1//===- MipsInstrInfo.td - Target Description for Mips Target -*- tablegen -*-=// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file contains the Mips implementation of the TargetInstrInfo class. 11// 12//===----------------------------------------------------------------------===// 13 14 15//===----------------------------------------------------------------------===// 16// Mips profiles and nodes 17//===----------------------------------------------------------------------===// 18 19def SDT_MipsJmpLink : SDTypeProfile<0, 1, [SDTCisVT<0, iPTR>]>; 20def SDT_MipsCMov : SDTypeProfile<1, 4, [SDTCisSameAs<0, 1>, 21 SDTCisSameAs<1, 2>, 22 SDTCisSameAs<3, 4>, 23 SDTCisInt<4>]>; 24def SDT_MipsCallSeqStart : SDCallSeqStart<[SDTCisVT<0, i32>]>; 25def SDT_MipsCallSeqEnd : SDCallSeqEnd<[SDTCisVT<0, i32>, SDTCisVT<1, i32>]>; 26def SDT_MipsMAddMSub : SDTypeProfile<0, 4, 27 [SDTCisVT<0, i32>, SDTCisSameAs<0, 1>, 28 SDTCisSameAs<1, 2>, 29 SDTCisSameAs<2, 3>]>; 30def SDT_MipsDivRem : SDTypeProfile<0, 2, 31 [SDTCisInt<0>, 32 SDTCisSameAs<0, 1>]>; 33 34def SDT_MipsThreadPointer : SDTypeProfile<1, 0, [SDTCisPtrTy<0>]>; 35 36def SDT_MipsDynAlloc : SDTypeProfile<1, 1, [SDTCisVT<0, iPTR>, 37 SDTCisSameAs<0, 1>]>; 38def SDT_Sync : SDTypeProfile<0, 1, [SDTCisVT<0, i32>]>; 39 40def SDT_Ext : SDTypeProfile<1, 3, [SDTCisInt<0>, SDTCisSameAs<0, 1>, 41 SDTCisVT<2, i32>, SDTCisSameAs<2, 3>]>; 42def SDT_Ins : SDTypeProfile<1, 4, [SDTCisInt<0>, SDTCisSameAs<0, 1>, 43 SDTCisVT<2, i32>, SDTCisSameAs<2, 3>, 44 SDTCisSameAs<0, 4>]>; 45 46def SDTMipsLoadLR : SDTypeProfile<1, 2, 47 [SDTCisInt<0>, SDTCisPtrTy<1>, 48 SDTCisSameAs<0, 2>]>; 49 50// Call 51def MipsJmpLink : SDNode<"MipsISD::JmpLink",SDT_MipsJmpLink, 52 [SDNPHasChain, SDNPOutGlue, SDNPOptInGlue, 53 SDNPVariadic]>; 54 55// Hi and Lo nodes are used to handle global addresses. Used on 56// MipsISelLowering to lower stuff like GlobalAddress, ExternalSymbol 57// static model. (nothing to do with Mips Registers Hi and Lo) 58def MipsHi : SDNode<"MipsISD::Hi", SDTIntUnaryOp>; 59def MipsLo : SDNode<"MipsISD::Lo", SDTIntUnaryOp>; 60def MipsGPRel : SDNode<"MipsISD::GPRel", SDTIntUnaryOp>; 61 62// TlsGd node is used to handle General Dynamic TLS 63def MipsTlsGd : SDNode<"MipsISD::TlsGd", SDTIntUnaryOp>; 64 65// TprelHi and TprelLo nodes are used to handle Local Exec TLS 66def MipsTprelHi : SDNode<"MipsISD::TprelHi", SDTIntUnaryOp>; 67def MipsTprelLo : SDNode<"MipsISD::TprelLo", SDTIntUnaryOp>; 68 69// Thread pointer 70def MipsThreadPointer: SDNode<"MipsISD::ThreadPointer", SDT_MipsThreadPointer>; 71 72// Return 73def MipsRet : SDNode<"MipsISD::Ret", SDTNone, [SDNPHasChain, SDNPOptInGlue]>; 74 75// These are target-independent nodes, but have target-specific formats. 76def callseq_start : SDNode<"ISD::CALLSEQ_START", SDT_MipsCallSeqStart, 77 [SDNPHasChain, SDNPSideEffect, SDNPOutGlue]>; 78def callseq_end : SDNode<"ISD::CALLSEQ_END", SDT_MipsCallSeqEnd, 79 [SDNPHasChain, SDNPSideEffect, 80 SDNPOptInGlue, SDNPOutGlue]>; 81 82// MAdd*/MSub* nodes 83def MipsMAdd : SDNode<"MipsISD::MAdd", SDT_MipsMAddMSub, 84 [SDNPOptInGlue, SDNPOutGlue]>; 85def MipsMAddu : SDNode<"MipsISD::MAddu", SDT_MipsMAddMSub, 86 [SDNPOptInGlue, SDNPOutGlue]>; 87def MipsMSub : SDNode<"MipsISD::MSub", SDT_MipsMAddMSub, 88 [SDNPOptInGlue, SDNPOutGlue]>; 89def MipsMSubu : SDNode<"MipsISD::MSubu", SDT_MipsMAddMSub, 90 [SDNPOptInGlue, SDNPOutGlue]>; 91 92// DivRem(u) nodes 93def MipsDivRem : SDNode<"MipsISD::DivRem", SDT_MipsDivRem, 94 [SDNPOutGlue]>; 95def MipsDivRemU : SDNode<"MipsISD::DivRemU", SDT_MipsDivRem, 96 [SDNPOutGlue]>; 97 98// Target constant nodes that are not part of any isel patterns and remain 99// unchanged can cause instructions with illegal operands to be emitted. 100// Wrapper node patterns give the instruction selector a chance to replace 101// target constant nodes that would otherwise remain unchanged with ADDiu 102// nodes. Without these wrapper node patterns, the following conditional move 103// instrucion is emitted when function cmov2 in test/CodeGen/Mips/cmov.ll is 104// compiled: 105// movn %got(d)($gp), %got(c)($gp), $4 106// This instruction is illegal since movn can take only register operands. 107 108def MipsWrapper : SDNode<"MipsISD::Wrapper", SDTIntBinOp>; 109 110// Pointer to dynamically allocated stack area. 111def MipsDynAlloc : SDNode<"MipsISD::DynAlloc", SDT_MipsDynAlloc, 112 [SDNPHasChain, SDNPInGlue]>; 113 114def MipsSync : SDNode<"MipsISD::Sync", SDT_Sync, [SDNPHasChain,SDNPSideEffect]>; 115 116def MipsExt : SDNode<"MipsISD::Ext", SDT_Ext>; 117def MipsIns : SDNode<"MipsISD::Ins", SDT_Ins>; 118 119def MipsLWL : SDNode<"MipsISD::LWL", SDTMipsLoadLR, 120 [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>; 121def MipsLWR : SDNode<"MipsISD::LWR", SDTMipsLoadLR, 122 [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>; 123def MipsSWL : SDNode<"MipsISD::SWL", SDTStore, 124 [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>; 125def MipsSWR : SDNode<"MipsISD::SWR", SDTStore, 126 [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>; 127def MipsLDL : SDNode<"MipsISD::LDL", SDTMipsLoadLR, 128 [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>; 129def MipsLDR : SDNode<"MipsISD::LDR", SDTMipsLoadLR, 130 [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>; 131def MipsSDL : SDNode<"MipsISD::SDL", SDTStore, 132 [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>; 133def MipsSDR : SDNode<"MipsISD::SDR", SDTStore, 134 [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>; 135 136//===----------------------------------------------------------------------===// 137// Mips Instruction Predicate Definitions. 