1//===-- MipsInstrFPU.td - Mips FPU Instruction Information -*- tablegen -*-===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file describes the Mips FPU instruction set. 11// 12//===----------------------------------------------------------------------===// 13 14//===----------------------------------------------------------------------===// 15// Floating Point Instructions 16// ------------------------ 17// * 64bit fp: 18// - 32 64-bit registers (default mode) 19// - 16 even 32-bit registers (32-bit compatible mode) for 20// single and double access. 21// * 32bit fp: 22// - 16 even 32-bit registers - single and double (aliased) 23// - 32 32-bit registers (within single-only mode) 24//===----------------------------------------------------------------------===// 25 26// Floating Point Compare and Branch 27def SDT_MipsFPBrcond : SDTypeProfile<0, 2, [SDTCisInt<0>, 28 SDTCisVT<1, OtherVT>]>; 29def SDT_MipsFPCmp : SDTypeProfile<0, 3, [SDTCisSameAs<0, 1>, SDTCisFP<1>, 30 SDTCisVT<2, i32>]>; 31def SDT_MipsCMovFP : SDTypeProfile<1, 2, [SDTCisSameAs<0, 1>, 32 SDTCisSameAs<1, 2>]>; 33def SDT_MipsBuildPairF64 : SDTypeProfile<1, 2, [SDTCisVT<0, f64>, 34 SDTCisVT<1, i32>, 35 SDTCisSameAs<1, 2>]>; 36def SDT_MipsExtractElementF64 : SDTypeProfile<1, 2, [SDTCisVT<0, i32>, 37 SDTCisVT<1, f64>, 38 SDTCisVT<2, i32>]>; 39 40def MipsFPCmp : SDNode<"MipsISD::FPCmp", SDT_MipsFPCmp, [SDNPOutGlue]>; 41def MipsCMovFP_T : SDNode<"MipsISD::CMovFP_T", SDT_MipsCMovFP, [SDNPInGlue]>; 42def MipsCMovFP_F : SDNode<"MipsISD::CMovFP_F", SDT_MipsCMovFP, [SDNPInGlue]>; 43def MipsFPBrcond : SDNode<"MipsISD::FPBrcond", SDT_MipsFPBrcond, 44 [SDNPHasChain, SDNPOptInGlue]>; 45def MipsBuildPairF64 : SDNode<"MipsISD::BuildPairF64", SDT_MipsBuildPairF64>; 46def MipsExtractElementF64 : SDNode<"MipsISD::ExtractElementF64", 47 SDT_MipsExtractElementF64>; 48 49// Operand for printing out a condition code. 50let PrintMethod = "printFCCOperand", DecoderMethod = "DecodeCondCode" in 51 def condcode : Operand<i32>; 52 53//===----------------------------------------------------------------------===// 54// Feature predicates. 55//===----------------------------------------------------------------------===// 56 57def IsFP64bit : Predicate<"Subtarget.isFP64bit()">, 58 AssemblerPredicate<"FeatureFP64Bit">; 59def NotFP64bit : Predicate<"!Subtarget.isFP64bit()">, 60 AssemblerPredicate<"!FeatureFP64Bit">; 61def IsSingleFloat : Predicate<"Subtarget.isSingleFloat()">, 62 AssemblerPredicate<"FeatureSingleFloat">; 63def IsNotSingleFloat : Predicate<"!Subtarget.isSingleFloat()">, 64 AssemblerPredicate<"!FeatureSingleFloat">; 65 66// FP immediate patterns. 