1 //===-- MBlazeISelLowering.cpp - MBlaze DAG Lowering Implementation -------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the interfaces that MBlaze uses to lower LLVM code into a
11 // selection DAG.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #define DEBUG_TYPE "mblaze-lower"
16 #include "MBlazeISelLowering.h"
17 #include "MBlazeMachineFunction.h"
18 #include "MBlazeTargetMachine.h"
19 #include "MBlazeTargetObjectFile.h"
20 #include "MBlazeSubtarget.h"
21 #include "llvm/DerivedTypes.h"
22 #include "llvm/Function.h"
23 #include "llvm/GlobalVariable.h"
24 #include "llvm/Intrinsics.h"
25 #include "llvm/CallingConv.h"
26 #include "llvm/CodeGen/CallingConvLower.h"
27 #include "llvm/CodeGen/MachineFrameInfo.h"
28 #include "llvm/CodeGen/MachineFunction.h"
29 #include "llvm/CodeGen/MachineInstrBuilder.h"
30 #include "llvm/CodeGen/MachineRegisterInfo.h"
31 #include "llvm/CodeGen/SelectionDAGISel.h"
32 #include "llvm/CodeGen/ValueTypes.h"
33 #include "llvm/Support/Debug.h"
34 #include "llvm/Support/ErrorHandling.h"
35 #include "llvm/Support/raw_ostream.h"
36 using namespace llvm;
37
38 static bool CC_MBlaze_AssignReg(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
39 CCValAssign::LocInfo &LocInfo,
40 ISD::ArgFlagsTy &ArgFlags,
41 CCState &State);
42
getTargetNodeName(unsigned Opcode) const43 const char *MBlazeTargetLowering::getTargetNodeName(unsigned Opcode) const {
44 switch (Opcode) {
45 case MBlazeISD::JmpLink : return "MBlazeISD::JmpLink";
46 case MBlazeISD::GPRel : return "MBlazeISD::GPRel";
47 case MBlazeISD::Wrap : return "MBlazeISD::Wrap";
48 case MBlazeISD::ICmp : return "MBlazeISD::ICmp";
49 case MBlazeISD::Ret : return "MBlazeISD::Ret";
50 case MBlazeISD::Select_CC : return "MBlazeISD::Select_CC";
51 default : return NULL;
52 }
53 }
54
MBlazeTargetLowering(MBlazeTargetMachine & TM)55 MBlazeTargetLowering::MBlazeTargetLowering(MBlazeTargetMachine &TM)
56 : TargetLowering(TM, new MBlazeTargetObjectFile()) {
57 Subtarget = &TM.getSubtarget<MBlazeSubtarget>();
58
59 // MBlaze does not have i1 type, so use i32 for
60 // setcc operations results (slt, sgt, ...).
61 setBooleanContents(ZeroOrOneBooleanContent);
62 setBooleanVectorContents(ZeroOrOneBooleanContent); // FIXME: Is this correct?
63
64 // Set up the register classes
65 addRegisterClass(MVT::i32, &MBlaze::GPRRegClass);
66 if (Subtarget->hasFPU()) {
67 addRegisterClass(MVT::f32, &MBlaze::GPRRegClass);
68 setOperationAction(ISD::ConstantFP, MVT::f32, Legal);
69 }
70
71 // Floating point operations which are not supported
72 setOperationAction(ISD::FREM, MVT::f32, Expand);
73 setOperationAction(ISD::FMA, MVT::f32, Expand);
74 setOperationAction(ISD::UINT_TO_FP, MVT::i8, Expand);
75 setOperationAction(ISD::UINT_TO_FP, MVT::i16, Expand);
76 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
77 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
78 setOperationAction(ISD::FP_ROUND, MVT::f32, Expand);
79 setOperationAction(ISD::FP_ROUND, MVT::f64, Expand);
80 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
81 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
82 setOperationAction(ISD::FSIN, MVT::f32, Expand);
83 setOperationAction(ISD::FCOS, MVT::f32, Expand);
84 setOperationAction(ISD::FPOWI, MVT::f32, Expand);
85 setOperationAction(ISD::FPOW, MVT::f32, Expand);
86 setOperationAction(ISD::FLOG, MVT::f32, Expand);
87 setOperationAction(ISD::FLOG2, MVT::f32, Expand);
88 setOperationAction(ISD::FLOG10, MVT::f32, Expand);
89 setOperationAction(ISD::FEXP, MVT::f32, Expand);
90
91 // Load extented operations for i1 types must be promoted
92 setLoadExtAction(ISD::EXTLOAD, MVT::i1, Promote);
93 setLoadExtAction(ISD::ZEXTLOAD, MVT::i1, Promote);
94 setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
95
96 // Sign extended loads must be expanded
97 setLoadExtAction(ISD::SEXTLOAD, MVT::i8, Expand);
98 setLoadExtAction(ISD::SEXTLOAD, MVT::i16, Expand);
99
100 // MBlaze has no REM or DIVREM operations.
101 setOperationAction(ISD::UREM, MVT::i32, Expand);
102 setOperationAction(ISD::SREM, MVT::i32, Expand);
103 setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
104 setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
105
106 // If the processor doesn't support multiply then expand it
107 if (!Subtarget->hasMul()) {
108 setOperationAction(ISD::MUL, MVT::i32, Expand);
109 }
110
111 // If the processor doesn't support 64-bit multiply then expand
112 if (!Subtarget->hasMul() || !Subtarget->hasMul64()) {
113 setOperationAction(ISD::MULHS, MVT::i32, Expand);
114 setOperationAction(ISD::MULHS, MVT::i64, Expand);
115 setOperationAction(ISD::MULHU, MVT::i32, Expand);
116 setOperationAction(ISD::MULHU, MVT::i64, Expand);
117 }
118
119 // If the processor doesn't support division then expand
120 if (!Subtarget->hasDiv()) {
121 setOperationAction(ISD::UDIV, MVT::i32, Expand);
122 setOperationAction(ISD::SDIV, MVT::i32, Expand);
123 }
124
125 // Expand unsupported conversions
126 setOperationAction(ISD::BITCAST, MVT::f32, Expand);
127 setOperationAction(ISD::BITCAST, MVT::i32, Expand);
128
129 // Expand SELECT_CC
130 setOperationAction(ISD::SELECT_CC, MVT::Other, Expand);
131
132 // MBlaze doesn't have MUL_LOHI
133 setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
134 setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
135 setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
136 setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
137
138 // Used by legalize types to correctly generate the setcc result.
