & DAG)4874 static bool isAddSubSExt(SDNode *N, SelectionDAG &DAG) {
4875 unsigned Opcode = N->getOpcode();
4876 if (Opcode == ISD::ADD || Opcode == ISD::SUB) {
4877 SDNode *N0 = N->getOperand(0).getNode();
4878 SDNode *N1 = N->getOperand(1).getNode();
4879 return N0->hasOneUse() && N1->hasOneUse() &&
4880 isSignExtended(N0, DAG) && isSignExtended(N1, DAG);
4881 }
4882 return false;
4883 }
4884
isAddSubZExt(SDNode * N,SelectionDAG & DAG)4885 static bool isAddSubZExt(SDNode *N, SelectionDAG &DAG) {
4886 unsigned Opcode = N->getOpcode();
4887 if (Opcode == ISD::ADD || Opcode == ISD::SUB) {
4888 SDNode *N0 = N->getOperand(0).getNode();
4889 SDNode *N1 = N->getOperand(1).getNode();
4890 return N0->hasOneUse() && N1->hasOneUse() &&
4891 isZeroExtended(N0, DAG) && isZeroExtended(N1, DAG);
4892 }
4893 return false;
4894 }
4895
LowerMUL(SDValue Op,SelectionDAG & DAG)4896 static SDValue LowerMUL(SDValue Op, SelectionDAG &DAG) {
4897 // Multiplications are only custom-lowered for 128-bit vectors so that
4898 // VMULL can be detected. Otherwise v2i64 multiplications are not legal.
4899 EVT VT = Op.getValueType();
4900 assert(VT.is128BitVector() && "unexpected type for custom-lowering ISD::MUL");
4901 SDNode *N0 = Op.getOperand(0).getNode();
4902 SDNode *N1 = Op.getOperand(1).getNode();
4903 unsigned NewOpc = 0;
4904 bool isMLA = false;
4905 bool isN0SExt = isSignExtended(N0, DAG);
4906 bool isN1SExt = isSignExtended(N1, DAG);
4907 if (isN0SExt && isN1SExt)
4908 NewOpc = ARMISD::VMULLs;
4909 else {
4910 bool isN0ZExt = isZeroExtended(N0, DAG);
4911 bool isN1ZExt = isZeroExtended(N1, DAG);
4912 if (isN0ZExt && isN1ZExt)
4913 NewOpc = ARMISD::VMULLu;
4914 else if (isN1SExt || isN1ZExt) {
4915 // Look for (s/zext A + s/zext B) * (s/zext C). We want to turn these
4916 // into (s/zext A * s/zext C) + (s/zext B * s/zext C)
4917 if (isN1SExt && isAddSubSExt(N0, DAG)) {
4918 NewOpc = ARMISD::VMULLs;
4919 isMLA = true;
4920 } else if (isN1ZExt && isAddSubZExt(N0, DAG)) {
4921 NewOpc = ARMISD::VMULLu;
4922 isMLA = true;
4923 } else if (isN0ZExt && isAddSubZExt(N1, DAG)) {
4924 std::swap(N0, N1);
4925 NewOpc = ARMISD::VMULLu;
4926 isMLA = true;
4927 }
4928 }
4929
4930 if (!NewOpc) {
4931 if (VT == MVT::v2i64)
4932 // Fall through to expand this. It is not legal.
4933 return SDValue();
4934 else
4935 // Other vector multiplications are legal.
4936 return Op;
4937 }
4938 }
4939
4940 // Legalize to a VMULL instruction.
4941 DebugLoc DL = Op.getDebugLoc();
4942 SDValue Op0;
4943 SDValue Op1 = SkipExtension(N1, DAG);
4944 if (!isMLA) {
4945 Op0 = SkipExtension(N0, DAG);
4946 assert(Op0.getValueType().is64BitVector() &&
4947 Op1.getValueType().is64BitVector() &&
4948 "unexpected types for extended operands to VMULL");
4949 return DAG.getNode(NewOpc, DL, VT, Op0, Op1);
4950 }
4951
4952 // Optimizing (zext A + zext B) * C, to (VMULL A, C) + (VMULL B, C) during
4953 // isel lowering to take advantage of no-stall back to back vmul + vmla.
4954 // vmull q0, d4, d6
4955 // vmlal q0, d5, d6
4956 // is faster than
4957 // vaddl q0, d4, d5
4958 // vmovl q1, d6
4959 // vmul q0, q0, q1
4960 SDValue N00 = SkipExtension(N0->getOperand(0).getNode(), DAG);
4961 SDValue N01 = SkipExtension(N0->getOperand(1).getNode(), DAG);
4962 EVT Op1VT = Op1.getValueType();
4963 return DAG.getNode(N0->getOpcode(), DL, VT,
4964 DAG.getNode(NewOpc, DL, VT,
4965 DAG.getNode(ISD::BITCAST, DL, Op1VT, N00), Op1),
4966 DAG.getNode(NewOpc, DL, VT,
4967 DAG.getNode(ISD::BITCAST, DL, Op1VT, N01), Op1));
4968 }
4969
4970 static SDValue
LowerSDIV_v4i8(SDValue X,SDValue Y,DebugLoc dl,SelectionDAG & DAG)4971 LowerSDIV_v4i8(SDValue X, SDValue Y, DebugLoc dl, SelectionDAG &DAG) {
4972 // Convert to float
4973 // float4 xf = vcvt_f32_s32(vmovl_s16(a.lo));
4974 // float4 yf = vcvt_f32_s32(vmovl_s16(b.lo));
4975 X = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, X);
4976 Y = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, Y);
4977 X = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, X);
4978 Y = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, Y);
4979 // Get reciprocal estimate.
4980 // float4 recip = vrecpeq_f32(yf);
4981 Y = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
4982 DAG.getConstant(Intrinsic::arm_neon_vrecpe, MVT::i32), Y);
4983 // Because char has a smaller range than uchar, we can actually get away
4984 // without any newton steps. This requires that we use a weird bias
4985 // of 0xb000, however (again, this has been exhaustively tested).
4986 // float4 result = as_float4(as_int4(xf*recip) + 0xb000);
4987 X = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, X, Y);
4988 X = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, X);
4989 Y = DAG.getConstant(0xb000, MVT::i32);
4990 Y = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Y, Y, Y, Y);
4991 X = DAG.getNode(ISD::ADD, dl, MVT::v4i32, X, Y);
4992 X = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, X);
4993 // Convert back to short.
4994 X = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, X);
4995 X = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, X);
4996 return X;
4997 }
4998
4999 static SDValue
LowerSDIV_v4i16(SDValue N0,SDValue N1,DebugLoc dl,SelectionDAG & DAG)5000 LowerSDIV_v4i16(SDValue N0, SDValue N1, DebugLoc dl, SelectionDAG &DAG) {
5001 SDValue N2;
5002 // Convert to float.
5003 // float4 yf = vcvt_f32_s32(vmovl_s16(y));
5004 // float4 xf = vcvt_f32_s32(vmovl_s16(x));
5005 N0 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, N0);
5006 N1 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, N1);
5007 N0 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N0);
5008 N1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N1);
5009
5010 // Use reciprocal estimate and one refinement step.
5011 // float4 recip = vrecpeq_f32(yf);
5012 // recip *= vrecpsq_f32(yf, recip);
5013 N2 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
5014 DAG.getConstant(Intrinsic::arm_neon_vrecpe, MVT::i32), N1);
5015 N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
5016 DAG.getConstant(Intrinsic::arm_neon_vrecps, MVT::i32),
5017 N1, N2);
5018 N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
5019 // Because short has a smaller range than ushort, we can actually get away
5020 // with only a single newton step. This requires that we use a weird bias
5021 // of 89, however (again, this has been exhaustively tested).
5022 // float4 result = as_float4(as_int4(xf*recip) + 0x89);
5023 N0 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N0, N2);
5024 N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, N0);
5025 N1 = DAG.getConstant(0x89, MVT::i32);
5026 N1 = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, N1, N1, N1, N1);
5027 N0 = DAG.getNode(ISD::ADD, dl, MVT::v4i32, N0, N1);
5028 N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, N0);
5029 // Convert back to integer and return.
5030 // return vmovn_s32(vcvt_s32_f32(result));
5031 N0 = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, N0);
5032 N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, N0);
5033 return N0;
5034 }
5035
LowerSDIV(SDValue Op,SelectionDAG & DAG)5036 static SDValue LowerSDIV(SDValue Op, SelectionDAG &DAG) {
5037 EVT VT = Op.getValueType();
5038 assert((VT == MVT::v4i16 || VT == MVT::v8i8) &&
5039 "unexpected type for custom-lowering ISD::SDIV");
5040
5041 DebugLoc dl = Op.getDebugLoc();
5042 SDValue N0 = Op.getOperand(0);
5043 SDValue N1 = Op.getOperand(1);
5044 SDValue N2, N3;
5045
5046 if (VT == MVT::v8i8) {
5047 N0 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v8i16, N0);
5048 N1 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v8i16, N1);
5049
5050 N2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
5051 DAG.getIntPtrConstant(4));
5052 N3 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
5053 DAG.getIntPtrConstant(4));
5054 N0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
5055 DAG.getIntPtrConstant(0));
5056 N1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
5057 DAG.getIntPtrConstant(0));
5058
5059 N0 = LowerSDIV_v4i8(N0, N1, dl, DAG); // v4i16
5060 N2 = LowerSDIV_v4i8(N2, N3, dl, DAG); // v4i16
5061
5062 N0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v8i16, N0, N2);
5063 N0 = LowerCONCAT_VECTORS(N0, DAG);
5064
5065 N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v8i8, N0);
5066 return N0;
5067 }
5068 return LowerSDIV_v4i16(N0, N1, dl, DAG);
5069 }
5070
LowerUDIV(SDValue Op,SelectionDAG & DAG)5071 static SDValue LowerUDIV(SDValue Op, SelectionDAG &DAG) {
5072 EVT VT = Op.getValueType();
5073 assert((VT == MVT::v4i16 || VT == MVT::v8i8) &&
5074 "unexpected type for custom-lowering ISD::UDIV");
5075
5076 DebugLoc dl = Op.getDebugLoc();
5077 SDValue N0 = Op.getOperand(0);
5078 SDValue N1 = Op.getOperand(1);
5079 SDValue N2, N3;
5080
5081 if (VT == MVT::v8i8) {
5082 N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v8i16, N0);
5083 N1 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v8i16, N1);
5084
5085 N2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
5086 DAG.getIntPtrConstant(4));
5087 N3 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
5088 DAG.getIntPtrConstant(4));
5089 N0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
5090 DAG.getIntPtrConstant(0));
5091 N1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
5092 DAG.getIntPtrConstant(0));
5093
5094 N0 = LowerSDIV_v4i16(N0, N1, dl, DAG); // v4i16
5095 N2 = LowerSDIV_v4i16(N2, N3, dl, DAG); // v4i16
5096
5097 N0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v8i16, N0, N2);
5098 N0 = LowerCONCAT_VECTORS(N0, DAG);
5099
5100 N0 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v8i8,
5101 DAG.getConstant(Intrinsic::arm_neon_vqmovnsu, MVT::i32),
5102 N0);
5103 return N0;
5104 }
5105
5106 // v4i16 sdiv ... Convert to float.
5107 // float4 yf = vcvt_f32_s32(vmovl_u16(y));
5108 // float4 xf = vcvt_f32_s32(vmovl_u16(x));
5109 N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v4i32, N0);
5110 N1 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v4i32, N1);
5111 N0 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N0);
5112 SDValue BN1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N1);
5113
5114 // Use reciprocal estimate and two refinement steps.
5115 // float4 recip = vrecpeq_f32(yf);
5116 // recip *= vrecpsq_f32(yf, recip);
5117 // recip *= vrecpsq_f32(yf, recip);
5118 N2 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
5119 DAG.getConstant(Intrinsic::arm_neon_vrecpe, MVT::i32), BN1);
5120 N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
5121 DAG.getConstant(Intrinsic::arm_neon_vrecps, MVT::i32),
5122 BN1, N2);
5123 N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
5124 N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
5125 DAG.getConstant(Intrinsic::arm_neon_vrecps, MVT::i32),
5126 BN1, N2);
5127 N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
5128 // Simply multiplying by the reciprocal estimate can leave us a few ulps
5129 // too low, so we add 2 ulps (exhaustive testing shows that this is enough,
5130 // and that it will never cause us to return an answer too large).
5131 // float4 result = as_float4(as_int4(xf*recip) + 2);
5132 N0 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N0, N2);
5133 N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, N0);
5134 N1 = DAG.getConstant(2, MVT::i32);
5135 N1 = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, N1, N1, N1, N1);
5136 N0 = DAG.getNode(ISD::ADD, dl, MVT::v4i32, N0, N1);
5137 N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, N0);
5138 // Convert back to integer and return.
5139 // return vmovn_u32(vcvt_s32_f32(result));
5140 N0 = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, N0);
5141 N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, N0);
5142 return N0;
5143 }
5144
LowerADDC_ADDE_SUBC_SUBE(SDValue Op,SelectionDAG & DAG)5145 static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) {
5146 EVT VT = Op.getNode()->getValueType(0);
5147 SDVTList VTs = DAG.getVTList(VT, MVT::i32);
5148
5149 unsigned Opc;
5150 bool ExtraOp = false;
5151 switch (Op.getOpcode()) {
5152 default: llvm_unreachable("Invalid code");
5153 case ISD::ADDC: Opc = ARMISD::ADDC; break;
5154 case ISD::ADDE: Opc = ARMISD::ADDE; ExtraOp = true; break;
5155 case ISD::SUBC: Opc = ARMISD::SUBC; break;
5156 case ISD::SUBE: Opc = ARMISD::SUBE; ExtraOp = true; break;
5157 }
5158
5159 if (!ExtraOp)
5160 return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
5161 Op.getOperand(1));
5162 return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
5163 Op.getOperand(1), Op.getOperand(2));
5164 }
5165
LowerAtomicLoadStore(SDValue Op,SelectionDAG & DAG)5166 static SDValue LowerAtomicLoadStore(SDValue Op, SelectionDAG &DAG) {
5167 // Monotonic load/store is legal for all targets
5168 if (cast<AtomicSDNode>(Op)->getOrdering() <= Monotonic)
5169 return Op;
5170
5171 // Aquire/Release load/store is not legal for targets without a
5172 // dmb or equivalent available.
5173 return SDValue();
5174 }
5175
5176
5177 static void
ReplaceATOMIC_OP_64(SDNode * Node,SmallVectorImpl<SDValue> & Results,SelectionDAG & DAG,unsigned NewOp)5178 ReplaceATOMIC_OP_64(SDNode *Node, SmallVectorImpl<SDValue>& Results,
5179 SelectionDAG &DAG, unsigned NewOp) {
5180 DebugLoc dl = Node->getDebugLoc();
5181 assert (Node->getValueType(0) == MVT::i64 &&
5182 "Only know how to expand i64 atomics");
5183
5184 SmallVector<SDValue, 6> Ops;
5185 Ops.push_back(Node->getOperand(0)); // Chain
5186 Ops.push_back(Node->getOperand(1)); // Ptr
5187 // Low part of Val1
5188 Ops.push_back(DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
5189 Node->getOperand(2), DAG.getIntPtrConstant(0)));
5190 // High part of Val1
5191 Ops.push_back(DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
5192 Node->getOperand(2), DAG.getIntPtrConstant(1)));
5193 if (NewOp == ARMISD::ATOMCMPXCHG64_DAG) {
5194 // High part of Val1
5195 Ops.push_back(DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
5196 Node->getOperand(3), DAG.getIntPtrConstant(0)));
5197 // High part of Val2
5198 Ops.push_back(DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
5199 Node->getOperand(3), DAG.getIntPtrConstant(1)));
5200 }
5201 SDVTList Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
5202 SDValue Result =
5203 DAG.getMemIntrinsicNode(NewOp, dl, Tys, Ops.data(), Ops.size(), MVT::i64,
5204 cast<MemSDNode>(Node)->getMemOperand());
5205 SDValue OpsF[] = { Result.getValue(0), Result.getValue(1) };
5206 Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
5207 Results.push_back(Result.getValue(2));
5208 }
5209
LowerOperation(SDValue Op,SelectionDAG & DAG) const5210 SDValue ARMTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
5211 switch (Op.getOpcode()) {
5212 default: llvm_unreachable("Don't know how to custom lower this!");
5213 case ISD::ConstantPool: return LowerConstantPool(Op, DAG);
5214 case ISD::BlockAddress: return LowerBlockAddress(Op, DAG);
5215 case ISD::GlobalAddress:
5216 return Subtarget->isTargetDarwin() ? LowerGlobalAddressDarwin(Op, DAG) :
5217 LowerGlobalAddressELF(Op, DAG);
5218 case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG);
5219 case ISD::SELECT: return LowerSELECT(Op, DAG);
5220 case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG);
5221 case ISD::BR_CC: return LowerBR_CC(Op, DAG);
5222 case ISD::BR_JT: return LowerBR_JT(Op, DAG);
5223 case ISD::VASTART: return LowerVASTART(Op, DAG);
5224 case ISD::MEMBARRIER: return LowerMEMBARRIER(Op, DAG, Subtarget);
5225 case ISD::ATOMIC_FENCE: return LowerATOMIC_FENCE(Op, DAG, Subtarget);
5226 case ISD::PREFETCH: return LowerPREFETCH(Op, DAG, Subtarget);
5227 case ISD::SINT_TO_FP:
5228 case ISD::UINT_TO_FP: return LowerINT_TO_FP(Op, DAG);
5229 case ISD::FP_TO_SINT:
5230 case ISD::FP_TO_UINT: return LowerFP_TO_INT(Op, DAG);
5231 case ISD::FCOPYSIGN: return LowerFCOPYSIGN(Op, DAG);
5232 case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG);
5233 case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG);
5234 case ISD::GLOBAL_OFFSET_TABLE: return LowerGLOBAL_OFFSET_TABLE(Op, DAG);
5235 case ISD::EH_SJLJ_SETJMP: return LowerEH_SJLJ_SETJMP(Op, DAG);
5236 case ISD::EH_SJLJ_LONGJMP: return LowerEH_SJLJ_LONGJMP(Op, DAG);
5237 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG,
5238 Subtarget);
5239 case ISD::BITCAST: return ExpandBITCAST(Op.getNode(), DAG);
5240 case ISD::SHL:
5241 case ISD::SRL:
5242 case ISD::SRA: return LowerShift(Op.getNode(), DAG, Subtarget);
5243 case ISD::SHL_PARTS: return LowerShiftLeftParts(Op, DAG);
5244 case ISD::SRL_PARTS:
5245 case ISD::SRA_PARTS: return LowerShiftRightParts(Op, DAG);
5246 case ISD::CTTZ: return LowerCTTZ(Op.getNode(), DAG, Subtarget);
5247 case ISD::SETCC: return LowerVSETCC(Op, DAG);
5248 case ISD::ConstantFP: return LowerConstantFP(Op, DAG, Subtarget);
5249 case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG, Subtarget);
5250 case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG);
5251 case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG);
5252 case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
5253 case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG);
5254 case ISD::FLT_ROUNDS_: return LowerFLT_ROUNDS_(Op, DAG);
5255 case ISD::MUL: return LowerMUL(Op, DAG);
5256 case ISD::SDIV: return LowerSDIV(Op, DAG);
5257 case ISD::UDIV: return LowerUDIV(Op, DAG);
5258 case ISD::ADDC:
5259 case ISD::ADDE:
5260 case ISD::SUBC:
5261 case ISD::SUBE: return LowerADDC_ADDE_SUBC_SUBE(Op, DAG);
5262 case ISD::ATOMIC_LOAD:
5263 case ISD::ATOMIC_STORE: return LowerAtomicLoadStore(Op, DAG);
5264 }
5265 }
5266
5267 /// ReplaceNodeResults - Replace the results of node with an illegal result
5268 /// type with new values built out of custom code.
ReplaceNodeResults(SDNode * N,SmallVectorImpl<SDValue> & Results,SelectionDAG & DAG) const5269 void ARMTargetLowering::ReplaceNodeResults(SDNode *N,
5270 SmallVectorImpl<SDValue>&Results,
5271 SelectionDAG &DAG) const {
5272 SDValue Res;
5273 switch (N->getOpcode()) {
5274 default:
5275 llvm_unreachable("Don't know how to custom expand this!");
5276 case ISD::BITCAST:
5277 Res = ExpandBITCAST(N, DAG);
5278 break;
5279 case ISD::SRL:
5280 case ISD::SRA:
5281 Res = Expand64BitShift(N, DAG, Subtarget);
5282 break;
5283 case ISD::ATOMIC_LOAD_ADD:
5284 ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMADD64_DAG);
5285 return;
5286 case ISD::ATOMIC_LOAD_AND:
5287 ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMAND64_DAG);
5288 return;
5289 case ISD::ATOMIC_LOAD_NAND:
5290 ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMNAND64_DAG);
5291 return;
5292 case ISD::ATOMIC_LOAD_OR:
5293 ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMOR64_DAG);
5294 return;
5295 case ISD::ATOMIC_LOAD_SUB:
5296 ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMSUB64_DAG);
5297 return;
5298 case ISD::ATOMIC_LOAD_XOR:
5299 ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMXOR64_DAG);
5300 return;
5301 case ISD::ATOMIC_SWAP:
5302 ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMSWAP64_DAG);
5303 return;
5304 case ISD::ATOMIC_CMP_SWAP:
5305 ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMCMPXCHG64_DAG);
5306 return;
5307 }
5308 if (Res.getNode())
5309 Results.push_back(Res);
5310 }
5311
5312 //===----------------------------------------------------------------------===//
5313 // ARM Scheduler Hooks
5314 //===----------------------------------------------------------------------===//
5315
5316 MachineBasicBlock *
EmitAtomicCmpSwap(MachineInstr * MI,MachineBasicBlock * BB,unsigned Size) const5317 ARMTargetLowering::EmitAtomicCmpSwap(MachineInstr *MI,
5318 MachineBasicBlock *BB,
5319 unsigned Size) const {
5320 unsigned dest = MI->getOperand(0).getReg();
5321 unsigned ptr = MI->getOperand(1).getReg();
5322 unsigned oldval = MI->getOperand(2).getReg();
5323 unsigned newval = MI->getOperand(3).getReg();
5324 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
5325 DebugLoc dl = MI->getDebugLoc();
5326 bool isThumb2 = Subtarget->isThumb2();
5327
5328 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
5329 unsigned scratch = MRI.createVirtualRegister(isThumb2 ?
5330 (const TargetRegisterClass*)&ARM::rGPRRegClass :
5331 (const TargetRegisterClass*)&ARM::GPRRegClass);
5332
5333 if (isThumb2) {
5334 MRI.constrainRegClass(dest, &ARM::rGPRRegClass);
5335 MRI.constrainRegClass(oldval, &ARM::rGPRRegClass);
5336 MRI.constrainRegClass(newval, &ARM::rGPRRegClass);
5337 }
5338
5339 unsigned ldrOpc, strOpc;
5340 switch (Size) {
5341 default: llvm_unreachable("unsupported size for AtomicCmpSwap!");
5342 case 1:
5343 ldrOpc = isThumb2 ? ARM::t2LDREXB : ARM::LDREXB;
5344 strOpc = isThumb2 ? ARM::t2STREXB : ARM::STREXB;
5345 break;
5346 case 2:
5347 ldrOpc = isThumb2 ? ARM::t2LDREXH : ARM::LDREXH;
5348 strOpc = isThumb2 ? ARM::t2STREXH : ARM::STREXH;
5349 break;
5350 case 4:
5351 ldrOpc = isThumb2 ? ARM::t2LDREX : ARM::LDREX;
5352 strOpc = isThumb2 ? ARM::t2STREX : ARM::STREX;
5353 break;
5354 }
5355
5356 MachineFunction *MF = BB->getParent();
5357 const BasicBlock *LLVM_BB = BB->getBasicBlock();
5358 MachineFunction::iterator It = BB;
5359 ++It; // insert the new blocks after the current block
5360
5361 MachineBasicBlock *loop1MBB = MF->CreateMachineBasicBlock(LLVM_BB);
5362 MachineBasicBlock *loop2MBB = MF->CreateMachineBasicBlock(LLVM_BB);
5363 MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
5364 MF->insert(It, loop1MBB);
5365 MF->insert(It, loop2MBB);
5366 MF->insert(It, exitMBB);
5367
5368 // Transfer the remainder of BB and its successor edges to exitMBB.
5369 exitMBB->splice(exitMBB->begin(), BB,
5370 llvm::next(MachineBasicBlock::iterator(MI)),
5371 BB->end());
5372 exitMBB->transferSuccessorsAndUpdatePHIs(BB);
5373
5374 // thisMBB:
5375 // ...
5376 // fallthrough --> loop1MBB
5377 BB->addSuccessor(loop1MBB);
5378
5379 // loop1MBB:
5380 // ldrex dest, [ptr]
5381 // cmp dest, oldval
5382 // bne exitMBB
5383 BB = loop1MBB;
5384 MachineInstrBuilder MIB = BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr);
5385 if (ldrOpc == ARM::t2LDREX)
5386 MIB.addImm(0);
5387 AddDefaultPred(MIB);
5388 AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
5389 .addReg(dest).addReg(oldval));
5390 BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
5391 .addMBB(exitMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
5392 BB->addSuccessor(loop2MBB);
5393 BB->addSuccessor(exitMBB);
5394
5395 // loop2MBB:
5396 // strex scratch, newval, [ptr]
5397 // cmp scratch, #0
5398 // bne loop1MBB
5399 BB = loop2MBB;
5400 MIB = BuildMI(BB, dl, TII->get(strOpc), scratch).addReg(newval).addReg(ptr);
5401 if (strOpc == ARM::t2STREX)
5402 MIB.addImm(0);
5403 AddDefaultPred(MIB);
5404 AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
5405 .addReg(scratch).addImm(0));
5406 BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
5407 .addMBB(loop1MBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
5408 BB->addSuccessor(loop1MBB);
5409 BB->addSuccessor(exitMBB);
5410
5411 // exitMBB:
5412 // ...
5413 BB = exitMBB;
5414
5415 MI->eraseFromParent(); // The instruction is gone now.
5416
5417 return BB;
5418 }
5419
5420 MachineBasicBlock *
EmitAtomicBinary(MachineInstr * MI,MachineBasicBlock * BB,unsigned Size,unsigned BinOpcode) const5421 ARMTargetLowering::EmitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB,
5422 unsigned Size, unsigned BinOpcode) const {
5423 // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
5424 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
5425
5426 const BasicBlock *LLVM_BB = BB->getBasicBlock();
5427 MachineFunction *MF = BB->getParent();
5428 MachineFunction::iterator It = BB;
5429 ++It;
5430
5431 unsigned dest = MI->getOperand(0).getReg();
5432 unsigned ptr = MI->getOperand(1).getReg();
5433 unsigned incr = MI->getOperand(2).getReg();
5434 DebugLoc dl = MI->getDebugLoc();
5435 bool isThumb2 = Subtarget->isThumb2();
5436
5437 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
5438 if (isThumb2) {
5439 MRI.constrainRegClass(dest, &ARM::rGPRRegClass);
5440 MRI.constrainRegClass(ptr, &ARM::rGPRRegClass);
5441 }
5442
5443 unsigned ldrOpc, strOpc;
5444 switch (Size) {
5445 default: llvm_unreachable("unsupported size for AtomicCmpSwap!");
5446 case 1:
5447 ldrOpc = isThumb2 ? ARM::t2LDREXB : ARM::LDREXB;
5448 strOpc = isThumb2 ? ARM::t2STREXB : ARM::STREXB;
5449 break;
5450 case 2:
5451 ldrOpc = isThumb2 ? ARM::t2LDREXH : ARM::LDREXH;
5452 strOpc = isThumb2 ? ARM::t2STREXH : ARM::STREXH;
5453 break;
5454 case 4:
5455 ldrOpc = isThumb2 ? ARM::t2LDREX : ARM::LDREX;
5456 strOpc = isThumb2 ? ARM::t2STREX : ARM::STREX;
5457 break;
5458 }
5459
5460 MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
5461 MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
5462 MF->insert(It, loopMBB);
5463 MF->insert(It, exitMBB);
5464
5465 // Transfer the remainder of BB and its successor edges to exitMBB.
5466 exitMBB->splice(exitMBB->begin(), BB,
5467 llvm::next(MachineBasicBlock::iterator(MI)),
5468 BB->end());
5469 exitMBB->transferSuccessorsAndUpdatePHIs(BB);
5470
5471 const TargetRegisterClass *TRC = isThumb2 ?
5472 (const TargetRegisterClass*)&ARM::rGPRRegClass :
5473 (const TargetRegisterClass*)&ARM::GPRRegClass;
5474 unsigned scratch = MRI.createVirtualRegister(TRC);
5475 unsigned scratch2 = (!BinOpcode) ? incr : MRI.createVirtualRegister(TRC);
5476
5477 // thisMBB:
5478 // ...
5479 // fallthrough --> loopMBB
5480 BB->addSuccessor(loopMBB);
5481
5482 // loopMBB:
5483 // ldrex dest, ptr
5484 // <binop> scratch2, dest, incr
5485 // strex scratch, scratch2, ptr
5486 // cmp scratch, #0
5487 // bne- loopMBB
5488 // fallthrough --> exitMBB
5489 BB = loopMBB;
5490 MachineInstrBuilder MIB = BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr);
5491 if (ldrOpc == ARM::t2LDREX)
5492 MIB.addImm(0);
5493 AddDefaultPred(MIB);
5494 if (BinOpcode) {
5495 // operand order needs to go the other way for NAND
5496 if (BinOpcode == ARM::BICrr || BinOpcode == ARM::t2BICrr)
5497 AddDefaultPred(BuildMI(BB, dl, TII->get(BinOpcode), scratch2).
5498 addReg(incr).addReg(dest)).addReg(0);
5499 else
5500 AddDefaultPred(BuildMI(BB, dl, TII->get(BinOpcode), scratch2).
5501 addReg(dest).addReg(incr)).addReg(0);
5502 }
5503
5504 MIB = BuildMI(BB, dl, TII->get(strOpc), scratch).addReg(scratch2).addReg(ptr);
5505 if (strOpc == ARM::t2STREX)
5506 MIB.addImm(0);
5507 AddDefaultPred(MIB);
5508 AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
5509 .addReg(scratch).addImm(0));
5510 BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
5511 .addMBB(loopMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
5512
5513 BB->addSuccessor(loopMBB);
5514 BB->addSuccessor(exitMBB);
5515
5516 // exitMBB:
5517 // ...