138//===----------------------------------------------------------------------===// 139def HasSEInReg : Predicate<"Subtarget.hasSEInReg()">, 140 AssemblerPredicate<"FeatureSEInReg">; 141def HasBitCount : Predicate<"Subtarget.hasBitCount()">, 142 AssemblerPredicate<"FeatureBitCount">; 143def HasSwap : Predicate<"Subtarget.hasSwap()">, 144 AssemblerPredicate<"FeatureSwap">; 145def HasCondMov : Predicate<"Subtarget.hasCondMov()">, 146 AssemblerPredicate<"FeatureCondMov">; 147def HasMips32 : Predicate<"Subtarget.hasMips32()">, 148 AssemblerPredicate<"FeatureMips32">; 149def HasMips32r2 : Predicate<"Subtarget.hasMips32r2()">, 150 AssemblerPredicate<"FeatureMips32r2">; 151def HasMips64 : Predicate<"Subtarget.hasMips64()">, 152 AssemblerPredicate<"FeatureMips64">; 153def HasMips32r2Or64 : Predicate<"Subtarget.hasMips32r2Or64()">, 154 AssemblerPredicate<"FeatureMips32r2,FeatureMips64">; 155def NotMips64 : Predicate<"!Subtarget.hasMips64()">, 156 AssemblerPredicate<"!FeatureMips64">; 157def HasMips64r2 : Predicate<"Subtarget.hasMips64r2()">, 158 AssemblerPredicate<"FeatureMips64r2">; 159def IsN64 : Predicate<"Subtarget.isABI_N64()">, 160 AssemblerPredicate<"FeatureN64">; 161def NotN64 : Predicate<"!Subtarget.isABI_N64()">, 162 AssemblerPredicate<"!FeatureN64">; 163def InMips16Mode : Predicate<"Subtarget.inMips16Mode()">, 164 AssemblerPredicate<"FeatureMips16">; 165def RelocStatic : Predicate<"TM.getRelocationModel() == Reloc::Static">, 166 AssemblerPredicate<"FeatureMips32">; 167def RelocPIC : Predicate<"TM.getRelocationModel() == Reloc::PIC_">, 168 AssemblerPredicate<"FeatureMips32">; 169def NoNaNsFPMath : Predicate<"TM.Options.NoNaNsFPMath">, 170 AssemblerPredicate<"FeatureMips32">; 171def HasStandardEncoding : Predicate<"Subtarget.hasStandardEncoding()">, 172 AssemblerPredicate<"!FeatureMips16">; 173 174class MipsPat<dag pattern, dag result> : Pat<pattern, result> { 175 let Predicates = [HasStandardEncoding]; 176} 177 178//===----------------------------------------------------------------------===// 179// Instruction format superclass 180//===----------------------------------------------------------------------===// 181 182include "MipsInstrFormats.td" 183 184//===----------------------------------------------------------------------===// 185// Mips Operand, Complex Patterns and Transformations Definitions. 186//===----------------------------------------------------------------------===// 187 188// Instruction operand types 189def jmptarget : Operand<OtherVT> { 190 let EncoderMethod = "getJumpTargetOpValue"; 191} 192def brtarget : Operand<OtherVT> { 193 let EncoderMethod = "getBranchTargetOpValue"; 194 let OperandType = "OPERAND_PCREL"; 195 let DecoderMethod = "DecodeBranchTarget"; 196} 197def calltarget : Operand<iPTR> { 198 let EncoderMethod = "getJumpTargetOpValue"; 199} 200def calltarget64: Operand<i64>; 201def simm16 : Operand<i32> { 202 let DecoderMethod= "DecodeSimm16"; 203} 204def simm16_64 : Operand<i64>; 205def shamt : Operand<i32>; 206 207// Unsigned Operand 208def uimm16 : Operand<i32> { 209 let PrintMethod = "printUnsignedImm"; 210} 211 212def MipsMemAsmOperand : AsmOperandClass { 213 let Name = "Mem"; 214 let ParserMethod = "parseMemOperand"; 215} 216 217// Address operand 218def mem : Operand<i32> { 219 let PrintMethod = "printMemOperand"; 220 let MIOperandInfo = (ops CPURegs, simm16); 221 let EncoderMethod = "getMemEncoding"; 222 let ParserMatchClass = MipsMemAsmOperand; 223} 224 225def mem64 : Operand<i64> { 226 let PrintMethod = "printMemOperand"; 227 let MIOperandInfo = (ops CPU64Regs, simm16_64); 228 let EncoderMethod = "getMemEncoding"; 229 let ParserMatchClass = MipsMemAsmOperand; 230} 231 232def mem_ea : Operand<i32> { 233 let PrintMethod = "printMemOperandEA"; 234 let MIOperandInfo = (ops CPURegs, simm16); 235 let EncoderMethod = "getMemEncoding"; 236} 237 238def mem_ea_64 : Operand<i64> { 239 let PrintMethod = "printMemOperandEA"; 240 let MIOperandInfo = (ops CPU64Regs, simm16_64); 241 let EncoderMethod = "getMemEncoding"; 242} 243 244// size operand of ext instruction 245def size_ext : Operand<i32> { 246 let EncoderMethod = "getSizeExtEncoding"; 247 let DecoderMethod = "DecodeExtSize"; 248} 249 250// size operand of ins instruction 251def size_ins : Operand<i32> { 252 let EncoderMethod = "getSizeInsEncoding"; 253 let DecoderMethod = "DecodeInsSize"; 254} 255 256// Transformation Function - get the lower 16 bits. 257def LO16 : SDNodeXForm<imm, [{ 258 return getImm(N, N->getZExtValue() & 0xFFFF); 259}]>; 260 261// Transformation Function - get the higher 16 bits. 262def HI16 : SDNodeXForm<imm, [{ 263 return getImm(N, (N->getZExtValue() >> 16) & 0xFFFF); 264}]>; 265 266// Node immediate fits as 16-bit sign extended on target immediate. 267// e.g. addi, andi 268def immSExt16 : PatLeaf<(imm), [{ return isInt<16>(N->getSExtValue()); }]>; 269 270// Node immediate fits as 16-bit zero extended on target immediate. 271// The LO16 param means that only the lower 16 bits of the node 272// immediate are caught. 273// e.g. addiu, sltiu 274def immZExt16 : PatLeaf<(imm), [{ 275 if (N->getValueType(0) == MVT::i32) 276 return (uint32_t)N->getZExtValue() == (unsigned short)N->getZExtValue(); 277 else 278 return (uint64_t)N->getZExtValue() == (unsigned short)N->getZExtValue(); 279}], LO16>; 280 281// Immediate can be loaded with LUi (32-bit int with lower 16-bit cleared). 282def immLow16Zero : PatLeaf<(imm), [{ 283 int64_t Val = N->getSExtValue(); 284 return isInt<32>(Val) && !(Val & 0xffff); 285}]>; 286 287// shamt field must fit in 5 bits. 288def immZExt5 : ImmLeaf<i32, [{return Imm == (Imm & 0x1f);}]>; 289 290// Mips Address Mode! SDNode frameindex could possibily be a match 291// since load and store instructions from stack used it. 292def addr : 293 ComplexPattern<iPTR, 2, "SelectAddr", [frameindex], [SDNPWantParent]>; 294 295//===----------------------------------------------------------------------===// 296// Pattern fragment for load/store 297//===----------------------------------------------------------------------===// 298class UnalignedLoad<PatFrag Node> : 299 PatFrag<(ops node:$ptr), (Node node:$ptr), [{ 300 LoadSDNode *LD = cast<LoadSDNode>(N); 301 return LD->getMemoryVT().getSizeInBits()/8 > LD->getAlignment(); 302}]>; 303 304class AlignedLoad<PatFrag Node> : 305 PatFrag<(ops node:$ptr), (Node node:$ptr), [{ 306 LoadSDNode *LD = cast<LoadSDNode>(N); 307 return LD->getMemoryVT().getSizeInBits()/8 <= LD->getAlignment(); 308}]>; 309 310class UnalignedStore<PatFrag Node> : 311 PatFrag<(ops node:$val, node:$ptr), (Node node:$val, node:$ptr), [{ 312 StoreSDNode *SD = cast<StoreSDNode>(N); 313 return SD->getMemoryVT().getSizeInBits()/8 > SD->getAlignment(); 314}]>; 315 316class AlignedStore<PatFrag Node> : 317 PatFrag<(ops node:$val, node:$ptr), (Node node:$val, node:$ptr), [{ 318 StoreSDNode *SD = cast<StoreSDNode>(N); 319 return SD->getMemoryVT().getSizeInBits()/8 <= SD->getAlignment(); 320}]>; 321 322// Load/Store PatFrags. 