139 // Without this, every float setcc comes with a AND/OR with the result,
140 // we don't want this, since the fpcmp result goes to a flag register,
141 // which is used implicitly by brcond and select operations.
142 AddPromotedToType(ISD::SETCC, MVT::i1, MVT::i32);
143 AddPromotedToType(ISD::SELECT, MVT::i1, MVT::i32);
144 AddPromotedToType(ISD::SELECT_CC, MVT::i1, MVT::i32);
145
146 // MBlaze Custom Operations
147 setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
148 setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
149 setOperationAction(ISD::JumpTable, MVT::i32, Custom);
150 setOperationAction(ISD::ConstantPool, MVT::i32, Custom);
151
152 // Variable Argument support
153 setOperationAction(ISD::VASTART, MVT::Other, Custom);
154 setOperationAction(ISD::VAEND, MVT::Other, Expand);
155 setOperationAction(ISD::VAARG, MVT::Other, Expand);
156 setOperationAction(ISD::VACOPY, MVT::Other, Expand);
157
158
159 // Operations not directly supported by MBlaze.
160 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
161 setOperationAction(ISD::BR_JT, MVT::Other, Expand);
162 setOperationAction(ISD::BR_CC, MVT::Other, Expand);
163 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
164 setOperationAction(ISD::ROTL, MVT::i32, Expand);
165 setOperationAction(ISD::ROTR, MVT::i32, Expand);
166 setOperationAction(ISD::SHL_PARTS, MVT::i32, Expand);
167 setOperationAction(ISD::SRA_PARTS, MVT::i32, Expand);
168 setOperationAction(ISD::SRL_PARTS, MVT::i32, Expand);
169 setOperationAction(ISD::CTLZ, MVT::i32, Expand);
170 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Expand);
171 setOperationAction(ISD::CTTZ, MVT::i32, Expand);
172 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Expand);
173 setOperationAction(ISD::CTPOP, MVT::i32, Expand);
174 setOperationAction(ISD::BSWAP, MVT::i32, Expand);
175
176 // We don't have line number support yet.
177 setOperationAction(ISD::EH_LABEL, MVT::Other, Expand);
178
179 // Use the default for now
180 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
181 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
182
183 // MBlaze doesn't have extending float->double load/store
184 setLoadExtAction(ISD::EXTLOAD, MVT::f32, Expand);
185 setTruncStoreAction(MVT::f64, MVT::f32, Expand);
186
187 setMinFunctionAlignment(2);
188
189 setStackPointerRegisterToSaveRestore(MBlaze::R1);
190 computeRegisterProperties();
191 }
192
getSetCCResultType(EVT VT) const193 EVT MBlazeTargetLowering::getSetCCResultType(EVT VT) const {
194 return MVT::i32;
195 }
196
LowerOperation(SDValue Op,SelectionDAG & DAG) const197 SDValue MBlazeTargetLowering::LowerOperation(SDValue Op,
198 SelectionDAG &DAG) const {
199 switch (Op.getOpcode())
200 {
201 case ISD::ConstantPool: return LowerConstantPool(Op, DAG);
202 case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG);
203 case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG);
204 case ISD::JumpTable: return LowerJumpTable(Op, DAG);
205 case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG);
206 case ISD::VASTART: return LowerVASTART(Op, DAG);
207 }
208 return SDValue();
209 }
210
211 //===----------------------------------------------------------------------===//
212 // Lower helper functions
213 //===----------------------------------------------------------------------===//
214 MachineBasicBlock*
EmitInstrWithCustomInserter(MachineInstr * MI,MachineBasicBlock * MBB) const215 MBlazeTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
216 MachineBasicBlock *MBB)
217 const {
218 switch (MI->getOpcode()) {
219 default: llvm_unreachable("Unexpected instr type to insert");
220
221 case MBlaze::ShiftRL:
222 case MBlaze::ShiftRA:
223 case MBlaze::ShiftL:
224 return EmitCustomShift(MI, MBB);
225
226 case MBlaze::Select_FCC:
227 case MBlaze::Select_CC:
228 return EmitCustomSelect(MI, MBB);
229
230 case MBlaze::CAS32:
231 case MBlaze::SWP32:
232 case MBlaze::LAA32:
233 case MBlaze::LAS32:
234 case MBlaze::LAD32:
235 case MBlaze::LAO32:
236 case MBlaze::LAX32:
237 case MBlaze::LAN32:
238 return EmitCustomAtomic(MI, MBB);
239
240 case MBlaze::MEMBARRIER:
241 // The Microblaze does not need memory barriers. Just delete the pseudo
242 // instruction and finish.
243 MI->eraseFromParent();
244 return MBB;
245 }
246 }
247
248 MachineBasicBlock*
EmitCustomShift(MachineInstr * MI,MachineBasicBlock * MBB) const249 MBlazeTargetLowering::EmitCustomShift(MachineInstr *MI,
250 MachineBasicBlock *MBB) const {
251 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
252 DebugLoc dl = MI->getDebugLoc();
253
254 // To "insert" a shift left instruction, we actually have to insert a
255 // simple loop. The incoming instruction knows the destination vreg to
256 // set, the source vreg to operate over and the shift amount.
257 const BasicBlock *LLVM_BB = MBB->getBasicBlock();
258 MachineFunction::iterator It = MBB;
259 ++It;
260
261 // start:
262 // andi samt, samt, 31
263 // beqid samt, finish
264 // add dst, src, r0
265 // loop:
266 // addik samt, samt, -1
267 // sra dst, dst
268 // bneid samt, loop
269 // nop
270 // finish:
271 MachineFunction *F = MBB->getParent();
272 MachineRegisterInfo &R = F->getRegInfo();
273 MachineBasicBlock *loop = F->CreateMachineBasicBlock(LLVM_BB);
274 MachineBasicBlock *finish = F->CreateMachineBasicBlock(LLVM_BB);
275 F->insert(It, loop);
276 F->insert(It, finish);
277
278 // Update machine-CFG edges by transferring adding all successors and
279 // remaining instructions from the current block to the new block which
280 // will contain the Phi node for the select.