67def fpimm0 : PatLeaf<(fpimm), [{ 68 return N->isExactlyValue(+0.0); 69}]>; 70 71def fpimm0neg : PatLeaf<(fpimm), [{ 72 return N->isExactlyValue(-0.0); 73}]>; 74 75//===----------------------------------------------------------------------===// 76// Instruction Class Templates 77// 78// A set of multiclasses is used to address the register usage. 79// 80// S32 - single precision in 16 32bit even fp registers 81// single precision in 32 32bit fp registers in SingleOnly mode 82// S64 - single precision in 32 64bit fp registers (In64BitMode) 83// D32 - double precision in 16 32bit even fp registers 84// D64 - double precision in 32 64bit fp registers (In64BitMode) 85// 86// Only S32 and D32 are supported right now. 87//===----------------------------------------------------------------------===// 88 89// FP load. 90let DecoderMethod = "DecodeFMem" in { 91class FPLoad<bits<6> op, string opstr, RegisterClass RC, Operand MemOpnd>: 92 FMem<op, (outs RC:$ft), (ins MemOpnd:$addr), 93 !strconcat(opstr, "\t$ft, $addr"), [(set RC:$ft, (load_a addr:$addr))], 94 IILoad>; 95 96// FP store. 97class FPStore<bits<6> op, string opstr, RegisterClass RC, Operand MemOpnd>: 98 FMem<op, (outs), (ins RC:$ft, MemOpnd:$addr), 99 !strconcat(opstr, "\t$ft, $addr"), [(store_a RC:$ft, addr:$addr)], 100 IIStore>; 101} 102// FP indexed load. 103class FPIdxLoad<bits<6> funct, string opstr, RegisterClass DRC, 104 RegisterClass PRC, SDPatternOperator FOp = null_frag>: 105 FFMemIdx<funct, (outs DRC:$fd), (ins PRC:$base, PRC:$index), 106 !strconcat(opstr, "\t$fd, ${index}(${base})"), 107 [(set DRC:$fd, (FOp (add PRC:$base, PRC:$index)))]> { 108 let fs = 0; 109} 110 111// FP indexed store. 112class FPIdxStore<bits<6> funct, string opstr, RegisterClass DRC, 113 RegisterClass PRC, SDPatternOperator FOp= null_frag>: 114 FFMemIdx<funct, (outs), (ins DRC:$fs, PRC:$base, PRC:$index), 115 !strconcat(opstr, "\t$fs, ${index}(${base})"), 116 [(FOp DRC:$fs, (add PRC:$base, PRC:$index))]> { 117 let fd = 0; 118} 119 120// Instructions that convert an FP value to 32-bit fixed point. 121multiclass FFR1_W_M<bits<6> funct, string opstr> { 122 def _S : FFR1<funct, 16, opstr, "w.s", FGR32, FGR32>; 123 def _D32 : FFR1<funct, 17, opstr, "w.d", FGR32, AFGR64>, 124 Requires<[NotFP64bit, HasStandardEncoding]>; 125 def _D64 : FFR1<funct, 17, opstr, "w.d", FGR32, FGR64>, 126 Requires<[IsFP64bit, HasStandardEncoding]> { 127 let DecoderNamespace = "Mips64"; 128 } 129} 130 131// Instructions that convert an FP value to 64-bit fixed point. 132let Predicates = [IsFP64bit, HasStandardEncoding], DecoderNamespace = "Mips64" in 133multiclass FFR1_L_M<bits<6> funct, string opstr> { 134 def _S : FFR1<funct, 16, opstr, "l.s", FGR64, FGR32>; 135 def _D64 : FFR1<funct, 17, opstr, "l.d", FGR64, FGR64>; 136} 137 138// FP-to-FP conversion instructions. 