5518 BB = exitMBB;
5519
5520 MI->eraseFromParent(); // The instruction is gone now.
5521
5522 return BB;
5523 }
5524
5525 MachineBasicBlock *
EmitAtomicBinaryMinMax(MachineInstr * MI,MachineBasicBlock * BB,unsigned Size,bool signExtend,ARMCC::CondCodes Cond) const5526 ARMTargetLowering::EmitAtomicBinaryMinMax(MachineInstr *MI,
5527 MachineBasicBlock *BB,
5528 unsigned Size,
5529 bool signExtend,
5530 ARMCC::CondCodes Cond) const {
5531 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
5532
5533 const BasicBlock *LLVM_BB = BB->getBasicBlock();
5534 MachineFunction *MF = BB->getParent();
5535 MachineFunction::iterator It = BB;
5536 ++It;
5537
5538 unsigned dest = MI->getOperand(0).getReg();
5539 unsigned ptr = MI->getOperand(1).getReg();
5540 unsigned incr = MI->getOperand(2).getReg();
5541 unsigned oldval = dest;
5542 DebugLoc dl = MI->getDebugLoc();
5543 bool isThumb2 = Subtarget->isThumb2();
5544
5545 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
5546 if (isThumb2) {
5547 MRI.constrainRegClass(dest, &ARM::rGPRRegClass);
5548 MRI.constrainRegClass(ptr, &ARM::rGPRRegClass);
5549 }
5550
5551 unsigned ldrOpc, strOpc, extendOpc;
5552 switch (Size) {
5553 default: llvm_unreachable("unsupported size for AtomicCmpSwap!");
5554 case 1:
5555 ldrOpc = isThumb2 ? ARM::t2LDREXB : ARM::LDREXB;
5556 strOpc = isThumb2 ? ARM::t2STREXB : ARM::STREXB;
5557 extendOpc = isThumb2 ? ARM::t2SXTB : ARM::SXTB;
5558 break;
5559 case 2:
5560 ldrOpc = isThumb2 ? ARM::t2LDREXH : ARM::LDREXH;
5561 strOpc = isThumb2 ? ARM::t2STREXH : ARM::STREXH;
5562 extendOpc = isThumb2 ? ARM::t2SXTH : ARM::SXTH;
5563 break;
5564 case 4:
5565 ldrOpc = isThumb2 ? ARM::t2LDREX : ARM::LDREX;
5566 strOpc = isThumb2 ? ARM::t2STREX : ARM::STREX;
5567 extendOpc = 0;
5568 break;
5569 }
5570
5571 MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
5572 MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
5573 MF->insert(It, loopMBB);
5574 MF->insert(It, exitMBB);
5575
5576 // Transfer the remainder of BB and its successor edges to exitMBB.
5577 exitMBB->splice(exitMBB->begin(), BB,
5578 llvm::next(MachineBasicBlock::iterator(MI)),
5579 BB->end());
5580 exitMBB->transferSuccessorsAndUpdatePHIs(BB);
5581
5582 const TargetRegisterClass *TRC = isThumb2 ?
5583 (const TargetRegisterClass*)&ARM::rGPRRegClass :
5584 (const TargetRegisterClass*)&ARM::GPRRegClass;
5585 unsigned scratch = MRI.createVirtualRegister(TRC);
5586 unsigned scratch2 = MRI.createVirtualRegister(TRC);
5587
5588 // thisMBB:
5589 // ...
5590 // fallthrough --> loopMBB
5591 BB->addSuccessor(loopMBB);
5592
5593 // loopMBB:
5594 // ldrex dest, ptr
5595 // (sign extend dest, if required)
5596 // cmp dest, incr
5597 // cmov.cond scratch2, dest, incr
5598 // strex scratch, scratch2, ptr
5599 // cmp scratch, #0
5600 // bne- loopMBB
5601 // fallthrough --> exitMBB
5602 BB = loopMBB;
5603 MachineInstrBuilder MIB = BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr);
5604 if (ldrOpc == ARM::t2LDREX)
5605 MIB.addImm(0);
5606 AddDefaultPred(MIB);
5607
5608 // Sign extend the value, if necessary.
5609 if (signExtend && extendOpc) {
5610 oldval = MRI.createVirtualRegister(&ARM::GPRRegClass);
5611 AddDefaultPred(BuildMI(BB, dl, TII->get(extendOpc), oldval)
5612 .addReg(dest)
5613 .addImm(0));
5614 }
5615
5616 // Build compare and cmov instructions.
5617 AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
5618 .addReg(oldval).addReg(incr));
5619 BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2MOVCCr : ARM::MOVCCr), scratch2)
5620 .addReg(oldval).addReg(incr).addImm(Cond).addReg(ARM::CPSR);
5621
5622 MIB = BuildMI(BB, dl, TII->get(strOpc), scratch).addReg(scratch2).addReg(ptr);
5623 if (strOpc == ARM::t2STREX)
5624 MIB.addImm(0);
5625 AddDefaultPred(MIB);
5626 AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
5627 .addReg(scratch).addImm(0));
5628 BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
5629 .addMBB(loopMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
5630
5631 BB->addSuccessor(loopMBB);
5632 BB->addSuccessor(exitMBB);
5633
5634 // exitMBB:
5635 // ...
5636 BB = exitMBB;
5637
5638 MI->eraseFromParent(); // The instruction is gone now.
5639
5640 return BB;
5641 }
5642
5643 MachineBasicBlock *
EmitAtomicBinary64(MachineInstr * MI,MachineBasicBlock * BB,unsigned Op1,unsigned Op2,bool NeedsCarry,bool IsCmpxchg) const5644 ARMTargetLowering::EmitAtomicBinary64(MachineInstr *MI, MachineBasicBlock *BB,
5645 unsigned Op1, unsigned Op2,
5646 bool NeedsCarry, bool IsCmpxchg) const {
5647 // This also handles ATOMIC_SWAP, indicated by Op1==0.
5648 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
5649
5650 const BasicBlock *LLVM_BB = BB->getBasicBlock();
5651 MachineFunction *MF = BB->getParent();
5652 MachineFunction::iterator It = BB;
5653 ++It;
5654
5655 unsigned destlo = MI->getOperand(0).getReg();
5656 unsigned desthi = MI->getOperand(1).getReg();
5657 unsigned ptr = MI->getOperand(2).getReg();
5658 unsigned vallo = MI->getOperand(3).getReg();
5659 unsigned valhi = MI->getOperand(4).getReg();
5660 DebugLoc dl = MI->getDebugLoc();
5661 bool isThumb2 = Subtarget->isThumb2();
5662
5663 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
5664 if (isThumb2) {
5665 MRI.constrainRegClass(destlo, &ARM::rGPRRegClass);
5666 MRI.constrainRegClass(desthi, &ARM::rGPRRegClass);
5667 MRI.constrainRegClass(ptr, &ARM::rGPRRegClass);
5668 }
5669
5670 unsigned ldrOpc = isThumb2 ? ARM::t2LDREXD : ARM::LDREXD;
5671 unsigned strOpc = isThumb2 ? ARM::t2STREXD : ARM::STREXD;
5672
5673 MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
5674 MachineBasicBlock *contBB = 0, *cont2BB = 0;
5675 if (IsCmpxchg) {
5676 contBB = MF->CreateMachineBasicBlock(LLVM_BB);
5677 cont2BB = MF->CreateMachineBasicBlock(LLVM_BB);
5678 }
5679 MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
5680 MF->insert(It, loopMBB);
5681 if (IsCmpxchg) {
5682 MF->insert(It, contBB);
5683 MF->insert(It, cont2BB);
5684 }
5685 MF->insert(It, exitMBB);
5686
5687 // Transfer the remainder of BB and its successor edges to exitMBB.
5688 exitMBB->splice(exitMBB->begin(), BB,
5689 llvm::next(MachineBasicBlock::iterator(MI)),
5690 BB->end());
5691 exitMBB->transferSuccessorsAndUpdatePHIs(BB);
5692
5693 const TargetRegisterClass *TRC = isThumb2 ?
5694 (const TargetRegisterClass*)&ARM::tGPRRegClass :
5695 (const TargetRegisterClass*)&ARM::GPRRegClass;
5696 unsigned storesuccess = MRI.createVirtualRegister(TRC);
5697
5698 // thisMBB:
5699 // ...
5700 // fallthrough --> loopMBB
5701 BB->addSuccessor(loopMBB);
5702
5703 // loopMBB:
5704 // ldrexd r2, r3, ptr
5705 // <binopa> r0, r2, incr
5706 // <binopb> r1, r3, incr
5707 // strexd storesuccess, r0, r1, ptr
5708 // cmp storesuccess, #0
5709 // bne- loopMBB
5710 // fallthrough --> exitMBB
5711 //
5712 // Note that the registers are explicitly specified because there is not any
5713 // way to force the register allocator to allocate a register pair.
5714 //
5715 // FIXME: The hardcoded registers are not necessary for Thumb2, but we
5716 // need to properly enforce the restriction that the two output registers
5717 // for ldrexd must be different.
5718 BB = loopMBB;
5719 // Load
5720 AddDefaultPred(BuildMI(BB, dl, TII->get(ldrOpc))
5721 .addReg(ARM::R2, RegState::Define)
5722 .addReg(ARM::R3, RegState::Define).addReg(ptr));
5723 // Copy r2/r3 into dest. (This copy will normally be coalesced.)
5724 BuildMI(BB, dl, TII->get(TargetOpcode::COPY), destlo).addReg(ARM::R2);
5725 BuildMI(BB, dl, TII->get(TargetOpcode::COPY), desthi).addReg(ARM::R3);
5726
5727 if (IsCmpxchg) {
5728 // Add early exit
5729 for (unsigned i = 0; i < 2; i++) {
5730 AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr :
5731 ARM::CMPrr))
5732 .addReg(i == 0 ? destlo : desthi)
5733 .addReg(i == 0 ? vallo : valhi));
5734 BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
5735 .addMBB(exitMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
5736 BB->addSuccessor(exitMBB);
5737 BB->addSuccessor(i == 0 ? contBB : cont2BB);
5738 BB = (i == 0 ? contBB : cont2BB);
5739 }
5740
5741 // Copy to physregs for strexd
5742 unsigned setlo = MI->getOperand(5).getReg();
5743 unsigned sethi = MI->getOperand(6).getReg();
5744 BuildMI(BB, dl, TII->get(TargetOpcode::COPY), ARM::R0).addReg(setlo);
5745 BuildMI(BB, dl, TII->get(TargetOpcode::COPY), ARM::R1).addReg(sethi);
5746 } else if (Op1) {
5747 // Perform binary operation
5748 AddDefaultPred(BuildMI(BB, dl, TII->get(Op1), ARM::R0)
5749 .addReg(destlo).addReg(vallo))
5750 .addReg(NeedsCarry ? ARM::CPSR : 0, getDefRegState(NeedsCarry));
5751 AddDefaultPred(BuildMI(BB, dl, TII->get(Op2), ARM::R1)
5752 .addReg(desthi).addReg(valhi)).addReg(0);
5753 } else {
5754 // Copy to physregs for strexd
5755 BuildMI(BB, dl, TII->get(TargetOpcode::COPY), ARM::R0).addReg(vallo);
5756 BuildMI(BB, dl, TII->get(TargetOpcode::COPY), ARM::R1).addReg(valhi);
5757 }
5758
5759 // Store
5760 AddDefaultPred(BuildMI(BB, dl, TII->get(strOpc), storesuccess)
5761 .addReg(ARM::R0).addReg(ARM::R1).addReg(ptr));
5762 // Cmp+jump
5763 AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
5764 .addReg(storesuccess).addImm(0));
5765 BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
5766 .addMBB(loopMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
5767
5768 BB->addSuccessor(loopMBB);
5769 BB->addSuccessor(exitMBB);
5770
5771 // exitMBB:
5772 // ...
5773 BB = exitMBB;
5774
5775 MI->eraseFromParent(); // The instruction is gone now.
5776
5777 return BB;
5778 }
5779
5780 /// SetupEntryBlockForSjLj - Insert code into the entry block that creates and
5781 /// registers the function context.
5782 void ARMTargetLowering::
SetupEntryBlockForSjLj(MachineInstr * MI,MachineBasicBlock * MBB,MachineBasicBlock * DispatchBB,int FI) const5783 SetupEntryBlockForSjLj(MachineInstr *MI, MachineBasicBlock *MBB,
5784 MachineBasicBlock *DispatchBB, int FI) const {
5785 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
5786 DebugLoc dl = MI->getDebugLoc();
5787 MachineFunction *MF = MBB->getParent();
5788 MachineRegisterInfo *MRI = &MF->getRegInfo();
5789 MachineConstantPool *MCP = MF->getConstantPool();
5790 ARMFunctionInfo *AFI = MF->getInfo<ARMFunctionInfo>();
5791 const Function *F = MF->getFunction();
5792
5793 bool isThumb = Subtarget->isThumb();
5794 bool isThumb2 = Subtarget->isThumb2();
5795
5796 unsigned PCLabelId = AFI->createPICLabelUId();
5797 unsigned PCAdj = (isThumb || isThumb2) ? 4 : 8;
5798 ARMConstantPoolValue *CPV =
5799 ARMConstantPoolMBB::Create(F->getContext(), DispatchBB, PCLabelId, PCAdj);
5800 unsigned CPI = MCP->getConstantPoolIndex(CPV, 4);
5801
5802 const TargetRegisterClass *TRC = isThumb ?
5803 (const TargetRegisterClass*)&ARM::tGPRRegClass :
5804 (const TargetRegisterClass*)&ARM::GPRRegClass;
5805
5806 // Grab constant pool and fixed stack memory operands.
5807 MachineMemOperand *CPMMO =
5808 MF->getMachineMemOperand(MachinePointerInfo::getConstantPool(),
5809 MachineMemOperand::MOLoad, 4, 4);
5810
5811 MachineMemOperand *FIMMOSt =
5812 MF->getMachineMemOperand(MachinePointerInfo::getFixedStack(FI),
5813 MachineMemOperand::MOStore, 4, 4);
5814
5815 // Load the address of the dispatch MBB into the jump buffer.
5816 if (isThumb2) {
5817 // Incoming value: jbuf
5818 // ldr.n r5, LCPI1_1
5819 // orr r5, r5, #1
5820 // add r5, pc
5821 // str r5, [$jbuf, #+4] ; &jbuf[1]
5822 unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
5823 AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::t2LDRpci), NewVReg1)
5824 .addConstantPoolIndex(CPI)
5825 .addMemOperand(CPMMO));
5826 // Set the low bit because of thumb mode.
5827 unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
5828 AddDefaultCC(
5829 AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::t2ORRri), NewVReg2)
5830 .addReg(NewVReg1, RegState::Kill)
5831 .addImm(0x01)));
5832 unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
5833 BuildMI(*MBB, MI, dl, TII->get(ARM::tPICADD), NewVReg3)
5834 .addReg(NewVReg2, RegState::Kill)
5835 .addImm(PCLabelId);
5836 AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::t2STRi12))
5837 .addReg(NewVReg3, RegState::Kill)
5838 .addFrameIndex(FI)
5839 .addImm(36) // &jbuf[1] :: pc
5840 .addMemOperand(FIMMOSt));
5841 } else if (isThumb) {
5842 // Incoming value: jbuf
5843 // ldr.n r1, LCPI1_4
5844 // add r1, pc
5845 // mov r2, #1
5846 // orrs r1, r2
5847 // add r2, $jbuf, #+4 ; &jbuf[1]
5848 // str r1, [r2]
5849 unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
5850 AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tLDRpci), NewVReg1)
5851 .addConstantPoolIndex(CPI)
5852 .addMemOperand(CPMMO));
5853 unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
5854 BuildMI(*MBB, MI, dl, TII->get(ARM::tPICADD), NewVReg2)
5855 .addReg(NewVReg1, RegState::Kill)
5856 .addImm(PCLabelId);
5857 // Set the low bit because of thumb mode.
5858 unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
5859 AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tMOVi8), NewVReg3)
5860 .addReg(ARM::CPSR, RegState::Define)
5861 .addImm(1));
5862 unsigned NewVReg4 = MRI->createVirtualRegister(TRC);
5863 AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tORR), NewVReg4)
5864 .addReg(ARM::CPSR, RegState::Define)
5865 .addReg(NewVReg2, RegState::Kill)
5866 .addReg(NewVReg3, RegState::Kill));
5867 unsigned NewVReg5 = MRI->createVirtualRegister(TRC);
5868 AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tADDrSPi), NewVReg5)
5869 .addFrameIndex(FI)
5870 .addImm(36)); // &jbuf[1] :: pc
5871 AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tSTRi))
5872 .addReg(NewVReg4, RegState::Kill)
5873 .addReg(NewVReg5, RegState::Kill)
5874 .addImm(0)
5875 .addMemOperand(FIMMOSt));
5876 } else {
5877 // Incoming value: jbuf
5878 // ldr r1, LCPI1_1
5879 // add r1, pc, r1
5880 // str r1, [$jbuf, #+4] ; &jbuf[1]
5881 unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
5882 AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::LDRi12), NewVReg1)
5883 .addConstantPoolIndex(CPI)
5884 .addImm(0)
5885 .addMemOperand(CPMMO));
5886 unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
5887 AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::PICADD), NewVReg2)
5888 .addReg(NewVReg1, RegState::Kill)
5889 .addImm(PCLabelId));
5890 AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::STRi12))
5891 .addReg(NewVReg2, RegState::Kill)
5892 .addFrameIndex(FI)
5893 .addImm(36) // &jbuf[1] :: pc
5894 .addMemOperand(FIMMOSt));
5895 }
5896 }
5897
5898 MachineBasicBlock *ARMTargetLowering::
EmitSjLjDispatchBlock(MachineInstr * MI,MachineBasicBlock * MBB) const5899 EmitSjLjDispatchBlock(MachineInstr *MI, MachineBasicBlock *MBB) const {
5900 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
5901 DebugLoc dl = MI->getDebugLoc();
5902 MachineFunction *MF = MBB->getParent();
5903 MachineRegisterInfo *MRI = &MF->getRegInfo();
5904 ARMFunctionInfo *AFI = MF->getInfo<ARMFunctionInfo>();
5905 MachineFrameInfo *MFI = MF->getFrameInfo();
5906 int FI = MFI->getFunctionContextIndex();
5907
5908 const TargetRegisterClass *TRC = Subtarget->isThumb() ?
5909 (const TargetRegisterClass*)&ARM::tGPRRegClass :
5910 (const TargetRegisterClass*)&ARM::GPRnopcRegClass;
5911
5912 // Get a mapping of the call site numbers to all of the landing pads they're
5913 // associated with.
5914 DenseMap<unsigned, SmallVector<MachineBasicBlock*, 2> > CallSiteNumToLPad;
5915 unsigned MaxCSNum = 0;
5916 MachineModuleInfo &MMI = MF->getMMI();
5917 for (MachineFunction::iterator BB = MF->begin(), E = MF->end(); BB != E;
5918 ++BB) {
5919 if (!BB->isLandingPad()) continue;
5920
5921 // FIXME: We should assert that the EH_LABEL is the first MI in the landing
5922 // pad.
5923 for (MachineBasicBlock::iterator
5924 II = BB->begin(), IE = BB->end(); II != IE; ++II) {
5925 if (!II->isEHLabel()) continue;
5926
5927 MCSymbol *Sym = II->getOperand(0).getMCSymbol();
5928 if (!MMI.hasCallSiteLandingPad(Sym)) continue;
5929
5930 SmallVectorImpl<unsigned> &CallSiteIdxs = MMI.getCallSiteLandingPad(Sym);
5931 for (SmallVectorImpl<unsigned>::iterator
5932 CSI = CallSiteIdxs.begin(), CSE = CallSiteIdxs.end();
5933 CSI != CSE; ++CSI) {
5934 CallSiteNumToLPad[*CSI].push_back(BB);
5935 MaxCSNum = std::max(MaxCSNum, *CSI);
5936 }
5937 break;
5938 }
5939 }
5940
5941 // Get an ordered list of the machine basic blocks for the jump table.
5942 std::vector<MachineBasicBlock*> LPadList;
5943 SmallPtrSet<MachineBasicBlock*, 64> InvokeBBs;
5944 LPadList.reserve(CallSiteNumToLPad.size());
5945 for (unsigned I = 1; I <= MaxCSNum; ++I) {
5946 SmallVectorImpl<MachineBasicBlock*> &MBBList = CallSiteNumToLPad[I];
5947 for (SmallVectorImpl<MachineBasicBlock*>::iterator
5948 II = MBBList.begin(), IE = MBBList.end(); II != IE; ++II) {
5949 LPadList.push_back(*II);
5950 InvokeBBs.insert((*II)->pred_begin(), (*II)->pred_end());
5951 }
5952 }
5953
5954 assert(!LPadList.empty() &&
5955 "No landing pad destinations for the dispatch jump table!");
5956
5957 // Create the jump table and associated information.
5958 MachineJumpTableInfo *JTI =
5959 MF->getOrCreateJumpTableInfo(MachineJumpTableInfo::EK_Inline);
5960 unsigned MJTI = JTI->createJumpTableIndex(LPadList);
5961 unsigned UId = AFI->createJumpTableUId();
5962
5963 // Create the MBBs for the dispatch code.
5964
5965 // Shove the dispatch's address into the return slot in the function context.
5966 MachineBasicBlock *DispatchBB = MF->CreateMachineBasicBlock();
5967 DispatchBB->setIsLandingPad();
5968
5969 MachineBasicBlock *TrapBB = MF->CreateMachineBasicBlock();
5970 BuildMI(TrapBB, dl, TII->get(Subtarget->isThumb() ? ARM::tTRAP : ARM::TRAP));
5971 DispatchBB->addSuccessor(TrapBB);
5972
5973 MachineBasicBlock *DispContBB = MF->CreateMachineBasicBlock();
5974 DispatchBB->addSuccessor(DispContBB);
5975
5976 // Insert and MBBs.
5977 MF->insert(MF->end(), DispatchBB);
5978 MF->insert(MF->end(), DispContBB);
5979 MF->insert(MF->end(), TrapBB);
5980
5981 // Insert code into the entry block that creates and registers the function
5982 // context.
5983 SetupEntryBlockForSjLj(MI, MBB, DispatchBB, FI);
5984
5985 MachineMemOperand *FIMMOLd =
5986 MF->getMachineMemOperand(MachinePointerInfo::getFixedStack(FI),
5987 MachineMemOperand::MOLoad |
5988 MachineMemOperand::MOVolatile, 4, 4);
5989
5990 if (AFI->isThumb1OnlyFunction())
5991 BuildMI(DispatchBB, dl, TII->get(ARM::tInt_eh_sjlj_dispatchsetup));
5992 else if (!Subtarget->hasVFP2())
5993 BuildMI(DispatchBB, dl, TII->get(ARM::Int_eh_sjlj_dispatchsetup_nofp));
5994 else
5995 BuildMI(DispatchBB, dl, TII->get(ARM::Int_eh_sjlj_dispatchsetup));
5996
5997 unsigned NumLPads = LPadList.size();
5998 if (Subtarget->isThumb2()) {
5999 unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
6000 AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2LDRi12), NewVReg1)
6001 .addFrameIndex(FI)
6002 .addImm(4)
6003 .addMemOperand(FIMMOLd));
6004
6005 if (NumLPads < 256) {
6006 AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2CMPri))
6007 .addReg(NewVReg1)
6008 .addImm(LPadList.size()));
6009 } else {
6010 unsigned VReg1 = MRI->createVirtualRegister(TRC);
6011 AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2MOVi16), VReg1)
6012 .addImm(NumLPads & 0xFFFF));
6013
6014 unsigned VReg2 = VReg1;
6015 if ((NumLPads & 0xFFFF0000) != 0) {
6016 VReg2 = MRI->createVirtualRegister(TRC);
6017 AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2MOVTi16), VReg2)
6018 .addReg(VReg1)
6019 .addImm(NumLPads >> 16));
6020 }
6021
6022 AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2CMPrr))
6023 .addReg(NewVReg1)
6024 .addReg(VReg2));
6025 }
6026
6027 BuildMI(DispatchBB, dl, TII->get(ARM::t2Bcc))
6028 .addMBB(TrapBB)
6029 .addImm(ARMCC::HI)
6030 .addReg(ARM::CPSR);
6031
6032 unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
6033 AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::t2LEApcrelJT),NewVReg3)
6034 .addJumpTableIndex(MJTI)
6035 .addImm(UId));
6036
6037 unsigned NewVReg4 = MRI->createVirtualRegister(TRC);
6038 AddDefaultCC(
6039 AddDefaultPred(
6040 BuildMI(DispContBB, dl, TII->get(ARM::t2ADDrs), NewVReg4)
6041 .addReg(NewVReg3, RegState::Kill)
6042 .addReg(NewVReg1)
6043 .addImm(ARM_AM::getSORegOpc(ARM_AM::lsl, 2))));
6044
6045 BuildMI(DispContBB, dl, TII->get(ARM::t2BR_JT))
6046 .addReg(NewVReg4, RegState::Kill)
6047 .addReg(NewVReg1)
6048 .addJumpTableIndex(MJTI)
6049 .addImm(UId);
6050 } else if (Subtarget->isThumb()) {
6051 unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
6052 AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::tLDRspi), NewVReg1)
6053 .addFrameIndex(FI)
6054 .addImm(1)
6055 .addMemOperand(FIMMOLd));
6056
6057 if (NumLPads < 256) {
6058 AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::tCMPi8))
6059 .addReg(NewVReg1)
6060 .addImm(NumLPads));
6061 } else {
6062 MachineConstantPool *ConstantPool = MF->getConstantPool();
6063 Type *Int32Ty = Type::getInt32Ty(MF->getFunction()->getContext());
6064 const Constant *C = ConstantInt::get(Int32Ty, NumLPads);
6065
6066 // MachineConstantPool wants an explicit alignment.
6067 unsigned Align = getTargetData()->getPrefTypeAlignment(Int32Ty);
6068 if (Align == 0)
6069 Align = getTargetData()->getTypeAllocSize(C->getType());
6070 unsigned Idx = ConstantPool->getConstantPoolIndex(C, Align);
6071
6072 unsigned VReg1 = MRI->createVirtualRegister(TRC);
6073 AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::tLDRpci))
6074 .addReg(VReg1, RegState::Define)
6075 .addConstantPoolIndex(Idx));
6076 AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::tCMPr))
6077 .addReg(NewVReg1)
6078 .addReg(VReg1));
6079 }
6080
6081 BuildMI(DispatchBB, dl, TII->get(ARM::tBcc))
6082 .addMBB(TrapBB)
6083 .addImm(ARMCC::HI)
6084 .addReg(ARM::CPSR);
6085
6086 unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
6087 AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tLSLri), NewVReg2)
6088 .addReg(ARM::CPSR, RegState::Define)
6089 .addReg(NewVReg1)
6090 .addImm(2));
6091
6092 unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
6093 AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tLEApcrelJT), NewVReg3)
6094 .addJumpTableIndex(MJTI)
6095 .addImm(UId));
6096
6097 unsigned NewVReg4 = MRI->createVirtualRegister(TRC);
6098 AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tADDrr), NewVReg4)
6099 .addReg(ARM::CPSR, RegState::Define)
6100 .addReg(NewVReg2, RegState::Kill)
6101 .addReg(NewVReg3));
6102
6103 MachineMemOperand *JTMMOLd =
6104 MF->getMachineMemOperand(MachinePointerInfo::getJumpTable(),
6105 MachineMemOperand::MOLoad, 4, 4);
6106
6107 unsigned NewVReg5 = MRI->createVirtualRegister(TRC);
6108 AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tLDRi), NewVReg5)
6109 .addReg(NewVReg4, RegState::Kill)
6110 .addImm(0)
6111 .addMemOperand(JTMMOLd));
6112
6113 unsigned NewVReg6 = MRI->createVirtualRegister(TRC);
6114 AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tADDrr), NewVReg6)
6115 .addReg(ARM::CPSR, RegState::Define)
6116 .addReg(NewVReg5, RegState::Kill)
6117 .addReg(NewVReg3));
6118
6119 BuildMI(DispContBB, dl, TII->get(ARM::tBR_JTr))
6120 .addReg(NewVReg6, RegState::Kill)
6121 .addJumpTableIndex(MJTI)
6122 .addImm(UId);
6123 } else {
6124 unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
6125 AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::LDRi12), NewVReg1)
6126 .addFrameIndex(FI)
6127 .addImm(4)
6128 .addMemOperand(FIMMOLd));
6129
6130 if (NumLPads < 256) {
6131 AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::CMPri))
6132 .addReg(NewVReg1)
6133 .addImm(NumLPads));
6134 } else if (Subtarget->hasV6T2Ops() && isUInt<16>(NumLPads)) {
6135 unsigned VReg1 = MRI->createVirtualRegister(TRC);
6136 AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::MOVi16), VReg1)
6137 .addImm(NumLPads & 0xFFFF));
6138
6139 unsigned VReg2 = VReg1;
6140 if ((NumLPads & 0xFFFF0000) != 0) {
6141 VReg2 = MRI->createVirtualRegister(TRC);
6142 AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::MOVTi16), VReg2)
6143 .addReg(VReg1)
6144 .addImm(NumLPads >> 16));
6145 }
6146
6147 AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::CMPrr))
6148 .addReg(NewVReg1)
6149 .addReg(VReg2));
6150 } else {
6151 MachineConstantPool *ConstantPool = MF->getConstantPool();
6152 Type *Int32Ty = Type::getInt32Ty(MF->getFunction()->getContext());
6153 const Constant *C = ConstantInt::get(Int32Ty, NumLPads);
6154
6155 // MachineConstantPool wants an explicit alignment.