281 finish->splice(finish->begin(), MBB,
282 llvm::next(MachineBasicBlock::iterator(MI)),
283 MBB->end());
284 finish->transferSuccessorsAndUpdatePHIs(MBB);
285
286 // Add the true and fallthrough blocks as its successors.
287 MBB->addSuccessor(loop);
288 MBB->addSuccessor(finish);
289
290 // Next, add the finish block as a successor of the loop block
291 loop->addSuccessor(finish);
292 loop->addSuccessor(loop);
293
294 unsigned IAMT = R.createVirtualRegister(&MBlaze::GPRRegClass);
295 BuildMI(MBB, dl, TII->get(MBlaze::ANDI), IAMT)
296 .addReg(MI->getOperand(2).getReg())
297 .addImm(31);
298
299 unsigned IVAL = R.createVirtualRegister(&MBlaze::GPRRegClass);
300 BuildMI(MBB, dl, TII->get(MBlaze::ADDIK), IVAL)
301 .addReg(MI->getOperand(1).getReg())
302 .addImm(0);
303
304 BuildMI(MBB, dl, TII->get(MBlaze::BEQID))
305 .addReg(IAMT)
306 .addMBB(finish);
307
308 unsigned DST = R.createVirtualRegister(&MBlaze::GPRRegClass);
309 unsigned NDST = R.createVirtualRegister(&MBlaze::GPRRegClass);
310 BuildMI(loop, dl, TII->get(MBlaze::PHI), DST)
311 .addReg(IVAL).addMBB(MBB)
312 .addReg(NDST).addMBB(loop);
313
314 unsigned SAMT = R.createVirtualRegister(&MBlaze::GPRRegClass);
315 unsigned NAMT = R.createVirtualRegister(&MBlaze::GPRRegClass);
316 BuildMI(loop, dl, TII->get(MBlaze::PHI), SAMT)
317 .addReg(IAMT).addMBB(MBB)
318 .addReg(NAMT).addMBB(loop);
319
320 if (MI->getOpcode() == MBlaze::ShiftL)
321 BuildMI(loop, dl, TII->get(MBlaze::ADD), NDST).addReg(DST).addReg(DST);
322 else if (MI->getOpcode() == MBlaze::ShiftRA)
323 BuildMI(loop, dl, TII->get(MBlaze::SRA), NDST).addReg(DST);
324 else if (MI->getOpcode() == MBlaze::ShiftRL)
325 BuildMI(loop, dl, TII->get(MBlaze::SRL), NDST).addReg(DST);
326 else
327 llvm_unreachable("Cannot lower unknown shift instruction");
328
329 BuildMI(loop, dl, TII->get(MBlaze::ADDIK), NAMT)
330 .addReg(SAMT)
331 .addImm(-1);
332
333 BuildMI(loop, dl, TII->get(MBlaze::BNEID))
334 .addReg(NAMT)
335 .addMBB(loop);
336
337 BuildMI(*finish, finish->begin(), dl,
338 TII->get(MBlaze::PHI), MI->getOperand(0).getReg())
339 .addReg(IVAL).addMBB(MBB)
340 .addReg(NDST).addMBB(loop);
341
342 // The pseudo instruction is no longer needed so remove it
343 MI->eraseFromParent();
344 return finish;
345 }
346
347 MachineBasicBlock*
EmitCustomSelect(MachineInstr * MI,MachineBasicBlock * MBB) const348 MBlazeTargetLowering::EmitCustomSelect(MachineInstr *MI,
349 MachineBasicBlock *MBB) const {
350 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
351 DebugLoc dl = MI->getDebugLoc();
352
353 // To "insert" a SELECT_CC instruction, we actually have to insert the
354 // diamond control-flow pattern. The incoming instruction knows the
355 // destination vreg to set, the condition code register to branch on, the
356 // true/false values to select between, and a branch opcode to use.
357 const BasicBlock *LLVM_BB = MBB->getBasicBlock();
358 MachineFunction::iterator It = MBB;
359 ++It;
360
361 // thisMBB:
362 // ...
363 // TrueVal = ...
364 // setcc r1, r2, r3
365 // bNE r1, r0, copy1MBB
366 // fallthrough --> copy0MBB
367 MachineFunction *F = MBB->getParent();
368 MachineBasicBlock *flsBB = F->CreateMachineBasicBlock(LLVM_BB);
369 MachineBasicBlock *dneBB = F->CreateMachineBasicBlock(LLVM_BB);
370
371 unsigned Opc;
372 switch (MI->getOperand(4).getImm()) {
373 default: llvm_unreachable("Unknown branch condition");
374 case MBlazeCC::EQ: Opc = MBlaze::BEQID; break;
375 case MBlazeCC::NE: Opc = MBlaze::BNEID; break;
376 case MBlazeCC::GT: Opc = MBlaze::BGTID; break;
377 case MBlazeCC::LT: Opc = MBlaze::BLTID; break;
378 case MBlazeCC::GE: Opc = MBlaze::BGEID; break;
379 case MBlazeCC::LE: Opc = MBlaze::BLEID; break;
380 }
381
382 F->insert(It, flsBB);
383 F->insert(It, dneBB);
384
385 // Transfer the remainder of MBB and its successor edges to dneBB.
386 dneBB->splice(dneBB->begin(), MBB,
387 llvm::next(MachineBasicBlock::iterator(MI)),
388 MBB->end());
389 dneBB->transferSuccessorsAndUpdatePHIs(MBB);
390
391 MBB->addSuccessor(flsBB);
392 MBB->addSuccessor(dneBB);
393 flsBB->addSuccessor(dneBB);
394
395 BuildMI(MBB, dl, TII->get(Opc))
396 .addReg(MI->getOperand(3).getReg())
397 .addMBB(dneBB);
398
399 // sinkMBB:
400 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
401 // ...
402 //BuildMI(dneBB, dl, TII->get(MBlaze::PHI), MI->getOperand(0).getReg())
403 // .addReg(MI->getOperand(1).getReg()).addMBB(flsBB)
404 // .addReg(MI->getOperand(2).getReg()).addMBB(BB);
405
406 BuildMI(*dneBB, dneBB->begin(), dl,
407 TII->get(MBlaze::PHI), MI->getOperand(0).getReg())
408 .addReg(MI->getOperand(2).getReg()).addMBB(flsBB)
409 .addReg(MI->getOperand(1).getReg()).addMBB(MBB);
410
411 MI->eraseFromParent(); // The pseudo instruction is gone now.
412 return dneBB;
413 }
414
415 MachineBasicBlock*
EmitCustomAtomic(MachineInstr * MI,MachineBasicBlock * MBB) const416 MBlazeTargetLowering::EmitCustomAtomic(MachineInstr *MI,
417 MachineBasicBlock *MBB) const {
418 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
419 DebugLoc dl = MI->getDebugLoc();
420
421 // All atomic instructions on the Microblaze are implemented using the
422 // load-linked / store-conditional style atomic instruction sequences.