323def sextloadi16_a : AlignedLoad<sextloadi16>; 324def zextloadi16_a : AlignedLoad<zextloadi16>; 325def extloadi16_a : AlignedLoad<extloadi16>; 326def load_a : AlignedLoad<load>; 327def sextloadi32_a : AlignedLoad<sextloadi32>; 328def zextloadi32_a : AlignedLoad<zextloadi32>; 329def extloadi32_a : AlignedLoad<extloadi32>; 330def truncstorei16_a : AlignedStore<truncstorei16>; 331def store_a : AlignedStore<store>; 332def truncstorei32_a : AlignedStore<truncstorei32>; 333def sextloadi16_u : UnalignedLoad<sextloadi16>; 334def zextloadi16_u : UnalignedLoad<zextloadi16>; 335def extloadi16_u : UnalignedLoad<extloadi16>; 336def load_u : UnalignedLoad<load>; 337def sextloadi32_u : UnalignedLoad<sextloadi32>; 338def zextloadi32_u : UnalignedLoad<zextloadi32>; 339def extloadi32_u : UnalignedLoad<extloadi32>; 340def truncstorei16_u : UnalignedStore<truncstorei16>; 341def store_u : UnalignedStore<store>; 342def truncstorei32_u : UnalignedStore<truncstorei32>; 343 344//===----------------------------------------------------------------------===// 345// Instructions specific format 346//===----------------------------------------------------------------------===// 347 348// Arithmetic and logical instructions with 3 register operands. 349class ArithLogicR<bits<6> op, bits<6> func, string instr_asm, SDNode OpNode, 350 InstrItinClass itin, RegisterClass RC, bit isComm = 0>: 351 FR<op, func, (outs RC:$rd), (ins RC:$rs, RC:$rt), 352 !strconcat(instr_asm, "\t$rd, $rs, $rt"), 353 [(set RC:$rd, (OpNode RC:$rs, RC:$rt))], itin> { 354 let shamt = 0; 355 let isCommutable = isComm; 356 let isReMaterializable = 1; 357} 358 359class ArithOverflowR<bits<6> op, bits<6> func, string instr_asm, 360 InstrItinClass itin, RegisterClass RC, bit isComm = 0>: 361 FR<op, func, (outs RC:$rd), (ins RC:$rs, RC:$rt), 362 !strconcat(instr_asm, "\t$rd, $rs, $rt"), [], itin> { 363 let shamt = 0; 364 let isCommutable = isComm; 365} 366 367// Arithmetic and logical instructions with 2 register operands. 368class ArithLogicI<bits<6> op, string instr_asm, SDNode OpNode, 369 Operand Od, PatLeaf imm_type, RegisterClass RC> : 370 FI<op, (outs RC:$rt), (ins RC:$rs, Od:$imm16), 371 !strconcat(instr_asm, "\t$rt, $rs, $imm16"), 372 [(set RC:$rt, (OpNode RC:$rs, imm_type:$imm16))], IIAlu> { 373 let isReMaterializable = 1; 374} 375 376class ArithOverflowI<bits<6> op, string instr_asm, SDNode OpNode, 377 Operand Od, PatLeaf imm_type, RegisterClass RC> : 378 FI<op, (outs RC:$rt), (ins RC:$rs, Od:$imm16), 379 !strconcat(instr_asm, "\t$rt, $rs, $imm16"), [], IIAlu>; 380 381// Arithmetic Multiply ADD/SUB 382let rd = 0, shamt = 0, Defs = [HI, LO], Uses = [HI, LO] in 383class MArithR<bits<6> func, string instr_asm, SDNode op, bit isComm = 0> : 384 FR<0x1c, func, (outs), (ins CPURegs:$rs, CPURegs:$rt), 385 !strconcat(instr_asm, "\t$rs, $rt"), 386 [(op CPURegs:$rs, CPURegs:$rt, LO, HI)], IIImul> { 387 let rd = 0; 388 let shamt = 0; 389 let isCommutable = isComm; 390} 391 392// Logical 393class LogicNOR<bits<6> op, bits<6> func, string instr_asm, RegisterClass RC>: 394 FR<op, func, (outs RC:$rd), (ins RC:$rs, RC:$rt), 395 !strconcat(instr_asm, "\t$rd, $rs, $rt"), 396 [(set RC:$rd, (not (or RC:$rs, RC:$rt)))], IIAlu> { 397 let shamt = 0; 398 let isCommutable = 1; 399} 400 401// Shifts 402class shift_rotate_imm<bits<6> func, bits<5> isRotate, string instr_asm, 403 SDNode OpNode, PatFrag PF, Operand ImmOpnd, 404 RegisterClass RC>: 405 FR<0x00, func, (outs RC:$rd), (ins RC:$rt, ImmOpnd:$shamt), 406 !strconcat(instr_asm, "\t$rd, $rt, $shamt"), 407 [(set RC:$rd, (OpNode RC:$rt, PF:$shamt))], IIAlu> { 408 let rs = isRotate; 409} 410 411// 32-bit shift instructions. 412class shift_rotate_imm32<bits<6> func, bits<5> isRotate, string instr_asm, 413 SDNode OpNode>: 414 shift_rotate_imm<func, isRotate, instr_asm, OpNode, immZExt5, shamt, CPURegs>; 415 416class shift_rotate_reg<bits<6> func, bits<5> isRotate, string instr_asm, 417 SDNode OpNode, RegisterClass RC>: 418 FR<0x00, func, (outs RC:$rd), (ins CPURegs:$rs, RC:$rt), 419 !strconcat(instr_asm, "\t$rd, $rt, $rs"), 420 [(set RC:$rd, (OpNode RC:$rt, CPURegs:$rs))], IIAlu> { 421 let shamt = isRotate; 422} 423 424// Load Upper Imediate 425class LoadUpper<bits<6> op, string instr_asm, RegisterClass RC, Operand Imm>: 426 FI<op, (outs RC:$rt), (ins Imm:$imm16), 427 !strconcat(instr_asm, "\t$rt, $imm16"), [], IIAlu> { 428 let rs = 0; 429 let neverHasSideEffects = 1; 430 let isReMaterializable = 1; 431} 432 433class FMem<bits<6> op, dag outs, dag ins, string asmstr, list<dag> pattern, 434 InstrItinClass itin>: FFI<op, outs, ins, asmstr, pattern> { 435 bits<21> addr; 436 let Inst{25-21} = addr{20-16}; 437 let Inst{15-0} = addr{15-0}; 438 let DecoderMethod = "DecodeMem"; 439} 440 441// Memory Load/Store 442let canFoldAsLoad = 1 in 443class LoadM<bits<6> op, string instr_asm, PatFrag OpNode, RegisterClass RC, 444 Operand MemOpnd, bit Pseudo>: 445 FMem<op, (outs RC:$rt), (ins MemOpnd:$addr), 446 !strconcat(instr_asm, "\t$rt, $addr"), 447 [(set RC:$rt, (OpNode addr:$addr))], IILoad> { 448 let isPseudo = Pseudo; 449} 450 451class StoreM<bits<6> op, string instr_asm, PatFrag OpNode, RegisterClass RC, 452 Operand MemOpnd, bit Pseudo>: 453 FMem<op, (outs), (ins RC:$rt, MemOpnd:$addr), 454 !strconcat(instr_asm, "\t$rt, $addr"), 455 [(OpNode RC:$rt, addr:$addr)], IIStore> { 456 let isPseudo = Pseudo; 457} 458 459// 32-bit load. 460multiclass LoadM32<bits<6> op, string instr_asm, PatFrag OpNode, 461 bit Pseudo = 0> { 462 def #NAME# : LoadM<op, instr_asm, OpNode, CPURegs, mem, Pseudo>, 463 Requires<[NotN64, HasStandardEncoding]>; 464 def _P8 : LoadM<op, instr_asm, OpNode, CPURegs, mem64, Pseudo>, 465 Requires<[IsN64, HasStandardEncoding]> { 466 let DecoderNamespace = "Mips64"; 467 let isCodeGenOnly = 1; 468 } 469} 470 471// 64-bit load. 472multiclass LoadM64<bits<6> op, string instr_asm, PatFrag OpNode, 473 bit Pseudo = 0> { 474 def #NAME# : LoadM<op, instr_asm, OpNode, CPU64Regs, mem, Pseudo>, 475 Requires<[NotN64, HasStandardEncoding]>; 476 def _P8 : LoadM<op, instr_asm, OpNode, CPU64Regs, mem64, Pseudo>, 477 Requires<[IsN64, HasStandardEncoding]> { 478 let DecoderNamespace = "Mips64"; 479 let isCodeGenOnly = 1; 480 } 481} 482 483// 32-bit store. 484multiclass StoreM32<bits<6> op, string instr_asm, PatFrag OpNode, 485 bit Pseudo = 0> { 486 def #NAME# : StoreM<op, instr_asm, OpNode, CPURegs, mem, Pseudo>, 487 Requires<[NotN64, HasStandardEncoding]>; 488 def _P8 : StoreM<op, instr_asm, OpNode, CPURegs, mem64, Pseudo>, 489 Requires<[IsN64, HasStandardEncoding]> { 490 let DecoderNamespace = "Mips64"; 491 let isCodeGenOnly = 1; 492 } 493} 494 495// 64-bit store. 