6156 unsigned Align = getTargetData()->getPrefTypeAlignment(Int32Ty);
6157 if (Align == 0)
6158 Align = getTargetData()->getTypeAllocSize(C->getType());
6159 unsigned Idx = ConstantPool->getConstantPoolIndex(C, Align);
6160
6161 unsigned VReg1 = MRI->createVirtualRegister(TRC);
6162 AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::LDRcp))
6163 .addReg(VReg1, RegState::Define)
6164 .addConstantPoolIndex(Idx)
6165 .addImm(0));
6166 AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::CMPrr))
6167 .addReg(NewVReg1)
6168 .addReg(VReg1, RegState::Kill));
6169 }
6170
6171 BuildMI(DispatchBB, dl, TII->get(ARM::Bcc))
6172 .addMBB(TrapBB)
6173 .addImm(ARMCC::HI)
6174 .addReg(ARM::CPSR);
6175
6176 unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
6177 AddDefaultCC(
6178 AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::MOVsi), NewVReg3)
6179 .addReg(NewVReg1)
6180 .addImm(ARM_AM::getSORegOpc(ARM_AM::lsl, 2))));
6181 unsigned NewVReg4 = MRI->createVirtualRegister(TRC);
6182 AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::LEApcrelJT), NewVReg4)
6183 .addJumpTableIndex(MJTI)
6184 .addImm(UId));
6185
6186 MachineMemOperand *JTMMOLd =
6187 MF->getMachineMemOperand(MachinePointerInfo::getJumpTable(),
6188 MachineMemOperand::MOLoad, 4, 4);
6189 unsigned NewVReg5 = MRI->createVirtualRegister(TRC);
6190 AddDefaultPred(
6191 BuildMI(DispContBB, dl, TII->get(ARM::LDRrs), NewVReg5)
6192 .addReg(NewVReg3, RegState::Kill)
6193 .addReg(NewVReg4)
6194 .addImm(0)
6195 .addMemOperand(JTMMOLd));
6196
6197 BuildMI(DispContBB, dl, TII->get(ARM::BR_JTadd))
6198 .addReg(NewVReg5, RegState::Kill)
6199 .addReg(NewVReg4)
6200 .addJumpTableIndex(MJTI)
6201 .addImm(UId);
6202 }
6203
6204 // Add the jump table entries as successors to the MBB.
6205 SmallPtrSet<MachineBasicBlock*, 8> SeenMBBs;
6206 for (std::vector<MachineBasicBlock*>::iterator
6207 I = LPadList.begin(), E = LPadList.end(); I != E; ++I) {
6208 MachineBasicBlock *CurMBB = *I;
6209 if (SeenMBBs.insert(CurMBB))
6210 DispContBB->addSuccessor(CurMBB);
6211 }
6212
6213 // N.B. the order the invoke BBs are processed in doesn't matter here.
6214 const ARMBaseInstrInfo *AII = static_cast<const ARMBaseInstrInfo*>(TII);
6215 const ARMBaseRegisterInfo &RI = AII->getRegisterInfo();
6216 const uint16_t *SavedRegs = RI.getCalleeSavedRegs(MF);
6217 SmallVector<MachineBasicBlock*, 64> MBBLPads;
6218 for (SmallPtrSet<MachineBasicBlock*, 64>::iterator
6219 I = InvokeBBs.begin(), E = InvokeBBs.end(); I != E; ++I) {
6220 MachineBasicBlock *BB = *I;
6221
6222 // Remove the landing pad successor from the invoke block and replace it
6223 // with the new dispatch block.
6224 SmallVector<MachineBasicBlock*, 4> Successors(BB->succ_begin(),
6225 BB->succ_end());
6226 while (!Successors.empty()) {
6227 MachineBasicBlock *SMBB = Successors.pop_back_val();
6228 if (SMBB->isLandingPad()) {
6229 BB->removeSuccessor(SMBB);
6230 MBBLPads.push_back(SMBB);
6231 }
6232 }
6233
6234 BB->addSuccessor(DispatchBB);
6235
6236 // Find the invoke call and mark all of the callee-saved registers as
6237 // 'implicit defined' so that they're spilled. This prevents code from
6238 // moving instructions to before the EH block, where they will never be
6239 // executed.
6240 for (MachineBasicBlock::reverse_iterator
6241 II = BB->rbegin(), IE = BB->rend(); II != IE; ++II) {
6242 if (!II->isCall()) continue;
6243
6244 DenseMap<unsigned, bool> DefRegs;
6245 for (MachineInstr::mop_iterator
6246 OI = II->operands_begin(), OE = II->operands_end();
6247 OI != OE; ++OI) {
6248 if (!OI->isReg()) continue;
6249 DefRegs[OI->getReg()] = true;
6250 }
6251
6252 MachineInstrBuilder MIB(&*II);
6253
6254 for (unsigned i = 0; SavedRegs[i] != 0; ++i) {
6255 unsigned Reg = SavedRegs[i];
6256 if (Subtarget->isThumb2() &&
6257 !ARM::tGPRRegClass.contains(Reg) &&
6258 !ARM::hGPRRegClass.contains(Reg))
6259 continue;
6260 if (Subtarget->isThumb1Only() && !ARM::tGPRRegClass.contains(Reg))
6261 continue;
6262 if (!Subtarget->isThumb() && !ARM::GPRRegClass.contains(Reg))
6263 continue;
6264 if (!DefRegs[Reg])
6265 MIB.addReg(Reg, RegState::ImplicitDefine | RegState::Dead);
6266 }
6267
6268 break;
6269 }
6270 }
6271
6272 // Mark all former landing pads as non-landing pads. The dispatch is the only
6273 // landing pad now.
6274 for (SmallVectorImpl<MachineBasicBlock*>::iterator
6275 I = MBBLPads.begin(), E = MBBLPads.end(); I != E; ++I)
6276 (*I)->setIsLandingPad(false);
6277
6278 // The instruction is gone now.
6279 MI->eraseFromParent();
6280
6281 return MBB;
6282 }
6283
6284 static
OtherSucc(MachineBasicBlock * MBB,MachineBasicBlock * Succ)6285 MachineBasicBlock *OtherSucc(MachineBasicBlock *MBB, MachineBasicBlock *Succ) {
6286 for (MachineBasicBlock::succ_iterator I = MBB->succ_begin(),
6287 E = MBB->succ_end(); I != E; ++I)
6288 if (*I != Succ)
6289 return *I;
6290 llvm_unreachable("Expecting a BB with two successors!");
6291 }
6292
6293 MachineBasicBlock *ARMTargetLowering::
EmitStructByval(MachineInstr * MI,MachineBasicBlock * BB) const6294 EmitStructByval(MachineInstr *MI, MachineBasicBlock *BB) const {
6295 // This pseudo instruction has 3 operands: dst, src, size
6296 // We expand it to a loop if size > Subtarget->getMaxInlineSizeThreshold().
6297 // Otherwise, we will generate unrolled scalar copies.
6298 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
6299 const BasicBlock *LLVM_BB = BB->getBasicBlock();
6300 MachineFunction::iterator It = BB;
6301 ++It;
6302
6303 unsigned dest = MI->getOperand(0).getReg();
6304 unsigned src = MI->getOperand(1).getReg();
6305 unsigned SizeVal = MI->getOperand(2).getImm();
6306 unsigned Align = MI->getOperand(3).getImm();
6307 DebugLoc dl = MI->getDebugLoc();
6308
6309 bool isThumb2 = Subtarget->isThumb2();
6310 MachineFunction *MF = BB->getParent();
6311 MachineRegisterInfo &MRI = MF->getRegInfo();
6312 unsigned ldrOpc, strOpc, UnitSize = 0;
6313
6314 const TargetRegisterClass *TRC = isThumb2 ?
6315 (const TargetRegisterClass*)&ARM::tGPRRegClass :
6316 (const TargetRegisterClass*)&ARM::GPRRegClass;
6317 const TargetRegisterClass *TRC_Vec = 0;
6318
6319 if (Align & 1) {
6320 ldrOpc = isThumb2 ? ARM::t2LDRB_POST : ARM::LDRB_POST_IMM;
6321 strOpc = isThumb2 ? ARM::t2STRB_POST : ARM::STRB_POST_IMM;
6322 UnitSize = 1;
6323 } else if (Align & 2) {
6324 ldrOpc = isThumb2 ? ARM::t2LDRH_POST : ARM::LDRH_POST;
6325 strOpc = isThumb2 ? ARM::t2STRH_POST : ARM::STRH_POST;
6326 UnitSize = 2;
6327 } else {
6328 // Check whether we can use NEON instructions.
6329 if (!MF->getFunction()->hasFnAttr(Attribute::NoImplicitFloat) &&
6330 Subtarget->hasNEON()) {
6331 if ((Align % 16 == 0) && SizeVal >= 16) {
6332 ldrOpc = ARM::VLD1q32wb_fixed;
6333 strOpc = ARM::VST1q32wb_fixed;
6334 UnitSize = 16;
6335 TRC_Vec = (const TargetRegisterClass*)&ARM::DPairRegClass;
6336 }
6337 else if ((Align % 8 == 0) && SizeVal >= 8) {
6338 ldrOpc = ARM::VLD1d32wb_fixed;
6339 strOpc = ARM::VST1d32wb_fixed;
6340 UnitSize = 8;
6341 TRC_Vec = (const TargetRegisterClass*)&ARM::DPRRegClass;
6342 }
6343 }
6344 // Can't use NEON instructions.
6345 if (UnitSize == 0) {
6346 ldrOpc = isThumb2 ? ARM::t2LDR_POST : ARM::LDR_POST_IMM;
6347 strOpc = isThumb2 ? ARM::t2STR_POST : ARM::STR_POST_IMM;
6348 UnitSize = 4;
6349 }
6350 }
6351
6352 unsigned BytesLeft = SizeVal % UnitSize;
6353 unsigned LoopSize = SizeVal - BytesLeft;
6354
6355 if (SizeVal <= Subtarget->getMaxInlineSizeThreshold()) {
6356 // Use LDR and STR to copy.
6357 // [scratch, srcOut] = LDR_POST(srcIn, UnitSize)
6358 // [destOut] = STR_POST(scratch, destIn, UnitSize)
6359 unsigned srcIn = src;
6360 unsigned destIn = dest;
6361 for (unsigned i = 0; i < LoopSize; i+=UnitSize) {
6362 unsigned scratch = MRI.createVirtualRegister(UnitSize >= 8 ? TRC_Vec:TRC);
6363 unsigned srcOut = MRI.createVirtualRegister(TRC);
6364 unsigned destOut = MRI.createVirtualRegister(TRC);
6365 if (UnitSize >= 8) {
6366 AddDefaultPred(BuildMI(*BB, MI, dl,
6367 TII->get(ldrOpc), scratch)
6368 .addReg(srcOut, RegState::Define).addReg(srcIn).addImm(0));
6369
6370 AddDefaultPred(BuildMI(*BB, MI, dl, TII->get(strOpc), destOut)
6371 .addReg(destIn).addImm(0).addReg(scratch));
6372 } else if (isThumb2) {
6373 AddDefaultPred(BuildMI(*BB, MI, dl,
6374 TII->get(ldrOpc), scratch)
6375 .addReg(srcOut, RegState::Define).addReg(srcIn).addImm(UnitSize));
6376
6377 AddDefaultPred(BuildMI(*BB, MI, dl, TII->get(strOpc), destOut)
6378 .addReg(scratch).addReg(destIn)
6379 .addImm(UnitSize));
6380 } else {
6381 AddDefaultPred(BuildMI(*BB, MI, dl,
6382 TII->get(ldrOpc), scratch)
6383 .addReg(srcOut, RegState::Define).addReg(srcIn).addReg(0)
6384 .addImm(UnitSize));
6385
6386 AddDefaultPred(BuildMI(*BB, MI, dl, TII->get(strOpc), destOut)
6387 .addReg(scratch).addReg(destIn)
6388 .addReg(0).addImm(UnitSize));
6389 }
6390 srcIn = srcOut;
6391 destIn = destOut;
6392 }
6393
6394 // Handle the leftover bytes with LDRB and STRB.
6395 // [scratch, srcOut] = LDRB_POST(srcIn, 1)
6396 // [destOut] = STRB_POST(scratch, destIn, 1)
6397 ldrOpc = isThumb2 ? ARM::t2LDRB_POST : ARM::LDRB_POST_IMM;
6398 strOpc = isThumb2 ? ARM::t2STRB_POST : ARM::STRB_POST_IMM;
6399 for (unsigned i = 0; i < BytesLeft; i++) {
6400 unsigned scratch = MRI.createVirtualRegister(TRC);
6401 unsigned srcOut = MRI.createVirtualRegister(TRC);
6402 unsigned destOut = MRI.createVirtualRegister(TRC);
6403 if (isThumb2) {
6404 AddDefaultPred(BuildMI(*BB, MI, dl,
6405 TII->get(ldrOpc),scratch)
6406 .addReg(srcOut, RegState::Define).addReg(srcIn).addImm(1));
6407
6408 AddDefaultPred(BuildMI(*BB, MI, dl, TII->get(strOpc), destOut)
6409 .addReg(scratch).addReg(destIn)
6410 .addReg(0).addImm(1));
6411 } else {
6412 AddDefaultPred(BuildMI(*BB, MI, dl,
6413 TII->get(ldrOpc),scratch)
6414 .addReg(srcOut, RegState::Define).addReg(srcIn).addImm(1));
6415
6416 AddDefaultPred(BuildMI(*BB, MI, dl, TII->get(strOpc), destOut)
6417 .addReg(scratch).addReg(destIn)
6418 .addReg(0).addImm(1));
6419 }
6420 srcIn = srcOut;
6421 destIn = destOut;
6422 }
6423 MI->eraseFromParent(); // The instruction is gone now.
6424 return BB;
6425 }
6426
6427 // Expand the pseudo op to a loop.
6428 // thisMBB:
6429 // ...
6430 // movw varEnd, # --> with thumb2
6431 // movt varEnd, #
6432 // ldrcp varEnd, idx --> without thumb2
6433 // fallthrough --> loopMBB
6434 // loopMBB:
6435 // PHI varPhi, varEnd, varLoop
6436 // PHI srcPhi, src, srcLoop
6437 // PHI destPhi, dst, destLoop
6438 // [scratch, srcLoop] = LDR_POST(srcPhi, UnitSize)
6439 // [destLoop] = STR_POST(scratch, destPhi, UnitSize)
6440 // subs varLoop, varPhi, #UnitSize
6441 // bne loopMBB
6442 // fallthrough --> exitMBB
6443 // exitMBB:
6444 // epilogue to handle left-over bytes
6445 // [scratch, srcOut] = LDRB_POST(srcLoop, 1)
6446 // [destOut] = STRB_POST(scratch, destLoop, 1)
6447 MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
6448 MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
6449 MF->insert(It, loopMBB);
6450 MF->insert(It, exitMBB);
6451
6452 // Transfer the remainder of BB and its successor edges to exitMBB.
6453 exitMBB->splice(exitMBB->begin(), BB,
6454 llvm::next(MachineBasicBlock::iterator(MI)),
6455 BB->end());
6456 exitMBB->transferSuccessorsAndUpdatePHIs(BB);
6457
6458 // Load an immediate to varEnd.
6459 unsigned varEnd = MRI.createVirtualRegister(TRC);
6460 if (isThumb2) {
6461 unsigned VReg1 = varEnd;
6462 if ((LoopSize & 0xFFFF0000) != 0)
6463 VReg1 = MRI.createVirtualRegister(TRC);
6464 AddDefaultPred(BuildMI(BB, dl, TII->get(ARM::t2MOVi16), VReg1)
6465 .addImm(LoopSize & 0xFFFF));
6466
6467 if ((LoopSize & 0xFFFF0000) != 0)
6468 AddDefaultPred(BuildMI(BB, dl, TII->get(ARM::t2MOVTi16), varEnd)
6469 .addReg(VReg1)
6470 .addImm(LoopSize >> 16));
6471 } else {
6472 MachineConstantPool *ConstantPool = MF->getConstantPool();
6473 Type *Int32Ty = Type::getInt32Ty(MF->getFunction()->getContext());
6474 const Constant *C = ConstantInt::get(Int32Ty, LoopSize);
6475
6476 // MachineConstantPool wants an explicit alignment.
6477 unsigned Align = getTargetData()->getPrefTypeAlignment(Int32Ty);
6478 if (Align == 0)
6479 Align = getTargetData()->getTypeAllocSize(C->getType());
6480 unsigned Idx = ConstantPool->getConstantPoolIndex(C, Align);
6481
6482 AddDefaultPred(BuildMI(BB, dl, TII->get(ARM::LDRcp))
6483 .addReg(varEnd, RegState::Define)
6484 .addConstantPoolIndex(Idx)
6485 .addImm(0));
6486 }
6487 BB->addSuccessor(loopMBB);
6488
6489 // Generate the loop body:
6490 // varPhi = PHI(varLoop, varEnd)
6491 // srcPhi = PHI(srcLoop, src)
6492 // destPhi = PHI(destLoop, dst)
6493 MachineBasicBlock *entryBB = BB;
6494 BB = loopMBB;
6495 unsigned varLoop = MRI.createVirtualRegister(TRC);
6496 unsigned varPhi = MRI.createVirtualRegister(TRC);
6497 unsigned srcLoop = MRI.createVirtualRegister(TRC);
6498 unsigned srcPhi = MRI.createVirtualRegister(TRC);
6499 unsigned destLoop = MRI.createVirtualRegister(TRC);
6500 unsigned destPhi = MRI.createVirtualRegister(TRC);
6501
6502 BuildMI(*BB, BB->begin(), dl, TII->get(ARM::PHI), varPhi)
6503 .addReg(varLoop).addMBB(loopMBB)
6504 .addReg(varEnd).addMBB(entryBB);
6505 BuildMI(BB, dl, TII->get(ARM::PHI), srcPhi)
6506 .addReg(srcLoop).addMBB(loopMBB)
6507 .addReg(src).addMBB(entryBB);
6508 BuildMI(BB, dl, TII->get(ARM::PHI), destPhi)
6509 .addReg(destLoop).addMBB(loopMBB)
6510 .addReg(dest).addMBB(entryBB);
6511
6512 // [scratch, srcLoop] = LDR_POST(srcPhi, UnitSize)
6513 // [destLoop] = STR_POST(scratch, destPhi, UnitSiz)
6514 unsigned scratch = MRI.createVirtualRegister(UnitSize >= 8 ? TRC_Vec:TRC);
6515 if (UnitSize >= 8) {
6516 AddDefaultPred(BuildMI(BB, dl, TII->get(ldrOpc), scratch)
6517 .addReg(srcLoop, RegState::Define).addReg(srcPhi).addImm(0));
6518
6519 AddDefaultPred(BuildMI(BB, dl, TII->get(strOpc), destLoop)
6520 .addReg(destPhi).addImm(0).addReg(scratch));
6521 } else if (isThumb2) {
6522 AddDefaultPred(BuildMI(BB, dl, TII->get(ldrOpc), scratch)
6523 .addReg(srcLoop, RegState::Define).addReg(srcPhi).addImm(UnitSize));
6524
6525 AddDefaultPred(BuildMI(BB, dl, TII->get(strOpc), destLoop)
6526 .addReg(scratch).addReg(destPhi)
6527 .addImm(UnitSize));
6528 } else {
6529 AddDefaultPred(BuildMI(BB, dl, TII->get(ldrOpc), scratch)
6530 .addReg(srcLoop, RegState::Define).addReg(srcPhi).addReg(0)
6531 .addImm(UnitSize));
6532
6533 AddDefaultPred(BuildMI(BB, dl, TII->get(strOpc), destLoop)
6534 .addReg(scratch).addReg(destPhi)
6535 .addReg(0).addImm(UnitSize));
6536 }
6537
6538 // Decrement loop variable by UnitSize.
6539 MachineInstrBuilder MIB = BuildMI(BB, dl,
6540 TII->get(isThumb2 ? ARM::t2SUBri : ARM::SUBri), varLoop);
6541 AddDefaultCC(AddDefaultPred(MIB.addReg(varPhi).addImm(UnitSize)));
6542 MIB->getOperand(5).setReg(ARM::CPSR);
6543 MIB->getOperand(5).setIsDef(true);
6544
6545 BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
6546 .addMBB(loopMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
6547
6548 // loopMBB can loop back to loopMBB or fall through to exitMBB.
6549 BB->addSuccessor(loopMBB);
6550 BB->addSuccessor(exitMBB);
6551
6552 // Add epilogue to handle BytesLeft.
6553 BB = exitMBB;
6554 MachineInstr *StartOfExit = exitMBB->begin();
6555 ldrOpc = isThumb2 ? ARM::t2LDRB_POST : ARM::LDRB_POST_IMM;
6556 strOpc = isThumb2 ? ARM::t2STRB_POST : ARM::STRB_POST_IMM;
6557
6558 // [scratch, srcOut] = LDRB_POST(srcLoop, 1)
6559 // [destOut] = STRB_POST(scratch, destLoop, 1)
6560 unsigned srcIn = srcLoop;
6561 unsigned destIn = destLoop;
6562 for (unsigned i = 0; i < BytesLeft; i++) {
6563 unsigned scratch = MRI.createVirtualRegister(TRC);
6564 unsigned srcOut = MRI.createVirtualRegister(TRC);
6565 unsigned destOut = MRI.createVirtualRegister(TRC);
6566 if (isThumb2) {
6567 AddDefaultPred(BuildMI(*BB, StartOfExit, dl,
6568 TII->get(ldrOpc),scratch)
6569 .addReg(srcOut, RegState::Define).addReg(srcIn).addImm(1));
6570
6571 AddDefaultPred(BuildMI(*BB, StartOfExit, dl, TII->get(strOpc), destOut)
6572 .addReg(scratch).addReg(destIn)
6573 .addImm(1));
6574 } else {
6575 AddDefaultPred(BuildMI(*BB, StartOfExit, dl,
6576 TII->get(ldrOpc),scratch)
6577 .addReg(srcOut, RegState::Define).addReg(srcIn).addReg(0).addImm(1));
6578
6579 AddDefaultPred(BuildMI(*BB, StartOfExit, dl, TII->get(strOpc), destOut)
6580 .addReg(scratch).addReg(destIn)
6581 .addReg(0).addImm(1));
6582 }
6583 srcIn = srcOut;
6584 destIn = destOut;
6585 }
6586
6587 MI->eraseFromParent(); // The instruction is gone now.
6588 return BB;
6589 }
6590
6591 MachineBasicBlock *
EmitInstrWithCustomInserter(MachineInstr * MI,MachineBasicBlock * BB) const6592 ARMTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
6593 MachineBasicBlock *BB) const {
6594 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
6595 DebugLoc dl = MI->getDebugLoc();
6596 bool isThumb2 = Subtarget->isThumb2();
6597 switch (MI->getOpcode()) {
6598 default: {
6599 MI->dump();
6600 llvm_unreachable("Unexpected instr type to insert");
6601 }
6602 // The Thumb2 pre-indexed stores have the same MI operands, they just
6603 // define them differently in the .td files from the isel patterns, so
6604 // they need pseudos.
6605 case ARM::t2STR_preidx:
6606 MI->setDesc(TII->get(ARM::t2STR_PRE));
6607 return BB;
6608 case ARM::t2STRB_preidx:
6609 MI->setDesc(TII->get(ARM::t2STRB_PRE));
6610 return BB;
6611 case ARM::t2STRH_preidx:
6612 MI->setDesc(TII->get(ARM::t2STRH_PRE));
6613 return BB;
6614
6615 case ARM::STRi_preidx:
6616 case ARM::STRBi_preidx: {
6617 unsigned NewOpc = MI->getOpcode() == ARM::STRi_preidx ?
6618 ARM::STR_PRE_IMM : ARM::STRB_PRE_IMM;
6619 // Decode the offset.
6620 unsigned Offset = MI->getOperand(4).getImm();
6621 bool isSub = ARM_AM::getAM2Op(Offset) == ARM_AM::sub;
6622 Offset = ARM_AM::getAM2Offset(Offset);
6623 if (isSub)
6624 Offset = -Offset;
6625
6626 MachineMemOperand *MMO = *MI->memoperands_begin();
6627 BuildMI(*BB, MI, dl, TII->get(NewOpc))
6628 .addOperand(MI->getOperand(0)) // Rn_wb
6629 .addOperand(MI->getOperand(1)) // Rt
6630 .addOperand(MI->getOperand(2)) // Rn
6631 .addImm(Offset) // offset (skip GPR==zero_reg)
6632 .addOperand(MI->getOperand(5)) // pred
6633 .addOperand(MI->getOperand(6))
6634 .addMemOperand(MMO);
6635 MI->eraseFromParent();
6636 return BB;
6637 }
6638 case ARM::STRr_preidx:
6639 case ARM::STRBr_preidx:
6640 case ARM::STRH_preidx: {
6641 unsigned NewOpc;
6642 switch (MI->getOpcode()) {
6643 default: llvm_unreachable("unexpected opcode!");
6644 case ARM::STRr_preidx: NewOpc = ARM::STR_PRE_REG; break;
6645 case ARM::STRBr_preidx: NewOpc = ARM::STRB_PRE_REG; break;
6646 case ARM::STRH_preidx: NewOpc = ARM::STRH_PRE; break;
6647 }
6648 MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(NewOpc));
6649 for (unsigned i = 0; i < MI->getNumOperands(); ++i)
6650 MIB.addOperand(MI->getOperand(i));
6651 MI->eraseFromParent();
6652 return BB;
6653 }
6654 case ARM::ATOMIC_LOAD_ADD_I8:
6655 return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2ADDrr : ARM::ADDrr);
6656 case ARM::ATOMIC_LOAD_ADD_I16:
6657 return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2ADDrr : ARM::ADDrr);
6658 case ARM::ATOMIC_LOAD_ADD_I32:
6659 return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2ADDrr : ARM::ADDrr);
6660
6661 case ARM::ATOMIC_LOAD_AND_I8:
6662 return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2ANDrr : ARM::ANDrr);
6663 case ARM::ATOMIC_LOAD_AND_I16:
6664 return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2ANDrr : ARM::ANDrr);
6665 case ARM::ATOMIC_LOAD_AND_I32:
6666 return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2ANDrr : ARM::ANDrr);
6667
6668 case ARM::ATOMIC_LOAD_OR_I8:
6669 return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2ORRrr : ARM::ORRrr);
6670 case ARM::ATOMIC_LOAD_OR_I16:
6671 return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2ORRrr : ARM::ORRrr);
6672 case ARM::ATOMIC_LOAD_OR_I32:
6673 return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2ORRrr : ARM::ORRrr);
6674
6675 case ARM::ATOMIC_LOAD_XOR_I8:
6676 return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2EORrr : ARM::EORrr);
6677 case ARM::ATOMIC_LOAD_XOR_I16:
6678 return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2EORrr : ARM::EORrr);
6679 case ARM::ATOMIC_LOAD_XOR_I32:
6680 return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2EORrr : ARM::EORrr);
6681
6682 case ARM::ATOMIC_LOAD_NAND_I8:
6683 return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2BICrr : ARM::BICrr);
6684 case ARM::ATOMIC_LOAD_NAND_I16:
6685 return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2BICrr : ARM::BICrr);
6686 case ARM::ATOMIC_LOAD_NAND_I32:
6687 return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2BICrr : ARM::BICrr);
6688
6689 case ARM::ATOMIC_LOAD_SUB_I8:
6690 return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr);
6691 case ARM::ATOMIC_LOAD_SUB_I16:
6692 return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr);
6693 case ARM::ATOMIC_LOAD_SUB_I32:
6694 return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr);
6695
6696 case ARM::ATOMIC_LOAD_MIN_I8:
6697 return EmitAtomicBinaryMinMax(MI, BB, 1, true, ARMCC::LT);
6698 case ARM::ATOMIC_LOAD_MIN_I16:
6699 return EmitAtomicBinaryMinMax(MI, BB, 2, true, ARMCC::LT);
6700 case ARM::ATOMIC_LOAD_MIN_I32:
6701 return EmitAtomicBinaryMinMax(MI, BB, 4, true, ARMCC::LT);
6702
6703 case ARM::ATOMIC_LOAD_MAX_I8:
6704 return EmitAtomicBinaryMinMax(MI, BB, 1, true, ARMCC::GT);
6705 case ARM::ATOMIC_LOAD_MAX_I16:
6706 return EmitAtomicBinaryMinMax(MI, BB, 2, true, ARMCC::GT);
6707 case ARM::ATOMIC_LOAD_MAX_I32:
6708 return EmitAtomicBinaryMinMax(MI, BB, 4, true, ARMCC::GT);
6709
6710 case ARM::ATOMIC_LOAD_UMIN_I8:
6711 return EmitAtomicBinaryMinMax(MI, BB, 1, false, ARMCC::LO);
6712 case ARM::ATOMIC_LOAD_UMIN_I16:
6713 return EmitAtomicBinaryMinMax(MI, BB, 2, false, ARMCC::LO);
6714 case ARM::ATOMIC_LOAD_UMIN_I32:
6715 return EmitAtomicBinaryMinMax(MI, BB, 4, false, ARMCC::LO);
6716
6717 case ARM::ATOMIC_LOAD_UMAX_I8:
6718 return EmitAtomicBinaryMinMax(MI, BB, 1, false, ARMCC::HI);
6719 case ARM::ATOMIC_LOAD_UMAX_I16:
6720 return EmitAtomicBinaryMinMax(MI, BB, 2, false, ARMCC::HI);
6721 case ARM::ATOMIC_LOAD_UMAX_I32:
6722 return EmitAtomicBinaryMinMax(MI, BB, 4, false, ARMCC::HI);
6723
6724 case ARM::ATOMIC_SWAP_I8: return EmitAtomicBinary(MI, BB, 1, 0);
6725 case ARM::ATOMIC_SWAP_I16: return EmitAtomicBinary(MI, BB, 2, 0);
6726 case ARM::ATOMIC_SWAP_I32: return EmitAtomicBinary(MI, BB, 4, 0);
6727
6728 case ARM::ATOMIC_CMP_SWAP_I8: return EmitAtomicCmpSwap(MI, BB, 1);
6729 case ARM::ATOMIC_CMP_SWAP_I16: return EmitAtomicCmpSwap(MI, BB, 2);
6730 case ARM::ATOMIC_CMP_SWAP_I32: return EmitAtomicCmpSwap(MI, BB, 4);
6731
6732
6733 case ARM::ATOMADD6432:
6734 return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2ADDrr : ARM::ADDrr,
6735 isThumb2 ? ARM::t2ADCrr : ARM::ADCrr,
6736 /*NeedsCarry*/ true);
6737 case ARM::ATOMSUB6432:
6738 return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr,
6739 isThumb2 ? ARM::t2SBCrr : ARM::SBCrr,
6740 /*NeedsCarry*/ true);
6741 case ARM::ATOMOR6432:
6742 return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2ORRrr : ARM::ORRrr,
6743 isThumb2 ? ARM::t2ORRrr : ARM::ORRrr);
6744 case ARM::ATOMXOR6432:
6745 return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2EORrr : ARM::EORrr,
6746 isThumb2 ? ARM::t2EORrr : ARM::EORrr);
6747 case ARM::ATOMAND6432:
6748 return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2ANDrr : ARM::ANDrr,
6749 isThumb2 ? ARM::t2ANDrr : ARM::ANDrr);
6750 case ARM::ATOMSWAP6432:
6751 return EmitAtomicBinary64(MI, BB, 0, 0, false);
6752 case ARM::ATOMCMPXCHG6432:
6753 return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr,
6754 isThumb2 ? ARM::t2SBCrr : ARM::SBCrr,
6755 /*NeedsCarry*/ false, /*IsCmpxchg*/true);
6756
6757 case ARM::tMOVCCr_pseudo: {
6758 // To "insert" a SELECT_CC instruction, we actually have to insert the
6759 // diamond control-flow pattern. The incoming instruction knows the
6760 // destination vreg to set, the condition code register to branch on, the
6761 // true/false values to select between, and a branch opcode to use.