423 // Thus, all operations will look something like the following:
424 //
425 // start:
426 // lwx RV, RP, 0
427 // <do stuff>
428 // swx RV, RP, 0
429 // addic RC, R0, 0
430 // bneid RC, start
431 //
432 // exit:
433 //
434 // To "insert" a shift left instruction, we actually have to insert a
435 // simple loop. The incoming instruction knows the destination vreg to
436 // set, the source vreg to operate over and the shift amount.
437 const BasicBlock *LLVM_BB = MBB->getBasicBlock();
438 MachineFunction::iterator It = MBB;
439 ++It;
440
441 // start:
442 // andi samt, samt, 31
443 // beqid samt, finish
444 // add dst, src, r0
445 // loop:
446 // addik samt, samt, -1
447 // sra dst, dst
448 // bneid samt, loop
449 // nop
450 // finish:
451 MachineFunction *F = MBB->getParent();
452 MachineRegisterInfo &R = F->getRegInfo();
453
454 // Create the start and exit basic blocks for the atomic operation
455 MachineBasicBlock *start = F->CreateMachineBasicBlock(LLVM_BB);
456 MachineBasicBlock *exit = F->CreateMachineBasicBlock(LLVM_BB);
457 F->insert(It, start);
458 F->insert(It, exit);
459
460 // Update machine-CFG edges by transferring adding all successors and
461 // remaining instructions from the current block to the new block which
462 // will contain the Phi node for the select.
463 exit->splice(exit->begin(), MBB, llvm::next(MachineBasicBlock::iterator(MI)),
464 MBB->end());
465 exit->transferSuccessorsAndUpdatePHIs(MBB);
466
467 // Add the fallthrough block as its successors.
468 MBB->addSuccessor(start);
469
470 BuildMI(start, dl, TII->get(MBlaze::LWX), MI->getOperand(0).getReg())
471 .addReg(MI->getOperand(1).getReg())
472 .addReg(MBlaze::R0);
473
474 MachineBasicBlock *final = start;
475 unsigned finalReg = 0;
476
477 switch (MI->getOpcode()) {
478 default: llvm_unreachable("Cannot lower unknown atomic instruction!");
479
480 case MBlaze::SWP32:
481 finalReg = MI->getOperand(2).getReg();
482 start->addSuccessor(exit);
483 start->addSuccessor(start);
484 break;
485
486 case MBlaze::LAN32:
487 case MBlaze::LAX32:
488 case MBlaze::LAO32:
489 case MBlaze::LAD32:
490 case MBlaze::LAS32:
491 case MBlaze::LAA32: {
492 unsigned opcode = 0;
493 switch (MI->getOpcode()) {
494 default: llvm_unreachable("Cannot lower unknown atomic load!");
495 case MBlaze::LAA32: opcode = MBlaze::ADDIK; break;
496 case MBlaze::LAS32: opcode = MBlaze::RSUBIK; break;
497 case MBlaze::LAD32: opcode = MBlaze::AND; break;
498 case MBlaze::LAO32: opcode = MBlaze::OR; break;
499 case MBlaze::LAX32: opcode = MBlaze::XOR; break;
500 case MBlaze::LAN32: opcode = MBlaze::AND; break;
501 }
502
503 finalReg = R.createVirtualRegister(&MBlaze::GPRRegClass);
504 start->addSuccessor(exit);
505 start->addSuccessor(start);
506
507 BuildMI(start, dl, TII->get(opcode), finalReg)
508 .addReg(MI->getOperand(0).getReg())
509 .addReg(MI->getOperand(2).getReg());
510
511 if (MI->getOpcode() == MBlaze::LAN32) {
512 unsigned tmp = finalReg;
513 finalReg = R.createVirtualRegister(&MBlaze::GPRRegClass);
514 BuildMI(start, dl, TII->get(MBlaze::XORI), finalReg)
515 .addReg(tmp)
516 .addImm(-1);
517 }
518 break;
519 }
520
521 case MBlaze::CAS32: {
522 finalReg = MI->getOperand(3).getReg();
523 final = F->CreateMachineBasicBlock(LLVM_BB);
524
525 F->insert(It, final);
526 start->addSuccessor(exit);
527 start->addSuccessor(final);
528 final->addSuccessor(exit);
529 final->addSuccessor(start);
530
531 unsigned CMP = R.createVirtualRegister(&MBlaze::GPRRegClass);
532 BuildMI(start, dl, TII->get(MBlaze::CMP), CMP)
533 .addReg(MI->getOperand(0).getReg())
534 .addReg(MI->getOperand(2).getReg());
535
536 BuildMI(start, dl, TII->get(MBlaze::BNEID))
537 .addReg(CMP)
538 .addMBB(exit);
539
540 final->moveAfter(start);
541 exit->moveAfter(final);
542 break;
543 }
544 }
545
546 unsigned CHK = R.createVirtualRegister(&MBlaze::GPRRegClass);
547 BuildMI(final, dl, TII->get(MBlaze::SWX))
548 .addReg(finalReg)
549 .addReg(MI->getOperand(1).getReg())
550 .addReg(MBlaze::R0);
551
552 BuildMI(final, dl, TII->get(MBlaze::ADDIC), CHK)
553 .addReg(MBlaze::R0)
554 .addImm(0);
555
556 BuildMI(final, dl, TII->get(MBlaze::BNEID))
557 .addReg(CHK)
558 .addMBB(start);
559
560 // The pseudo instruction is no longer needed so remove it
561 MI->eraseFromParent();
562 return exit;
563 }
564
565 //===----------------------------------------------------------------------===//
566 // Misc Lower Operation implementation
567 //===----------------------------------------------------------------------===//
568 //
569
LowerSELECT_CC(SDValue Op,SelectionDAG & DAG) const570 SDValue MBlazeTargetLowering::LowerSELECT_CC(SDValue Op,
571 SelectionDAG &DAG) const {
572 SDValue LHS = Op.getOperand(0);
573 SDValue RHS = Op.getOperand(1);
574 SDValue TrueVal = Op.getOperand(2);
575 SDValue FalseVal = Op.getOperand(3);
576 DebugLoc dl = Op.getDebugLoc();
577 unsigned Opc;
578
579 SDValue CompareFlag;
580 if (LHS.getValueType() == MVT::i32) {