139multiclass FFR1P_M<bits<6> funct, string opstr, SDNode OpNode> { 140 def _S : FFR1P<funct, 16, opstr, "s", FGR32, FGR32, OpNode>; 141 def _D32 : FFR1P<funct, 17, opstr, "d", AFGR64, AFGR64, OpNode>, 142 Requires<[NotFP64bit, HasStandardEncoding]>; 143 def _D64 : FFR1P<funct, 17, opstr, "d", FGR64, FGR64, OpNode>, 144 Requires<[IsFP64bit, HasStandardEncoding]> { 145 let DecoderNamespace = "Mips64"; 146 } 147} 148 149multiclass FFR2P_M<bits<6> funct, string opstr, SDNode OpNode, bit isComm = 0> { 150 let isCommutable = isComm in { 151 def _S : FFR2P<funct, 16, opstr, "s", FGR32, OpNode>; 152 def _D32 : FFR2P<funct, 17, opstr, "d", AFGR64, OpNode>, 153 Requires<[NotFP64bit, HasStandardEncoding]>; 154 def _D64 : FFR2P<funct, 17, opstr, "d", FGR64, OpNode>, 155 Requires<[IsFP64bit, HasStandardEncoding]> { 156 let DecoderNamespace = "Mips64"; 157 } 158} 159} 160 161// FP madd/msub/nmadd/nmsub instruction classes. 162class FMADDSUB<bits<3> funct, bits<3> fmt, string opstr, string fmtstr, 163 SDNode OpNode, RegisterClass RC> : 164 FFMADDSUB<funct, fmt, (outs RC:$fd), (ins RC:$fr, RC:$fs, RC:$ft), 165 !strconcat(opstr, ".", fmtstr, "\t$fd, $fr, $fs, $ft"), 166 [(set RC:$fd, (OpNode (fmul RC:$fs, RC:$ft), RC:$fr))]>; 167 168class FNMADDSUB<bits<3> funct, bits<3> fmt, string opstr, string fmtstr, 169 SDNode OpNode, RegisterClass RC> : 170 FFMADDSUB<funct, fmt, (outs RC:$fd), (ins RC:$fr, RC:$fs, RC:$ft), 171 !strconcat(opstr, ".", fmtstr, "\t$fd, $fr, $fs, $ft"), 172 [(set RC:$fd, (fsub fpimm0, (OpNode (fmul RC:$fs, RC:$ft), RC:$fr)))]>; 173 174//===----------------------------------------------------------------------===// 175// Floating Point Instructions 176//===----------------------------------------------------------------------===// 177defm ROUND_W : FFR1_W_M<0xc, "round">; 178defm ROUND_L : FFR1_L_M<0x8, "round">; 179defm TRUNC_W : FFR1_W_M<0xd, "trunc">; 180defm TRUNC_L : FFR1_L_M<0x9, "trunc">; 181defm CEIL_W : FFR1_W_M<0xe, "ceil">; 182defm CEIL_L : FFR1_L_M<0xa, "ceil">; 183defm FLOOR_W : FFR1_W_M<0xf, "floor">; 184defm FLOOR_L : FFR1_L_M<0xb, "floor">; 185defm CVT_W : FFR1_W_M<0x24, "cvt">; 186//defm CVT_L : FFR1_L_M<0x25, "cvt">; 187 188def CVT_S_W : FFR1<0x20, 20, "cvt", "s.w", FGR32, FGR32>; 189def CVT_L_S : FFR1<0x25, 16, "cvt", "l.s", FGR64, FGR32>; 190def CVT_L_D64: FFR1<0x25, 17, "cvt", "l.d", FGR64, FGR64>; 191 192let Predicates = [NotFP64bit, HasStandardEncoding] in { 193 def CVT_S_D32 : FFR1<0x20, 17, "cvt", "s.d", FGR32, AFGR64>; 194 def CVT_D32_W : FFR1<0x21, 20, "cvt", "d.w", AFGR64, FGR32>; 195 def CVT_D32_S : FFR1<0x21, 16, "cvt", "d.s", AFGR64, FGR32>; 196} 197 198let Predicates = [IsFP64bit, HasStandardEncoding], DecoderNamespace = "Mips64" in { 199 def CVT_S_D64 : FFR1<0x20, 17, "cvt", "s.d", FGR32, FGR64>; 200 def CVT_S_L : FFR1<0x20, 21, "cvt", "s.l", FGR32, FGR64>; 201 def CVT_D64_W : FFR1<0x21, 20, "cvt", "d.w", FGR64, FGR32>; 202 def CVT_D64_S : FFR1<0x21, 16, "cvt", "d.s", FGR64, FGR32>; 203 def CVT_D64_L : FFR1<0x21, 21, "cvt", "d.l", FGR64, FGR64>; 204} 205 206let Predicates = [NoNaNsFPMath, HasStandardEncoding] in { 207 defm FABS : FFR1P_M<0x5, "abs", fabs>; 208 defm FNEG : FFR1P_M<0x7, "neg", fneg>; 209} 210defm FSQRT : FFR1P_M<0x4, "sqrt", fsqrt>; 211 212// The odd-numbered registers are only referenced when doing loads, 213// stores, and moves between floating-point and integer registers. 214// When defining instructions, we reference all 32-bit registers, 215// regardless of register aliasing. 216 217class FFRGPR<bits<5> _fmt, dag outs, dag ins, string asmstr, list<dag> pattern>: 218 FFR<0x11, 0x0, _fmt, outs, ins, asmstr, pattern> { 219 bits<5> rt; 220 let ft = rt; 221 let fd = 0; 222} 223 224/// Move Control Registers From/To CPU Registers 225def CFC1 : FFRGPR<0x2, (outs CPURegs:$rt), (ins CCR:$fs), 226 "cfc1\t$rt, $fs", []>; 227 228def CTC1 : FFRGPR<0x6, (outs CCR:$fs), (ins CPURegs:$rt), 229 "ctc1\t$rt, $fs", []>; 230 231def MFC1 : FFRGPR<0x00, (outs CPURegs:$rt), (ins FGR32:$fs), 232 "mfc1\t$rt, $fs", 233 [(set CPURegs:$rt, (bitconvert FGR32:$fs))]>; 234 235def MTC1 : FFRGPR<0x04, (outs FGR32:$fs), (ins CPURegs:$rt), 236 "mtc1\t$rt, $fs", 237 [(set FGR32:$fs, (bitconvert CPURegs:$rt))]>; 238 239def DMFC1 : FFRGPR<0x01, (outs CPU64Regs:$rt), (ins FGR64:$fs), 240 "dmfc1\t$rt, $fs", 241 [(set CPU64Regs:$rt, (bitconvert FGR64:$fs))]>; 242 243def DMTC1 : FFRGPR<0x05, (outs FGR64:$fs), (ins CPU64Regs:$rt), 244 "dmtc1\t$rt, $fs", 245 [(set FGR64:$fs, (bitconvert CPU64Regs:$rt))]>; 246 247def FMOV_S : FFR1<0x6, 16, "mov", "s", FGR32, FGR32>; 248def FMOV_D32 : FFR1<0x6, 17, "mov", "d", AFGR64, AFGR64>, 249 Requires<[NotFP64bit, HasStandardEncoding]>; 250def FMOV_D64 : FFR1<0x6, 17, "mov", "d", FGR64, FGR64>, 251 Requires<[IsFP64bit, HasStandardEncoding]> { 252 let DecoderNamespace = "Mips64"; 253} 254 255/// Floating Point Memory Instructions 256let Predicates = [IsN64, HasStandardEncoding], DecoderNamespace = "Mips64" in { 257 def LWC1_P8 : FPLoad<0x31, "lwc1", FGR32, mem64>; 258 def SWC1_P8 : FPStore<0x39, "swc1", FGR32, mem64>; 259 def LDC164_P8 : FPLoad<0x35, "ldc1", FGR64, mem64> { 260 let isCodeGenOnly =1; 261 } 262 def SDC164_P8 : FPStore<0x3d, "sdc1", FGR64, mem64> { 263 let isCodeGenOnly =1; 264 } 265} 266 267let Predicates = [NotN64, HasStandardEncoding] in { 268 def LWC1 : FPLoad<0x31, "lwc1", FGR32, mem>; 269 def SWC1 : FPStore<0x39, "swc1", FGR32, mem>; 270} 271 272let Predicates = [NotN64, HasMips64, HasStandardEncoding], 273 DecoderNamespace = "Mips64" in { 274 def LDC164 : FPLoad<0x35, "ldc1", FGR64, mem>; 275 def SDC164 : FPStore<0x3d, "sdc1", FGR64, mem>; 276} 277 278let Predicates = [NotN64, NotMips64, HasStandardEncoding] in { 279 def LDC1 : FPLoad<0x35, "ldc1", AFGR64, mem>; 280 def SDC1 : FPStore<0x3d, "sdc1", AFGR64, mem>; 281} 282 283// Indexed loads and stores. 