6762 const BasicBlock *LLVM_BB = BB->getBasicBlock();
6763 MachineFunction::iterator It = BB;
6764 ++It;
6765
6766 // thisMBB:
6767 // ...
6768 // TrueVal = ...
6769 // cmpTY ccX, r1, r2
6770 // bCC copy1MBB
6771 // fallthrough --> copy0MBB
6772 MachineBasicBlock *thisMBB = BB;
6773 MachineFunction *F = BB->getParent();
6774 MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
6775 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
6776 F->insert(It, copy0MBB);
6777 F->insert(It, sinkMBB);
6778
6779 // Transfer the remainder of BB and its successor edges to sinkMBB.
6780 sinkMBB->splice(sinkMBB->begin(), BB,
6781 llvm::next(MachineBasicBlock::iterator(MI)),
6782 BB->end());
6783 sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
6784
6785 BB->addSuccessor(copy0MBB);
6786 BB->addSuccessor(sinkMBB);
6787
6788 BuildMI(BB, dl, TII->get(ARM::tBcc)).addMBB(sinkMBB)
6789 .addImm(MI->getOperand(3).getImm()).addReg(MI->getOperand(4).getReg());
6790
6791 // copy0MBB:
6792 // %FalseValue = ...
6793 // # fallthrough to sinkMBB
6794 BB = copy0MBB;
6795
6796 // Update machine-CFG edges
6797 BB->addSuccessor(sinkMBB);
6798
6799 // sinkMBB:
6800 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
6801 // ...
6802 BB = sinkMBB;
6803 BuildMI(*BB, BB->begin(), dl,
6804 TII->get(ARM::PHI), MI->getOperand(0).getReg())
6805 .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
6806 .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
6807
6808 MI->eraseFromParent(); // The pseudo instruction is gone now.
6809 return BB;
6810 }
6811
6812 case ARM::BCCi64:
6813 case ARM::BCCZi64: {
6814 // If there is an unconditional branch to the other successor, remove it.
6815 BB->erase(llvm::next(MachineBasicBlock::iterator(MI)), BB->end());
6816
6817 // Compare both parts that make up the double comparison separately for
6818 // equality.
6819 bool RHSisZero = MI->getOpcode() == ARM::BCCZi64;
6820
6821 unsigned LHS1 = MI->getOperand(1).getReg();
6822 unsigned LHS2 = MI->getOperand(2).getReg();
6823 if (RHSisZero) {
6824 AddDefaultPred(BuildMI(BB, dl,
6825 TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
6826 .addReg(LHS1).addImm(0));
6827 BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
6828 .addReg(LHS2).addImm(0)
6829 .addImm(ARMCC::EQ).addReg(ARM::CPSR);
6830 } else {
6831 unsigned RHS1 = MI->getOperand(3).getReg();
6832 unsigned RHS2 = MI->getOperand(4).getReg();
6833 AddDefaultPred(BuildMI(BB, dl,
6834 TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
6835 .addReg(LHS1).addReg(RHS1));
6836 BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
6837 .addReg(LHS2).addReg(RHS2)
6838 .addImm(ARMCC::EQ).addReg(ARM::CPSR);
6839 }
6840
6841 MachineBasicBlock *destMBB = MI->getOperand(RHSisZero ? 3 : 5).getMBB();
6842 MachineBasicBlock *exitMBB = OtherSucc(BB, destMBB);
6843 if (MI->getOperand(0).getImm() == ARMCC::NE)
6844 std::swap(destMBB, exitMBB);
6845
6846 BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
6847 .addMBB(destMBB).addImm(ARMCC::EQ).addReg(ARM::CPSR);
6848 if (isThumb2)
6849 AddDefaultPred(BuildMI(BB, dl, TII->get(ARM::t2B)).addMBB(exitMBB));
6850 else
6851 BuildMI(BB, dl, TII->get(ARM::B)) .addMBB(exitMBB);
6852
6853 MI->eraseFromParent(); // The pseudo instruction is gone now.
6854 return BB;
6855 }
6856
6857 case ARM::Int_eh_sjlj_setjmp:
6858 case ARM::Int_eh_sjlj_setjmp_nofp:
6859 case ARM::tInt_eh_sjlj_setjmp:
6860 case ARM::t2Int_eh_sjlj_setjmp:
6861 case ARM::t2Int_eh_sjlj_setjmp_nofp:
6862 EmitSjLjDispatchBlock(MI, BB);
6863 return BB;
6864
6865 case ARM::ABS:
6866 case ARM::t2ABS: {
6867 // To insert an ABS instruction, we have to insert the
6868 // diamond control-flow pattern. The incoming instruction knows the
6869 // source vreg to test against 0, the destination vreg to set,
6870 // the condition code register to branch on, the
6871 // true/false values to select between, and a branch opcode to use.
6872 // It transforms
6873 // V1 = ABS V0
6874 // into
6875 // V2 = MOVS V0
6876 // BCC (branch to SinkBB if V0 >= 0)
6877 // RSBBB: V3 = RSBri V2, 0 (compute ABS if V2 < 0)
6878 // SinkBB: V1 = PHI(V2, V3)
6879 const BasicBlock *LLVM_BB = BB->getBasicBlock();
6880 MachineFunction::iterator BBI = BB;
6881 ++BBI;
6882 MachineFunction *Fn = BB->getParent();
6883 MachineBasicBlock *RSBBB = Fn->CreateMachineBasicBlock(LLVM_BB);
6884 MachineBasicBlock *SinkBB = Fn->CreateMachineBasicBlock(LLVM_BB);
6885 Fn->insert(BBI, RSBBB);
6886 Fn->insert(BBI, SinkBB);
6887
6888 unsigned int ABSSrcReg = MI->getOperand(1).getReg();
6889 unsigned int ABSDstReg = MI->getOperand(0).getReg();
6890 bool isThumb2 = Subtarget->isThumb2();
6891 MachineRegisterInfo &MRI = Fn->getRegInfo();
6892 // In Thumb mode S must not be specified if source register is the SP or
6893 // PC and if destination register is the SP, so restrict register class
6894 unsigned NewRsbDstReg = MRI.createVirtualRegister(isThumb2 ?
6895 (const TargetRegisterClass*)&ARM::rGPRRegClass :
6896 (const TargetRegisterClass*)&ARM::GPRRegClass);
6897
6898 // Transfer the remainder of BB and its successor edges to sinkMBB.
6899 SinkBB->splice(SinkBB->begin(), BB,
6900 llvm::next(MachineBasicBlock::iterator(MI)),
6901 BB->end());
6902 SinkBB->transferSuccessorsAndUpdatePHIs(BB);
6903
6904 BB->addSuccessor(RSBBB);
6905 BB->addSuccessor(SinkBB);
6906
6907 // fall through to SinkMBB
6908 RSBBB->addSuccessor(SinkBB);
6909
6910 // insert a cmp at the end of BB
6911 AddDefaultPred(BuildMI(BB, dl,
6912 TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
6913 .addReg(ABSSrcReg).addImm(0));
6914
6915 // insert a bcc with opposite CC to ARMCC::MI at the end of BB
6916 BuildMI(BB, dl,
6917 TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc)).addMBB(SinkBB)
6918 .addImm(ARMCC::getOppositeCondition(ARMCC::MI)).addReg(ARM::CPSR);
6919
6920 // insert rsbri in RSBBB
6921 // Note: BCC and rsbri will be converted into predicated rsbmi
6922 // by if-conversion pass
6923 BuildMI(*RSBBB, RSBBB->begin(), dl,
6924 TII->get(isThumb2 ? ARM::t2RSBri : ARM::RSBri), NewRsbDstReg)
6925 .addReg(ABSSrcReg, RegState::Kill)
6926 .addImm(0).addImm((unsigned)ARMCC::AL).addReg(0).addReg(0);
6927
6928 // insert PHI in SinkBB,
6929 // reuse ABSDstReg to not change uses of ABS instruction
6930 BuildMI(*SinkBB, SinkBB->begin(), dl,
6931 TII->get(ARM::PHI), ABSDstReg)
6932 .addReg(NewRsbDstReg).addMBB(RSBBB)
6933 .addReg(ABSSrcReg).addMBB(BB);
6934
6935 // remove ABS instruction
6936 MI->eraseFromParent();
6937
6938 // return last added BB
6939 return SinkBB;
6940 }
6941 case ARM::COPY_STRUCT_BYVAL_I32:
6942 ++NumLoopByVals;
6943 return EmitStructByval(MI, BB);
6944 }
6945 }
6946
AdjustInstrPostInstrSelection(MachineInstr * MI,SDNode * Node) const6947 void ARMTargetLowering::AdjustInstrPostInstrSelection(MachineInstr *MI,
6948 SDNode *Node) const {
6949 if (!MI->hasPostISelHook()) {
6950 assert(!convertAddSubFlagsOpcode(MI->getOpcode()) &&
6951 "Pseudo flag-setting opcodes must be marked with 'hasPostISelHook'");
6952 return;
6953 }
6954
6955 const MCInstrDesc *MCID = &MI->getDesc();
6956 // Adjust potentially 's' setting instructions after isel, i.e. ADC, SBC, RSB,
6957 // RSC. Coming out of isel, they have an implicit CPSR def, but the optional
6958 // operand is still set to noreg. If needed, set the optional operand's
6959 // register to CPSR, and remove the redundant implicit def.
6960 //
6961 // e.g. ADCS (..., CPSR<imp-def>) -> ADC (... opt:CPSR<def>).
6962
6963 // Rename pseudo opcodes.
6964 unsigned NewOpc = convertAddSubFlagsOpcode(MI->getOpcode());
6965 if (NewOpc) {
6966 const ARMBaseInstrInfo *TII =
6967 static_cast<const ARMBaseInstrInfo*>(getTargetMachine().getInstrInfo());
6968 MCID = &TII->get(NewOpc);
6969
6970 assert(MCID->getNumOperands() == MI->getDesc().getNumOperands() + 1 &&
6971 "converted opcode should be the same except for cc_out");
6972
6973 MI->setDesc(*MCID);
6974
6975 // Add the optional cc_out operand
6976 MI->addOperand(MachineOperand::CreateReg(0, /*isDef=*/true));
6977 }
6978 unsigned ccOutIdx = MCID->getNumOperands() - 1;
6979
6980 // Any ARM instruction that sets the 's' bit should specify an optional
6981 // "cc_out" operand in the last operand position.
6982 if (!MI->hasOptionalDef() || !MCID->OpInfo[ccOutIdx].isOptionalDef()) {
6983 assert(!NewOpc && "Optional cc_out operand required");
6984 return;
6985 }
6986 // Look for an implicit def of CPSR added by MachineInstr ctor. Remove it
6987 // since we already have an optional CPSR def.
6988 bool definesCPSR = false;
6989 bool deadCPSR = false;
6990 for (unsigned i = MCID->getNumOperands(), e = MI->getNumOperands();
6991 i != e; ++i) {
6992 const MachineOperand &MO = MI->getOperand(i);
6993 if (MO.isReg() && MO.isDef() && MO.getReg() == ARM::CPSR) {
6994 definesCPSR = true;
6995 if (MO.isDead())
6996 deadCPSR = true;
6997 MI->RemoveOperand(i);
6998 break;
6999 }
7000 }
7001 if (!definesCPSR) {
7002 assert(!NewOpc && "Optional cc_out operand required");
7003 return;
7004 }
7005 assert(deadCPSR == !Node->hasAnyUseOfValue(1) && "inconsistent dead flag");
7006 if (deadCPSR) {
7007 assert(!MI->getOperand(ccOutIdx).getReg() &&
7008 "expect uninitialized optional cc_out operand");
7009 return;
7010 }
7011
7012 // If this instruction was defined with an optional CPSR def and its dag node
7013 // had a live implicit CPSR def, then activate the optional CPSR def.
7014 MachineOperand &MO = MI->getOperand(ccOutIdx);
7015 MO.setReg(ARM::CPSR);
7016 MO.setIsDef(true);
7017 }
7018
7019 //===----------------------------------------------------------------------===//
7020 // ARM Optimization Hooks
7021 //===----------------------------------------------------------------------===//
7022
7023 // Helper function that checks if N is a null or all ones constant.
isZeroOrAllOnes(SDValue N,bool AllOnes)7024 static inline bool isZeroOrAllOnes(SDValue N, bool AllOnes) {
7025 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N);
7026 if (!C)
7027 return false;
7028 return AllOnes ? C->isAllOnesValue() : C->isNullValue();
7029 }
7030
7031 // Return true if N is conditionally 0 or all ones.
7032 // Detects these expressions where cc is an i1 value:
7033 //
7034 // (select cc 0, y) [AllOnes=0]
7035 // (select cc y, 0) [AllOnes=0]
7036 // (zext cc) [AllOnes=0]
7037 // (sext cc) [AllOnes=0/1]
7038 // (select cc -1, y) [AllOnes=1]
7039 // (select cc y, -1) [AllOnes=1]
7040 //
7041 // Invert is set when N is the null/all ones constant when CC is false.
7042 // OtherOp is set to the alternative value of N.
isConditionalZeroOrAllOnes(SDNode * N,bool AllOnes,SDValue & CC,bool & Invert,SDValue & OtherOp,SelectionDAG & DAG)7043 static bool isConditionalZeroOrAllOnes(SDNode *N, bool AllOnes,
7044 SDValue &CC, bool &Invert,
7045 SDValue &OtherOp,
7046 SelectionDAG &DAG) {
7047 switch (N->getOpcode()) {
7048 default: return false;
7049 case ISD::SELECT: {
7050 CC = N->getOperand(0);
7051 SDValue N1 = N->getOperand(1);
7052 SDValue N2 = N->getOperand(2);
7053 if (isZeroOrAllOnes(N1, AllOnes)) {
7054 Invert = false;
7055 OtherOp = N2;
7056 return true;
7057 }
7058 if (isZeroOrAllOnes(N2, AllOnes)) {
7059 Invert = true;
7060 OtherOp = N1;
7061 return true;
7062 }
7063 return false;
7064 }
7065 case ISD::ZERO_EXTEND:
7066 // (zext cc) can never be the all ones value.
7067 if (AllOnes)
7068 return false;
7069 // Fall through.
7070 case ISD::SIGN_EXTEND: {
7071 EVT VT = N->getValueType(0);
7072 CC = N->getOperand(0);
7073 if (CC.getValueType() != MVT::i1)
7074 return false;
7075 Invert = !AllOnes;
7076 if (AllOnes)
7077 // When looking for an AllOnes constant, N is an sext, and the 'other'
7078 // value is 0.
7079 OtherOp = DAG.getConstant(0, VT);
7080 else if (N->getOpcode() == ISD::ZERO_EXTEND)
7081 // When looking for a 0 constant, N can be zext or sext.
7082 OtherOp = DAG.getConstant(1, VT);
7083 else
7084 OtherOp = DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT);
7085 return true;
7086 }
7087 }
7088 }
7089
7090 // Combine a constant select operand into its use:
7091 //
7092 // (add (select cc, 0, c), x) -> (select cc, x, (add, x, c))
7093 // (sub x, (select cc, 0, c)) -> (select cc, x, (sub, x, c))
7094 // (and (select cc, -1, c), x) -> (select cc, x, (and, x, c)) [AllOnes=1]
7095 // (or (select cc, 0, c), x) -> (select cc, x, (or, x, c))
7096 // (xor (select cc, 0, c), x) -> (select cc, x, (xor, x, c))
7097 //
7098 // The transform is rejected if the select doesn't have a constant operand that
7099 // is null, or all ones when AllOnes is set.
7100 //
7101 // Also recognize sext/zext from i1:
7102 //
7103 // (add (zext cc), x) -> (select cc (add x, 1), x)
7104 // (add (sext cc), x) -> (select cc (add x, -1), x)
7105 //
7106 // These transformations eventually create predicated instructions.
7107 //
7108 // @param N The node to transform.
7109 // @param Slct The N operand that is a select.
7110 // @param OtherOp The other N operand (x above).
7111 // @param DCI Context.
7112 // @param AllOnes Require the select constant to be all ones instead of null.
7113 // @returns The new node, or SDValue() on failure.
7114 static
combineSelectAndUse(SDNode * N,SDValue Slct,SDValue OtherOp,TargetLowering::DAGCombinerInfo & DCI,bool AllOnes=false)7115 SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp,
7116 TargetLowering::DAGCombinerInfo &DCI,
7117 bool AllOnes = false) {
7118 SelectionDAG &DAG = DCI.DAG;
7119 EVT VT = N->getValueType(0);
7120 SDValue NonConstantVal;
7121 SDValue CCOp;
7122 bool SwapSelectOps;
7123 if (!isConditionalZeroOrAllOnes(Slct.getNode(), AllOnes, CCOp, SwapSelectOps,
7124 NonConstantVal, DAG))
7125 return SDValue();
7126
7127 // Slct is now know to be the desired identity constant when CC is true.
7128 SDValue TrueVal = OtherOp;
7129 SDValue FalseVal = DAG.getNode(N->getOpcode(), N->getDebugLoc(), VT,
7130 OtherOp, NonConstantVal);
7131 // Unless SwapSelectOps says CC should be false.
7132 if (SwapSelectOps)
7133 std::swap(TrueVal, FalseVal);
7134
7135 return DAG.getNode(ISD::SELECT, N->getDebugLoc(), VT,
7136 CCOp, TrueVal, FalseVal);
7137 }
7138
7139 // Attempt combineSelectAndUse on each operand of a commutative operator N.
7140 static
combineSelectAndUseCommutative(SDNode * N,bool AllOnes,TargetLowering::DAGCombinerInfo & DCI)7141 SDValue combineSelectAndUseCommutative(SDNode *N, bool AllOnes,
7142 TargetLowering::DAGCombinerInfo &DCI) {
7143 SDValue N0 = N->getOperand(0);
7144 SDValue N1 = N->getOperand(1);
7145 if (N0.getNode()->hasOneUse()) {
7146 SDValue Result = combineSelectAndUse(N, N0, N1, DCI, AllOnes);
7147 if (Result.getNode())
7148 return Result;
7149 }
7150 if (N1.getNode()->hasOneUse()) {
7151 SDValue Result = combineSelectAndUse(N, N1, N0, DCI, AllOnes);
7152 if (Result.getNode())
7153 return Result;
7154 }
7155 return SDValue();
7156 }
7157
7158 // AddCombineToVPADDL- For pair-wise add on neon, use the vpaddl instruction
7159 // (only after legalization).
AddCombineToVPADDL(SDNode * N,SDValue N0,SDValue N1,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)7160 static SDValue AddCombineToVPADDL(SDNode *N, SDValue N0, SDValue N1,
7161 TargetLowering::DAGCombinerInfo &DCI,
7162 const ARMSubtarget *Subtarget) {
7163
7164 // Only perform optimization if after legalize, and if NEON is available. We
7165 // also expected both operands to be BUILD_VECTORs.
7166 if (DCI.isBeforeLegalize() || !Subtarget->hasNEON()
7167 || N0.getOpcode() != ISD::BUILD_VECTOR
7168 || N1.getOpcode() != ISD::BUILD_VECTOR)
7169 return SDValue();
7170
7171 // Check output type since VPADDL operand elements can only be 8, 16, or 32.
7172 EVT VT = N->getValueType(0);
7173 if (!VT.isInteger() || VT.getVectorElementType() == MVT::i64)
7174 return SDValue();
7175
7176 // Check that the vector operands are of the right form.
7177 // N0 and N1 are BUILD_VECTOR nodes with N number of EXTRACT_VECTOR
7178 // operands, where N is the size of the formed vector.
7179 // Each EXTRACT_VECTOR should have the same input vector and odd or even
7180 // index such that we have a pair wise add pattern.
7181
7182 // Grab the vector that all EXTRACT_VECTOR nodes should be referencing.
7183 if (N0->getOperand(0)->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
7184 return SDValue();
7185 SDValue Vec = N0->getOperand(0)->getOperand(0);
7186 SDNode *V = Vec.getNode();
7187 unsigned nextIndex = 0;
7188
7189 // For each operands to the ADD which are BUILD_VECTORs,
7190 // check to see if each of their operands are an EXTRACT_VECTOR with
7191 // the same vector and appropriate index.
7192 for (unsigned i = 0, e = N0->getNumOperands(); i != e; ++i) {
7193 if (N0->getOperand(i)->getOpcode() == ISD::EXTRACT_VECTOR_ELT
7194 && N1->getOperand(i)->getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
7195
7196 SDValue ExtVec0 = N0->getOperand(i);
7197 SDValue ExtVec1 = N1->getOperand(i);
7198
7199 // First operand is the vector, verify its the same.
7200 if (V != ExtVec0->getOperand(0).getNode() ||
7201 V != ExtVec1->getOperand(0).getNode())
7202 return SDValue();
7203
7204 // Second is the constant, verify its correct.
7205 ConstantSDNode *C0 = dyn_cast<ConstantSDNode>(ExtVec0->getOperand(1));
7206 ConstantSDNode *C1 = dyn_cast<ConstantSDNode>(ExtVec1->getOperand(1));
7207
7208 // For the constant, we want to see all the even or all the odd.
7209 if (!C0 || !C1 || C0->getZExtValue() != nextIndex
7210 || C1->getZExtValue() != nextIndex+1)
7211 return SDValue();
7212
7213 // Increment index.
7214 nextIndex+=2;
7215 } else
7216 return SDValue();
7217 }
7218
7219 // Create VPADDL node.
7220 SelectionDAG &DAG = DCI.DAG;
7221 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7222
7223 // Build operand list.
7224 SmallVector<SDValue, 8> Ops;
7225 Ops.push_back(DAG.getConstant(Intrinsic::arm_neon_vpaddls,
7226 TLI.getPointerTy()));
7227
7228 // Input is the vector.
7229 Ops.push_back(Vec);
7230
7231 // Get widened type and narrowed type.
7232 MVT widenType;
7233 unsigned numElem = VT.getVectorNumElements();
7234 switch (VT.getVectorElementType().getSimpleVT().SimpleTy) {
7235 case MVT::i8: widenType = MVT::getVectorVT(MVT::i16, numElem); break;
7236 case MVT::i16: widenType = MVT::getVectorVT(MVT::i32, numElem); break;
7237 case MVT::i32: widenType = MVT::getVectorVT(MVT::i64, numElem); break;
7238 default:
7239 llvm_unreachable("Invalid vector element type for padd optimization.");
7240 }
7241
7242 SDValue tmp = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, N->getDebugLoc(),
7243 widenType, &Ops[0], Ops.size());
7244 return DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, tmp);
7245 }
7246
findMUL_LOHI(SDValue V)7247 static SDValue findMUL_LOHI(SDValue V) {
7248 if (V->getOpcode() == ISD::UMUL_LOHI ||
7249 V->getOpcode() == ISD::SMUL_LOHI)
7250 return V;
7251 return SDValue();
7252 }
7253
AddCombineTo64bitMLAL(SDNode * AddcNode,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)7254 static SDValue AddCombineTo64bitMLAL(SDNode *AddcNode,
7255 TargetLowering::DAGCombinerInfo &DCI,
7256 const ARMSubtarget *Subtarget) {
7257
7258 if (Subtarget->isThumb1Only()) return SDValue();
7259
7260 // Only perform the checks after legalize when the pattern is available.
7261 if (DCI.isBeforeLegalize()) return SDValue();
7262
7263 // Look for multiply add opportunities.
7264 // The pattern is a ISD::UMUL_LOHI followed by two add nodes, where
7265 // each add nodes consumes a value from ISD::UMUL_LOHI and there is
7266 // a glue link from the first add to the second add.
7267 // If we find this pattern, we can replace the U/SMUL_LOHI, ADDC, and ADDE by
7268 // a S/UMLAL instruction.
7269 // loAdd UMUL_LOHI
7270 // \ / :lo \ :hi
7271 // \ / \ [no multiline comment]
7272 // ADDC | hiAdd
7273 // \ :glue / /
7274 // \ / /
7275 // ADDE
7276 //
7277 assert(AddcNode->getOpcode() == ISD::ADDC && "Expect an ADDC");
7278 SDValue AddcOp0 = AddcNode->getOperand(0);
7279 SDValue AddcOp1 = AddcNode->getOperand(1);
7280
7281 // Check if the two operands are from the same mul_lohi node.
7282 if (AddcOp0.getNode() == AddcOp1.getNode())
7283 return SDValue();
7284
7285 assert(AddcNode->getNumValues() == 2 &&
7286 AddcNode->getValueType(0) == MVT::i32 &&
7287 AddcNode->getValueType(1) == MVT::Glue &&
7288 "Expect ADDC with two result values: i32, glue");
7289
7290 // Check that the ADDC adds the low result of the S/UMUL_LOHI.
7291 if (AddcOp0->getOpcode() != ISD::UMUL_LOHI &&
7292 AddcOp0->getOpcode() != ISD::SMUL_LOHI &&
7293 AddcOp1->getOpcode() != ISD::UMUL_LOHI &&
7294 AddcOp1->getOpcode() != ISD::SMUL_LOHI)
7295 return SDValue();
7296
7297 // Look for the glued ADDE.
7298 SDNode* AddeNode = AddcNode->getGluedUser();
7299 if (AddeNode == NULL)
7300 return SDValue();
7301
7302 // Make sure it is really an ADDE.
7303 if (AddeNode->getOpcode() != ISD::ADDE)
7304 return SDValue();
7305
7306 assert(AddeNode->getNumOperands() == 3 &&
7307 AddeNode->getOperand(2).getValueType() == MVT::Glue &&
7308 "ADDE node has the wrong inputs");
7309
7310 // Check for the triangle shape.
7311 SDValue AddeOp0 = AddeNode->getOperand(0);
7312 SDValue AddeOp1 = AddeNode->getOperand(1);
7313
7314 // Make sure that the ADDE operands are not coming from the same node.
7315 if (AddeOp0.getNode() == AddeOp1.getNode())
7316 return SDValue();
7317
7318 // Find the MUL_LOHI node walking up ADDE's operands.
7319 bool IsLeftOperandMUL = false;
7320 SDValue MULOp = findMUL_LOHI(AddeOp0);
7321 if (MULOp == SDValue())
7322 MULOp = findMUL_LOHI(AddeOp1);
7323 else
7324 IsLeftOperandMUL = true;
7325 if (MULOp == SDValue())
7326 return SDValue();
7327
7328 // Figure out the right opcode.
7329 unsigned Opc = MULOp->getOpcode();
7330 unsigned FinalOpc = (Opc == ISD::SMUL_LOHI) ? ARMISD::SMLAL : ARMISD::UMLAL;
7331
7332 // Figure out the high and low input values to the MLAL node.
7333 SDValue* HiMul = &MULOp;
7334 SDValue* HiAdd = NULL;
7335 SDValue* LoMul = NULL;
7336 SDValue* LowAdd = NULL;
7337
7338 if (IsLeftOperandMUL)
7339 HiAdd = &AddeOp1;
7340 else
7341 HiAdd = &AddeOp0;
7342
7343
7344 if (AddcOp0->getOpcode() == Opc) {
7345 LoMul = &AddcOp0;
7346 LowAdd = &AddcOp1;
7347 }
7348 if (AddcOp1->getOpcode() == Opc) {
7349 LoMul = &AddcOp1;
7350 LowAdd = &AddcOp0;
7351 }
7352
7353 if (LoMul == NULL)
7354 return SDValue();
7355
7356 if (LoMul->getNode() != HiMul->getNode())
7357 return SDValue();
7358
7359 // Create the merged node.
7360 SelectionDAG &DAG = DCI.DAG;
7361
7362 // Build operand list.
7363 SmallVector<SDValue, 8> Ops;
7364 Ops.push_back(LoMul->getOperand(0));
7365 Ops.push_back(LoMul->getOperand(1));
7366 Ops.push_back(*LowAdd);
7367 Ops.push_back(*HiAdd);
7368
7369 SDValue MLALNode = DAG.getNode(FinalOpc, AddcNode->getDebugLoc(),
7370 DAG.getVTList(MVT::i32, MVT::i32),
7371 &Ops[0], Ops.size());
7372
7373 // Replace the ADDs' nodes uses by the MLA node's values.
7374 SDValue HiMLALResult(MLALNode.getNode(), 1);
7375 DAG.ReplaceAllUsesOfValueWith(SDValue(AddeNode, 0), HiMLALResult);
7376
7377 SDValue LoMLALResult(MLALNode.getNode(), 0);
7378 DAG.ReplaceAllUsesOfValueWith(SDValue(AddcNode, 0), LoMLALResult);
7379
7380 // Return original node to notify the driver to stop replacing.