581 Opc = MBlazeISD::Select_CC;
582 CompareFlag = DAG.getNode(MBlazeISD::ICmp, dl, MVT::i32, LHS, RHS)
583 .getValue(1);
584 } else {
585 llvm_unreachable("Cannot lower select_cc with unknown type");
586 }
587
588 return DAG.getNode(Opc, dl, TrueVal.getValueType(), TrueVal, FalseVal,
589 CompareFlag);
590 }
591
592 SDValue MBlazeTargetLowering::
LowerGlobalAddress(SDValue Op,SelectionDAG & DAG) const593 LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const {
594 // FIXME there isn't actually debug info here
595 DebugLoc dl = Op.getDebugLoc();
596 const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
597 SDValue GA = DAG.getTargetGlobalAddress(GV, dl, MVT::i32);
598
599 return DAG.getNode(MBlazeISD::Wrap, dl, MVT::i32, GA);
600 }
601
602 SDValue MBlazeTargetLowering::
LowerGlobalTLSAddress(SDValue Op,SelectionDAG & DAG) const603 LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
604 llvm_unreachable("TLS not implemented for MicroBlaze.");
605 }
606
607 SDValue MBlazeTargetLowering::
LowerJumpTable(SDValue Op,SelectionDAG & DAG) const608 LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
609 SDValue ResNode;
610 SDValue HiPart;
611 // FIXME there isn't actually debug info here
612 DebugLoc dl = Op.getDebugLoc();
613
614 EVT PtrVT = Op.getValueType();
615 JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
616
617 SDValue JTI = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, 0);
618 return DAG.getNode(MBlazeISD::Wrap, dl, MVT::i32, JTI);
619 }
620
621 SDValue MBlazeTargetLowering::
LowerConstantPool(SDValue Op,SelectionDAG & DAG) const622 LowerConstantPool(SDValue Op, SelectionDAG &DAG) const {
623 SDValue ResNode;
624 ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op);
625 const Constant *C = N->getConstVal();
626 DebugLoc dl = Op.getDebugLoc();
627
628 SDValue CP = DAG.getTargetConstantPool(C, MVT::i32, N->getAlignment(),
629 N->getOffset(), 0);
630 return DAG.getNode(MBlazeISD::Wrap, dl, MVT::i32, CP);
631 }
632
LowerVASTART(SDValue Op,SelectionDAG & DAG) const633 SDValue MBlazeTargetLowering::LowerVASTART(SDValue Op,
634 SelectionDAG &DAG) const {
635 MachineFunction &MF = DAG.getMachineFunction();
636 MBlazeFunctionInfo *FuncInfo = MF.getInfo<MBlazeFunctionInfo>();
637
638 DebugLoc dl = Op.getDebugLoc();
639 SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
640 getPointerTy());
641
642 // vastart just stores the address of the VarArgsFrameIndex slot into the
643 // memory location argument.
644 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
645 return DAG.getStore(Op.getOperand(0), dl, FI, Op.getOperand(1),
646 MachinePointerInfo(SV),
647 false, false, 0);
648 }
649
650 //===----------------------------------------------------------------------===//
651 // Calling Convention Implementation
652 //===----------------------------------------------------------------------===//
653
654 #include "MBlazeGenCallingConv.inc"
655
CC_MBlaze_AssignReg(unsigned & ValNo,MVT & ValVT,MVT & LocVT,CCValAssign::LocInfo & LocInfo,ISD::ArgFlagsTy & ArgFlags,CCState & State)656 static bool CC_MBlaze_AssignReg(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
657 CCValAssign::LocInfo &LocInfo,
658 ISD::ArgFlagsTy &ArgFlags,
659 CCState &State) {
660 static const uint16_t ArgRegs[] = {
661 MBlaze::R5, MBlaze::R6, MBlaze::R7,
662 MBlaze::R8, MBlaze::R9, MBlaze::R10
663 };
664
665 const unsigned NumArgRegs = array_lengthof(ArgRegs);
666 unsigned Reg = State.AllocateReg(ArgRegs, NumArgRegs);
667 if (!Reg) return false;
668
669 unsigned SizeInBytes = ValVT.getSizeInBits() >> 3;
670 State.AllocateStack(SizeInBytes, SizeInBytes);
671 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
672
673 return true;
674 }
675
676 //===----------------------------------------------------------------------===//
677 // Call Calling Convention Implementation
678 //===----------------------------------------------------------------------===//
679
680 /// LowerCall - functions arguments are copied from virtual regs to
681 /// (physical regs)/(stack frame), CALLSEQ_START and CALLSEQ_END are emitted.
682 /// TODO: isVarArg, isTailCall.
683 SDValue MBlazeTargetLowering::
LowerCall(TargetLowering::CallLoweringInfo & CLI,SmallVectorImpl<SDValue> & InVals) const684 LowerCall(TargetLowering::CallLoweringInfo &CLI,
685 SmallVectorImpl<SDValue> &InVals) const {
686 SelectionDAG &DAG = CLI.DAG;
687 DebugLoc &dl = CLI.DL;
688 SmallVector<ISD::OutputArg, 32> &Outs = CLI.Outs;
689 SmallVector<SDValue, 32> &OutVals = CLI.OutVals;
690 SmallVector<ISD::InputArg, 32> &Ins = CLI.Ins;
691 SDValue Chain = CLI.Chain;
692 SDValue Callee = CLI.Callee;
693 bool &isTailCall = CLI.IsTailCall;
694 CallingConv::ID CallConv = CLI.CallConv;
695 bool isVarArg = CLI.IsVarArg;
696
697 // MBlaze does not yet support tail call optimization
698 isTailCall = false;
699
700 // The MBlaze requires stack slots for arguments passed to var arg
701 // functions even if they are passed in registers.