496multiclass StoreM64<bits<6> op, string instr_asm, PatFrag OpNode, 497 bit Pseudo = 0> { 498 def #NAME# : StoreM<op, instr_asm, OpNode, CPU64Regs, mem, Pseudo>, 499 Requires<[NotN64, HasStandardEncoding]>; 500 def _P8 : StoreM<op, instr_asm, OpNode, CPU64Regs, mem64, Pseudo>, 501 Requires<[IsN64, HasStandardEncoding]> { 502 let DecoderNamespace = "Mips64"; 503 let isCodeGenOnly = 1; 504 } 505} 506 507// Load/Store Left/Right 508let canFoldAsLoad = 1 in 509class LoadLeftRight<bits<6> op, string instr_asm, SDNode OpNode, 510 RegisterClass RC, Operand MemOpnd> : 511 FMem<op, (outs RC:$rt), (ins MemOpnd:$addr, RC:$src), 512 !strconcat(instr_asm, "\t$rt, $addr"), 513 [(set RC:$rt, (OpNode addr:$addr, RC:$src))], IILoad> { 514 string Constraints = "$src = $rt"; 515} 516 517class StoreLeftRight<bits<6> op, string instr_asm, SDNode OpNode, 518 RegisterClass RC, Operand MemOpnd>: 519 FMem<op, (outs), (ins RC:$rt, MemOpnd:$addr), 520 !strconcat(instr_asm, "\t$rt, $addr"), [(OpNode RC:$rt, addr:$addr)], 521 IIStore>; 522 523// 32-bit load left/right. 524multiclass LoadLeftRightM32<bits<6> op, string instr_asm, SDNode OpNode> { 525 def #NAME# : LoadLeftRight<op, instr_asm, OpNode, CPURegs, mem>, 526 Requires<[NotN64, HasStandardEncoding]>; 527 def _P8 : LoadLeftRight<op, instr_asm, OpNode, CPURegs, mem64>, 528 Requires<[IsN64, HasStandardEncoding]> { 529 let DecoderNamespace = "Mips64"; 530 let isCodeGenOnly = 1; 531 } 532} 533 534// 64-bit load left/right. 535multiclass LoadLeftRightM64<bits<6> op, string instr_asm, SDNode OpNode> { 536 def #NAME# : LoadLeftRight<op, instr_asm, OpNode, CPU64Regs, mem>, 537 Requires<[NotN64, HasStandardEncoding]>; 538 def _P8 : LoadLeftRight<op, instr_asm, OpNode, CPU64Regs, mem64>, 539 Requires<[IsN64, HasStandardEncoding]> { 540 let DecoderNamespace = "Mips64"; 541 let isCodeGenOnly = 1; 542 } 543} 544 545// 32-bit store left/right. 546multiclass StoreLeftRightM32<bits<6> op, string instr_asm, SDNode OpNode> { 547 def #NAME# : StoreLeftRight<op, instr_asm, OpNode, CPURegs, mem>, 548 Requires<[NotN64, HasStandardEncoding]>; 549 def _P8 : StoreLeftRight<op, instr_asm, OpNode, CPURegs, mem64>, 550 Requires<[IsN64, HasStandardEncoding]> { 551 let DecoderNamespace = "Mips64"; 552 let isCodeGenOnly = 1; 553 } 554} 555 556// 64-bit store left/right. 557multiclass StoreLeftRightM64<bits<6> op, string instr_asm, SDNode OpNode> { 558 def #NAME# : StoreLeftRight<op, instr_asm, OpNode, CPU64Regs, mem>, 559 Requires<[NotN64, HasStandardEncoding]>; 560 def _P8 : StoreLeftRight<op, instr_asm, OpNode, CPU64Regs, mem64>, 561 Requires<[IsN64, HasStandardEncoding]> { 562 let DecoderNamespace = "Mips64"; 563 let isCodeGenOnly = 1; 564 } 565} 566 567// Conditional Branch 568class CBranch<bits<6> op, string instr_asm, PatFrag cond_op, RegisterClass RC>: 569 BranchBase<op, (outs), (ins RC:$rs, RC:$rt, brtarget:$imm16), 570 !strconcat(instr_asm, "\t$rs, $rt, $imm16"), 571 [(brcond (i32 (cond_op RC:$rs, RC:$rt)), bb:$imm16)], IIBranch> { 572 let isBranch = 1; 573 let isTerminator = 1; 574 let hasDelaySlot = 1; 575 let Defs = [AT]; 576} 577 578class CBranchZero<bits<6> op, bits<5> _rt, string instr_asm, PatFrag cond_op, 579 RegisterClass RC>: 580 BranchBase<op, (outs), (ins RC:$rs, brtarget:$imm16), 581 !strconcat(instr_asm, "\t$rs, $imm16"), 582 [(brcond (i32 (cond_op RC:$rs, 0)), bb:$imm16)], IIBranch> { 583 let rt = _rt; 584 let isBranch = 1; 585 let isTerminator = 1; 586 let hasDelaySlot = 1; 587 let Defs = [AT]; 588} 589 590// SetCC 591class SetCC_R<bits<6> op, bits<6> func, string instr_asm, PatFrag cond_op, 592 RegisterClass RC>: 593 FR<op, func, (outs CPURegs:$rd), (ins RC:$rs, RC:$rt), 594 !strconcat(instr_asm, "\t$rd, $rs, $rt"), 595 [(set CPURegs:$rd, (cond_op RC:$rs, RC:$rt))], 596 IIAlu> { 597 let shamt = 0; 598} 599 600class SetCC_I<bits<6> op, string instr_asm, PatFrag cond_op, Operand Od, 601 PatLeaf imm_type, RegisterClass RC>: 602 FI<op, (outs CPURegs:$rt), (ins RC:$rs, Od:$imm16), 603 !strconcat(instr_asm, "\t$rt, $rs, $imm16"), 604 [(set CPURegs:$rt, (cond_op RC:$rs, imm_type:$imm16))], 605 IIAlu>; 606 607// Jump 608class JumpFJ<bits<6> op, string instr_asm>: 609 FJ<op, (outs), (ins jmptarget:$target), 610 !strconcat(instr_asm, "\t$target"), [(br bb:$target)], IIBranch> { 611 let isBranch=1; 612 let isTerminator=1; 613 let isBarrier=1; 614 let hasDelaySlot = 1; 615 let Predicates = [RelocStatic, HasStandardEncoding]; 616 let DecoderMethod = "DecodeJumpTarget"; 617 let Defs = [AT]; 618} 619 620// Unconditional branch 621class UncondBranch<bits<6> op, string instr_asm>: 622 BranchBase<op, (outs), (ins brtarget:$imm16), 623 !strconcat(instr_asm, "\t$imm16"), [(br bb:$imm16)], IIBranch> { 624 let rs = 0; 625 let rt = 0; 626 let isBranch = 1; 627 let isTerminator = 1; 628 let isBarrier = 1; 629 let hasDelaySlot = 1; 630 let Predicates = [RelocPIC, HasStandardEncoding]; 631 let Defs = [AT]; 632} 633 634// Base class for indirect branch and return instruction classes. 635let isTerminator=1, isBarrier=1, hasDelaySlot = 1 in 636class JumpFR<RegisterClass RC, list<dag> pattern>: 637 FR<0, 0x8, (outs), (ins RC:$rs), "jr\t$rs", pattern, IIBranch> { 638 let rt = 0; 639 let rd = 0; 640 let shamt = 0; 641} 642 643// Indirect branch 644class IndirectBranch<RegisterClass RC>: JumpFR<RC, [(brind RC:$rs)]> { 645 let isBranch = 1; 646 let isIndirectBranch = 1; 647} 648 649// Return instruction 650class RetBase<RegisterClass RC>: JumpFR<RC, []> { 651 let isReturn = 1; 652 let isCodeGenOnly = 1; 653 let hasCtrlDep = 1; 654 let hasExtraSrcRegAllocReq = 1; 655} 656 657// Jump and Link (Call) 658let isCall=1, hasDelaySlot=1, Defs = [RA] in { 659 class JumpLink<bits<6> op, string instr_asm>: 660 FJ<op, (outs), (ins calltarget:$target), 661 !strconcat(instr_asm, "\t$target"), [(MipsJmpLink imm:$target)], 662 IIBranch> { 663 let DecoderMethod = "DecodeJumpTarget"; 664 } 665 666 class JumpLinkReg<bits<6> op, bits<6> func, string instr_asm, 667 RegisterClass RC>: 668 FR<op, func, (outs), (ins RC:$rs), 669 !strconcat(instr_asm, "\t$rs"), [(MipsJmpLink RC:$rs)], IIBranch> { 670 let rt = 0; 671 let rd = 31; 672 let shamt = 0; 673 } 674 675 class BranchLink<string instr_asm, bits<5> _rt, RegisterClass RC>: 676 FI<0x1, (outs), (ins RC:$rs, brtarget:$imm16), 677 !strconcat(instr_asm, "\t$rs, $imm16"), [], IIBranch> { 