7381 SDValue resNode(AddcNode, 0);
7382 return resNode;
7383 }
7384
7385 /// PerformADDCCombine - Target-specific dag combine transform from
7386 /// ISD::ADDC, ISD::ADDE, and ISD::MUL_LOHI to MLAL.
PerformADDCCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)7387 static SDValue PerformADDCCombine(SDNode *N,
7388 TargetLowering::DAGCombinerInfo &DCI,
7389 const ARMSubtarget *Subtarget) {
7390
7391 return AddCombineTo64bitMLAL(N, DCI, Subtarget);
7392
7393 }
7394
7395 /// PerformADDCombineWithOperands - Try DAG combinations for an ADD with
7396 /// operands N0 and N1. This is a helper for PerformADDCombine that is
7397 /// called with the default operands, and if that fails, with commuted
7398 /// operands.
PerformADDCombineWithOperands(SDNode * N,SDValue N0,SDValue N1,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)7399 static SDValue PerformADDCombineWithOperands(SDNode *N, SDValue N0, SDValue N1,
7400 TargetLowering::DAGCombinerInfo &DCI,
7401 const ARMSubtarget *Subtarget){
7402
7403 // Attempt to create vpaddl for this add.
7404 SDValue Result = AddCombineToVPADDL(N, N0, N1, DCI, Subtarget);
7405 if (Result.getNode())
7406 return Result;
7407
7408 // fold (add (select cc, 0, c), x) -> (select cc, x, (add, x, c))
7409 if (N0.getNode()->hasOneUse()) {
7410 SDValue Result = combineSelectAndUse(N, N0, N1, DCI);
7411 if (Result.getNode()) return Result;
7412 }
7413 return SDValue();
7414 }
7415
7416 /// PerformADDCombine - Target-specific dag combine xforms for ISD::ADD.
7417 ///
PerformADDCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)7418 static SDValue PerformADDCombine(SDNode *N,
7419 TargetLowering::DAGCombinerInfo &DCI,
7420 const ARMSubtarget *Subtarget) {
7421 SDValue N0 = N->getOperand(0);
7422 SDValue N1 = N->getOperand(1);
7423
7424 // First try with the default operand order.
7425 SDValue Result = PerformADDCombineWithOperands(N, N0, N1, DCI, Subtarget);
7426 if (Result.getNode())
7427 return Result;
7428
7429 // If that didn't work, try again with the operands commuted.
7430 return PerformADDCombineWithOperands(N, N1, N0, DCI, Subtarget);
7431 }
7432
7433 /// PerformSUBCombine - Target-specific dag combine xforms for ISD::SUB.
7434 ///
PerformSUBCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI)7435 static SDValue PerformSUBCombine(SDNode *N,
7436 TargetLowering::DAGCombinerInfo &DCI) {
7437 SDValue N0 = N->getOperand(0);
7438 SDValue N1 = N->getOperand(1);
7439
7440 // fold (sub x, (select cc, 0, c)) -> (select cc, x, (sub, x, c))
7441 if (N1.getNode()->hasOneUse()) {
7442 SDValue Result = combineSelectAndUse(N, N1, N0, DCI);
7443 if (Result.getNode()) return Result;
7444 }
7445
7446 return SDValue();
7447 }
7448
7449 /// PerformVMULCombine
7450 /// Distribute (A + B) * C to (A * C) + (B * C) to take advantage of the
7451 /// special multiplier accumulator forwarding.
7452 /// vmul d3, d0, d2
7453 /// vmla d3, d1, d2
7454 /// is faster than
7455 /// vadd d3, d0, d1
7456 /// vmul d3, d3, d2
PerformVMULCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)7457 static SDValue PerformVMULCombine(SDNode *N,
7458 TargetLowering::DAGCombinerInfo &DCI,
7459 const ARMSubtarget *Subtarget) {
7460 if (!Subtarget->hasVMLxForwarding())
7461 return SDValue();
7462
7463 SelectionDAG &DAG = DCI.DAG;
7464 SDValue N0 = N->getOperand(0);
7465 SDValue N1 = N->getOperand(1);
7466 unsigned Opcode = N0.getOpcode();
7467 if (Opcode != ISD::ADD && Opcode != ISD::SUB &&
7468 Opcode != ISD::FADD && Opcode != ISD::FSUB) {
7469 Opcode = N1.getOpcode();
7470 if (Opcode != ISD::ADD && Opcode != ISD::SUB &&
7471 Opcode != ISD::FADD && Opcode != ISD::FSUB)
7472 return SDValue();
7473 std::swap(N0, N1);
7474 }
7475
7476 EVT VT = N->getValueType(0);
7477 DebugLoc DL = N->getDebugLoc();
7478 SDValue N00 = N0->getOperand(0);
7479 SDValue N01 = N0->getOperand(1);
7480 return DAG.getNode(Opcode, DL, VT,
7481 DAG.getNode(ISD::MUL, DL, VT, N00, N1),
7482 DAG.getNode(ISD::MUL, DL, VT, N01, N1));
7483 }
7484
PerformMULCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)7485 static SDValue PerformMULCombine(SDNode *N,
7486 TargetLowering::DAGCombinerInfo &DCI,
7487 const ARMSubtarget *Subtarget) {
7488 SelectionDAG &DAG = DCI.DAG;
7489
7490 if (Subtarget->isThumb1Only())
7491 return SDValue();
7492
7493 if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
7494 return SDValue();
7495
7496 EVT VT = N->getValueType(0);
7497 if (VT.is64BitVector() || VT.is128BitVector())
7498 return PerformVMULCombine(N, DCI, Subtarget);
7499 if (VT != MVT::i32)
7500 return SDValue();
7501
7502 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
7503 if (!C)
7504 return SDValue();
7505
7506 int64_t MulAmt = C->getSExtValue();
7507 unsigned ShiftAmt = CountTrailingZeros_64(MulAmt);
7508
7509 ShiftAmt = ShiftAmt & (32 - 1);
7510 SDValue V = N->getOperand(0);
7511 DebugLoc DL = N->getDebugLoc();
7512
7513 SDValue Res;
7514 MulAmt >>= ShiftAmt;
7515
7516 if (MulAmt >= 0) {
7517 if (isPowerOf2_32(MulAmt - 1)) {
7518 // (mul x, 2^N + 1) => (add (shl x, N), x)
7519 Res = DAG.getNode(ISD::ADD, DL, VT,
7520 V,
7521 DAG.getNode(ISD::SHL, DL, VT,
7522 V,
7523 DAG.getConstant(Log2_32(MulAmt - 1),
7524 MVT::i32)));
7525 } else if (isPowerOf2_32(MulAmt + 1)) {
7526 // (mul x, 2^N - 1) => (sub (shl x, N), x)
7527 Res = DAG.getNode(ISD::SUB, DL, VT,
7528 DAG.getNode(ISD::SHL, DL, VT,
7529 V,
7530 DAG.getConstant(Log2_32(MulAmt + 1),
7531 MVT::i32)),
7532 V);
7533 } else
7534 return SDValue();
7535 } else {
7536 uint64_t MulAmtAbs = -MulAmt;
7537 if (isPowerOf2_32(MulAmtAbs + 1)) {
7538 // (mul x, -(2^N - 1)) => (sub x, (shl x, N))
7539 Res = DAG.getNode(ISD::SUB, DL, VT,
7540 V,
7541 DAG.getNode(ISD::SHL, DL, VT,
7542 V,
7543 DAG.getConstant(Log2_32(MulAmtAbs + 1),
7544 MVT::i32)));
7545 } else if (isPowerOf2_32(MulAmtAbs - 1)) {
7546 // (mul x, -(2^N + 1)) => - (add (shl x, N), x)
7547 Res = DAG.getNode(ISD::ADD, DL, VT,
7548 V,
7549 DAG.getNode(ISD::SHL, DL, VT,
7550 V,
7551 DAG.getConstant(Log2_32(MulAmtAbs-1),
7552 MVT::i32)));
7553 Res = DAG.getNode(ISD::SUB, DL, VT,
7554 DAG.getConstant(0, MVT::i32),Res);
7555
7556 } else
7557 return SDValue();
7558 }
7559
7560 if (ShiftAmt != 0)
7561 Res = DAG.getNode(ISD::SHL, DL, VT,
7562 Res, DAG.getConstant(ShiftAmt, MVT::i32));
7563
7564 // Do not add new nodes to DAG combiner worklist.
7565 DCI.CombineTo(N, Res, false);
7566 return SDValue();
7567 }
7568
PerformANDCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)7569 static SDValue PerformANDCombine(SDNode *N,
7570 TargetLowering::DAGCombinerInfo &DCI,
7571 const ARMSubtarget *Subtarget) {
7572
7573 // Attempt to use immediate-form VBIC
7574 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(1));
7575 DebugLoc dl = N->getDebugLoc();
7576 EVT VT = N->getValueType(0);
7577 SelectionDAG &DAG = DCI.DAG;
7578
7579 if(!DAG.getTargetLoweringInfo().isTypeLegal(VT))
7580 return SDValue();
7581
7582 APInt SplatBits, SplatUndef;
7583 unsigned SplatBitSize;
7584 bool HasAnyUndefs;
7585 if (BVN &&
7586 BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
7587 if (SplatBitSize <= 64) {
7588 EVT VbicVT;
7589 SDValue Val = isNEONModifiedImm((~SplatBits).getZExtValue(),
7590 SplatUndef.getZExtValue(), SplatBitSize,
7591 DAG, VbicVT, VT.is128BitVector(),
7592 OtherModImm);
7593 if (Val.getNode()) {
7594 SDValue Input =
7595 DAG.getNode(ISD::BITCAST, dl, VbicVT, N->getOperand(0));
7596 SDValue Vbic = DAG.getNode(ARMISD::VBICIMM, dl, VbicVT, Input, Val);
7597 return DAG.getNode(ISD::BITCAST, dl, VT, Vbic);
7598 }
7599 }
7600 }
7601
7602 if (!Subtarget->isThumb1Only()) {
7603 // fold (and (select cc, -1, c), x) -> (select cc, x, (and, x, c))
7604 SDValue Result = combineSelectAndUseCommutative(N, true, DCI);
7605 if (Result.getNode())
7606 return Result;
7607 }
7608
7609 return SDValue();
7610 }
7611
7612 /// PerformORCombine - Target-specific dag combine xforms for ISD::OR
PerformORCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)7613 static SDValue PerformORCombine(SDNode *N,
7614 TargetLowering::DAGCombinerInfo &DCI,
7615 const ARMSubtarget *Subtarget) {
7616 // Attempt to use immediate-form VORR
7617 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(1));
7618 DebugLoc dl = N->getDebugLoc();
7619 EVT VT = N->getValueType(0);
7620 SelectionDAG &DAG = DCI.DAG;
7621
7622 if(!DAG.getTargetLoweringInfo().isTypeLegal(VT))
7623 return SDValue();
7624
7625 APInt SplatBits, SplatUndef;
7626 unsigned SplatBitSize;
7627 bool HasAnyUndefs;
7628 if (BVN && Subtarget->hasNEON() &&
7629 BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
7630 if (SplatBitSize <= 64) {
7631 EVT VorrVT;
7632 SDValue Val = isNEONModifiedImm(SplatBits.getZExtValue(),
7633 SplatUndef.getZExtValue(), SplatBitSize,
7634 DAG, VorrVT, VT.is128BitVector(),
7635 OtherModImm);
7636 if (Val.getNode()) {
7637 SDValue Input =
7638 DAG.getNode(ISD::BITCAST, dl, VorrVT, N->getOperand(0));
7639 SDValue Vorr = DAG.getNode(ARMISD::VORRIMM, dl, VorrVT, Input, Val);
7640 return DAG.getNode(ISD::BITCAST, dl, VT, Vorr);
7641 }
7642 }
7643 }
7644
7645 if (!Subtarget->isThumb1Only()) {
7646 // fold (or (select cc, 0, c), x) -> (select cc, x, (or, x, c))
7647 SDValue Result = combineSelectAndUseCommutative(N, false, DCI);
7648 if (Result.getNode())
7649 return Result;
7650 }
7651
7652 // The code below optimizes (or (and X, Y), Z).
7653 // The AND operand needs to have a single user to make these optimizations
7654 // profitable.
7655 SDValue N0 = N->getOperand(0);
7656 if (N0.getOpcode() != ISD::AND || !N0.hasOneUse())
7657 return SDValue();
7658 SDValue N1 = N->getOperand(1);
7659
7660 // (or (and B, A), (and C, ~A)) => (VBSL A, B, C) when A is a constant.
7661 if (Subtarget->hasNEON() && N1.getOpcode() == ISD::AND && VT.isVector() &&
7662 DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
7663 APInt SplatUndef;
7664 unsigned SplatBitSize;
7665 bool HasAnyUndefs;
7666
7667 BuildVectorSDNode *BVN0 = dyn_cast<BuildVectorSDNode>(N0->getOperand(1));
7668 APInt SplatBits0;
7669 if (BVN0 && BVN0->isConstantSplat(SplatBits0, SplatUndef, SplatBitSize,
7670 HasAnyUndefs) && !HasAnyUndefs) {
7671 BuildVectorSDNode *BVN1 = dyn_cast<BuildVectorSDNode>(N1->getOperand(1));
7672 APInt SplatBits1;
7673 if (BVN1 && BVN1->isConstantSplat(SplatBits1, SplatUndef, SplatBitSize,
7674 HasAnyUndefs) && !HasAnyUndefs &&
7675 SplatBits0 == ~SplatBits1) {
7676 // Canonicalize the vector type to make instruction selection simpler.
7677 EVT CanonicalVT = VT.is128BitVector() ? MVT::v4i32 : MVT::v2i32;
7678 SDValue Result = DAG.getNode(ARMISD::VBSL, dl, CanonicalVT,
7679 N0->getOperand(1), N0->getOperand(0),
7680 N1->getOperand(0));
7681 return DAG.getNode(ISD::BITCAST, dl, VT, Result);
7682 }
7683 }
7684 }
7685
7686 // Try to use the ARM/Thumb2 BFI (bitfield insert) instruction when
7687 // reasonable.
7688
7689 // BFI is only available on V6T2+
7690 if (Subtarget->isThumb1Only() || !Subtarget->hasV6T2Ops())
7691 return SDValue();
7692
7693 DebugLoc DL = N->getDebugLoc();
7694 // 1) or (and A, mask), val => ARMbfi A, val, mask
7695 // iff (val & mask) == val
7696 //
7697 // 2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask
7698 // 2a) iff isBitFieldInvertedMask(mask) && isBitFieldInvertedMask(~mask2)
7699 // && mask == ~mask2
7700 // 2b) iff isBitFieldInvertedMask(~mask) && isBitFieldInvertedMask(mask2)
7701 // && ~mask == mask2
7702 // (i.e., copy a bitfield value into another bitfield of the same width)
7703
7704 if (VT != MVT::i32)
7705 return SDValue();
7706
7707 SDValue N00 = N0.getOperand(0);
7708
7709 // The value and the mask need to be constants so we can verify this is
7710 // actually a bitfield set. If the mask is 0xffff, we can do better
7711 // via a movt instruction, so don't use BFI in that case.
7712 SDValue MaskOp = N0.getOperand(1);
7713 ConstantSDNode *MaskC = dyn_cast<ConstantSDNode>(MaskOp);
7714 if (!MaskC)
7715 return SDValue();
7716 unsigned Mask = MaskC->getZExtValue();
7717 if (Mask == 0xffff)
7718 return SDValue();
7719 SDValue Res;
7720 // Case (1): or (and A, mask), val => ARMbfi A, val, mask
7721 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
7722 if (N1C) {
7723 unsigned Val = N1C->getZExtValue();
7724 if ((Val & ~Mask) != Val)
7725 return SDValue();
7726
7727 if (ARM::isBitFieldInvertedMask(Mask)) {
7728 Val >>= CountTrailingZeros_32(~Mask);
7729
7730 Res = DAG.getNode(ARMISD::BFI, DL, VT, N00,
7731 DAG.getConstant(Val, MVT::i32),
7732 DAG.getConstant(Mask, MVT::i32));
7733
7734 // Do not add new nodes to DAG combiner worklist.
7735 DCI.CombineTo(N, Res, false);
7736 return SDValue();
7737 }
7738 } else if (N1.getOpcode() == ISD::AND) {
7739 // case (2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask
7740 ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
7741 if (!N11C)
7742 return SDValue();
7743 unsigned Mask2 = N11C->getZExtValue();
7744
7745 // Mask and ~Mask2 (or reverse) must be equivalent for the BFI pattern
7746 // as is to match.
7747 if (ARM::isBitFieldInvertedMask(Mask) &&
7748 (Mask == ~Mask2)) {
7749 // The pack halfword instruction works better for masks that fit it,
7750 // so use that when it's available.
7751 if (Subtarget->hasT2ExtractPack() &&
7752 (Mask == 0xffff || Mask == 0xffff0000))
7753 return SDValue();
7754 // 2a
7755 unsigned amt = CountTrailingZeros_32(Mask2);
7756 Res = DAG.getNode(ISD::SRL, DL, VT, N1.getOperand(0),
7757 DAG.getConstant(amt, MVT::i32));
7758 Res = DAG.getNode(ARMISD::BFI, DL, VT, N00, Res,
7759 DAG.getConstant(Mask, MVT::i32));
7760 // Do not add new nodes to DAG combiner worklist.
7761 DCI.CombineTo(N, Res, false);
7762 return SDValue();
7763 } else if (ARM::isBitFieldInvertedMask(~Mask) &&
7764 (~Mask == Mask2)) {
7765 // The pack halfword instruction works better for masks that fit it,
7766 // so use that when it's available.
7767 if (Subtarget->hasT2ExtractPack() &&
7768 (Mask2 == 0xffff || Mask2 == 0xffff0000))
7769 return SDValue();
7770 // 2b
7771 unsigned lsb = CountTrailingZeros_32(Mask);
7772 Res = DAG.getNode(ISD::SRL, DL, VT, N00,
7773 DAG.getConstant(lsb, MVT::i32));
7774 Res = DAG.getNode(ARMISD::BFI, DL, VT, N1.getOperand(0), Res,
7775 DAG.getConstant(Mask2, MVT::i32));
7776 // Do not add new nodes to DAG combiner worklist.
7777 DCI.CombineTo(N, Res, false);
7778 return SDValue();
7779 }
7780 }
7781
7782 if (DAG.MaskedValueIsZero(N1, MaskC->getAPIntValue()) &&
7783 N00.getOpcode() == ISD::SHL && isa<ConstantSDNode>(N00.getOperand(1)) &&
7784 ARM::isBitFieldInvertedMask(~Mask)) {
7785 // Case (3): or (and (shl A, #shamt), mask), B => ARMbfi B, A, ~mask
7786 // where lsb(mask) == #shamt and masked bits of B are known zero.
7787 SDValue ShAmt = N00.getOperand(1);
7788 unsigned ShAmtC = cast<ConstantSDNode>(ShAmt)->getZExtValue();
7789 unsigned LSB = CountTrailingZeros_32(Mask);
7790 if (ShAmtC != LSB)
7791 return SDValue();
7792
7793 Res = DAG.getNode(ARMISD::BFI, DL, VT, N1, N00.getOperand(0),
7794 DAG.getConstant(~Mask, MVT::i32));
7795
7796 // Do not add new nodes to DAG combiner worklist.
7797 DCI.CombineTo(N, Res, false);
7798 }
7799
7800 return SDValue();
7801 }
7802
PerformXORCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)7803 static SDValue PerformXORCombine(SDNode *N,
7804 TargetLowering::DAGCombinerInfo &DCI,
7805 const ARMSubtarget *Subtarget) {
7806 EVT VT = N->getValueType(0);
7807 SelectionDAG &DAG = DCI.DAG;
7808
7809 if(!DAG.getTargetLoweringInfo().isTypeLegal(VT))
7810 return SDValue();
7811
7812 if (!Subtarget->isThumb1Only()) {
7813 // fold (xor (select cc, 0, c), x) -> (select cc, x, (xor, x, c))
7814 SDValue Result = combineSelectAndUseCommutative(N, false, DCI);
7815 if (Result.getNode())
7816 return Result;
7817 }
7818
7819 return SDValue();
7820 }
7821
7822 /// PerformBFICombine - (bfi A, (and B, Mask1), Mask2) -> (bfi A, B, Mask2) iff
7823 /// the bits being cleared by the AND are not demanded by the BFI.
PerformBFICombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI)7824 static SDValue PerformBFICombine(SDNode *N,
7825 TargetLowering::DAGCombinerInfo &DCI) {
7826 SDValue N1 = N->getOperand(1);
7827 if (N1.getOpcode() == ISD::AND) {
7828 ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
7829 if (!N11C)
7830 return SDValue();
7831 unsigned InvMask = cast<ConstantSDNode>(N->getOperand(2))->getZExtValue();
7832 unsigned LSB = CountTrailingZeros_32(~InvMask);
7833 unsigned Width = (32 - CountLeadingZeros_32(~InvMask)) - LSB;
7834 unsigned Mask = (1 << Width)-1;
7835 unsigned Mask2 = N11C->getZExtValue();
7836 if ((Mask & (~Mask2)) == 0)
7837 return DCI.DAG.getNode(ARMISD::BFI, N->getDebugLoc(), N->getValueType(0),
7838 N->getOperand(0), N1.getOperand(0),
7839 N->getOperand(2));
7840 }
7841 return SDValue();
7842 }
7843
7844 /// PerformVMOVRRDCombine - Target-specific dag combine xforms for
7845 /// ARMISD::VMOVRRD.
PerformVMOVRRDCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI)7846 static SDValue PerformVMOVRRDCombine(SDNode *N,
7847 TargetLowering::DAGCombinerInfo &DCI) {
7848 // vmovrrd(vmovdrr x, y) -> x,y
7849 SDValue InDouble = N->getOperand(0);
7850 if (InDouble.getOpcode() == ARMISD::VMOVDRR)
7851 return DCI.CombineTo(N, InDouble.getOperand(0), InDouble.getOperand(1));
7852
7853 // vmovrrd(load f64) -> (load i32), (load i32)
7854 SDNode *InNode = InDouble.getNode();
7855 if (ISD::isNormalLoad(InNode) && InNode->hasOneUse() &&
7856 InNode->getValueType(0) == MVT::f64 &&
7857 InNode->getOperand(1).getOpcode() == ISD::FrameIndex &&
7858 !cast<LoadSDNode>(InNode)->isVolatile()) {
7859 // TODO: Should this be done for non-FrameIndex operands?
7860 LoadSDNode *LD = cast<LoadSDNode>(InNode);
7861
7862 SelectionDAG &DAG = DCI.DAG;
7863 DebugLoc DL = LD->getDebugLoc();
7864 SDValue BasePtr = LD->getBasePtr();
7865 SDValue NewLD1 = DAG.getLoad(MVT::i32, DL, LD->getChain(), BasePtr,
7866 LD->getPointerInfo(), LD->isVolatile(),
7867 LD->isNonTemporal(), LD->isInvariant(),
7868 LD->getAlignment());
7869
7870 SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr,
7871 DAG.getConstant(4, MVT::i32));
7872 SDValue NewLD2 = DAG.getLoad(MVT::i32, DL, NewLD1.getValue(1), OffsetPtr,
7873 LD->getPointerInfo(), LD->isVolatile(),
7874 LD->isNonTemporal(), LD->isInvariant(),
7875 std::min(4U, LD->getAlignment() / 2));
7876
7877 DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), NewLD2.getValue(1));
7878 SDValue Result = DCI.CombineTo(N, NewLD1, NewLD2);
7879 DCI.RemoveFromWorklist(LD);
7880 DAG.DeleteNode(LD);
7881 return Result;
7882 }
7883
7884 return SDValue();
7885 }
7886
7887 /// PerformVMOVDRRCombine - Target-specific dag combine xforms for
7888 /// ARMISD::VMOVDRR. This is also used for BUILD_VECTORs with 2 operands.
PerformVMOVDRRCombine(SDNode * N,SelectionDAG & DAG)7889 static SDValue PerformVMOVDRRCombine(SDNode *N, SelectionDAG &DAG) {
7890 // N=vmovrrd(X); vmovdrr(N:0, N:1) -> bit_convert(X)
7891 SDValue Op0 = N->getOperand(0);
7892 SDValue Op1 = N->getOperand(1);
7893 if (Op0.getOpcode() == ISD::BITCAST)
7894 Op0 = Op0.getOperand(0);
7895 if (Op1.getOpcode() == ISD::BITCAST)
7896 Op1 = Op1.getOperand(0);
7897 if (Op0.getOpcode() == ARMISD::VMOVRRD &&
7898 Op0.getNode() == Op1.getNode() &&
7899 Op0.getResNo() == 0 && Op1.getResNo() == 1)
7900 return DAG.getNode(ISD::BITCAST, N->getDebugLoc(),
7901 N->getValueType(0), Op0.getOperand(0));
7902 return SDValue();
7903 }
7904
7905 /// PerformSTORECombine - Target-specific dag combine xforms for
7906 /// ISD::STORE.
PerformSTORECombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI)7907 static SDValue PerformSTORECombine(SDNode *N,
7908 TargetLowering::DAGCombinerInfo &DCI) {
7909 StoreSDNode *St = cast<StoreSDNode>(N);
7910 if (St->isVolatile())
7911 return SDValue();
7912
7913 // Optimize trunc store (of multiple scalars) to shuffle and store. First,
7914 // pack all of the elements in one place. Next, store to memory in fewer
7915 // chunks.
7916 SDValue StVal = St->getValue();
7917 EVT VT = StVal.getValueType();
7918 if (St->isTruncatingStore() && VT.isVector()) {
7919 SelectionDAG &DAG = DCI.DAG;
7920 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7921 EVT StVT = St->getMemoryVT();
7922 unsigned NumElems = VT.getVectorNumElements();
7923 assert(StVT != VT && "Cannot truncate to the same type");
7924 unsigned FromEltSz = VT.getVectorElementType().getSizeInBits();
7925 unsigned ToEltSz = StVT.getVectorElementType().getSizeInBits();
7926
7927 // From, To sizes and ElemCount must be pow of two
7928 if (!isPowerOf2_32(NumElems * FromEltSz * ToEltSz)) return SDValue();
7929
7930 // We are going to use the original vector elt for storing.
7931 // Accumulated smaller vector elements must be a multiple of the store size.
7932 if (0 != (NumElems * FromEltSz) % ToEltSz) return SDValue();
7933
7934 unsigned SizeRatio = FromEltSz / ToEltSz;
7935 assert(SizeRatio * NumElems * ToEltSz == VT.getSizeInBits());
7936
7937 // Create a type on which we perform the shuffle.
7938 EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(), StVT.getScalarType(),
7939 NumElems*SizeRatio);
7940 assert(WideVecVT.getSizeInBits() == VT.getSizeInBits());
7941
7942 DebugLoc DL = St->getDebugLoc();
7943 SDValue WideVec = DAG.getNode(ISD::BITCAST, DL, WideVecVT, StVal);
7944 SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
7945 for (unsigned i = 0; i < NumElems; ++i) ShuffleVec[i] = i * SizeRatio;
7946
7947 // Can't shuffle using an illegal type.
7948 if (!TLI.isTypeLegal(WideVecVT)) return SDValue();
7949
7950 SDValue Shuff = DAG.getVectorShuffle(WideVecVT, DL, WideVec,
7951 DAG.getUNDEF(WideVec.getValueType()),
7952 ShuffleVec.data());
7953 // At this point all of the data is stored at the bottom of the
7954 // register. We now need to save it to mem.
7955
7956 // Find the largest store unit
7957 MVT StoreType = MVT::i8;
7958 for (unsigned tp = MVT::FIRST_INTEGER_VALUETYPE;
7959 tp < MVT::LAST_INTEGER_VALUETYPE; ++tp) {
7960 MVT Tp = (MVT::SimpleValueType)tp;
7961 if (TLI.isTypeLegal(Tp) && Tp.getSizeInBits() <= NumElems * ToEltSz)
7962 StoreType = Tp;
7963 }
7964 // Didn't find a legal store type.
7965 if (!TLI.isTypeLegal(StoreType))
7966 return SDValue();
7967
7968 // Bitcast the original vector into a vector of store-size units
7969 EVT StoreVecVT = EVT::getVectorVT(*DAG.getContext(),
7970 StoreType, VT.getSizeInBits()/EVT(StoreType).getSizeInBits());
7971 assert(StoreVecVT.getSizeInBits() == VT.getSizeInBits());
7972 SDValue ShuffWide = DAG.getNode(ISD::BITCAST, DL, StoreVecVT, Shuff);
7973 SmallVector<SDValue, 8> Chains;
7974 SDValue Increment = DAG.getConstant(StoreType.getSizeInBits()/8,
7975 TLI.getPointerTy());
7976 SDValue BasePtr = St->getBasePtr();
7977
7978 // Perform one or more big stores into memory.
7979 unsigned E = (ToEltSz*NumElems)/StoreType.getSizeInBits();
7980 for (unsigned I = 0; I < E; I++) {
7981 SDValue SubVec = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
7982 StoreType, ShuffWide,
7983 DAG.getIntPtrConstant(I));
7984 SDValue Ch = DAG.getStore(St->getChain(), DL, SubVec, BasePtr,
7985 St->getPointerInfo(), St->isVolatile(),
7986 St->isNonTemporal(), St->getAlignment());
7987 BasePtr = DAG.getNode(ISD::ADD, DL, BasePtr.getValueType(), BasePtr,
7988 Increment);
7989 Chains.push_back(Ch);
7990 }
7991 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, &Chains[0],
7992 Chains.size());
7993 }
7994
7995 if (!ISD::isNormalStore(St))
7996 return SDValue();
7997
7998 // Split a store of a VMOVDRR into two integer stores to avoid mixing NEON and
7999 // ARM stores of arguments in the same cache line.