702 bool needsRegArgSlots = isVarArg;
703
704 MachineFunction &MF = DAG.getMachineFunction();
705 MachineFrameInfo *MFI = MF.getFrameInfo();
706 const TargetFrameLowering &TFI = *MF.getTarget().getFrameLowering();
707
708 // Analyze operands of the call, assigning locations to each operand.
709 SmallVector<CCValAssign, 16> ArgLocs;
710 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
711 getTargetMachine(), ArgLocs, *DAG.getContext());
712 CCInfo.AnalyzeCallOperands(Outs, CC_MBlaze);
713
714 // Get a count of how many bytes are to be pushed on the stack.
715 unsigned NumBytes = CCInfo.getNextStackOffset();
716
717 // Variable argument function calls require a minimum of 24-bytes of stack
718 if (isVarArg && NumBytes < 24) NumBytes = 24;
719
720 Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
721
722 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
723 SmallVector<SDValue, 8> MemOpChains;
724
725 // Walk the register/memloc assignments, inserting copies/loads.
726 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
727 CCValAssign &VA = ArgLocs[i];
728 MVT RegVT = VA.getLocVT();
729 SDValue Arg = OutVals[i];
730
731 // Promote the value if needed.
732 switch (VA.getLocInfo()) {
733 default: llvm_unreachable("Unknown loc info!");
734 case CCValAssign::Full: break;
735 case CCValAssign::SExt:
736 Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, RegVT, Arg);
737 break;
738 case CCValAssign::ZExt:
739 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, RegVT, Arg);
740 break;
741 case CCValAssign::AExt:
742 Arg = DAG.getNode(ISD::ANY_EXTEND, dl, RegVT, Arg);
743 break;
744 }
745
746 // Arguments that can be passed on register must be kept at
747 // RegsToPass vector
748 if (VA.isRegLoc()) {
749 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
750 } else {
751 // Register can't get to this point...
752 assert(VA.isMemLoc());
753
754 // Since we are alread passing values on the stack we don't
755 // need to worry about creating additional slots for the
756 // values passed via registers.
757 needsRegArgSlots = false;
758
759 // Create the frame index object for this incoming parameter
760 unsigned ArgSize = VA.getValVT().getSizeInBits()/8;
761 unsigned StackLoc = VA.getLocMemOffset() + 4;
762 int FI = MFI->CreateFixedObject(ArgSize, StackLoc, true);
763
764 SDValue PtrOff = DAG.getFrameIndex(FI,getPointerTy());
765
766 // emit ISD::STORE whichs stores the
767 // parameter value to a stack Location
768 MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff,
769 MachinePointerInfo(),
770 false, false, 0));
771 }
772 }
773
774 // If we need to reserve stack space for the arguments passed via registers
775 // then create a fixed stack object at the beginning of the stack.
776 if (needsRegArgSlots && TFI.hasReservedCallFrame(MF))
777 MFI->CreateFixedObject(28,0,true);
778
779 // Transform all store nodes into one single node because all store
780 // nodes are independent of each other.
781 if (!MemOpChains.empty())
782 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
783 &MemOpChains[0], MemOpChains.size());
784
785 // Build a sequence of copy-to-reg nodes chained together with token
786 // chain and flag operands which copy the outgoing args into registers.
787 // The InFlag in necessary since all emitted instructions must be
788 // stuck together.
789 SDValue InFlag;
790 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
791 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
792 RegsToPass[i].second, InFlag);
793 InFlag = Chain.getValue(1);
794 }
795
796 // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
797 // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
798 // node so that legalize doesn't hack it.
799 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
800 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl,
801 getPointerTy(), 0, 0);
802 else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee))
803 Callee = DAG.getTargetExternalSymbol(S->getSymbol(),
804 getPointerTy(), 0);
805
806 // MBlazeJmpLink = #chain, #target_address, #opt_in_flags...
807 // = Chain, Callee, Reg#1, Reg#2, ...
808 //
809 // Returns a chain & a flag for retval copy to use.
810 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
811 SmallVector<SDValue, 8> Ops;
812 Ops.push_back(Chain);
813 Ops.push_back(Callee);
814
815 // Add argument registers to the end of the list so that they are
816 // known live into the call.
817 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
818 Ops.push_back(DAG.getRegister(RegsToPass[i].first,
819 RegsToPass[i].second.getValueType()));
820 }
821
822 if (InFlag.getNode())
823 Ops.push_back(InFlag);
824
825 Chain = DAG.getNode(MBlazeISD::JmpLink, dl, NodeTys, &Ops[0], Ops.size());
826 InFlag = Chain.getValue(1);
827
828 // Create the CALLSEQ_END node.
829 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
830 DAG.getIntPtrConstant(0, true), InFlag);
831 if (!Ins.empty())
832 InFlag = Chain.getValue(1);
833
834 // Handle result values, copying them out of physregs into vregs that we
835 // return.
836 return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
837 Ins, dl, DAG, InVals);
838 }
839
840 /// LowerCallResult - Lower the result values of a call into the
841 /// appropriate copies out of appropriate physical registers.
842 SDValue MBlazeTargetLowering::
LowerCallResult(SDValue Chain,SDValue InFlag,CallingConv::ID CallConv,bool isVarArg,const SmallVectorImpl<ISD::InputArg> & Ins,DebugLoc dl,SelectionDAG & DAG,SmallVectorImpl<SDValue> & InVals) const843 LowerCallResult(SDValue Chain, SDValue InFlag, CallingConv::ID CallConv,
844 bool isVarArg, const SmallVectorImpl<ISD::InputArg> &Ins,
845 DebugLoc dl, SelectionDAG &DAG,
846 SmallVectorImpl<SDValue> &InVals) const {
847 // Assign locations to each value returned by this call.
848 SmallVector<CCValAssign, 16> RVLocs;
849 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
850 getTargetMachine(), RVLocs, *DAG.getContext());
851
852 CCInfo.AnalyzeCallResult(Ins, RetCC_MBlaze);
853
854 // Copy all of the result registers out of their specified physreg.
855 for (unsigned i = 0; i != RVLocs.size(); ++i) {
856 Chain = DAG.getCopyFromReg(Chain, dl, RVLocs[i].getLocReg(),
857 RVLocs[i].getValVT(), InFlag).getValue(1);
858 InFlag = Chain.getValue(2);
859 InVals.push_back(Chain.getValue(0));
860 }
861
862 return Chain;
863 }
864
865 //===----------------------------------------------------------------------===//
866 // Formal Arguments Calling Convention Implementation
867 //===----------------------------------------------------------------------===//
868
869 /// LowerFormalArguments - transform physical registers into
870 /// virtual registers and generate load operations for
871 /// arguments places on the stack.