678 let rt = _rt; 679 } 680} 681 682// Mul, Div 683class Mult<bits<6> func, string instr_asm, InstrItinClass itin, 684 RegisterClass RC, list<Register> DefRegs>: 685 FR<0x00, func, (outs), (ins RC:$rs, RC:$rt), 686 !strconcat(instr_asm, "\t$rs, $rt"), [], itin> { 687 let rd = 0; 688 let shamt = 0; 689 let isCommutable = 1; 690 let Defs = DefRegs; 691 let neverHasSideEffects = 1; 692} 693 694class Mult32<bits<6> func, string instr_asm, InstrItinClass itin>: 695 Mult<func, instr_asm, itin, CPURegs, [HI, LO]>; 696 697class Div<SDNode op, bits<6> func, string instr_asm, InstrItinClass itin, 698 RegisterClass RC, list<Register> DefRegs>: 699 FR<0x00, func, (outs), (ins RC:$rs, RC:$rt), 700 !strconcat(instr_asm, "\t$$zero, $rs, $rt"), 701 [(op RC:$rs, RC:$rt)], itin> { 702 let rd = 0; 703 let shamt = 0; 704 let Defs = DefRegs; 705} 706 707class Div32<SDNode op, bits<6> func, string instr_asm, InstrItinClass itin>: 708 Div<op, func, instr_asm, itin, CPURegs, [HI, LO]>; 709 710// Move from Hi/Lo 711class MoveFromLOHI<bits<6> func, string instr_asm, RegisterClass RC, 712 list<Register> UseRegs>: 713 FR<0x00, func, (outs RC:$rd), (ins), 714 !strconcat(instr_asm, "\t$rd"), [], IIHiLo> { 715 let rs = 0; 716 let rt = 0; 717 let shamt = 0; 718 let Uses = UseRegs; 719 let neverHasSideEffects = 1; 720} 721 722class MoveToLOHI<bits<6> func, string instr_asm, RegisterClass RC, 723 list<Register> DefRegs>: 724 FR<0x00, func, (outs), (ins RC:$rs), 725 !strconcat(instr_asm, "\t$rs"), [], IIHiLo> { 726 let rt = 0; 727 let rd = 0; 728 let shamt = 0; 729 let Defs = DefRegs; 730 let neverHasSideEffects = 1; 731} 732 733class EffectiveAddress<bits<6> opc, string instr_asm, RegisterClass RC, Operand Mem> : 734 FMem<opc, (outs RC:$rt), (ins Mem:$addr), 735 instr_asm, [(set RC:$rt, addr:$addr)], IIAlu> { 736 let isCodeGenOnly = 1; 737} 738 739// Count Leading Ones/Zeros in Word 740class CountLeading0<bits<6> func, string instr_asm, RegisterClass RC>: 741 FR<0x1c, func, (outs RC:$rd), (ins RC:$rs), 742 !strconcat(instr_asm, "\t$rd, $rs"), 743 [(set RC:$rd, (ctlz RC:$rs))], IIAlu>, 744 Requires<[HasBitCount, HasStandardEncoding]> { 745 let shamt = 0; 746 let rt = rd; 747} 748 749class CountLeading1<bits<6> func, string instr_asm, RegisterClass RC>: 750 FR<0x1c, func, (outs RC:$rd), (ins RC:$rs), 751 !strconcat(instr_asm, "\t$rd, $rs"), 752 [(set RC:$rd, (ctlz (not RC:$rs)))], IIAlu>, 753 Requires<[HasBitCount, HasStandardEncoding]> { 754 let shamt = 0; 755 let rt = rd; 756} 757 758// Sign Extend in Register. 759class SignExtInReg<bits<5> sa, string instr_asm, ValueType vt, 760 RegisterClass RC>: 761 FR<0x1f, 0x20, (outs RC:$rd), (ins RC:$rt), 762 !strconcat(instr_asm, "\t$rd, $rt"), 763 [(set RC:$rd, (sext_inreg RC:$rt, vt))], NoItinerary> { 764 let rs = 0; 765 let shamt = sa; 766 let Predicates = [HasSEInReg, HasStandardEncoding]; 767} 768 769// Subword Swap 770class SubwordSwap<bits<6> func, bits<5> sa, string instr_asm, RegisterClass RC>: 771 FR<0x1f, func, (outs RC:$rd), (ins RC:$rt), 772 !strconcat(instr_asm, "\t$rd, $rt"), [], NoItinerary> { 773 let rs = 0; 774 let shamt = sa; 775 let Predicates = [HasSwap, HasStandardEncoding]; 776 let neverHasSideEffects = 1; 777} 778 779// Read Hardware 780class ReadHardware<RegisterClass CPURegClass, RegisterClass HWRegClass> 781 : FR<0x1f, 0x3b, (outs CPURegClass:$rt), (ins HWRegClass:$rd), 782 "rdhwr\t$rt, $rd", [], IIAlu> { 783 let rs = 0; 784 let shamt = 0; 785} 786 787// Ext and Ins 788class ExtBase<bits<6> _funct, string instr_asm, RegisterClass RC>: 789 FR<0x1f, _funct, (outs RC:$rt), (ins RC:$rs, uimm16:$pos, size_ext:$sz), 790 !strconcat(instr_asm, " $rt, $rs, $pos, $sz"), 791 [(set RC:$rt, (MipsExt RC:$rs, imm:$pos, imm:$sz))], NoItinerary> { 792 bits<5> pos; 793 bits<5> sz; 794 let rd = sz; 795 let shamt = pos; 796 let Predicates = [HasMips32r2, HasStandardEncoding]; 797} 798 799class InsBase<bits<6> _funct, string instr_asm, RegisterClass RC>: 800 FR<0x1f, _funct, (outs RC:$rt), 801 (ins RC:$rs, uimm16:$pos, size_ins:$sz, RC:$src), 802 !strconcat(instr_asm, " $rt, $rs, $pos, $sz"), 803 [(set RC:$rt, (MipsIns RC:$rs, imm:$pos, imm:$sz, RC:$src))], 804 NoItinerary> { 805 bits<5> pos; 806 bits<5> sz; 807 let rd = sz; 808 let shamt = pos; 809 let Predicates = [HasMips32r2, HasStandardEncoding]; 810 let Constraints = "$src = $rt"; 811} 812 813// Atomic instructions with 2 source operands (ATOMIC_SWAP & ATOMIC_LOAD_*). 814class Atomic2Ops<PatFrag Op, string Opstr, RegisterClass DRC, 815 RegisterClass PRC> : 816 PseudoSE<(outs DRC:$dst), (ins PRC:$ptr, DRC:$incr), 817 !strconcat("atomic_", Opstr, "\t$dst, $ptr, $incr"), 818 [(set DRC:$dst, (Op PRC:$ptr, DRC:$incr))]>; 819 820multiclass Atomic2Ops32<PatFrag Op, string Opstr> { 821 def #NAME# : Atomic2Ops<Op, Opstr, CPURegs, CPURegs>, 822 Requires<[NotN64, HasStandardEncoding]>; 823 def _P8 : Atomic2Ops<Op, Opstr, CPURegs, CPU64Regs>, 824 Requires<[IsN64, HasStandardEncoding]> { 825 let DecoderNamespace = "Mips64"; 826 } 827} 828 829// Atomic Compare & Swap. 830class AtomicCmpSwap<PatFrag Op, string Width, RegisterClass DRC, 831 RegisterClass PRC> : 832 PseudoSE<(outs DRC:$dst), (ins PRC:$ptr, DRC:$cmp, DRC:$swap), 833 !strconcat("atomic_cmp_swap_", Width, "\t$dst, $ptr, $cmp, $swap"), 834 [(set DRC:$dst, (Op PRC:$ptr, DRC:$cmp, DRC:$swap))]>; 835 836multiclass AtomicCmpSwap32<PatFrag Op, string Width> { 837 def #NAME# : AtomicCmpSwap<Op, Width, CPURegs, CPURegs>, 838 Requires<[NotN64, HasStandardEncoding]>; 839 def _P8 : AtomicCmpSwap<Op, Width, CPURegs, CPU64Regs>, 840 Requires<[IsN64, HasStandardEncoding]> { 841 let DecoderNamespace = "Mips64"; 842 } 843} 844 845class LLBase<bits<6> Opc, string opstring, RegisterClass RC, Operand Mem> : 846 FMem<Opc, (outs RC:$rt), (ins Mem:$addr), 847 !strconcat(opstring, "\t$rt, $addr"), [], IILoad> { 848 let mayLoad = 1; 849} 850 851class SCBase<bits<6> Opc, string opstring, RegisterClass RC, Operand Mem> : 852 FMem<Opc, (outs RC:$dst), (ins RC:$rt, Mem:$addr), 853 !strconcat(opstring, "\t$rt, $addr"), [], IIStore> { 854 let mayStore = 1; 855 let Constraints = "$rt = $dst"; 856} 857 858//===----------------------------------------------------------------------===// 859// Pseudo instructions 860//===----------------------------------------------------------------------===// 861 862// Return RA. 863let isReturn=1, isTerminator=1, hasDelaySlot=1, isBarrier=1, hasCtrlDep=1 in 864def RetRA : PseudoSE<(outs), (ins), "", [(MipsRet)]>; 865 866let Defs = [SP], Uses = [SP], hasSideEffects = 1 in { 867def ADJCALLSTACKDOWN : MipsPseudo<(outs), (ins i32imm:$amt), 868 "!ADJCALLSTACKDOWN $amt", 869 [(callseq_start timm:$amt)]>; 870def ADJCALLSTACKUP : MipsPseudo<(outs), (ins i32imm:$amt1, i32imm:$amt2), 871 "!ADJCALLSTACKUP $amt1", 872 [(callseq_end timm:$amt1, timm:$amt2)]>; 873} 874 875// When handling PIC code the assembler needs .cpload and .cprestore 876// directives. If the real instructions corresponding these directives 877// are used, we have the same behavior, but get also a bunch of warnings 878// from the assembler. 