8000 if (StVal.getNode()->getOpcode() == ARMISD::VMOVDRR &&
8001 StVal.getNode()->hasOneUse()) {
8002 SelectionDAG &DAG = DCI.DAG;
8003 DebugLoc DL = St->getDebugLoc();
8004 SDValue BasePtr = St->getBasePtr();
8005 SDValue NewST1 = DAG.getStore(St->getChain(), DL,
8006 StVal.getNode()->getOperand(0), BasePtr,
8007 St->getPointerInfo(), St->isVolatile(),
8008 St->isNonTemporal(), St->getAlignment());
8009
8010 SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr,
8011 DAG.getConstant(4, MVT::i32));
8012 return DAG.getStore(NewST1.getValue(0), DL, StVal.getNode()->getOperand(1),
8013 OffsetPtr, St->getPointerInfo(), St->isVolatile(),
8014 St->isNonTemporal(),
8015 std::min(4U, St->getAlignment() / 2));
8016 }
8017
8018 if (StVal.getValueType() != MVT::i64 ||
8019 StVal.getNode()->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
8020 return SDValue();
8021
8022 // Bitcast an i64 store extracted from a vector to f64.
8023 // Otherwise, the i64 value will be legalized to a pair of i32 values.
8024 SelectionDAG &DAG = DCI.DAG;
8025 DebugLoc dl = StVal.getDebugLoc();
8026 SDValue IntVec = StVal.getOperand(0);
8027 EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64,
8028 IntVec.getValueType().getVectorNumElements());
8029 SDValue Vec = DAG.getNode(ISD::BITCAST, dl, FloatVT, IntVec);
8030 SDValue ExtElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
8031 Vec, StVal.getOperand(1));
8032 dl = N->getDebugLoc();
8033 SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::i64, ExtElt);
8034 // Make the DAGCombiner fold the bitcasts.
8035 DCI.AddToWorklist(Vec.getNode());
8036 DCI.AddToWorklist(ExtElt.getNode());
8037 DCI.AddToWorklist(V.getNode());
8038 return DAG.getStore(St->getChain(), dl, V, St->getBasePtr(),
8039 St->getPointerInfo(), St->isVolatile(),
8040 St->isNonTemporal(), St->getAlignment(),
8041 St->getTBAAInfo());
8042 }
8043
8044 /// hasNormalLoadOperand - Check if any of the operands of a BUILD_VECTOR node
8045 /// are normal, non-volatile loads. If so, it is profitable to bitcast an
8046 /// i64 vector to have f64 elements, since the value can then be loaded
8047 /// directly into a VFP register.
hasNormalLoadOperand(SDNode * N)8048 static bool hasNormalLoadOperand(SDNode *N) {
8049 unsigned NumElts = N->getValueType(0).getVectorNumElements();
8050 for (unsigned i = 0; i < NumElts; ++i) {
8051 SDNode *Elt = N->getOperand(i).getNode();
8052 if (ISD::isNormalLoad(Elt) && !cast<LoadSDNode>(Elt)->isVolatile())
8053 return true;
8054 }
8055 return false;
8056 }
8057
8058 /// PerformBUILD_VECTORCombine - Target-specific dag combine xforms for
8059 /// ISD::BUILD_VECTOR.
PerformBUILD_VECTORCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI)8060 static SDValue PerformBUILD_VECTORCombine(SDNode *N,
8061 TargetLowering::DAGCombinerInfo &DCI){
8062 // build_vector(N=ARMISD::VMOVRRD(X), N:1) -> bit_convert(X):
8063 // VMOVRRD is introduced when legalizing i64 types. It forces the i64 value
8064 // into a pair of GPRs, which is fine when the value is used as a scalar,
8065 // but if the i64 value is converted to a vector, we need to undo the VMOVRRD.
8066 SelectionDAG &DAG = DCI.DAG;
8067 if (N->getNumOperands() == 2) {
8068 SDValue RV = PerformVMOVDRRCombine(N, DAG);
8069 if (RV.getNode())
8070 return RV;
8071 }
8072
8073 // Load i64 elements as f64 values so that type legalization does not split
8074 // them up into i32 values.
8075 EVT VT = N->getValueType(0);
8076 if (VT.getVectorElementType() != MVT::i64 || !hasNormalLoadOperand(N))
8077 return SDValue();
8078 DebugLoc dl = N->getDebugLoc();
8079 SmallVector<SDValue, 8> Ops;
8080 unsigned NumElts = VT.getVectorNumElements();
8081 for (unsigned i = 0; i < NumElts; ++i) {
8082 SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::f64, N->getOperand(i));
8083 Ops.push_back(V);
8084 // Make the DAGCombiner fold the bitcast.
8085 DCI.AddToWorklist(V.getNode());
8086 }
8087 EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64, NumElts);
8088 SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, dl, FloatVT, Ops.data(), NumElts);
8089 return DAG.getNode(ISD::BITCAST, dl, VT, BV);
8090 }
8091
8092 /// PerformInsertEltCombine - Target-specific dag combine xforms for
8093 /// ISD::INSERT_VECTOR_ELT.
PerformInsertEltCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI)8094 static SDValue PerformInsertEltCombine(SDNode *N,
8095 TargetLowering::DAGCombinerInfo &DCI) {
8096 // Bitcast an i64 load inserted into a vector to f64.
8097 // Otherwise, the i64 value will be legalized to a pair of i32 values.
8098 EVT VT = N->getValueType(0);
8099 SDNode *Elt = N->getOperand(1).getNode();
8100 if (VT.getVectorElementType() != MVT::i64 ||
8101 !ISD::isNormalLoad(Elt) || cast<LoadSDNode>(Elt)->isVolatile())
8102 return SDValue();
8103
8104 SelectionDAG &DAG = DCI.DAG;
8105 DebugLoc dl = N->getDebugLoc();
8106 EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64,
8107 VT.getVectorNumElements());
8108 SDValue Vec = DAG.getNode(ISD::BITCAST, dl, FloatVT, N->getOperand(0));
8109 SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::f64, N->getOperand(1));
8110 // Make the DAGCombiner fold the bitcasts.
8111 DCI.AddToWorklist(Vec.getNode());
8112 DCI.AddToWorklist(V.getNode());
8113 SDValue InsElt = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, FloatVT,
8114 Vec, V, N->getOperand(2));
8115 return DAG.getNode(ISD::BITCAST, dl, VT, InsElt);
8116 }
8117
8118 /// PerformVECTOR_SHUFFLECombine - Target-specific dag combine xforms for
8119 /// ISD::VECTOR_SHUFFLE.
PerformVECTOR_SHUFFLECombine(SDNode * N,SelectionDAG & DAG)8120 static SDValue PerformVECTOR_SHUFFLECombine(SDNode *N, SelectionDAG &DAG) {
8121 // The LLVM shufflevector instruction does not require the shuffle mask
8122 // length to match the operand vector length, but ISD::VECTOR_SHUFFLE does
8123 // have that requirement. When translating to ISD::VECTOR_SHUFFLE, if the
8124 // operands do not match the mask length, they are extended by concatenating
8125 // them with undef vectors. That is probably the right thing for other
8126 // targets, but for NEON it is better to concatenate two double-register
8127 // size vector operands into a single quad-register size vector. Do that
8128 // transformation here:
8129 // shuffle(concat(v1, undef), concat(v2, undef)) ->
8130 // shuffle(concat(v1, v2), undef)
8131 SDValue Op0 = N->getOperand(0);
8132 SDValue Op1 = N->getOperand(1);
8133 if (Op0.getOpcode() != ISD::CONCAT_VECTORS ||
8134 Op1.getOpcode() != ISD::CONCAT_VECTORS ||
8135 Op0.getNumOperands() != 2 ||
8136 Op1.getNumOperands() != 2)
8137 return SDValue();
8138 SDValue Concat0Op1 = Op0.getOperand(1);
8139 SDValue Concat1Op1 = Op1.getOperand(1);
8140 if (Concat0Op1.getOpcode() != ISD::UNDEF ||
8141 Concat1Op1.getOpcode() != ISD::UNDEF)
8142 return SDValue();
8143 // Skip the transformation if any of the types are illegal.
8144 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8145 EVT VT = N->getValueType(0);
8146 if (!TLI.isTypeLegal(VT) ||
8147 !TLI.isTypeLegal(Concat0Op1.getValueType()) ||
8148 !TLI.isTypeLegal(Concat1Op1.getValueType()))
8149 return SDValue();
8150
8151 SDValue NewConcat = DAG.getNode(ISD::CONCAT_VECTORS, N->getDebugLoc(), VT,
8152 Op0.getOperand(0), Op1.getOperand(0));
8153 // Translate the shuffle mask.
8154 SmallVector<int, 16> NewMask;
8155 unsigned NumElts = VT.getVectorNumElements();
8156 unsigned HalfElts = NumElts/2;
8157 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
8158 for (unsigned n = 0; n < NumElts; ++n) {
8159 int MaskElt = SVN->getMaskElt(n);
8160 int NewElt = -1;
8161 if (MaskElt < (int)HalfElts)
8162 NewElt = MaskElt;
8163 else if (MaskElt >= (int)NumElts && MaskElt < (int)(NumElts + HalfElts))
8164 NewElt = HalfElts + MaskElt - NumElts;
8165 NewMask.push_back(NewElt);
8166 }
8167 return DAG.getVectorShuffle(VT, N->getDebugLoc(), NewConcat,
8168 DAG.getUNDEF(VT), NewMask.data());
8169 }
8170
8171 /// CombineBaseUpdate - Target-specific DAG combine function for VLDDUP and
8172 /// NEON load/store intrinsics to merge base address updates.
CombineBaseUpdate(SDNode * N,TargetLowering::DAGCombinerInfo & DCI)8173 static SDValue CombineBaseUpdate(SDNode *N,
8174 TargetLowering::DAGCombinerInfo &DCI) {
8175 if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
8176 return SDValue();
8177
8178 SelectionDAG &DAG = DCI.DAG;
8179 bool isIntrinsic = (N->getOpcode() == ISD::INTRINSIC_VOID ||
8180 N->getOpcode() == ISD::INTRINSIC_W_CHAIN);
8181 unsigned AddrOpIdx = (isIntrinsic ? 2 : 1);
8182 SDValue Addr = N->getOperand(AddrOpIdx);
8183
8184 // Search for a use of the address operand that is an increment.
8185 for (SDNode::use_iterator UI = Addr.getNode()->use_begin(),
8186 UE = Addr.getNode()->use_end(); UI != UE; ++UI) {
8187 SDNode *User = *UI;
8188 if (User->getOpcode() != ISD::ADD ||
8189 UI.getUse().getResNo() != Addr.getResNo())
8190 continue;
8191
8192 // Check that the add is independent of the load/store. Otherwise, folding
8193 // it would create a cycle.
8194 if (User->isPredecessorOf(N) || N->isPredecessorOf(User))
8195 continue;
8196
8197 // Find the new opcode for the updating load/store.
8198 bool isLoad = true;
8199 bool isLaneOp = false;
8200 unsigned NewOpc = 0;
8201 unsigned NumVecs = 0;
8202 if (isIntrinsic) {
8203 unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
8204 switch (IntNo) {
8205 default: llvm_unreachable("unexpected intrinsic for Neon base update");
8206 case Intrinsic::arm_neon_vld1: NewOpc = ARMISD::VLD1_UPD;
8207 NumVecs = 1; break;
8208 case Intrinsic::arm_neon_vld2: NewOpc = ARMISD::VLD2_UPD;
8209 NumVecs = 2; break;
8210 case Intrinsic::arm_neon_vld3: NewOpc = ARMISD::VLD3_UPD;
8211 NumVecs = 3; break;
8212 case Intrinsic::arm_neon_vld4: NewOpc = ARMISD::VLD4_UPD;
8213 NumVecs = 4; break;
8214 case Intrinsic::arm_neon_vld2lane: NewOpc = ARMISD::VLD2LN_UPD;
8215 NumVecs = 2; isLaneOp = true; break;
8216 case Intrinsic::arm_neon_vld3lane: NewOpc = ARMISD::VLD3LN_UPD;
8217 NumVecs = 3; isLaneOp = true; break;
8218 case Intrinsic::arm_neon_vld4lane: NewOpc = ARMISD::VLD4LN_UPD;
8219 NumVecs = 4; isLaneOp = true; break;
8220 case Intrinsic::arm_neon_vst1: NewOpc = ARMISD::VST1_UPD;
8221 NumVecs = 1; isLoad = false; break;
8222 case Intrinsic::arm_neon_vst2: NewOpc = ARMISD::VST2_UPD;
8223 NumVecs = 2; isLoad = false; break;
8224 case Intrinsic::arm_neon_vst3: NewOpc = ARMISD::VST3_UPD;
8225 NumVecs = 3; isLoad = false; break;
8226 case Intrinsic::arm_neon_vst4: NewOpc = ARMISD::VST4_UPD;
8227 NumVecs = 4; isLoad = false; break;
8228 case Intrinsic::arm_neon_vst2lane: NewOpc = ARMISD::VST2LN_UPD;
8229 NumVecs = 2; isLoad = false; isLaneOp = true; break;
8230 case Intrinsic::arm_neon_vst3lane: NewOpc = ARMISD::VST3LN_UPD;
8231 NumVecs = 3; isLoad = false; isLaneOp = true; break;
8232 case Intrinsic::arm_neon_vst4lane: NewOpc = ARMISD::VST4LN_UPD;
8233 NumVecs = 4; isLoad = false; isLaneOp = true; break;
8234 }
8235 } else {
8236 isLaneOp = true;
8237 switch (N->getOpcode()) {
8238 default: llvm_unreachable("unexpected opcode for Neon base update");
8239 case ARMISD::VLD2DUP: NewOpc = ARMISD::VLD2DUP_UPD; NumVecs = 2; break;
8240 case ARMISD::VLD3DUP: NewOpc = ARMISD::VLD3DUP_UPD; NumVecs = 3; break;
8241 case ARMISD::VLD4DUP: NewOpc = ARMISD::VLD4DUP_UPD; NumVecs = 4; break;
8242 }
8243 }
8244
8245 // Find the size of memory referenced by the load/store.
8246 EVT VecTy;
8247 if (isLoad)
8248 VecTy = N->getValueType(0);
8249 else
8250 VecTy = N->getOperand(AddrOpIdx+1).getValueType();
8251 unsigned NumBytes = NumVecs * VecTy.getSizeInBits() / 8;
8252 if (isLaneOp)
8253 NumBytes /= VecTy.getVectorNumElements();
8254
8255 // If the increment is a constant, it must match the memory ref size.
8256 SDValue Inc = User->getOperand(User->getOperand(0) == Addr ? 1 : 0);
8257 if (ConstantSDNode *CInc = dyn_cast<ConstantSDNode>(Inc.getNode())) {
8258 uint64_t IncVal = CInc->getZExtValue();
8259 if (IncVal != NumBytes)
8260 continue;
8261 } else if (NumBytes >= 3 * 16) {
8262 // VLD3/4 and VST3/4 for 128-bit vectors are implemented with two
8263 // separate instructions that make it harder to use a non-constant update.
8264 continue;
8265 }
8266
8267 // Create the new updating load/store node.
8268 EVT Tys[6];
8269 unsigned NumResultVecs = (isLoad ? NumVecs : 0);
8270 unsigned n;
8271 for (n = 0; n < NumResultVecs; ++n)
8272 Tys[n] = VecTy;
8273 Tys[n++] = MVT::i32;
8274 Tys[n] = MVT::Other;
8275 SDVTList SDTys = DAG.getVTList(Tys, NumResultVecs+2);
8276 SmallVector<SDValue, 8> Ops;
8277 Ops.push_back(N->getOperand(0)); // incoming chain
8278 Ops.push_back(N->getOperand(AddrOpIdx));
8279 Ops.push_back(Inc);
8280 for (unsigned i = AddrOpIdx + 1; i < N->getNumOperands(); ++i) {
8281 Ops.push_back(N->getOperand(i));
8282 }
8283 MemIntrinsicSDNode *MemInt = cast<MemIntrinsicSDNode>(N);
8284 SDValue UpdN = DAG.getMemIntrinsicNode(NewOpc, N->getDebugLoc(), SDTys,
8285 Ops.data(), Ops.size(),
8286 MemInt->getMemoryVT(),
8287 MemInt->getMemOperand());
8288
8289 // Update the uses.
8290 std::vector<SDValue> NewResults;
8291 for (unsigned i = 0; i < NumResultVecs; ++i) {
8292 NewResults.push_back(SDValue(UpdN.getNode(), i));
8293 }
8294 NewResults.push_back(SDValue(UpdN.getNode(), NumResultVecs+1)); // chain
8295 DCI.CombineTo(N, NewResults);
8296 DCI.CombineTo(User, SDValue(UpdN.getNode(), NumResultVecs));
8297
8298 break;
8299 }
8300 return SDValue();
8301 }
8302
8303 /// CombineVLDDUP - For a VDUPLANE node N, check if its source operand is a
8304 /// vldN-lane (N > 1) intrinsic, and if all the other uses of that intrinsic
8305 /// are also VDUPLANEs. If so, combine them to a vldN-dup operation and
8306 /// return true.
CombineVLDDUP(SDNode * N,TargetLowering::DAGCombinerInfo & DCI)8307 static bool CombineVLDDUP(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
8308 SelectionDAG &DAG = DCI.DAG;
8309 EVT VT = N->getValueType(0);
8310 // vldN-dup instructions only support 64-bit vectors for N > 1.
8311 if (!VT.is64BitVector())
8312 return false;
8313
8314 // Check if the VDUPLANE operand is a vldN-dup intrinsic.
8315 SDNode *VLD = N->getOperand(0).getNode();
8316 if (VLD->getOpcode() != ISD::INTRINSIC_W_CHAIN)
8317 return false;
8318 unsigned NumVecs = 0;
8319 unsigned NewOpc = 0;
8320 unsigned IntNo = cast<ConstantSDNode>(VLD->getOperand(1))->getZExtValue();
8321 if (IntNo == Intrinsic::arm_neon_vld2lane) {
8322 NumVecs = 2;
8323 NewOpc = ARMISD::VLD2DUP;
8324 } else if (IntNo == Intrinsic::arm_neon_vld3lane) {
8325 NumVecs = 3;
8326 NewOpc = ARMISD::VLD3DUP;
8327 } else if (IntNo == Intrinsic::arm_neon_vld4lane) {
8328 NumVecs = 4;
8329 NewOpc = ARMISD::VLD4DUP;
8330 } else {
8331 return false;
8332 }
8333
8334 // First check that all the vldN-lane uses are VDUPLANEs and that the lane
8335 // numbers match the load.
8336 unsigned VLDLaneNo =
8337 cast<ConstantSDNode>(VLD->getOperand(NumVecs+3))->getZExtValue();
8338 for (SDNode::use_iterator UI = VLD->use_begin(), UE = VLD->use_end();
8339 UI != UE; ++UI) {
8340 // Ignore uses of the chain result.
8341 if (UI.getUse().getResNo() == NumVecs)
8342 continue;
8343 SDNode *User = *UI;
8344 if (User->getOpcode() != ARMISD::VDUPLANE ||
8345 VLDLaneNo != cast<ConstantSDNode>(User->getOperand(1))->getZExtValue())
8346 return false;
8347 }
8348
8349 // Create the vldN-dup node.
8350 EVT Tys[5];
8351 unsigned n;
8352 for (n = 0; n < NumVecs; ++n)
8353 Tys[n] = VT;
8354 Tys[n] = MVT::Other;
8355 SDVTList SDTys = DAG.getVTList(Tys, NumVecs+1);
8356 SDValue Ops[] = { VLD->getOperand(0), VLD->getOperand(2) };
8357 MemIntrinsicSDNode *VLDMemInt = cast<MemIntrinsicSDNode>(VLD);
8358 SDValue VLDDup = DAG.getMemIntrinsicNode(NewOpc, VLD->getDebugLoc(), SDTys,
8359 Ops, 2, VLDMemInt->getMemoryVT(),
8360 VLDMemInt->getMemOperand());
8361
8362 // Update the uses.
8363 for (SDNode::use_iterator UI = VLD->use_begin(), UE = VLD->use_end();
8364 UI != UE; ++UI) {
8365 unsigned ResNo = UI.getUse().getResNo();
8366 // Ignore uses of the chain result.
8367 if (ResNo == NumVecs)
8368 continue;
8369 SDNode *User = *UI;
8370 DCI.CombineTo(User, SDValue(VLDDup.getNode(), ResNo));
8371 }
8372
8373 // Now the vldN-lane intrinsic is dead except for its chain result.
8374 // Update uses of the chain.
8375 std::vector<SDValue> VLDDupResults;
8376 for (unsigned n = 0; n < NumVecs; ++n)
8377 VLDDupResults.push_back(SDValue(VLDDup.getNode(), n));
8378 VLDDupResults.push_back(SDValue(VLDDup.getNode(), NumVecs));
8379 DCI.CombineTo(VLD, VLDDupResults);
8380
8381 return true;
8382 }
8383
8384 /// PerformVDUPLANECombine - Target-specific dag combine xforms for
8385 /// ARMISD::VDUPLANE.
PerformVDUPLANECombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI)8386 static SDValue PerformVDUPLANECombine(SDNode *N,
8387 TargetLowering::DAGCombinerInfo &DCI) {
8388 SDValue Op = N->getOperand(0);
8389
8390 // If the source is a vldN-lane (N > 1) intrinsic, and all the other uses
8391 // of that intrinsic are also VDUPLANEs, combine them to a vldN-dup operation.
8392 if (CombineVLDDUP(N, DCI))
8393 return SDValue(N, 0);
8394
8395 // If the source is already a VMOVIMM or VMVNIMM splat, the VDUPLANE is
8396 // redundant. Ignore bit_converts for now; element sizes are checked below.
8397 while (Op.getOpcode() == ISD::BITCAST)
8398 Op = Op.getOperand(0);
8399 if (Op.getOpcode() != ARMISD::VMOVIMM && Op.getOpcode() != ARMISD::VMVNIMM)
8400 return SDValue();
8401
8402 // Make sure the VMOV element size is not bigger than the VDUPLANE elements.
8403 unsigned EltSize = Op.getValueType().getVectorElementType().getSizeInBits();
8404 // The canonical VMOV for a zero vector uses a 32-bit element size.
8405 unsigned Imm = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
8406 unsigned EltBits;
8407 if (ARM_AM::decodeNEONModImm(Imm, EltBits) == 0)
8408 EltSize = 8;
8409 EVT VT = N->getValueType(0);
8410 if (EltSize > VT.getVectorElementType().getSizeInBits())
8411 return SDValue();
8412
8413 return DCI.DAG.getNode(ISD::BITCAST, N->getDebugLoc(), VT, Op);
8414 }
8415
8416 // isConstVecPow2 - Return true if each vector element is a power of 2, all
8417 // elements are the same constant, C, and Log2(C) ranges from 1 to 32.
isConstVecPow2(SDValue ConstVec,bool isSigned,uint64_t & C)8418 static bool isConstVecPow2(SDValue ConstVec, bool isSigned, uint64_t &C)
8419 {
8420 integerPart cN;
8421 integerPart c0 = 0;
8422 for (unsigned I = 0, E = ConstVec.getValueType().getVectorNumElements();
8423 I != E; I++) {
8424 ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(ConstVec.getOperand(I));
8425 if (!C)
8426 return false;
8427
8428 bool isExact;
8429 APFloat APF = C->getValueAPF();
8430 if (APF.convertToInteger(&cN, 64, isSigned, APFloat::rmTowardZero, &isExact)
8431 != APFloat::opOK || !isExact)
8432 return false;
8433
8434 c0 = (I == 0) ? cN : c0;
8435 if (!isPowerOf2_64(cN) || c0 != cN || Log2_64(c0) < 1 || Log2_64(c0) > 32)
8436 return false;
8437 }
8438 C = c0;
8439 return true;
8440 }
8441
8442 /// PerformVCVTCombine - VCVT (floating-point to fixed-point, Advanced SIMD)
8443 /// can replace combinations of VMUL and VCVT (floating-point to integer)
8444 /// when the VMUL has a constant operand that is a power of 2.
8445 ///
8446 /// Example (assume d17 = <float 8.000000e+00, float 8.000000e+00>):
8447 /// vmul.f32 d16, d17, d16
8448 /// vcvt.s32.f32 d16, d16
8449 /// becomes:
8450 /// vcvt.s32.f32 d16, d16, #3
PerformVCVTCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)8451 static SDValue PerformVCVTCombine(SDNode *N,
8452 TargetLowering::DAGCombinerInfo &DCI,
8453 const ARMSubtarget *Subtarget) {
8454 SelectionDAG &DAG = DCI.DAG;
8455 SDValue Op = N->getOperand(0);
8456
8457 if (!Subtarget->hasNEON() || !Op.getValueType().isVector() ||
8458 Op.getOpcode() != ISD::FMUL)
8459 return SDValue();
8460
8461 uint64_t C;
8462 SDValue N0 = Op->getOperand(0);
8463 SDValue ConstVec = Op->getOperand(1);
8464 bool isSigned = N->getOpcode() == ISD::FP_TO_SINT;
8465
8466 if (ConstVec.getOpcode() != ISD::BUILD_VECTOR ||
8467 !isConstVecPow2(ConstVec, isSigned, C))
8468 return SDValue();
8469
8470 unsigned IntrinsicOpcode = isSigned ? Intrinsic::arm_neon_vcvtfp2fxs :
8471 Intrinsic::arm_neon_vcvtfp2fxu;
8472 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, N->getDebugLoc(),
8473 N->getValueType(0),
8474 DAG.getConstant(IntrinsicOpcode, MVT::i32), N0,
8475 DAG.getConstant(Log2_64(C), MVT::i32));
8476 }
8477
8478 /// PerformVDIVCombine - VCVT (fixed-point to floating-point, Advanced SIMD)
8479 /// can replace combinations of VCVT (integer to floating-point) and VDIV
8480 /// when the VDIV has a constant operand that is a power of 2.
8481 ///
8482 /// Example (assume d17 = <float 8.000000e+00, float 8.000000e+00>):
8483 /// vcvt.f32.s32 d16, d16
8484 /// vdiv.f32 d16, d17, d16
8485 /// becomes:
8486 /// vcvt.f32.s32 d16, d16, #3
PerformVDIVCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)8487 static SDValue PerformVDIVCombine(SDNode *N,
8488 TargetLowering::DAGCombinerInfo &DCI,
8489 const ARMSubtarget *Subtarget) {
8490 SelectionDAG &DAG = DCI.DAG;
8491 SDValue Op = N->getOperand(0);
8492 unsigned OpOpcode = Op.getNode()->getOpcode();
8493
8494 if (!Subtarget->hasNEON() || !N->getValueType(0).isVector() ||
8495 (OpOpcode != ISD::SINT_TO_FP && OpOpcode != ISD::UINT_TO_FP))
8496 return SDValue();
8497
8498 uint64_t C;
8499 SDValue ConstVec = N->getOperand(1);
8500 bool isSigned = OpOpcode == ISD::SINT_TO_FP;
8501
8502 if (ConstVec.getOpcode() != ISD::BUILD_VECTOR ||
8503 !isConstVecPow2(ConstVec, isSigned, C))
8504 return SDValue();
8505
8506 unsigned IntrinsicOpcode = isSigned ? Intrinsic::arm_neon_vcvtfxs2fp :
8507 Intrinsic::arm_neon_vcvtfxu2fp;
8508 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, N->getDebugLoc(),
8509 Op.getValueType(),
8510 DAG.getConstant(IntrinsicOpcode, MVT::i32),
8511 Op.getOperand(0), DAG.getConstant(Log2_64(C), MVT::i32));
8512 }
8513
8514 /// Getvshiftimm - Check if this is a valid build_vector for the immediate
8515 /// operand of a vector shift operation, where all the elements of the
8516 /// build_vector must have the same constant integer value.
getVShiftImm(SDValue Op,unsigned ElementBits,int64_t & Cnt)8517 static bool getVShiftImm(SDValue Op, unsigned ElementBits, int64_t &Cnt) {
8518 // Ignore bit_converts.
8519 while (Op.getOpcode() == ISD::BITCAST)
8520 Op = Op.getOperand(0);
8521 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
8522 APInt SplatBits, SplatUndef;
8523 unsigned SplatBitSize;
8524 bool HasAnyUndefs;
8525 if (! BVN || ! BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize,
8526 HasAnyUndefs, ElementBits) ||
8527 SplatBitSize > ElementBits)
8528 return false;
8529 Cnt = SplatBits.getSExtValue();
8530 return true;
8531 }
8532
8533 /// isVShiftLImm - Check if this is a valid build_vector for the immediate
8534 /// operand of a vector shift left operation. That value must be in the range:
8535 /// 0 <= Value < ElementBits for a left shift; or
8536 /// 0 <= Value <= ElementBits for a long left shift.
isVShiftLImm(SDValue Op,EVT VT,bool isLong,int64_t & Cnt)8537 static bool isVShiftLImm(SDValue Op, EVT VT, bool isLong, int64_t &Cnt) {
8538 assert(VT.isVector() && "vector shift count is not a vector type");
8539 unsigned ElementBits = VT.getVectorElementType().getSizeInBits();
8540 if (! getVShiftImm(Op, ElementBits, Cnt))
8541 return false;
8542 return (Cnt >= 0 && (isLong ? Cnt-1 : Cnt) < ElementBits);
8543 }
8544
8545 /// isVShiftRImm - Check if this is a valid build_vector for the immediate
8546 /// operand of a vector shift right operation. For a shift opcode, the value
8547 /// is positive, but for an intrinsic the value count must be negative. The
8548 /// absolute value must be in the range:
8549 /// 1 <= |Value| <= ElementBits for a right shift; or
8550 /// 1 <= |Value| <= ElementBits/2 for a narrow right shift.
isVShiftRImm(SDValue Op,EVT VT,bool isNarrow,bool isIntrinsic,int64_t & Cnt)8551 static bool isVShiftRImm(SDValue Op, EVT VT, bool isNarrow, bool isIntrinsic,
8552 int64_t &Cnt) {
8553 assert(VT.isVector() && "vector shift count is not a vector type");
8554 unsigned ElementBits = VT.getVectorElementType().getSizeInBits();
8555 if (! getVShiftImm(Op, ElementBits, Cnt))
8556 return false;
8557 if (isIntrinsic)
8558 Cnt = -Cnt;
8559 return (Cnt >= 1 && Cnt <= (isNarrow ? ElementBits/2 : ElementBits));
8560 }
8561
8562 /// PerformIntrinsicCombine - ARM-specific DAG combining for intrinsics.