872 SDValue MBlazeTargetLowering::
LowerFormalArguments(SDValue Chain,CallingConv::ID CallConv,bool isVarArg,const SmallVectorImpl<ISD::InputArg> & Ins,DebugLoc dl,SelectionDAG & DAG,SmallVectorImpl<SDValue> & InVals) const873 LowerFormalArguments(SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
874 const SmallVectorImpl<ISD::InputArg> &Ins,
875 DebugLoc dl, SelectionDAG &DAG,
876 SmallVectorImpl<SDValue> &InVals) const {
877 MachineFunction &MF = DAG.getMachineFunction();
878 MachineFrameInfo *MFI = MF.getFrameInfo();
879 MBlazeFunctionInfo *MBlazeFI = MF.getInfo<MBlazeFunctionInfo>();
880
881 unsigned StackReg = MF.getTarget().getRegisterInfo()->getFrameRegister(MF);
882 MBlazeFI->setVarArgsFrameIndex(0);
883
884 // Used with vargs to acumulate store chains.
885 std::vector<SDValue> OutChains;
886
887 // Keep track of the last register used for arguments
888 unsigned ArgRegEnd = 0;
889
890 // Assign locations to all of the incoming arguments.
891 SmallVector<CCValAssign, 16> ArgLocs;
892 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
893 getTargetMachine(), ArgLocs, *DAG.getContext());
894
895 CCInfo.AnalyzeFormalArguments(Ins, CC_MBlaze);
896 SDValue StackPtr;
897
898 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
899 CCValAssign &VA = ArgLocs[i];
900
901 // Arguments stored on registers
902 if (VA.isRegLoc()) {
903 MVT RegVT = VA.getLocVT();
904 ArgRegEnd = VA.getLocReg();
905 const TargetRegisterClass *RC;
906
907 if (RegVT == MVT::i32)
908 RC = &MBlaze::GPRRegClass;
909 else if (RegVT == MVT::f32)
910 RC = &MBlaze::GPRRegClass;
911 else
912 llvm_unreachable("RegVT not supported by LowerFormalArguments");
913
914 // Transform the arguments stored on
915 // physical registers into virtual ones
916 unsigned Reg = MF.addLiveIn(ArgRegEnd, RC);
917 SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
918
919 // If this is an 8 or 16-bit value, it has been passed promoted
920 // to 32 bits. Insert an assert[sz]ext to capture this, then
921 // truncate to the right size. If if is a floating point value
922 // then convert to the correct type.
923 if (VA.getLocInfo() != CCValAssign::Full) {
924 unsigned Opcode = 0;
925 if (VA.getLocInfo() == CCValAssign::SExt)
926 Opcode = ISD::AssertSext;
927 else if (VA.getLocInfo() == CCValAssign::ZExt)
928 Opcode = ISD::AssertZext;
929 if (Opcode)
930 ArgValue = DAG.getNode(Opcode, dl, RegVT, ArgValue,
931 DAG.getValueType(VA.getValVT()));
932 ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
933 }
934
935 InVals.push_back(ArgValue);
936 } else { // VA.isRegLoc()
937 // sanity check
938 assert(VA.isMemLoc());
939
940 // The last argument is not a register
941 ArgRegEnd = 0;
942
943 // The stack pointer offset is relative to the caller stack frame.
944 // Since the real stack size is unknown here, a negative SPOffset
945 // is used so there's a way to adjust these offsets when the stack
946 // size get known (on EliminateFrameIndex). A dummy SPOffset is
947 // used instead of a direct negative address (which is recorded to
948 // be used on emitPrologue) to avoid mis-calc of the first stack
949 // offset on PEI::calculateFrameObjectOffsets.
950 // Arguments are always 32-bit.
951 unsigned ArgSize = VA.getLocVT().getSizeInBits()/8;
952 unsigned StackLoc = VA.getLocMemOffset() + 4;
953 int FI = MFI->CreateFixedObject(ArgSize, 0, true);
954 MBlazeFI->recordLoadArgsFI(FI, -StackLoc);
955 MBlazeFI->recordLiveIn(FI);
956
957 // Create load nodes to retrieve arguments from the stack
958 SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
959 InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN,
960 MachinePointerInfo::getFixedStack(FI),
961 false, false, false, 0));
962 }
963 }
964
965 // To meet ABI, when VARARGS are passed on registers, the registers
966 // must have their values written to the caller stack frame. If the last
967 // argument was placed in the stack, there's no need to save any register.
968 if ((isVarArg) && ArgRegEnd) {
969 if (StackPtr.getNode() == 0)
970 StackPtr = DAG.getRegister(StackReg, getPointerTy());
971
972 // The last register argument that must be saved is MBlaze::R10
973 const TargetRegisterClass *RC = &MBlaze::GPRRegClass;
974
975 unsigned Begin = getMBlazeRegisterNumbering(MBlaze::R5);
976 unsigned Start = getMBlazeRegisterNumbering(ArgRegEnd+1);
977 unsigned End = getMBlazeRegisterNumbering(MBlaze::R10);
978 unsigned StackLoc = Start - Begin + 1;
979
980 for (; Start <= End; ++Start, ++StackLoc) {
981 unsigned Reg = getMBlazeRegisterFromNumbering(Start);
982 unsigned LiveReg = MF.addLiveIn(Reg, RC);
983 SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, LiveReg, MVT::i32);
984
985 int FI = MFI->CreateFixedObject(4, 0, true);
986 MBlazeFI->recordStoreVarArgsFI(FI, -(StackLoc*4));
987 SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy());
988 OutChains.push_back(DAG.getStore(Chain, dl, ArgValue, PtrOff,
989 MachinePointerInfo(),
990 false, false, 0));
991
992 // Record the frame index of the first variable argument
993 // which is a value necessary to VASTART.