879let neverHasSideEffects = 1 in 880def CPRESTORE : PseudoSE<(outs), (ins i32imm:$loc, CPURegs:$gp), 881 ".cprestore\t$loc", []>; 882 883let usesCustomInserter = 1 in { 884 defm ATOMIC_LOAD_ADD_I8 : Atomic2Ops32<atomic_load_add_8, "load_add_8">; 885 defm ATOMIC_LOAD_ADD_I16 : Atomic2Ops32<atomic_load_add_16, "load_add_16">; 886 defm ATOMIC_LOAD_ADD_I32 : Atomic2Ops32<atomic_load_add_32, "load_add_32">; 887 defm ATOMIC_LOAD_SUB_I8 : Atomic2Ops32<atomic_load_sub_8, "load_sub_8">; 888 defm ATOMIC_LOAD_SUB_I16 : Atomic2Ops32<atomic_load_sub_16, "load_sub_16">; 889 defm ATOMIC_LOAD_SUB_I32 : Atomic2Ops32<atomic_load_sub_32, "load_sub_32">; 890 defm ATOMIC_LOAD_AND_I8 : Atomic2Ops32<atomic_load_and_8, "load_and_8">; 891 defm ATOMIC_LOAD_AND_I16 : Atomic2Ops32<atomic_load_and_16, "load_and_16">; 892 defm ATOMIC_LOAD_AND_I32 : Atomic2Ops32<atomic_load_and_32, "load_and_32">; 893 defm ATOMIC_LOAD_OR_I8 : Atomic2Ops32<atomic_load_or_8, "load_or_8">; 894 defm ATOMIC_LOAD_OR_I16 : Atomic2Ops32<atomic_load_or_16, "load_or_16">; 895 defm ATOMIC_LOAD_OR_I32 : Atomic2Ops32<atomic_load_or_32, "load_or_32">; 896 defm ATOMIC_LOAD_XOR_I8 : Atomic2Ops32<atomic_load_xor_8, "load_xor_8">; 897 defm ATOMIC_LOAD_XOR_I16 : Atomic2Ops32<atomic_load_xor_16, "load_xor_16">; 898 defm ATOMIC_LOAD_XOR_I32 : Atomic2Ops32<atomic_load_xor_32, "load_xor_32">; 899 defm ATOMIC_LOAD_NAND_I8 : Atomic2Ops32<atomic_load_nand_8, "load_nand_8">; 900 defm ATOMIC_LOAD_NAND_I16 : Atomic2Ops32<atomic_load_nand_16, "load_nand_16">; 901 defm ATOMIC_LOAD_NAND_I32 : Atomic2Ops32<atomic_load_nand_32, "load_nand_32">; 902 903 defm ATOMIC_SWAP_I8 : Atomic2Ops32<atomic_swap_8, "swap_8">; 904 defm ATOMIC_SWAP_I16 : Atomic2Ops32<atomic_swap_16, "swap_16">; 905 defm ATOMIC_SWAP_I32 : Atomic2Ops32<atomic_swap_32, "swap_32">; 906 907 defm ATOMIC_CMP_SWAP_I8 : AtomicCmpSwap32<atomic_cmp_swap_8, "8">; 908 defm ATOMIC_CMP_SWAP_I16 : AtomicCmpSwap32<atomic_cmp_swap_16, "16">; 909 defm ATOMIC_CMP_SWAP_I32 : AtomicCmpSwap32<atomic_cmp_swap_32, "32">; 910} 911 912//===----------------------------------------------------------------------===// 913// Instruction definition 914//===----------------------------------------------------------------------===// 915 916//===----------------------------------------------------------------------===// 917// MipsI Instructions 918//===----------------------------------------------------------------------===// 919 920/// Arithmetic Instructions (ALU Immediate) 921def ADDiu : ArithLogicI<0x09, "addiu", add, simm16, immSExt16, CPURegs>; 922def ADDi : ArithOverflowI<0x08, "addi", add, simm16, immSExt16, CPURegs>; 923def SLTi : SetCC_I<0x0a, "slti", setlt, simm16, immSExt16, CPURegs>; 924def SLTiu : SetCC_I<0x0b, "sltiu", setult, simm16, immSExt16, CPURegs>; 925def ANDi : ArithLogicI<0x0c, "andi", and, uimm16, immZExt16, CPURegs>; 926def ORi : ArithLogicI<0x0d, "ori", or, uimm16, immZExt16, CPURegs>; 927def XORi : ArithLogicI<0x0e, "xori", xor, uimm16, immZExt16, CPURegs>; 928def LUi : LoadUpper<0x0f, "lui", CPURegs, uimm16>; 929 930/// Arithmetic Instructions (3-Operand, R-Type) 931def ADDu : ArithLogicR<0x00, 0x21, "addu", add, IIAlu, CPURegs, 1>; 932def SUBu : ArithLogicR<0x00, 0x23, "subu", sub, IIAlu, CPURegs>; 933def ADD : ArithOverflowR<0x00, 0x20, "add", IIAlu, CPURegs, 1>; 934def SUB : ArithOverflowR<0x00, 0x22, "sub", IIAlu, CPURegs>; 935def SLT : SetCC_R<0x00, 0x2a, "slt", setlt, CPURegs>; 936def SLTu : SetCC_R<0x00, 0x2b, "sltu", setult, CPURegs>; 937def AND : ArithLogicR<0x00, 0x24, "and", and, IIAlu, CPURegs, 1>; 938def OR : ArithLogicR<0x00, 0x25, "or", or, IIAlu, CPURegs, 1>; 939def XOR : ArithLogicR<0x00, 0x26, "xor", xor, IIAlu, CPURegs, 1>; 940def NOR : LogicNOR<0x00, 0x27, "nor", CPURegs>; 941 942/// Shift Instructions 943def SLL : shift_rotate_imm32<0x00, 0x00, "sll", shl>; 944def SRL : shift_rotate_imm32<0x02, 0x00, "srl", srl>; 945def SRA : shift_rotate_imm32<0x03, 0x00, "sra", sra>; 946def SLLV : shift_rotate_reg<0x04, 0x00, "sllv", shl, CPURegs>; 947def SRLV : shift_rotate_reg<0x06, 0x00, "srlv", srl, CPURegs>; 948def SRAV : shift_rotate_reg<0x07, 0x00, "srav", sra, CPURegs>; 949 950// Rotate Instructions 951let Predicates = [HasMips32r2, HasStandardEncoding] in { 952 def ROTR : shift_rotate_imm32<0x02, 0x01, "rotr", rotr>; 953 def ROTRV : shift_rotate_reg<0x06, 0x01, "rotrv", rotr, CPURegs>; 954} 955 956/// Load and Store Instructions 957/// aligned 958defm LB : LoadM32<0x20, "lb", sextloadi8>; 959defm LBu : LoadM32<0x24, "lbu", zextloadi8>; 960defm LH : LoadM32<0x21, "lh", sextloadi16_a>; 961defm LHu : LoadM32<0x25, "lhu", zextloadi16_a>; 962defm LW : LoadM32<0x23, "lw", load_a>; 963defm SB : StoreM32<0x28, "sb", truncstorei8>; 964defm SH : StoreM32<0x29, "sh", truncstorei16_a>; 965defm SW : StoreM32<0x2b, "sw", store_a>; 966 967/// unaligned 968defm ULH : LoadM32<0x21, "ulh", sextloadi16_u, 1>; 969defm ULHu : LoadM32<0x25, "ulhu", zextloadi16_u, 1>; 970defm ULW : LoadM32<0x23, "ulw", load_u, 1>; 971defm USH : StoreM32<0x29, "ush", truncstorei16_u, 1>; 972defm USW : StoreM32<0x2b, "usw", store_u, 1>; 973 974/// load/store left/right 975defm LWL : LoadLeftRightM32<0x22, "lwl", MipsLWL>; 976defm LWR : LoadLeftRightM32<0x26, "lwr", MipsLWR>; 977defm SWL : StoreLeftRightM32<0x2a, "swl", MipsSWL>; 978defm SWR : StoreLeftRightM32<0x2e, "swr", MipsSWR>; 979 980let hasSideEffects = 1 in 981def SYNC : InstSE<(outs), (ins i32imm:$stype), "sync $stype", 982 [(MipsSync imm:$stype)], NoItinerary, FrmOther> 983{ 984 bits<5> stype; 985 let Opcode = 0; 986 let Inst{25-11} = 0; 987 let Inst{10-6} = stype; 988 let Inst{5-0} = 15; 989} 990 991/// Load-linked, Store-conditional 992def LL : LLBase<0x30, "ll", CPURegs, mem>, 993 