284let Predicates = [HasMips32r2Or64, HasStandardEncoding] in { 285 def LWXC1 : FPIdxLoad<0x0, "lwxc1", FGR32, CPURegs, load_a>; 286 def SWXC1 : FPIdxStore<0x8, "swxc1", FGR32, CPURegs, store_a>; 287} 288 289let Predicates = [HasMips32r2, NotMips64, HasStandardEncoding] in { 290 def LDXC1 : FPIdxLoad<0x1, "ldxc1", AFGR64, CPURegs, load_a>; 291 def SDXC1 : FPIdxStore<0x9, "sdxc1", AFGR64, CPURegs, store_a>; 292} 293 294let Predicates = [HasMips64, NotN64, HasStandardEncoding], DecoderNamespace="Mips64" in { 295 def LDXC164 : FPIdxLoad<0x1, "ldxc1", FGR64, CPURegs, load_a>; 296 def SDXC164 : FPIdxStore<0x9, "sdxc1", FGR64, CPURegs, store_a>; 297} 298 299// n64 300let Predicates = [IsN64, HasStandardEncoding], isCodeGenOnly=1 in { 301 def LWXC1_P8 : FPIdxLoad<0x0, "lwxc1", FGR32, CPU64Regs, load_a>; 302 def LDXC164_P8 : FPIdxLoad<0x1, "ldxc1", FGR64, CPU64Regs, load_a>; 303 def SWXC1_P8 : FPIdxStore<0x8, "swxc1", FGR32, CPU64Regs, store_a>; 304 def SDXC164_P8 : FPIdxStore<0x9, "sdxc1", FGR64, CPU64Regs, store_a>; 305} 306 307// Load/store doubleword indexed unaligned. 308let Predicates = [NotMips64, HasStandardEncoding] in { 309 def LUXC1 : FPIdxLoad<0x5, "luxc1", AFGR64, CPURegs>; 310 def SUXC1 : FPIdxStore<0xd, "suxc1", AFGR64, CPURegs>; 311} 312 313let Predicates = [HasMips64, HasStandardEncoding], 314 DecoderNamespace="Mips64" in { 315 def LUXC164 : FPIdxLoad<0x5, "luxc1", FGR64, CPURegs>; 316 def SUXC164 : FPIdxStore<0xd, "suxc1", FGR64, CPURegs>; 317} 318 319/// Floating-point Aritmetic 320defm FADD : FFR2P_M<0x00, "add", fadd, 1>; 321defm FDIV : FFR2P_M<0x03, "div", fdiv>; 322defm FMUL : FFR2P_M<0x02, "mul", fmul, 1>; 323defm FSUB : FFR2P_M<0x01, "sub", fsub>; 324 325let Predicates = [HasMips32r2, HasStandardEncoding] in { 326 def MADD_S : FMADDSUB<0x4, 0, "madd", "s", fadd, FGR32>; 327 def MSUB_S : FMADDSUB<0x5, 0, "msub", "s", fsub, FGR32>; 328} 329 330let Predicates = [HasMips32r2, NoNaNsFPMath, HasStandardEncoding] in { 331 def NMADD_S : FNMADDSUB<0x6, 0, "nmadd", "s", fadd, FGR32>; 332 def NMSUB_S : FNMADDSUB<0x7, 0, "nmsub", "s", fsub, FGR32>; 333} 334 335let Predicates = [HasMips32r2, NotFP64bit, HasStandardEncoding] in { 336 def MADD_D32 : FMADDSUB<0x4, 1, "madd", "d", fadd, AFGR64>; 337 def MSUB_D32 : FMADDSUB<0x5, 1, "msub", "d", fsub, AFGR64>; 338} 339 340let Predicates = [HasMips32r2, NotFP64bit, NoNaNsFPMath, HasStandardEncoding] in { 341 def NMADD_D32 : FNMADDSUB<0x6, 1, "nmadd", "d", fadd, AFGR64>; 342 def NMSUB_D32 : FNMADDSUB<0x7, 1, "nmsub", "d", fsub, AFGR64>; 343} 344 345let Predicates = [HasMips32r2, IsFP64bit, HasStandardEncoding], isCodeGenOnly=1 in { 346 def MADD_D64 : FMADDSUB<0x4, 1, "madd", "d", fadd, FGR64>; 347 def MSUB_D64 : FMADDSUB<0x5, 1, "msub", "d", fsub, FGR64>; 348} 349 350let Predicates = [HasMips32r2, IsFP64bit, NoNaNsFPMath, HasStandardEncoding], 351 isCodeGenOnly=1 in { 352 def NMADD_D64 : FNMADDSUB<0x6, 1, "nmadd", "d", fadd, FGR64>; 353 def NMSUB_D64 : FNMADDSUB<0x7, 1, "nmsub", "d", fsub, FGR64>; 354} 355 356//===----------------------------------------------------------------------===// 357// Floating Point Branch Codes 358//===----------------------------------------------------------------------===// 359// Mips branch codes. These correspond to condcode in MipsInstrInfo.h. 360// They must be kept in synch. 361def MIPS_BRANCH_F : PatLeaf<(i32 0)>; 362def MIPS_BRANCH_T : PatLeaf<(i32 1)>; 363 364/// Floating Point Branch of False/True (Likely) 365let isBranch=1, isTerminator=1, hasDelaySlot=1, base=0x8, Uses=[FCR31] in 366 class FBRANCH<bits<1> nd, bits<1> tf, PatLeaf op, string asmstr> : 367 FFI<0x11, (outs), (ins brtarget:$dst), !strconcat(asmstr, "\t$dst"), 368 [(MipsFPBrcond op, bb:$dst)]> { 369 let Inst{20-18} = 0; 370 let Inst{17} = nd; 371 let Inst{16} = tf; 372} 373 374let DecoderMethod = "DecodeBC1" in { 375def BC1F : FBRANCH<0, 0, MIPS_BRANCH_F, "bc1f">; 376def BC1T : FBRANCH<0, 1, MIPS_BRANCH_T, "bc1t">; 377} 378//===----------------------------------------------------------------------===// 379// Floating Point Flag Conditions 380//===----------------------------------------------------------------------===// 381// Mips condition codes. They must correspond to condcode in MipsInstrInfo.h. 382// They must be kept in synch. 383def MIPS_FCOND_F : PatLeaf<(i32 0)>; 384def MIPS_FCOND_UN : PatLeaf<(i32 1)>; 385def MIPS_FCOND_OEQ : PatLeaf<(i32 2)>; 386def MIPS_FCOND_UEQ : PatLeaf<(i32 3)>; 387def MIPS_FCOND_OLT : PatLeaf<(i32 4)>; 388def MIPS_FCOND_ULT : PatLeaf<(i32 5)>; 389def MIPS_FCOND_OLE : PatLeaf<(i32 6)>; 390def MIPS_FCOND_ULE : PatLeaf<(i32 7)>; 391def MIPS_FCOND_SF : PatLeaf<(i32 8)>; 392def MIPS_FCOND_NGLE : PatLeaf<(i32 9)>; 393def MIPS_FCOND_SEQ : PatLeaf<(i32 10)>; 394def MIPS_FCOND_NGL : PatLeaf<(i32 11)>; 395def MIPS_FCOND_LT : PatLeaf<(i32 12)>; 396def MIPS_FCOND_NGE : PatLeaf<(i32 13)>; 397def MIPS_FCOND_LE : PatLeaf<(i32 14)>; 398def MIPS_FCOND_NGT : PatLeaf<(i32 15)>; 399 400class FCMP<bits<5> fmt, RegisterClass RC, string typestr> : 401 FCC<fmt, (outs), (ins RC:$fs, RC:$ft, condcode:$cc), 402 !strconcat("c.