PerformIntrinsicCombine(SDNode * N,SelectionDAG & DAG)8563 static SDValue PerformIntrinsicCombine(SDNode *N, SelectionDAG &DAG) {
8564 unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
8565 switch (IntNo) {
8566 default:
8567 // Don't do anything for most intrinsics.
8568 break;
8569
8570 // Vector shifts: check for immediate versions and lower them.
8571 // Note: This is done during DAG combining instead of DAG legalizing because
8572 // the build_vectors for 64-bit vector element shift counts are generally
8573 // not legal, and it is hard to see their values after they get legalized to
8574 // loads from a constant pool.
8575 case Intrinsic::arm_neon_vshifts:
8576 case Intrinsic::arm_neon_vshiftu:
8577 case Intrinsic::arm_neon_vshiftls:
8578 case Intrinsic::arm_neon_vshiftlu:
8579 case Intrinsic::arm_neon_vshiftn:
8580 case Intrinsic::arm_neon_vrshifts:
8581 case Intrinsic::arm_neon_vrshiftu:
8582 case Intrinsic::arm_neon_vrshiftn:
8583 case Intrinsic::arm_neon_vqshifts:
8584 case Intrinsic::arm_neon_vqshiftu:
8585 case Intrinsic::arm_neon_vqshiftsu:
8586 case Intrinsic::arm_neon_vqshiftns:
8587 case Intrinsic::arm_neon_vqshiftnu:
8588 case Intrinsic::arm_neon_vqshiftnsu:
8589 case Intrinsic::arm_neon_vqrshiftns:
8590 case Intrinsic::arm_neon_vqrshiftnu:
8591 case Intrinsic::arm_neon_vqrshiftnsu: {
8592 EVT VT = N->getOperand(1).getValueType();
8593 int64_t Cnt;
8594 unsigned VShiftOpc = 0;
8595
8596 switch (IntNo) {
8597 case Intrinsic::arm_neon_vshifts:
8598 case Intrinsic::arm_neon_vshiftu:
8599 if (isVShiftLImm(N->getOperand(2), VT, false, Cnt)) {
8600 VShiftOpc = ARMISD::VSHL;
8601 break;
8602 }
8603 if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt)) {
8604 VShiftOpc = (IntNo == Intrinsic::arm_neon_vshifts ?
8605 ARMISD::VSHRs : ARMISD::VSHRu);
8606 break;
8607 }
8608 return SDValue();
8609
8610 case Intrinsic::arm_neon_vshiftls:
8611 case Intrinsic::arm_neon_vshiftlu:
8612 if (isVShiftLImm(N->getOperand(2), VT, true, Cnt))
8613 break;
8614 llvm_unreachable("invalid shift count for vshll intrinsic");
8615
8616 case Intrinsic::arm_neon_vrshifts:
8617 case Intrinsic::arm_neon_vrshiftu:
8618 if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt))
8619 break;
8620 return SDValue();
8621
8622 case Intrinsic::arm_neon_vqshifts:
8623 case Intrinsic::arm_neon_vqshiftu:
8624 if (isVShiftLImm(N->getOperand(2), VT, false, Cnt))
8625 break;
8626 return SDValue();
8627
8628 case Intrinsic::arm_neon_vqshiftsu:
8629 if (isVShiftLImm(N->getOperand(2), VT, false, Cnt))
8630 break;
8631 llvm_unreachable("invalid shift count for vqshlu intrinsic");
8632
8633 case Intrinsic::arm_neon_vshiftn:
8634 case Intrinsic::arm_neon_vrshiftn:
8635 case Intrinsic::arm_neon_vqshiftns:
8636 case Intrinsic::arm_neon_vqshiftnu:
8637 case Intrinsic::arm_neon_vqshiftnsu:
8638 case Intrinsic::arm_neon_vqrshiftns:
8639 case Intrinsic::arm_neon_vqrshiftnu:
8640 case Intrinsic::arm_neon_vqrshiftnsu:
8641 // Narrowing shifts require an immediate right shift.
8642 if (isVShiftRImm(N->getOperand(2), VT, true, true, Cnt))
8643 break;
8644 llvm_unreachable("invalid shift count for narrowing vector shift "
8645 "intrinsic");
8646
8647 default:
8648 llvm_unreachable("unhandled vector shift");
8649 }
8650
8651 switch (IntNo) {
8652 case Intrinsic::arm_neon_vshifts:
8653 case Intrinsic::arm_neon_vshiftu:
8654 // Opcode already set above.
8655 break;
8656 case Intrinsic::arm_neon_vshiftls:
8657 case Intrinsic::arm_neon_vshiftlu:
8658 if (Cnt == VT.getVectorElementType().getSizeInBits())
8659 VShiftOpc = ARMISD::VSHLLi;
8660 else
8661 VShiftOpc = (IntNo == Intrinsic::arm_neon_vshiftls ?
8662 ARMISD::VSHLLs : ARMISD::VSHLLu);
8663 break;
8664 case Intrinsic::arm_neon_vshiftn:
8665 VShiftOpc = ARMISD::VSHRN; break;
8666 case Intrinsic::arm_neon_vrshifts:
8667 VShiftOpc = ARMISD::VRSHRs; break;
8668 case Intrinsic::arm_neon_vrshiftu:
8669 VShiftOpc = ARMISD::VRSHRu; break;
8670 case Intrinsic::arm_neon_vrshiftn:
8671 VShiftOpc = ARMISD::VRSHRN; break;
8672 case Intrinsic::arm_neon_vqshifts:
8673 VShiftOpc = ARMISD::VQSHLs; break;
8674 case Intrinsic::arm_neon_vqshiftu:
8675 VShiftOpc = ARMISD::VQSHLu; break;
8676 case Intrinsic::arm_neon_vqshiftsu:
8677 VShiftOpc = ARMISD::VQSHLsu; break;
8678 case Intrinsic::arm_neon_vqshiftns:
8679 VShiftOpc = ARMISD::VQSHRNs; break;
8680 case Intrinsic::arm_neon_vqshiftnu:
8681 VShiftOpc = ARMISD::VQSHRNu; break;
8682 case Intrinsic::arm_neon_vqshiftnsu:
8683 VShiftOpc = ARMISD::VQSHRNsu; break;
8684 case Intrinsic::arm_neon_vqrshiftns:
8685 VShiftOpc = ARMISD::VQRSHRNs; break;
8686 case Intrinsic::arm_neon_vqrshiftnu:
8687 VShiftOpc = ARMISD::VQRSHRNu; break;
8688 case Intrinsic::arm_neon_vqrshiftnsu:
8689 VShiftOpc = ARMISD::VQRSHRNsu; break;
8690 }
8691
8692 return DAG.getNode(VShiftOpc, N->getDebugLoc(), N->getValueType(0),
8693 N->getOperand(1), DAG.getConstant(Cnt, MVT::i32));
8694 }
8695
8696 case Intrinsic::arm_neon_vshiftins: {
8697 EVT VT = N->getOperand(1).getValueType();
8698 int64_t Cnt;
8699 unsigned VShiftOpc = 0;
8700
8701 if (isVShiftLImm(N->getOperand(3), VT, false, Cnt))
8702 VShiftOpc = ARMISD::VSLI;
8703 else if (isVShiftRImm(N->getOperand(3), VT, false, true, Cnt))
8704 VShiftOpc = ARMISD::VSRI;
8705 else {
8706 llvm_unreachable("invalid shift count for vsli/vsri intrinsic");
8707 }
8708
8709 return DAG.getNode(VShiftOpc, N->getDebugLoc(), N->getValueType(0),
8710 N->getOperand(1), N->getOperand(2),
8711 DAG.getConstant(Cnt, MVT::i32));
8712 }
8713
8714 case Intrinsic::arm_neon_vqrshifts:
8715 case Intrinsic::arm_neon_vqrshiftu:
8716 // No immediate versions of these to check for.
8717 break;
8718 }
8719
8720 return SDValue();
8721 }
8722
8723 /// PerformShiftCombine - Checks for immediate versions of vector shifts and
8724 /// lowers them. As with the vector shift intrinsics, this is done during DAG
8725 /// combining instead of DAG legalizing because the build_vectors for 64-bit
8726 /// vector element shift counts are generally not legal, and it is hard to see
8727 /// their values after they get legalized to loads from a constant pool.
PerformShiftCombine(SDNode * N,SelectionDAG & DAG,const ARMSubtarget * ST)8728 static SDValue PerformShiftCombine(SDNode *N, SelectionDAG &DAG,
8729 const ARMSubtarget *ST) {
8730 EVT VT = N->getValueType(0);
8731 if (N->getOpcode() == ISD::SRL && VT == MVT::i32 && ST->hasV6Ops()) {
8732 // Canonicalize (srl (bswap x), 16) to (rotr (bswap x), 16) if the high
8733 // 16-bits of x is zero. This optimizes rev + lsr 16 to rev16.
8734 SDValue N1 = N->getOperand(1);
8735 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
8736 SDValue N0 = N->getOperand(0);
8737 if (C->getZExtValue() == 16 && N0.getOpcode() == ISD::BSWAP &&
8738 DAG.MaskedValueIsZero(N0.getOperand(0),
8739 APInt::getHighBitsSet(32, 16)))
8740 return DAG.getNode(ISD::ROTR, N->getDebugLoc(), VT, N0, N1);
8741 }
8742 }
8743
8744 // Nothing to be done for scalar shifts.
8745 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8746 if (!VT.isVector() || !TLI.isTypeLegal(VT))
8747 return SDValue();
8748
8749 assert(ST->hasNEON() && "unexpected vector shift");
8750 int64_t Cnt;
8751
8752 switch (N->getOpcode()) {
8753 default: llvm_unreachable("unexpected shift opcode");
8754
8755 case ISD::SHL:
8756 if (isVShiftLImm(N->getOperand(1), VT, false, Cnt))
8757 return DAG.getNode(ARMISD::VSHL, N->getDebugLoc(), VT, N->getOperand(0),
8758 DAG.getConstant(Cnt, MVT::i32));
8759 break;
8760
8761 case ISD::SRA:
8762 case ISD::SRL:
8763 if (isVShiftRImm(N->getOperand(1), VT, false, false, Cnt)) {
8764 unsigned VShiftOpc = (N->getOpcode() == ISD::SRA ?
8765 ARMISD::VSHRs : ARMISD::VSHRu);
8766 return DAG.getNode(VShiftOpc, N->getDebugLoc(), VT, N->getOperand(0),
8767 DAG.getConstant(Cnt, MVT::i32));
8768 }
8769 }
8770 return SDValue();
8771 }
8772
8773 /// PerformExtendCombine - Target-specific DAG combining for ISD::SIGN_EXTEND,
8774 /// ISD::ZERO_EXTEND, and ISD::ANY_EXTEND.
PerformExtendCombine(SDNode * N,SelectionDAG & DAG,const ARMSubtarget * ST)8775 static SDValue PerformExtendCombine(SDNode *N, SelectionDAG &DAG,
8776 const ARMSubtarget *ST) {
8777 SDValue N0 = N->getOperand(0);
8778
8779 // Check for sign- and zero-extensions of vector extract operations of 8-
8780 // and 16-bit vector elements. NEON supports these directly. They are
8781 // handled during DAG combining because type legalization will promote them
8782 // to 32-bit types and it is messy to recognize the operations after that.
8783 if (ST->hasNEON() && N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
8784 SDValue Vec = N0.getOperand(0);
8785 SDValue Lane = N0.getOperand(1);
8786 EVT VT = N->getValueType(0);
8787 EVT EltVT = N0.getValueType();
8788 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8789
8790 if (VT == MVT::i32 &&
8791 (EltVT == MVT::i8 || EltVT == MVT::i16) &&
8792 TLI.isTypeLegal(Vec.getValueType()) &&
8793 isa<ConstantSDNode>(Lane)) {
8794
8795 unsigned Opc = 0;
8796 switch (N->getOpcode()) {
8797 default: llvm_unreachable("unexpected opcode");
8798 case ISD::SIGN_EXTEND:
8799 Opc = ARMISD::VGETLANEs;
8800 break;
8801 case ISD::ZERO_EXTEND:
8802 case ISD::ANY_EXTEND:
8803 Opc = ARMISD::VGETLANEu;
8804 break;
8805 }
8806 return DAG.getNode(Opc, N->getDebugLoc(), VT, Vec, Lane);
8807 }
8808 }
8809
8810 return SDValue();
8811 }
8812
8813 /// PerformSELECT_CCCombine - Target-specific DAG combining for ISD::SELECT_CC
8814 /// to match f32 max/min patterns to use NEON vmax/vmin instructions.
PerformSELECT_CCCombine(SDNode * N,SelectionDAG & DAG,const ARMSubtarget * ST)8815 static SDValue PerformSELECT_CCCombine(SDNode *N, SelectionDAG &DAG,
8816 const ARMSubtarget *ST) {
8817 // If the target supports NEON, try to use vmax/vmin instructions for f32
8818 // selects like "x < y ? x : y". Unless the NoNaNsFPMath option is set,
8819 // be careful about NaNs: NEON's vmax/vmin return NaN if either operand is
8820 // a NaN; only do the transformation when it matches that behavior.
8821
8822 // For now only do this when using NEON for FP operations; if using VFP, it
8823 // is not obvious that the benefit outweighs the cost of switching to the
8824 // NEON pipeline.
8825 if (!ST->hasNEON() || !ST->useNEONForSinglePrecisionFP() ||
8826 N->getValueType(0) != MVT::f32)
8827 return SDValue();
8828
8829 SDValue CondLHS = N->getOperand(0);
8830 SDValue CondRHS = N->getOperand(1);
8831 SDValue LHS = N->getOperand(2);
8832 SDValue RHS = N->getOperand(3);
8833 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(4))->get();
8834
8835 unsigned Opcode = 0;
8836 bool IsReversed;
8837 if (DAG.isEqualTo(LHS, CondLHS) && DAG.isEqualTo(RHS, CondRHS)) {
8838 IsReversed = false; // x CC y ? x : y
8839 } else if (DAG.isEqualTo(LHS, CondRHS) && DAG.isEqualTo(RHS, CondLHS)) {
8840 IsReversed = true ; // x CC y ? y : x
8841 } else {
8842 return SDValue();
8843 }
8844
8845 bool IsUnordered;
8846 switch (CC) {
8847 default: break;
8848 case ISD::SETOLT:
8849 case ISD::SETOLE:
8850 case ISD::SETLT:
8851 case ISD::SETLE:
8852 case ISD::SETULT:
8853 case ISD::SETULE:
8854 // If LHS is NaN, an ordered comparison will be false and the result will
8855 // be the RHS, but vmin(NaN, RHS) = NaN. Avoid this by checking that LHS
8856 // != NaN. Likewise, for unordered comparisons, check for RHS != NaN.
8857 IsUnordered = (CC == ISD::SETULT || CC == ISD::SETULE);
8858 if (!DAG.isKnownNeverNaN(IsUnordered ? RHS : LHS))
8859 break;
8860 // For less-than-or-equal comparisons, "+0 <= -0" will be true but vmin
8861 // will return -0, so vmin can only be used for unsafe math or if one of
8862 // the operands is known to be nonzero.
8863 if ((CC == ISD::SETLE || CC == ISD::SETOLE || CC == ISD::SETULE) &&
8864 !DAG.getTarget().Options.UnsafeFPMath &&
8865 !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
8866 break;
8867 Opcode = IsReversed ? ARMISD::FMAX : ARMISD::FMIN;
8868 break;
8869
8870 case ISD::SETOGT:
8871 case ISD::SETOGE:
8872 case ISD::SETGT:
8873 case ISD::SETGE:
8874 case ISD::SETUGT:
8875 case ISD::SETUGE:
8876 // If LHS is NaN, an ordered comparison will be false and the result will
8877 // be the RHS, but vmax(NaN, RHS) = NaN. Avoid this by checking that LHS
8878 // != NaN. Likewise, for unordered comparisons, check for RHS != NaN.
8879 IsUnordered = (CC == ISD::SETUGT || CC == ISD::SETUGE);
8880 if (!DAG.isKnownNeverNaN(IsUnordered ? RHS : LHS))
8881 break;
8882 // For greater-than-or-equal comparisons, "-0 >= +0" will be true but vmax
8883 // will return +0, so vmax can only be used for unsafe math or if one of
8884 // the operands is known to be nonzero.
8885 if ((CC == ISD::SETGE || CC == ISD::SETOGE || CC == ISD::SETUGE) &&
8886 !DAG.getTarget().Options.UnsafeFPMath &&
8887 !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
8888 break;
8889 Opcode = IsReversed ? ARMISD::FMIN : ARMISD::FMAX;
8890 break;
8891 }
8892
8893 if (!Opcode)
8894 return SDValue();
8895 return DAG.getNode(Opcode, N->getDebugLoc(), N->getValueType(0), LHS, RHS);
8896 }
8897
8898 /// PerformCMOVCombine - Target-specific DAG combining for ARMISD::CMOV.
8899 SDValue
PerformCMOVCombine(SDNode * N,SelectionDAG & DAG) const8900 ARMTargetLowering::PerformCMOVCombine(SDNode *N, SelectionDAG &DAG) const {
8901 SDValue Cmp = N->getOperand(4);
8902 if (Cmp.getOpcode() != ARMISD::CMPZ)
8903 // Only looking at EQ and NE cases.
8904 return SDValue();
8905
8906 EVT VT = N->getValueType(0);
8907 DebugLoc dl = N->getDebugLoc();
8908 SDValue LHS = Cmp.getOperand(0);
8909 SDValue RHS = Cmp.getOperand(1);
8910 SDValue FalseVal = N->getOperand(0);
8911 SDValue TrueVal = N->getOperand(1);
8912 SDValue ARMcc = N->getOperand(2);
8913 ARMCC::CondCodes CC =
8914 (ARMCC::CondCodes)cast<ConstantSDNode>(ARMcc)->getZExtValue();
8915
8916 // Simplify
8917 // mov r1, r0
8918 // cmp r1, x
8919 // mov r0, y
8920 // moveq r0, x
8921 // to
8922 // cmp r0, x
8923 // movne r0, y
8924 //
8925 // mov r1, r0
8926 // cmp r1, x
8927 // mov r0, x
8928 // movne r0, y
8929 // to
8930 // cmp r0, x
8931 // movne r0, y
8932 /// FIXME: Turn this into a target neutral optimization?
8933 SDValue Res;
8934 if (CC == ARMCC::NE && FalseVal == RHS && FalseVal != LHS) {
8935 Res = DAG.getNode(ARMISD::CMOV, dl, VT, LHS, TrueVal, ARMcc,
8936 N->getOperand(3), Cmp);
8937 } else if (CC == ARMCC::EQ && TrueVal == RHS) {
8938 SDValue ARMcc;
8939 SDValue NewCmp = getARMCmp(LHS, RHS, ISD::SETNE, ARMcc, DAG, dl);
8940 Res = DAG.getNode(ARMISD::CMOV, dl, VT, LHS, FalseVal, ARMcc,
8941 N->getOperand(3), NewCmp);
8942 }
8943
8944 if (Res.getNode()) {
8945 APInt KnownZero, KnownOne;
8946 DAG.ComputeMaskedBits(SDValue(N,0), KnownZero, KnownOne);
8947 // Capture demanded bits information that would be otherwise lost.
8948 if (KnownZero == 0xfffffffe)
8949 Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res,
8950 DAG.getValueType(MVT::i1));
8951 else if (KnownZero == 0xffffff00)
8952 Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res,
8953 DAG.getValueType(MVT::i8));
8954 else if (KnownZero == 0xffff0000)
8955 Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res,
8956 DAG.getValueType(MVT::i16));
8957 }
8958
8959 return Res;
8960 }
8961
PerformDAGCombine(SDNode * N,DAGCombinerInfo & DCI) const8962 SDValue ARMTargetLowering::PerformDAGCombine(SDNode *N,
8963 DAGCombinerInfo &DCI) const {
8964 switch (N->getOpcode()) {
8965 default: break;
8966 case ISD::ADDC: return PerformADDCCombine(N, DCI, Subtarget);
8967 case ISD::ADD: return PerformADDCombine(N, DCI, Subtarget);
8968 case ISD::SUB: return PerformSUBCombine(N, DCI);
8969 case ISD::MUL: return PerformMULCombine(N, DCI, Subtarget);
8970 case ISD::OR: return PerformORCombine(N, DCI, Subtarget);
8971 case ISD::XOR: return PerformXORCombine(N, DCI, Subtarget);
8972 case ISD::AND: return PerformANDCombine(N, DCI, Subtarget);
8973 case ARMISD::BFI: return PerformBFICombine(N, DCI);
8974 case ARMISD::VMOVRRD: return PerformVMOVRRDCombine(N, DCI);
8975 case ARMISD::VMOVDRR: return PerformVMOVDRRCombine(N, DCI.DAG);
8976 case ISD::STORE: return PerformSTORECombine(N, DCI);
8977 case ISD::BUILD_VECTOR: return PerformBUILD_VECTORCombine(N, DCI);
8978 case ISD::INSERT_VECTOR_ELT: return PerformInsertEltCombine(N, DCI);
8979 case ISD::VECTOR_SHUFFLE: return PerformVECTOR_SHUFFLECombine(N, DCI.DAG);
8980 case ARMISD::VDUPLANE: return PerformVDUPLANECombine(N, DCI);
8981 case ISD::FP_TO_SINT:
8982 case ISD::FP_TO_UINT: return PerformVCVTCombine(N, DCI, Subtarget);
8983 case ISD::FDIV: return PerformVDIVCombine(N, DCI, Subtarget);
8984 case ISD::INTRINSIC_WO_CHAIN: return PerformIntrinsicCombine(N, DCI.DAG);
8985 case ISD::SHL:
8986 case ISD::SRA:
8987 case ISD::SRL: return PerformShiftCombine(N, DCI.DAG, Subtarget);
8988 case ISD::SIGN_EXTEND:
8989 case ISD::ZERO_EXTEND:
8990 case ISD::ANY_EXTEND: return PerformExtendCombine(N, DCI.DAG, Subtarget);
8991 case ISD::SELECT_CC: return PerformSELECT_CCCombine(N, DCI.DAG, Subtarget);
8992 case ARMISD::CMOV: return PerformCMOVCombine(N, DCI.DAG);
8993 case ARMISD::VLD2DUP:
8994 case ARMISD::VLD3DUP:
8995 case ARMISD::VLD4DUP:
8996 return CombineBaseUpdate(N, DCI);
8997 case ISD::INTRINSIC_VOID:
8998 case ISD::INTRINSIC_W_CHAIN:
8999 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
9000 case Intrinsic::arm_neon_vld1:
9001 case Intrinsic::arm_neon_vld2:
9002 case Intrinsic::arm_neon_vld3:
9003 case Intrinsic::arm_neon_vld4:
9004 case Intrinsic::arm_neon_vld2lane:
9005 case Intrinsic::arm_neon_vld3lane:
9006 case Intrinsic::arm_neon_vld4lane:
9007 case Intrinsic::arm_neon_vst1:
9008 case Intrinsic::arm_neon_vst2:
9009 case Intrinsic::arm_neon_vst3:
9010 case Intrinsic::arm_neon_vst4:
9011 case Intrinsic::arm_neon_vst2lane:
9012 case Intrinsic::arm_neon_vst3lane:
9013 case Intrinsic::arm_neon_vst4lane:
9014 return CombineBaseUpdate(N, DCI);
9015 default: break;
9016 }
9017 break;
9018 }
9019 return SDValue();
9020 }
9021
isDesirableToTransformToIntegerOp(unsigned Opc,EVT VT) const9022 bool ARMTargetLowering::isDesirableToTransformToIntegerOp(unsigned Opc,
9023 EVT VT) const {
9024 return (VT == MVT::f32) && (Opc == ISD::LOAD || Opc == ISD::STORE);
9025 }
9026
allowsUnalignedMemoryAccesses(EVT VT) const9027 bool ARMTargetLowering::allowsUnalignedMemoryAccesses(EVT VT) const {
9028 if (!Subtarget->allowsUnalignedMem())
9029 return false;
9030
9031 switch (VT.getSimpleVT().SimpleTy) {
9032 default:
9033 return false;
9034 case MVT::i8:
9035 case MVT::i16:
9036 case MVT::i32:
9037 return true;
9038 case MVT::f64:
9039 return Subtarget->hasNEON();
9040 // FIXME: VLD1 etc with standard alignment is legal.
9041 }
9042 }
9043
memOpAlign(unsigned DstAlign,unsigned SrcAlign,unsigned AlignCheck)9044 static bool memOpAlign(unsigned DstAlign, unsigned SrcAlign,
9045 unsigned AlignCheck) {
9046 return ((SrcAlign == 0 || SrcAlign % AlignCheck == 0) &&
9047 (DstAlign == 0 || DstAlign % AlignCheck == 0));
9048 }
9049
getOptimalMemOpType(uint64_t Size,unsigned DstAlign,unsigned SrcAlign,bool IsZeroVal,bool MemcpyStrSrc,MachineFunction & MF) const9050 EVT ARMTargetLowering::getOptimalMemOpType(uint64_t Size,
9051 unsigned DstAlign, unsigned SrcAlign,
9052 bool IsZeroVal,
9053 bool MemcpyStrSrc,
9054 MachineFunction &MF) const {
9055 const Function *F = MF.getFunction();
9056
9057 // See if we can use NEON instructions for this...
9058 if (IsZeroVal &&
9059 !F->hasFnAttr(Attribute::NoImplicitFloat) &&
9060 Subtarget->hasNEON()) {
9061 if (memOpAlign(SrcAlign, DstAlign, 16) && Size >= 16) {
9062 return MVT::v4i32;
9063 } else if (memOpAlign(SrcAlign, DstAlign, 8) && Size >= 8) {
9064 return MVT::v2i32;
9065 }
9066 }
9067
9068 // Lowering to i32/i16 if the size permits.
9069 if (Size >= 4) {
9070 return MVT::i32;
9071 } else if (Size >= 2) {
9072 return MVT::i16;
9073 }
9074
9075 // Let the target-independent logic figure it out.
9076 return MVT::Other;
9077 }
9078
isLegalT1AddressImmediate(int64_t V,EVT VT)9079 static bool isLegalT1AddressImmediate(int64_t V, EVT VT) {
9080 if (V < 0)
9081 return false;
9082
9083 unsigned Scale = 1;
9084 switch (VT.getSimpleVT().SimpleTy) {
9085 default: return false;
9086 case MVT::i1:
9087 case MVT::i8:
9088 // Scale == 1;
9089 break;
9090 case MVT::i16:
9091 // Scale == 2;
9092 Scale = 2;
9093 break;
9094 case MVT::i32:
9095 // Scale == 4;
9096 Scale = 4;
9097 break;
9098 }
9099
9100 if ((V & (Scale - 1)) != 0)
9101 return false;
9102 V /= Scale;
9103 return V == (V & ((1LL << 5) - 1));
9104 }
9105
isLegalT2AddressImmediate(int64_t V,EVT VT,const ARMSubtarget * Subtarget)9106 static bool isLegalT2AddressImmediate(int64_t V, EVT VT,
9107 const ARMSubtarget *Subtarget) {
9108 bool isNeg = false;
9109 if (V < 0) {
9110 isNeg = true;
9111 V = - V;
9112 }
9113
9114 switch (VT.getSimpleVT().SimpleTy) {
9115 default: return false;
9116 case MVT::i1:
9117 case MVT::i8:
9118 case MVT::i16:
9119 case MVT::i32:
9120 // + imm12 or - imm8
9121 if (isNeg)
9122 return V == (V & ((1LL << 8) - 1));
9123 return V == (V & ((1LL << 12) - 1));
9124 case MVT::f32:
9125 case MVT::f64:
9126 // Same as ARM mode. FIXME: NEON?
9127 if (!Subtarget->hasVFP2())
9128 return false;
9129 if ((V & 3) != 0)
9130 return false;
9131 V >>= 2;
9132 return V == (V & ((1LL << 8) - 1));
9133 }
9134 }
9135
9136 /// isLegalAddressImmediate - Return true if the integer value can be used
9137 /// as the offset of the target addressing mode for load / store of the
9138 /// given type.
isLegalAddressImmediate(int64_t V,EVT VT,const ARMSubtarget * Subtarget)9139 static bool isLegalAddressImmediate(int64_t V, EVT VT,
9140 const ARMSubtarget *Subtarget) {
9141 if (V == 0)
9142 return true;
9143
9144 if (!VT.isSimple())
9145 return false;
9146
9147 if (Subtarget->isThumb1Only())
9148 return isLegalT1AddressImmediate(V, VT);
9149 else if (Subtarget->isThumb2())
9150 return isLegalT2AddressImmediate(V, VT, Subtarget);
9151
9152 // ARM mode.
9153 if (V < 0)
9154 V = - V;
9155 switch (VT.getSimpleVT().SimpleTy) {
9156 default: return false;
9157 case MVT::i1:
9158 case MVT::i8:
9159 case MVT::i32:
9160 // +- imm12
9161 return V == (V & ((1LL << 12) - 1));
9162 case MVT::i16:
9163 // +- imm8
9164 return V == (V & ((1LL << 8) - 1));
9165 case MVT::f32:
9166 case MVT::f64:
9167 if (!Subtarget->hasVFP2()) // FIXME: NEON?