Requires<[NotN64, HasStandardEncoding]>; 994def LL_P8 : LLBase<0x30, "ll", CPURegs, mem64>, 995 Requires<[IsN64, HasStandardEncoding]> { 996 let DecoderNamespace = "Mips64"; 997} 998 999def SC : SCBase<0x38, "sc", CPURegs, mem>, 1000 Requires<[NotN64, HasStandardEncoding]>; 1001def SC_P8 : SCBase<0x38, "sc", CPURegs, mem64>, 1002 Requires<[IsN64, HasStandardEncoding]> { 1003 let DecoderNamespace = "Mips64"; 1004} 1005 1006/// Jump and Branch Instructions 1007def J : JumpFJ<0x02, "j">; 1008def JR : IndirectBranch<CPURegs>; 1009def B : UncondBranch<0x04, "b">; 1010def BEQ : CBranch<0x04, "beq", seteq, CPURegs>; 1011def BNE : CBranch<0x05, "bne", setne, CPURegs>; 1012def BGEZ : CBranchZero<0x01, 1, "bgez", setge, CPURegs>; 1013def BGTZ : CBranchZero<0x07, 0, "bgtz", setgt, CPURegs>; 1014def BLEZ : CBranchZero<0x06, 0, "blez", setle, CPURegs>; 1015def BLTZ : CBranchZero<0x01, 0, "bltz", setlt, CPURegs>; 1016 1017let rt = 0, rs = 0, isBranch = 1, isTerminator = 1, isBarrier = 1, 1018 hasDelaySlot = 1, Defs = [RA] in 1019def BAL_BR: FI<0x1, (outs), (ins brtarget:$imm16), "bal\t$imm16", [], IIBranch>; 1020 1021def JAL : JumpLink<0x03, "jal">; 1022def JALR : JumpLinkReg<0x00, 0x09, "jalr", CPURegs>; 1023def BGEZAL : BranchLink<"bgezal", 0x11, CPURegs>; 1024def BLTZAL : BranchLink<"bltzal", 0x10, CPURegs>; 1025 1026def RET : RetBase<CPURegs>; 1027 1028/// Multiply and Divide Instructions. 1029def MULT : Mult32<0x18, "mult", IIImul>; 1030def MULTu : Mult32<0x19, "multu", IIImul>; 1031def SDIV : Div32<MipsDivRem, 0x1a, "div", IIIdiv>; 1032def UDIV : Div32<MipsDivRemU, 0x1b, "divu", IIIdiv>; 1033 1034def MTHI : MoveToLOHI<0x11, "mthi", CPURegs, [HI]>; 1035def MTLO : MoveToLOHI<0x13, "mtlo", CPURegs, [LO]>; 1036def MFHI : MoveFromLOHI<0x10, "mfhi", CPURegs, [HI]>; 1037def MFLO : MoveFromLOHI<0x12, "mflo", CPURegs, [LO]>; 1038 1039/// Sign Ext In Register Instructions. 1040def SEB : SignExtInReg<0x10, "seb", i8, CPURegs>; 1041def SEH : SignExtInReg<0x18, "seh", i16, CPURegs>; 1042 1043/// Count Leading 1044def CLZ : CountLeading0<0x20, "clz", CPURegs>; 1045def CLO : CountLeading1<0x21, "clo", CPURegs>; 1046 1047/// Word Swap Bytes Within Halfwords 1048def WSBH : SubwordSwap<0x20, 0x2, "wsbh", CPURegs>; 1049 1050/// No operation 1051let addr=0 in 1052 def NOP : FJ<0, (outs), (ins), "nop", [], IIAlu>; 1053 1054// FrameIndexes are legalized when they are operands from load/store 1055// instructions. The same not happens for stack address copies, so an 1056// add op with mem ComplexPattern is used and the stack address copy 1057// can be matched. It's similar to Sparc LEA_ADDRi 1058def LEA_ADDiu : EffectiveAddress<0x09,"addiu\t$rt, $addr", CPURegs, mem_ea>; 1059 1060// DynAlloc node points to dynamically allocated stack space. 1061// $sp is added to the list of implicitly used registers to prevent dead code 1062// elimination from removing instructions that modify $sp. 1063let Uses = [SP] in 1064def DynAlloc : EffectiveAddress<0x09,"addiu\t$rt, $addr", CPURegs, mem_ea>; 1065 1066// MADD*/MSUB* 1067def MADD : MArithR<0, "madd", MipsMAdd, 1>; 1068def MADDU : MArithR<1, "maddu", MipsMAddu, 1>; 1069def MSUB : MArithR<4, "msub", MipsMSub>; 1070def MSUBU : MArithR<5, "msubu", MipsMSubu>; 1071 1072// MUL is a assembly macro in the current used ISAs. In recent ISA's 1073// it is a real instruction. 1074def MUL : ArithLogicR<0x1c, 0x02, "mul", mul, IIImul, CPURegs, 1>, 1075 Requires<[HasMips32, HasStandardEncoding]>; 1076 1077def RDHWR : ReadHardware<CPURegs, HWRegs>; 1078 1079def EXT : ExtBase<0, "ext", CPURegs>; 1080def INS : InsBase<4, "ins", CPURegs>; 1081 1082//===----------------------------------------------------------------------===// 1083// Instruction aliases 1084//===----------------------------------------------------------------------===// 1085def : InstAlias<"move $dst,$src", (ADD CPURegs:$dst,CPURegs:$src,ZERO)>; 1086def : InstAlias<"bal $offset", (BGEZAL RA,brtarget:$offset)>; 1087def : InstAlias<"addu $rs,$rt,$imm", 1088 (ADDiu CPURegs:$rs,CPURegs:$rt,simm16:$imm)>; 1089def : InstAlias<"add $rs,$rt,$imm", 1090 (ADDi CPURegs:$rs,CPURegs:$rt,simm16:$imm)>; 1091def : InstAlias<"and $rs,$rt,$imm", 1092 (ANDi CPURegs:$rs,CPURegs:$rt,simm16:$imm)>; 1093def : InstAlias<"j $rs", (JR CPURegs:$rs)>; 1094def : InstAlias<"not $rt,$rs", (NOR CPURegs:$rt,CPURegs:$rs,ZERO)>; 1095def : InstAlias<"neg $rt,$rs", (SUB CPURegs:$rt,ZERO,CPURegs:$rs)>; 1096def : InstAlias<"negu $rt,$rs", (SUBu CPURegs:$rt,ZERO,CPURegs:$rs)>; 1097def : InstAlias<"slt $rs,$rt,$imm", 1098 (SLTi CPURegs:$rs,CPURegs:$rt,simm16:$imm)>; 1099def : InstAlias<"xor $rs,$rt,$imm", 1100 (XORi CPURegs:$rs,CPURegs:$rt,simm16:$imm)>; 1101 1102//===----------------------------------------------------------------------===// 1103// Arbitrary patterns that map to one or more instructions 1104//===----------------------------------------------------------------------===// 1105 1106// Small immediates 1107def : MipsPat<(i32 immSExt16:$in), 1108 (ADDiu ZERO, imm:$in)>; 1109def : MipsPat<(i32 immZExt16:$in), 1110 (ORi ZERO, imm:$in)>; 1111def : MipsPat<(i32 immLow16Zero:$in), 1112 (LUi (HI16 imm:$in))>; 1113 1114// Arbitrary immediates 1115def : MipsPat<(i32 imm:$imm), 1116 (ORi (LUi (HI16 imm:$imm)), (LO16 imm:$imm))>; 1117 1118// Carry MipsPatterns 1119def : MipsPat<(subc CPURegs:$lhs, CPURegs:$rhs), 1120 (SUBu CPURegs:$lhs, CPURegs:$rhs)>; 1121def : MipsPat<(addc CPURegs:$lhs, CPURegs:$rhs), 1122 (ADDu CPURegs:$lhs, CPURegs:$rhs)>; 1123def : MipsPat<(addc CPURegs:$src, immSExt16:$imm), 1124 (ADDiu CPURegs:$src, imm:$imm)>; 1125 1126// Call 1127def : MipsPat<(MipsJmpLink (i32 tglobaladdr:$dst)), 1128 (JAL tglobaladdr:$dst)>; 1129def : MipsPat<(MipsJmpLink (i32 texternalsym:$dst)), 1130 (JAL texternalsym:$dst)>; 1131//def : MipsPat<(MipsJmpLink CPURegs:$dst), 1132// (JALR CPURegs:$dst)>; 1133 1134// hi/lo relocs 1135def : MipsPat<(MipsHi tglobaladdr:$in), (LUi tglobaladdr:$in)>; 1136def : MipsPat<(MipsHi tblockaddress:$in), (LUi tblockaddress:$in)>; 1137def : MipsPat<(MipsHi tjumptable:$in), (LUi tjumptable:$in)>; 1138def : MipsPat<(MipsHi tconstpool:$in), (LUi tconstpool:$in)>; 1139def : MipsPat<(MipsHi tglobaltlsaddr:$in), (LUi tglobaltlsaddr:$in)>; 1140 1141def : MipsPat<(MipsLo tglobaladdr:$in), (ADDiu ZERO, tglobaladdr:$in)>; 1142def : MipsPat<(MipsLo tblockaddress:$in), (ADDiu ZERO, tblockaddress:$in)>; 1143def : MipsPat<(MipsLo tjumptable:$in), (ADDiu