994 if (!MBlazeFI->getVarArgsFrameIndex())
995 MBlazeFI->setVarArgsFrameIndex(FI);
996 }
997 }
998
999 // All stores are grouped in one node to allow the matching between
1000 // the size of Ins and InVals. This only happens when on varg functions
1001 if (!OutChains.empty()) {
1002 OutChains.push_back(Chain);
1003 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1004 &OutChains[0], OutChains.size());
1005 }
1006
1007 return Chain;
1008 }
1009
1010 //===----------------------------------------------------------------------===//
1011 // Return Value Calling Convention Implementation
1012 //===----------------------------------------------------------------------===//
1013
1014 SDValue MBlazeTargetLowering::
LowerReturn(SDValue Chain,CallingConv::ID CallConv,bool isVarArg,const SmallVectorImpl<ISD::OutputArg> & Outs,const SmallVectorImpl<SDValue> & OutVals,DebugLoc dl,SelectionDAG & DAG) const1015 LowerReturn(SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
1016 const SmallVectorImpl<ISD::OutputArg> &Outs,
1017 const SmallVectorImpl<SDValue> &OutVals,
1018 DebugLoc dl, SelectionDAG &DAG) const {
1019 // CCValAssign - represent the assignment of
1020 // the return value to a location
1021 SmallVector<CCValAssign, 16> RVLocs;
1022
1023 // CCState - Info about the registers and stack slot.
1024 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1025 getTargetMachine(), RVLocs, *DAG.getContext());
1026
1027 // Analize return values.
1028 CCInfo.AnalyzeReturn(Outs, RetCC_MBlaze);
1029
1030 // If this is the first return lowered for this function, add
1031 // the regs to the liveout set for the function.
1032 if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
1033 for (unsigned i = 0; i != RVLocs.size(); ++i)
1034 if (RVLocs[i].isRegLoc())
1035 DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
1036 }
1037
1038 SDValue Flag;
1039
1040 // Copy the result values into the output registers.
1041 for (unsigned i = 0; i != RVLocs.size(); ++i) {
1042 CCValAssign &VA = RVLocs[i];
1043 assert(VA.isRegLoc() && "Can only return in registers!");
1044
1045 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
1046 OutVals[i], Flag);
1047
1048 // guarantee that all emitted copies are
1049 // stuck together, avoiding something bad
1050 Flag = Chain.getValue(1);
1051 }
1052
1053 // If this function is using the interrupt_handler calling convention
1054 // then use "rtid r14, 0" otherwise use "rtsd r15, 8"
1055 unsigned Ret = (CallConv == CallingConv::MBLAZE_INTR) ? MBlazeISD::IRet
1056 : MBlazeISD::Ret;
1057 unsigned Reg = (CallConv == CallingConv::MBLAZE_INTR) ? MBlaze::R14
1058 : MBlaze::R15;
1059 SDValue DReg = DAG.getRegister(Reg, MVT::i32);
1060
1061 if (Flag.getNode())
1062 return DAG.getNode(Ret, dl, MVT::Other, Chain, DReg, Flag);
1063
1064 return DAG.getNode(Ret, dl, MVT::Other, Chain, DReg);
1065 }
1066
1067 //===----------------------------------------------------------------------===//
1068 // MBlaze Inline Assembly Support
1069 //===----------------------------------------------------------------------===//
1070
1071 /// getConstraintType - Given a constraint letter, return the type of
1072 /// constraint it is for this target.
1073 MBlazeTargetLowering::ConstraintType MBlazeTargetLowering::
getConstraintType(const std::string & Constraint) const1074 getConstraintType(const std::string &Constraint) const
1075 {
1076 // MBlaze specific constrainy
1077 //
1078 // 'd' : An address register. Equivalent to r.
1079 // 'y' : Equivalent to r; retained for
1080 // backwards compatibility.
1081 // 'f' : Floating Point registers.
1082 if (Constraint.size() == 1) {
1083 switch (Constraint[0]) {
1084 default : break;
1085 case 'd':
1086 case 'y':
1087 case 'f':
1088 return C_RegisterClass;
1089 }
1090 }
1091 return TargetLowering::getConstraintType(Constraint);
1092 }
1093
1094 /// Examine constraint type and operand type and determine a weight value.
1095 /// This object must already have been set up with the operand type
1096 /// and the current alternative constraint selected.
1097 TargetLowering::ConstraintWeight
getSingleConstraintMatchWeight(AsmOperandInfo & info,const char * constraint) const1098 MBlazeTargetLowering::getSingleConstraintMatchWeight(
1099 AsmOperandInfo &info, const char *constraint) const {
1100 ConstraintWeight weight = CW_Invalid;
1101 Value *CallOperandVal = info.CallOperandVal;
1102 // If we don't have a value, we can't do a match,
1103 // but allow it at the lowest weight.
1104 if (CallOperandVal == NULL)
1105 return CW_Default;
1106 Type *type = CallOperandVal->getType();
1107 // Look at the constraint type.
1108 switch (*constraint) {
1109 default:
1110 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
1111 break;
1112 case 'd':
1113 case 'y':
1114 if (type->isIntegerTy())
1115 weight = CW_Register;
1116 break;
1117 case 'f':
1118 if (type->isFloatTy())
1119 weight = CW_Register;
1120 break;
1121 }
1122 return weight;
1123 }
1124
1125 /// Given a register class constraint, like 'r', if this corresponds directly
1126 /// to an LLVM register class, return a register of 0 and the register class
1127 /// pointer.
1128 std::pair<unsigned, const TargetRegisterClass*> MBlazeTargetLowering::
getRegForInlineAsmConstraint(const std::string & Constraint,EVT VT) const1129 getRegForInlineAsmConstraint(const std::string &Constraint, EVT VT) const {
1130 if (Constraint.size() == 1) {
1131 switch (Constraint[0]) {
1132 case 'r':
1133 return std::make_pair(0U, &MBlaze::GPRRegClass);
1134 // TODO: These can't possibly be right, but match what was in
1135 // getRegClassForInlineAsmConstraint.
1136 case 'd':
1137 case 'y':
1138 case 'f':
1139 if (VT == MVT::f32)
1140 return std::make_pair(0U, &MBlaze::GPRRegClass);
1141 }
1142 }
1143 return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
1144 }
1145
1146 bool MBlazeTargetLowering::
isOffsetFoldingLegal(const GlobalAddressSDNode * GA) const1147 isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
1148 // The MBlaze target isn't yet aware of offsets.
1149 return false;
1150 }
1151
isFPImmLegal(const APFloat & Imm,EVT VT) const1152 bool MBlazeTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
1153 return VT != MVT::f32;
1154 }
1155