$cc.", typestr, "\t$fs, $ft"), 403 [(MipsFPCmp RC:$fs, RC:$ft, imm:$cc)]>; 404 405/// Floating Point Compare 406let Defs=[FCR31] in { 407 def FCMP_S32 : FCMP<0x10, FGR32, "s">; 408 def FCMP_D32 : FCMP<0x11, AFGR64, "d">, 409 Requires<[NotFP64bit, HasStandardEncoding]>; 410 def FCMP_D64 : FCMP<0x11, FGR64, "d">, 411 Requires<[IsFP64bit, HasStandardEncoding]> { 412 let DecoderNamespace = "Mips64"; 413 } 414} 415 416//===----------------------------------------------------------------------===// 417// Floating Point Pseudo-Instructions 418//===----------------------------------------------------------------------===// 419def MOVCCRToCCR : PseudoSE<(outs CCR:$dst), (ins CCR:$src), 420 "# MOVCCRToCCR", []>; 421 422// This pseudo instr gets expanded into 2 mtc1 instrs after register 423// allocation. 424def BuildPairF64 : 425 PseudoSE<(outs AFGR64:$dst), 426 (ins CPURegs:$lo, CPURegs:$hi), "", 427 [(set AFGR64:$dst, (MipsBuildPairF64 CPURegs:$lo, CPURegs:$hi))]>; 428 429// This pseudo instr gets expanded into 2 mfc1 instrs after register 430// allocation. 431// if n is 0, lower part of src is extracted. 432// if n is 1, higher part of src is extracted. 433def ExtractElementF64 : 434 PseudoSE<(outs CPURegs:$dst), (ins AFGR64:$src, i32imm:$n), "", 435 [(set CPURegs:$dst, (MipsExtractElementF64 AFGR64:$src, imm:$n))]>; 436 437//===----------------------------------------------------------------------===// 438// Floating Point Patterns 439//===----------------------------------------------------------------------===// 440def : MipsPat<(f32 fpimm0), (MTC1 ZERO)>; 441def : MipsPat<(f32 fpimm0neg), (FNEG_S (MTC1 ZERO))>; 442 443def : MipsPat<(f32 (sint_to_fp CPURegs:$src)), (CVT_S_W (MTC1 CPURegs:$src))>; 444def : MipsPat<(i32 (fp_to_sint FGR32:$src)), (MFC1 (TRUNC_W_S FGR32:$src))>; 445 446let Predicates = [NotFP64bit, HasStandardEncoding] in { 447 def : MipsPat<(f64 (sint_to_fp CPURegs:$src)), 448 (CVT_D32_W (MTC1 CPURegs:$src))>; 449 def : MipsPat<(i32 (fp_to_sint AFGR64:$src)), 450 (MFC1 (TRUNC_W_D32 AFGR64:$src))>; 451 def : MipsPat<(f32 (fround AFGR64:$src)), (CVT_S_D32 AFGR64:$src)>; 452 def : MipsPat<(f64 (fextend FGR32:$src)), (CVT_D32_S FGR32:$src)>; 453} 454 455let Predicates = [IsFP64bit, HasStandardEncoding] in { 456 def : MipsPat<(f64 fpimm0), (DMTC1 ZERO_64)>; 457 def : MipsPat<(f64 fpimm0neg), (FNEG_D64 (DMTC1 ZERO_64))>; 458 459 def : MipsPat<(f64 (sint_to_fp CPURegs:$src)), 460 (CVT_D64_W (MTC1 CPURegs:$src))>; 461 def : MipsPat<(f32 (sint_to_fp CPU64Regs:$src)), 462 (CVT_S_L (DMTC1 CPU64Regs:$src))>; 463 def : MipsPat<(f64 (sint_to_fp CPU64Regs:$src)), 464 (CVT_D64_L (DMTC1 CPU64Regs:$src))>; 465 466 def : MipsPat<(i32 (fp_to_sint FGR64:$src)), 467 (MFC1 (TRUNC_W_D64 FGR64:$src))>; 468 def : MipsPat<(i64 (fp_to_sint FGR32:$src)), (DMFC1 (TRUNC_L_S FGR32:$src))>; 469 def : MipsPat<(i64 (fp_to_sint FGR64:$src)), 470 (DMFC1 (TRUNC_L_D64 FGR64:$src))>; 471 472 def : MipsPat<(f32 (fround FGR64:$src)), (CVT_S_D64 FGR64:$src)>; 473 def : MipsPat<(f64 (fextend FGR32:$src)), (CVT_D64_S FGR32:$src)>; 474} 475