ZERO, tjumptable:$in)>; 1144def : MipsPat<(MipsLo tconstpool:$in), (ADDiu ZERO, tconstpool:$in)>; 1145def : MipsPat<(MipsLo tglobaltlsaddr:$in), (ADDiu ZERO, tglobaltlsaddr:$in)>; 1146 1147def : MipsPat<(add CPURegs:$hi, (MipsLo tglobaladdr:$lo)), 1148 (ADDiu CPURegs:$hi, tglobaladdr:$lo)>; 1149def : MipsPat<(add CPURegs:$hi, (MipsLo tblockaddress:$lo)), 1150 (ADDiu CPURegs:$hi, tblockaddress:$lo)>; 1151def : MipsPat<(add CPURegs:$hi, (MipsLo tjumptable:$lo)), 1152 (ADDiu CPURegs:$hi, tjumptable:$lo)>; 1153def : MipsPat<(add CPURegs:$hi, (MipsLo tconstpool:$lo)), 1154 (ADDiu CPURegs:$hi, tconstpool:$lo)>; 1155def : MipsPat<(add CPURegs:$hi, (MipsLo tglobaltlsaddr:$lo)), 1156 (ADDiu CPURegs:$hi, tglobaltlsaddr:$lo)>; 1157 1158// gp_rel relocs 1159def : MipsPat<(add CPURegs:$gp, (MipsGPRel tglobaladdr:$in)), 1160 (ADDiu CPURegs:$gp, tglobaladdr:$in)>; 1161def : MipsPat<(add CPURegs:$gp, (MipsGPRel tconstpool:$in)), 1162 (ADDiu CPURegs:$gp, tconstpool:$in)>; 1163 1164// wrapper_pic 1165class WrapperPat<SDNode node, Instruction ADDiuOp, RegisterClass RC>: 1166 MipsPat<(MipsWrapper RC:$gp, node:$in), 1167 (ADDiuOp RC:$gp, node:$in)>; 1168 1169def : WrapperPat<tglobaladdr, ADDiu, CPURegs>; 1170def : WrapperPat<tconstpool, ADDiu, CPURegs>; 1171def : WrapperPat<texternalsym, ADDiu, CPURegs>; 1172def : WrapperPat<tblockaddress, ADDiu, CPURegs>; 1173def : WrapperPat<tjumptable, ADDiu, CPURegs>; 1174def : WrapperPat<tglobaltlsaddr, ADDiu, CPURegs>; 1175 1176// Mips does not have "not", so we expand our way 1177def : MipsPat<(not CPURegs:$in), 1178 (NOR CPURegs:$in, ZERO)>; 1179 1180// extended loads 1181let Predicates = [NotN64, HasStandardEncoding] in { 1182 def : MipsPat<(i32 (extloadi1 addr:$src)), (LBu addr:$src)>; 1183 def : MipsPat<(i32 (extloadi8 addr:$src)), (LBu addr:$src)>; 1184 def : MipsPat<(i32 (extloadi16_a addr:$src)), (LHu addr:$src)>; 1185 def : MipsPat<(i32 (extloadi16_u addr:$src)), (ULHu addr:$src)>; 1186} 1187let Predicates = [IsN64, HasStandardEncoding] in { 1188 def : MipsPat<(i32 (extloadi1 addr:$src)), (LBu_P8 addr:$src)>; 1189 def : MipsPat<(i32 (extloadi8 addr:$src)), (LBu_P8 addr:$src)>; 1190 def : MipsPat<(i32 (extloadi16_a addr:$src)), (LHu_P8 addr:$src)>; 1191 def : MipsPat<(i32 (extloadi16_u addr:$src)), (ULHu_P8 addr:$src)>; 1192} 1193 1194// peepholes 1195let Predicates = [NotN64, HasStandardEncoding] in { 1196 def : MipsPat<(store_a (i32 0), addr:$dst), (SW ZERO, addr:$dst)>; 1197 def : MipsPat<(store_u (i32 0), addr:$dst), (USW ZERO, addr:$dst)>; 1198} 1199let Predicates = [IsN64, HasStandardEncoding] in { 1200 def : MipsPat<(store_a (i32 0), addr:$dst), (SW_P8 ZERO, addr:$dst)>; 1201 def : MipsPat<(store_u (i32 0), addr:$dst), (USW_P8 ZERO, addr:$dst)>; 1202} 1203 1204// brcond patterns 1205multiclass BrcondPats<RegisterClass RC, Instruction BEQOp, Instruction BNEOp, 1206 Instruction SLTOp, Instruction SLTuOp, Instruction SLTiOp, 1207 Instruction SLTiuOp, Register ZEROReg> { 1208def : MipsPat<(brcond (i32 (setne RC:$lhs, 0)), bb:$dst), 1209 (BNEOp RC:$lhs, ZEROReg, bb:$dst)>; 1210def : MipsPat<(brcond (i32 (seteq RC:$lhs, 0)), bb:$dst), 1211 (BEQOp RC:$lhs, ZEROReg, bb:$dst)>; 1212 1213def : MipsPat<(brcond (i32 (setge RC:$lhs, RC:$rhs)), bb:$dst), 1214 (BEQ (SLTOp RC:$lhs, RC:$rhs), ZERO, bb:$dst)>; 1215def : MipsPat<(brcond (i32 (setuge RC:$lhs, RC:$rhs)), bb:$dst), 1216 (BEQ (SLTuOp RC:$lhs, RC:$rhs), ZERO, bb:$dst)>; 1217def : MipsPat<(brcond (i32 (setge RC:$lhs, immSExt16:$rhs)), bb:$dst), 1218 (BEQ (SLTiOp RC:$lhs, immSExt16:$rhs), ZERO, bb:$dst)>; 1219def : MipsPat<(brcond (i32 (setuge RC:$lhs, immSExt16:$rhs)), bb:$dst), 1220 (BEQ (SLTiuOp RC:$lhs, immSExt16:$rhs), ZERO, bb:$dst)>; 1221 1222def : MipsPat<(brcond (i32 (setle RC:$lhs, RC:$rhs)), bb:$dst), 1223 (BEQ (SLTOp RC:$rhs, RC:$lhs), ZERO, bb:$dst)>; 1224def : MipsPat<(brcond (i32 (setule RC:$lhs, RC:$rhs)), bb:$dst), 1225 (BEQ (SLTuOp RC:$rhs, RC:$lhs), ZERO, bb:$dst)>; 1226 1227def : MipsPat<(brcond RC:$cond, bb:$dst), 1228 (BNEOp RC:$cond, ZEROReg, bb:$dst)>; 1229} 1230 1231defm : BrcondPats<CPURegs, BEQ, BNE, SLT, SLTu, SLTi, SLTiu, ZERO>; 1232 1233// setcc patterns 1234multiclass SeteqPats<RegisterClass RC, Instruction SLTiuOp, Instruction XOROp, 1235 Instruction SLTuOp, Register ZEROReg> { 1236 def : MipsPat<(seteq RC:$lhs, RC:$rhs), 1237 (SLTiuOp (XOROp RC:$lhs, RC:$rhs), 1)>; 1238 def : MipsPat<(setne RC:$lhs, RC:$rhs), 1239 (SLTuOp ZEROReg, (XOROp RC:$lhs, RC:$rhs))>; 1240} 1241 1242multiclass SetlePats<RegisterClass RC, Instruction SLTOp, Instruction SLTuOp> { 1243 def : MipsPat<(setle RC:$lhs, RC:$rhs), 1244 (XORi (SLTOp RC:$rhs, RC:$lhs), 1)>; 1245 def : MipsPat<(setule RC:$lhs, RC:$rhs), 1246 (XORi (SLTuOp RC:$rhs, RC:$lhs), 1)>; 1247} 1248 1249multiclass SetgtPats<RegisterClass RC, Instruction SLTOp, Instruction SLTuOp> { 1250 def : MipsPat<(setgt RC:$lhs, RC:$rhs), 1251 (SLTOp RC:$rhs, RC:$lhs)>; 1252 def : MipsPat<(setugt RC:$lhs, RC:$rhs), 1253 (SLTuOp RC:$rhs, RC:$lhs)>; 1254} 1255 1256multiclass SetgePats<RegisterClass RC, Instruction SLTOp, Instruction SLTuOp> { 1257 def : MipsPat<(setge RC:$lhs, RC:$rhs), 1258 (XORi (SLTOp RC:$lhs, RC:$rhs), 1)>; 1259 def : MipsPat<(setuge RC:$lhs, RC:$rhs), 1260 (XORi (SLTuOp RC:$lhs, RC:$rhs), 1)>; 1261} 1262 1263multiclass SetgeImmPats<RegisterClass RC, Instruction SLTiOp, 1264 Instruction SLTiuOp> { 1265 def : MipsPat<(setge RC:$lhs, immSExt16:$rhs), 1266 (XORi (SLTiOp RC:$lhs, immSExt16:$rhs), 1)>; 1267 def : MipsPat<(setuge RC:$lhs, immSExt16:$rhs), 1268 (XORi (SLTiuOp RC:$lhs, immSExt16:$rhs), 1)>; 1269} 1270 1271defm : SeteqPats<CPURegs, SLTiu, XOR, SLTu, ZERO>; 1272defm : SetlePats<CPURegs, SLT, SLTu>; 1273defm : SetgtPats<CPURegs, SLT, SLTu>; 1274defm : SetgePats<CPURegs, SLT, SLTu>; 1275defm : SetgeImmPats<CPURegs, SLTi, SLTiu>; 1276 1277// select MipsDynAlloc 1278def : MipsPat<(MipsDynAlloc addr:$f), (DynAlloc addr:$f)>; 1279 1280// bswap pattern 1281def : MipsPat<(bswap CPURegs:$rt), (ROTR (WSBH CPURegs:$rt), 16)>; 1282 1283//===----------------------------------------------------------------------===// 1284// Floating Point Support 1285//===----------------------------------------------------------------------===// 1286 1287include "MipsInstrFPU.td" 1288include "Mips64InstrInfo.td" 1289include "MipsCondMov.td" 1290 1291// 1292// Mips16 1293 1294include "Mips16InstrFormats.td" 1295include "Mips16InstrInfo.td" 1296