9168 return false;
9169 if ((V & 3) != 0)
9170 return false;
9171 V >>= 2;
9172 return V == (V & ((1LL << 8) - 1));
9173 }
9174 }
9175
isLegalT2ScaledAddressingMode(const AddrMode & AM,EVT VT) const9176 bool ARMTargetLowering::isLegalT2ScaledAddressingMode(const AddrMode &AM,
9177 EVT VT) const {
9178 int Scale = AM.Scale;
9179 if (Scale < 0)
9180 return false;
9181
9182 switch (VT.getSimpleVT().SimpleTy) {
9183 default: return false;
9184 case MVT::i1:
9185 case MVT::i8:
9186 case MVT::i16:
9187 case MVT::i32:
9188 if (Scale == 1)
9189 return true;
9190 // r + r << imm
9191 Scale = Scale & ~1;
9192 return Scale == 2 || Scale == 4 || Scale == 8;
9193 case MVT::i64:
9194 // r + r
9195 if (((unsigned)AM.HasBaseReg + Scale) <= 2)
9196 return true;
9197 return false;
9198 case MVT::isVoid:
9199 // Note, we allow "void" uses (basically, uses that aren't loads or
9200 // stores), because arm allows folding a scale into many arithmetic
9201 // operations. This should be made more precise and revisited later.
9202
9203 // Allow r << imm, but the imm has to be a multiple of two.
9204 if (Scale & 1) return false;
9205 return isPowerOf2_32(Scale);
9206 }
9207 }
9208
9209 /// isLegalAddressingMode - Return true if the addressing mode represented
9210 /// by AM is legal for this target, for a load/store of the specified type.
isLegalAddressingMode(const AddrMode & AM,Type * Ty) const9211 bool ARMTargetLowering::isLegalAddressingMode(const AddrMode &AM,
9212 Type *Ty) const {
9213 EVT VT = getValueType(Ty, true);
9214 if (!isLegalAddressImmediate(AM.BaseOffs, VT, Subtarget))
9215 return false;
9216
9217 // Can never fold addr of global into load/store.
9218 if (AM.BaseGV)
9219 return false;
9220
9221 switch (AM.Scale) {
9222 case 0: // no scale reg, must be "r+i" or "r", or "i".
9223 break;
9224 case 1:
9225 if (Subtarget->isThumb1Only())
9226 return false;
9227 // FALL THROUGH.
9228 default:
9229 // ARM doesn't support any R+R*scale+imm addr modes.
9230 if (AM.BaseOffs)
9231 return false;
9232
9233 if (!VT.isSimple())
9234 return false;
9235
9236 if (Subtarget->isThumb2())
9237 return isLegalT2ScaledAddressingMode(AM, VT);
9238
9239 int Scale = AM.Scale;
9240 switch (VT.getSimpleVT().SimpleTy) {
9241 default: return false;
9242 case MVT::i1:
9243 case MVT::i8:
9244 case MVT::i32:
9245 if (Scale < 0) Scale = -Scale;
9246 if (Scale == 1)
9247 return true;
9248 // r + r << imm
9249 return isPowerOf2_32(Scale & ~1);
9250 case MVT::i16:
9251 case MVT::i64:
9252 // r + r
9253 if (((unsigned)AM.HasBaseReg + Scale) <= 2)
9254 return true;
9255 return false;
9256
9257 case MVT::isVoid:
9258 // Note, we allow "void" uses (basically, uses that aren't loads or
9259 // stores), because arm allows folding a scale into many arithmetic
9260 // operations. This should be made more precise and revisited later.
9261
9262 // Allow r << imm, but the imm has to be a multiple of two.
9263 if (Scale & 1) return false;
9264 return isPowerOf2_32(Scale);
9265 }
9266 }
9267 return true;
9268 }
9269
9270 /// isLegalICmpImmediate - Return true if the specified immediate is legal
9271 /// icmp immediate, that is the target has icmp instructions which can compare
9272 /// a register against the immediate without having to materialize the
9273 /// immediate into a register.
isLegalICmpImmediate(int64_t Imm) const9274 bool ARMTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
9275 // Thumb2 and ARM modes can use cmn for negative immediates.
9276 if (!Subtarget->isThumb())
9277 return ARM_AM::getSOImmVal(llvm::abs64(Imm)) != -1;
9278 if (Subtarget->isThumb2())
9279 return ARM_AM::getT2SOImmVal(llvm::abs64(Imm)) != -1;
9280 // Thumb1 doesn't have cmn, and only 8-bit immediates.
9281 return Imm >= 0 && Imm <= 255;
9282 }
9283
9284 /// isLegalAddImmediate - Return true if the specified immediate is a legal add
9285 /// *or sub* immediate, that is the target has add or sub instructions which can
9286 /// add a register with the immediate without having to materialize the
9287 /// immediate into a register.
isLegalAddImmediate(int64_t Imm) const9288 bool ARMTargetLowering::isLegalAddImmediate(int64_t Imm) const {
9289 // Same encoding for add/sub, just flip the sign.
9290 int64_t AbsImm = llvm::abs64(Imm);
9291 if (!Subtarget->isThumb())
9292 return ARM_AM::getSOImmVal(AbsImm) != -1;
9293 if (Subtarget->isThumb2())
9294 return ARM_AM::getT2SOImmVal(AbsImm) != -1;
9295 // Thumb1 only has 8-bit unsigned immediate.
9296 return AbsImm >= 0 && AbsImm <= 255;
9297 }
9298
getARMIndexedAddressParts(SDNode * Ptr,EVT VT,bool isSEXTLoad,SDValue & Base,SDValue & Offset,bool & isInc,SelectionDAG & DAG)9299 static bool getARMIndexedAddressParts(SDNode *Ptr, EVT VT,
9300 bool isSEXTLoad, SDValue &Base,
9301 SDValue &Offset, bool &isInc,
9302 SelectionDAG &DAG) {
9303 if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB)
9304 return false;
9305
9306 if (VT == MVT::i16 || ((VT == MVT::i8 || VT == MVT::i1) && isSEXTLoad)) {
9307 // AddressingMode 3
9308 Base = Ptr->getOperand(0);
9309 if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
9310 int RHSC = (int)RHS->getZExtValue();
9311 if (RHSC < 0 && RHSC > -256) {
9312 assert(Ptr->getOpcode() == ISD::ADD);
9313 isInc = false;
9314 Offset = DAG.getConstant(-RHSC, RHS->getValueType(0));
9315 return true;
9316 }
9317 }
9318 isInc = (Ptr->getOpcode() == ISD::ADD);
9319 Offset = Ptr->getOperand(1);
9320 return true;
9321 } else if (VT == MVT::i32 || VT == MVT::i8 || VT == MVT::i1) {
9322 // AddressingMode 2
9323 if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
9324 int RHSC = (int)RHS->getZExtValue();
9325 if (RHSC < 0 && RHSC > -0x1000) {
9326 assert(Ptr->getOpcode() == ISD::ADD);
9327 isInc = false;
9328 Offset = DAG.getConstant(-RHSC, RHS->getValueType(0));
9329 Base = Ptr->getOperand(0);
9330 return true;
9331 }
9332 }
9333
9334 if (Ptr->getOpcode() == ISD::ADD) {
9335 isInc = true;
9336 ARM_AM::ShiftOpc ShOpcVal=
9337 ARM_AM::getShiftOpcForNode(Ptr->getOperand(0).getOpcode());
9338 if (ShOpcVal != ARM_AM::no_shift) {
9339 Base = Ptr->getOperand(1);
9340 Offset = Ptr->getOperand(0);
9341 } else {
9342 Base = Ptr->getOperand(0);
9343 Offset = Ptr->getOperand(1);
9344 }
9345 return true;
9346 }
9347
9348 isInc = (Ptr->getOpcode() == ISD::ADD);
9349 Base = Ptr->getOperand(0);
9350 Offset = Ptr->getOperand(1);
9351 return true;
9352 }
9353
9354 // FIXME: Use VLDM / VSTM to emulate indexed FP load / store.
9355 return false;
9356 }
9357
getT2IndexedAddressParts(SDNode * Ptr,EVT VT,bool isSEXTLoad,SDValue & Base,SDValue & Offset,bool & isInc,SelectionDAG & DAG)9358 static bool getT2IndexedAddressParts(SDNode *Ptr, EVT VT,
9359 bool isSEXTLoad, SDValue &Base,
9360 SDValue &Offset, bool &isInc,
9361 SelectionDAG &DAG) {
9362 if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB)
9363 return false;
9364
9365 Base = Ptr->getOperand(0);
9366 if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
9367 int RHSC = (int)RHS->getZExtValue();
9368 if (RHSC < 0 && RHSC > -0x100) { // 8 bits.
9369 assert(Ptr->getOpcode() == ISD::ADD);
9370 isInc = false;
9371 Offset = DAG.getConstant(-RHSC, RHS->getValueType(0));
9372 return true;
9373 } else if (RHSC > 0 && RHSC < 0x100) { // 8 bit, no zero.
9374 isInc = Ptr->getOpcode() == ISD::ADD;
9375 Offset = DAG.getConstant(RHSC, RHS->getValueType(0));
9376 return true;
9377 }
9378 }
9379
9380 return false;
9381 }
9382
9383 /// getPreIndexedAddressParts - returns true by value, base pointer and
9384 /// offset pointer and addressing mode by reference if the node's address
9385 /// can be legally represented as pre-indexed load / store address.
9386 bool
getPreIndexedAddressParts(SDNode * N,SDValue & Base,SDValue & Offset,ISD::MemIndexedMode & AM,SelectionDAG & DAG) const9387 ARMTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
9388 SDValue &Offset,
9389 ISD::MemIndexedMode &AM,
9390 SelectionDAG &DAG) const {
9391 if (Subtarget->isThumb1Only())
9392 return false;
9393
9394 EVT VT;
9395 SDValue Ptr;
9396 bool isSEXTLoad = false;
9397 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
9398 Ptr = LD->getBasePtr();
9399 VT = LD->getMemoryVT();
9400 isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
9401 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
9402 Ptr = ST->getBasePtr();
9403 VT = ST->getMemoryVT();
9404 } else
9405 return false;
9406
9407 bool isInc;
9408 bool isLegal = false;
9409 if (Subtarget->isThumb2())
9410 isLegal = getT2IndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base,
9411 Offset, isInc, DAG);
9412 else
9413 isLegal = getARMIndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base,
9414 Offset, isInc, DAG);
9415 if (!isLegal)
9416 return false;
9417
9418 AM = isInc ? ISD::PRE_INC : ISD::PRE_DEC;
9419 return true;
9420 }
9421
9422 /// getPostIndexedAddressParts - returns true by value, base pointer and
9423 /// offset pointer and addressing mode by reference if this node can be
9424 /// combined with a load / store to form a post-indexed load / store.
getPostIndexedAddressParts(SDNode * N,SDNode * Op,SDValue & Base,SDValue & Offset,ISD::MemIndexedMode & AM,SelectionDAG & DAG) const9425 bool ARMTargetLowering::getPostIndexedAddressParts(SDNode *N, SDNode *Op,
9426 SDValue &Base,
9427 SDValue &Offset,
9428 ISD::MemIndexedMode &AM,
9429 SelectionDAG &DAG) const {
9430 if (Subtarget->isThumb1Only())
9431 return false;
9432
9433 EVT VT;
9434 SDValue Ptr;
9435 bool isSEXTLoad = false;
9436 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
9437 VT = LD->getMemoryVT();
9438 Ptr = LD->getBasePtr();
9439 isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
9440 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
9441 VT = ST->getMemoryVT();
9442 Ptr = ST->getBasePtr();
9443 } else
9444 return false;
9445
9446 bool isInc;
9447 bool isLegal = false;
9448 if (Subtarget->isThumb2())
9449 isLegal = getT2IndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
9450 isInc, DAG);
9451 else
9452 isLegal = getARMIndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
9453 isInc, DAG);
9454 if (!isLegal)
9455 return false;
9456
9457 if (Ptr != Base) {
9458 // Swap base ptr and offset to catch more post-index load / store when
9459 // it's legal. In Thumb2 mode, offset must be an immediate.
9460 if (Ptr == Offset && Op->getOpcode() == ISD::ADD &&
9461 !Subtarget->isThumb2())
9462 std::swap(Base, Offset);
9463
9464 // Post-indexed load / store update the base pointer.
9465 if (Ptr != Base)
9466 return false;
9467 }
9468
9469 AM = isInc ? ISD::POST_INC : ISD::POST_DEC;
9470 return true;
9471 }
9472
computeMaskedBitsForTargetNode(const SDValue Op,APInt & KnownZero,APInt & KnownOne,const SelectionDAG & DAG,unsigned Depth) const9473 void ARMTargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
9474 APInt &KnownZero,
9475 APInt &KnownOne,
9476 const SelectionDAG &DAG,
9477 unsigned Depth) const {
9478 KnownZero = KnownOne = APInt(KnownOne.getBitWidth(), 0);
9479 switch (Op.getOpcode()) {
9480 default: break;
9481 case ARMISD::CMOV: {
9482 // Bits are known zero/one if known on the LHS and RHS.
9483 DAG.ComputeMaskedBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1);
9484 if (KnownZero == 0 && KnownOne == 0) return;
9485
9486 APInt KnownZeroRHS, KnownOneRHS;
9487 DAG.ComputeMaskedBits(Op.getOperand(1), KnownZeroRHS, KnownOneRHS, Depth+1);
9488 KnownZero &= KnownZeroRHS;
9489 KnownOne &= KnownOneRHS;
9490 return;
9491 }
9492 }
9493 }
9494
9495 //===----------------------------------------------------------------------===//
9496 // ARM Inline Assembly Support
9497 //===----------------------------------------------------------------------===//
9498
ExpandInlineAsm(CallInst * CI) const9499 bool ARMTargetLowering::ExpandInlineAsm(CallInst *CI) const {
9500 // Looking for "rev" which is V6+.
9501 if (!Subtarget->hasV6Ops())
9502 return false;
9503
9504 InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
9505 std::string AsmStr = IA->getAsmString();
9506 SmallVector<StringRef, 4> AsmPieces;
9507 SplitString(AsmStr, AsmPieces, ";\n");
9508
9509 switch (AsmPieces.size()) {
9510 default: return false;
9511 case 1:
9512 AsmStr = AsmPieces[0];
9513 AsmPieces.clear();
9514 SplitString(AsmStr, AsmPieces, " \t,");
9515
9516 // rev $0, $1
9517 if (AsmPieces.size() == 3 &&
9518 AsmPieces[0] == "rev" && AsmPieces[1] == "$0" && AsmPieces[2] == "$1" &&
9519 IA->getConstraintString().compare(0, 4, "=l,l") == 0) {
9520 IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
9521 if (Ty && Ty->getBitWidth() == 32)
9522 return IntrinsicLowering::LowerToByteSwap(CI);
9523 }
9524 break;
9525 }
9526
9527 return false;
9528 }
9529
9530 /// getConstraintType - Given a constraint letter, return the type of
9531 /// constraint it is for this target.
9532 ARMTargetLowering::ConstraintType
getConstraintType(const std::string & Constraint) const9533 ARMTargetLowering::getConstraintType(const std::string &Constraint) const {
9534 if (Constraint.size() == 1) {
9535 switch (Constraint[0]) {
9536 default: break;
9537 case 'l': return C_RegisterClass;
9538 case 'w': return C_RegisterClass;
9539 case 'h': return C_RegisterClass;
9540 case 'x': return C_RegisterClass;
9541 case 't': return C_RegisterClass;
9542 case 'j': return C_Other; // Constant for movw.
9543 // An address with a single base register. Due to the way we
9544 // currently handle addresses it is the same as an 'r' memory constraint.
9545 case 'Q': return C_Memory;
9546 }
9547 } else if (Constraint.size() == 2) {
9548 switch (Constraint[0]) {
9549 default: break;
9550 // All 'U+' constraints are addresses.
9551 case 'U': return C_Memory;
9552 }
9553 }
9554 return TargetLowering::getConstraintType(Constraint);
9555 }
9556
9557 /// Examine constraint type and operand type and determine a weight value.
9558 /// This object must already have been set up with the operand type
9559 /// and the current alternative constraint selected.
9560 TargetLowering::ConstraintWeight
getSingleConstraintMatchWeight(AsmOperandInfo & info,const char * constraint) const9561 ARMTargetLowering::getSingleConstraintMatchWeight(
9562 AsmOperandInfo &info, const char *constraint) const {
9563 ConstraintWeight weight = CW_Invalid;
9564 Value *CallOperandVal = info.CallOperandVal;
9565 // If we don't have a value, we can't do a match,
9566 // but allow it at the lowest weight.
9567 if (CallOperandVal == NULL)
9568 return CW_Default;
9569 Type *type = CallOperandVal->getType();
9570 // Look at the constraint type.
9571 switch (*constraint) {
9572 default:
9573 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
9574 break;
9575 case 'l':
9576 if (type->isIntegerTy()) {
9577 if (Subtarget->isThumb())
9578 weight = CW_SpecificReg;
9579 else
9580 weight = CW_Register;
9581 }
9582 break;
9583 case 'w':
9584 if (type->isFloatingPointTy())
9585 weight = CW_Register;
9586 break;
9587 }
9588 return weight;
9589 }
9590
9591 typedef std::pair<unsigned, const TargetRegisterClass*> RCPair;
9592 RCPair
getRegForInlineAsmConstraint(const std::string & Constraint,EVT VT) const9593 ARMTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
9594 EVT VT) const {
9595 if (Constraint.size() == 1) {
9596 // GCC ARM Constraint Letters
9597 switch (Constraint[0]) {
9598 case 'l': // Low regs or general regs.
9599 if (Subtarget->isThumb())
9600 return RCPair(0U, &ARM::tGPRRegClass);
9601 return RCPair(0U, &ARM::GPRRegClass);
9602 case 'h': // High regs or no regs.
9603 if (Subtarget->isThumb())
9604 return RCPair(0U, &ARM::hGPRRegClass);
9605 break;
9606 case 'r':
9607 return RCPair(0U, &ARM::GPRRegClass);
9608 case 'w':
9609 if (VT == MVT::f32)
9610 return RCPair(0U, &ARM::SPRRegClass);
9611 if (VT.getSizeInBits() == 64)
9612 return RCPair(0U, &ARM::DPRRegClass);
9613 if (VT.getSizeInBits() == 128)
9614 return RCPair(0U, &ARM::QPRRegClass);
9615 break;
9616 case 'x':
9617 if (VT == MVT::f32)
9618 return RCPair(0U, &ARM::SPR_8RegClass);
9619 if (VT.getSizeInBits() == 64)
9620 return RCPair(0U, &ARM::DPR_8RegClass);
9621 if (VT.getSizeInBits() == 128)
9622 return RCPair(0U, &ARM::QPR_8RegClass);
9623 break;
9624 case 't':
9625 if (VT == MVT::f32)
9626 return RCPair(0U, &ARM::SPRRegClass);
9627 break;
9628 }
9629 }
9630 if (StringRef("{cc}").equals_lower(Constraint))
9631 return std::make_pair(unsigned(ARM::CPSR), &ARM::CCRRegClass);
9632
9633 return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
9634 }
9635
9636 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
9637 /// vector. If it is invalid, don't add anything to Ops.
LowerAsmOperandForConstraint(SDValue Op,std::string & Constraint,std::vector<SDValue> & Ops,SelectionDAG & DAG) const9638 void ARMTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
9639 std::string &Constraint,
9640 std::vector<SDValue>&Ops,
9641 SelectionDAG &DAG) const {
9642 SDValue Result(0, 0);
9643
9644 // Currently only support length 1 constraints.
9645 if (Constraint.length() != 1) return;
9646
9647 char ConstraintLetter = Constraint[0];
9648 switch (ConstraintLetter) {
9649 default: break;
9650 case 'j':
9651 case 'I': case 'J': case 'K': case 'L':
9652 case 'M': case 'N': case 'O':
9653 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
9654 if (!C)
9655 return;
9656
9657 int64_t CVal64 = C->getSExtValue();
9658 int CVal = (int) CVal64;
9659 // None of these constraints allow values larger than 32 bits. Check
9660 // that the value fits in an int.
9661 if (CVal != CVal64)
9662 return;
9663
9664 switch (ConstraintLetter) {
9665 case 'j':
9666 // Constant suitable for movw, must be between 0 and
9667 // 65535.
9668 if (Subtarget->hasV6T2Ops())
9669 if (CVal >= 0 && CVal <= 65535)
9670 break;
9671 return;
9672 case 'I':
9673 if (Subtarget->isThumb1Only()) {
9674 // This must be a constant between 0 and 255, for ADD
9675 // immediates.
9676 if (CVal >= 0 && CVal <= 255)
9677 break;
9678 } else if (Subtarget->isThumb2()) {
9679 // A constant that can be used as an immediate value in a
9680 // data-processing instruction.
9681 if (ARM_AM::getT2SOImmVal(CVal) != -1)
9682 break;
9683 } else {
9684 // A constant that can be used as an immediate value in a
9685 // data-processing instruction.
9686 if (ARM_AM::getSOImmVal(CVal) != -1)
9687 break;
9688 }
9689 return;
9690
9691 case 'J':
9692 if (Subtarget->isThumb()) { // FIXME thumb2
9693 // This must be a constant between -255 and -1, for negated ADD
9694 // immediates. This can be used in GCC with an "n" modifier that
9695 // prints the negated value, for use with SUB instructions. It is
9696 // not useful otherwise but is implemented for compatibility.
9697 if (CVal >= -255 && CVal <= -1)
9698 break;
9699 } else {
9700 // This must be a constant between -4095 and 4095. It is not clear
9701 // what this constraint is intended for. Implemented for
9702 // compatibility with GCC.
9703 if (CVal >= -4095 && CVal <= 4095)
9704 break;
9705 }
9706 return;
9707
9708 case 'K':
9709 if (Subtarget->isThumb1Only()) {
9710 // A 32-bit value where only one byte has a nonzero value. Exclude
9711 // zero to match GCC. This constraint is used by GCC internally for
9712 // constants that can be loaded with a move/shift combination.
9713 // It is not useful otherwise but is implemented for compatibility.
9714 if (CVal != 0 && ARM_AM::isThumbImmShiftedVal(CVal))
9715 break;
9716 } else if (Subtarget->isThumb2()) {
9717 // A constant whose bitwise inverse can be used as an immediate
9718 // value in a data-processing instruction. This can be used in GCC
9719 // with a "B" modifier that prints the inverted value, for use with
9720 // BIC and MVN instructions. It is not useful otherwise but is
9721 // implemented for compatibility.
9722 if (ARM_AM::getT2SOImmVal(~CVal) != -1)
9723 break;
9724 } else {
9725 // A constant whose bitwise inverse can be used as an immediate
9726 // value in a data-processing instruction. This can be used in GCC
9727 // with a "B" modifier that prints the inverted value, for use with
9728 // BIC and MVN instructions. It is not useful otherwise but is
9729 // implemented for compatibility.
9730 if (ARM_AM::getSOImmVal(~CVal) != -1)
9731 break;
9732 }
9733 return;
9734
9735 case 'L':
9736 if (Subtarget->isThumb1Only()) {
9737 // This must be a constant between -7 and 7,
9738 // for 3-operand ADD/SUB immediate instructions.
9739 if (CVal >= -7 && CVal < 7)
9740 break;
9741 } else if (Subtarget->isThumb2()) {
9742 // A constant whose negation can be used as an immediate value in a
9743 // data-processing instruction. This can be used in GCC with an "n"
9744 // modifier that prints the negated value, for use with SUB
9745 // instructions. It is not useful otherwise but is implemented for
9746 // compatibility.
9747 if (ARM_AM::getT2SOImmVal(-CVal) != -1)
9748 break;
9749 } else {
9750 // A constant whose negation can be used as an immediate value in a
9751 // data-processing instruction. This can be used in GCC with an "n"
9752 // modifier that prints the negated value, for use with SUB
9753 // instructions. It is not useful otherwise but is implemented for
9754 // compatibility.
9755 if (ARM_AM::getSOImmVal(-CVal) != -1)
9756 break;
9757 }
9758 return;
9759
9760 case 'M':
9761 if (Subtarget->isThumb()) { // FIXME thumb2
9762 // This must be a multiple of 4 between 0 and 1020, for
9763 // ADD sp + immediate.
9764 if ((CVal >= 0 && CVal <= 1020) && ((CVal & 3) == 0))
9765 break;
9766 } else {
9767 // A power of two or a constant between 0 and 32. This is used in
9768 // GCC for the shift amount on shifted register operands, but it is
9769 // useful in general for any shift amounts.
9770 if ((CVal >= 0 && CVal <= 32) || ((CVal & (CVal - 1)) == 0))
9771 break;
9772 }
9773 return;
9774
9775 case 'N':
9776 if (Subtarget->isThumb()) { // FIXME thumb2
9777 // This must be a constant between 0 and 31, for shift amounts.
9778 if (CVal >= 0 && CVal <= 31)
9779 break;
9780 }
9781 return;
9782
9783 case 'O':
9784 if (Subtarget->isThumb()) { // FIXME thumb2
9785 // This must be a multiple of 4 between -508 and 508, for
9786 // ADD/SUB sp = sp + immediate.
9787 if ((CVal >= -508 && CVal <= 508) && ((CVal & 3) == 0))
9788 break;
9789 }
9790 return;
9791 }
9792 Result = DAG.getTargetConstant(CVal, Op.getValueType());
9793 break;
9794 }
9795
9796 if (Result.getNode()) {
9797 Ops.push_back(Result);
9798 return;
9799 }
9800 return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
9801 }
9802
9803 bool
isOffsetFoldingLegal(const GlobalAddressSDNode * GA) const9804 ARMTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
9805 // The ARM target isn't yet aware of offsets.
9806 return false;
9807 }
9808
isBitFieldInvertedMask(unsigned v)9809 bool ARM::isBitFieldInvertedMask(unsigned v) {
9810 if (v == 0xffffffff)
9811 return 0;
9812 // there can be 1's on either or both "outsides", all the "inside"
9813 // bits must be 0's
9814 unsigned int lsb = 0, msb = 31;
9815 while (v & (1 << msb)) --msb;
9816 while (v & (1 << lsb)) ++lsb;
9817 for (unsigned int i = lsb; i <= msb; ++i) {
9818 if (v & (1 << i))
9819 return 0;
9820 }
9821 return 1;
9822 }
9823
9824 /// isFPImmLegal - Returns true if the target can instruction select the
9825 /// specified FP immediate natively. If false, the legalizer will
9826 /// materialize the FP immediate as a load from a constant pool.
isFPImmLegal(const APFloat & Imm,EVT VT) const9827 bool ARMTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
9828 if (!Subtarget->hasVFP3())
9829 return false;
9830 if (VT == MVT::f32)
9831 return ARM_AM::getFP32Imm(Imm) != -1;
9832 if (VT == MVT::f64)
9833 return ARM_AM::getFP64Imm(Imm) != -1;
9834 return false;
9835 }
9836
9837 /// getTgtMemIntrinsic - Represent NEON load and store intrinsics as
9838 /// MemIntrinsicNodes. The associated MachineMemOperands record the alignment
9839 /// specified in the intrinsic calls.
getTgtMemIntrinsic(IntrinsicInfo & Info,const CallInst & I,unsigned Intrinsic) const9840 bool ARMTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
9841 const CallInst &I,
9842 unsigned Intrinsic) const {
9843 switch (Intrinsic) {
9844 case Intrinsic::arm_neon_vld1:
9845 case Intrinsic::arm_neon_vld2:
9846 case Intrinsic::arm_neon_vld3:
9847 case Intrinsic::arm_neon_vld4:
9848 case Intrinsic::arm_neon_vld2lane:
9849 case Intrinsic::arm_neon_vld3lane:
9850 case Intrinsic::arm_neon_vld4lane: {
9851 Info.opc = ISD::INTRINSIC_W_CHAIN;
9852 // Conservatively set memVT to the entire set of vectors loaded.
9853 uint64_t NumElts = getTargetData()->getTypeAllocSize(I.getType()) / 8;
9854 Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
9855 Info.ptrVal = I.getArgOperand(0);
9856 Info.offset = 0;
9857 Value *AlignArg = I.getArgOperand(I.getNumArgOperands() - 1);
9858 Info.align = cast<ConstantInt>(AlignArg)->getZExtValue();
9859 Info.vol = false; // volatile loads with NEON intrinsics not supported
9860 Info.readMem = true;
9861 Info.writeMem = false;
9862 return true;
9863 }
9864 case Intrinsic::arm_neon_vst1:
9865 case Intrinsic::arm_neon_vst2:
9866 case Intrinsic::arm_neon_vst3:
9867 case Intrinsic::arm_neon_vst4:
9868 case Intrinsic::arm_neon_vst2lane:
9869 case Intrinsic::arm_neon_vst3lane:
9870 case Intrinsic::arm_neon_vst4lane: {
9871 Info.opc = ISD::INTRINSIC_VOID;
9872 // Conservatively set memVT to the entire set of vectors stored.
9873 unsigned NumElts = 0;
9874 for (unsigned ArgI = 1, ArgE = I.getNumArgOperands(); ArgI < ArgE; ++ArgI) {
9875 Type *ArgTy = I.getArgOperand(ArgI)->getType();
9876 if (!ArgTy->isVectorTy())
9877 break;
9878 NumElts += getTargetData()->getTypeAllocSize(ArgTy) / 8;
9879 }
9880 Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
9881 Info.ptrVal = I.getArgOperand(0);
9882 Info.offset = 0;
9883 Value *AlignArg = I.getArgOperand(I.getNumArgOperands() - 1);
9884 Info.align = cast<ConstantInt>(AlignArg)->getZExtValue();
9885 Info.vol = false; // volatile stores with NEON intrinsics not supported
9886 Info.readMem = false;
9887 Info.writeMem = true;
9888 return true;
9889 }
9890 case Intrinsic::arm_strexd: {
9891 Info.opc = ISD::INTRINSIC_W_CHAIN;
9892 Info.memVT = MVT::i64;
9893 Info.ptrVal = I.getArgOperand(2);
9894 Info.offset = 0;
9895 Info.align = 8;
9896 Info.vol = true;
9897 Info.readMem = false;
9898 Info.writeMem = true;
9899 return true;
9900 }
9901 case Intrinsic::arm_ldrexd: {
9902 Info.opc = ISD::INTRINSIC_W_CHAIN;
9903 Info.memVT = MVT::i64;
9904 Info.ptrVal = I.getArgOperand(0);
9905 Info.offset = 0;
9906 Info.align = 8;
9907 Info.vol = true;
9908 Info.readMem = true;
9909 Info.writeMem = false;
9910 return true;
9911 }
9912 default:
9913 break;
9914 }
9915
9916 return false;
9917 }
9918