• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1//===-- X86CallingConv.td - Calling Conventions X86 32/64 --*- tablegen -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This describes the calling conventions for the X86-32 and X86-64
11// architectures.
12//
13//===----------------------------------------------------------------------===//
14
15/// CCIfSubtarget - Match if the current subtarget has a feature F.
16class CCIfSubtarget<string F, CCAction A>
17 : CCIf<!strconcat("State.getTarget().getSubtarget<X86Subtarget>().", F), A>;
18
19//===----------------------------------------------------------------------===//
20// Return Value Calling Conventions
21//===----------------------------------------------------------------------===//
22
23// Return-value conventions common to all X86 CC's.
24def RetCC_X86Common : CallingConv<[
25  // Scalar values are returned in AX first, then DX.  For i8, the ABI
26  // requires the values to be in AL and AH, however this code uses AL and DL
27  // instead. This is because using AH for the second register conflicts with
28  // the way LLVM does multiple return values -- a return of {i16,i8} would end
29  // up in AX and AH, which overlap. Front-ends wishing to conform to the ABI
30  // for functions that return two i8 values are currently expected to pack the
31  // values into an i16 (which uses AX, and thus AL:AH).
32  //
33  // For code that doesn't care about the ABI, we allow returning more than two
34  // integer values in registers.
35  CCIfType<[i8] , CCAssignToReg<[AL, DL, CL]>>,
36  CCIfType<[i16], CCAssignToReg<[AX, DX, CX]>>,
37  CCIfType<[i32], CCAssignToReg<[EAX, EDX, ECX]>>,
38  CCIfType<[i64], CCAssignToReg<[RAX, RDX, RCX]>>,
39
40  // Vector types are returned in XMM0 and XMM1, when they fit.  XMM2 and XMM3
41  // can only be used by ABI non-compliant code. If the target doesn't have XMM
42  // registers, it won't have vector types.
43  CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
44            CCAssignToReg<[XMM0,XMM1,XMM2,XMM3]>>,
45
46  // 256-bit vectors are returned in YMM0 and XMM1, when they fit. YMM2 and YMM3
47  // can only be used by ABI non-compliant code. This vector type is only
48  // supported while using the AVX target feature.
49  CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64],
50            CCAssignToReg<[YMM0,YMM1,YMM2,YMM3]>>,
51
52  // MMX vector types are always returned in MM0. If the target doesn't have
53  // MM0, it doesn't support these vector types.
54  CCIfType<[x86mmx], CCAssignToReg<[MM0]>>,
55
56  // Long double types are always returned in ST0 (even with SSE).
57  CCIfType<[f80], CCAssignToReg<[ST0, ST1]>>
58]>;
59
60// X86-32 C return-value convention.
61def RetCC_X86_32_C : CallingConv<[
62  // The X86-32 calling convention returns FP values in ST0, unless marked
63  // with "inreg" (used here to distinguish one kind of reg from another,
64  // weirdly; this is really the sse-regparm calling convention) in which
65  // case they use XMM0, otherwise it is the same as the common X86 calling
66  // conv.
67  CCIfInReg<CCIfSubtarget<"hasSSE2()",
68    CCIfType<[f32, f64], CCAssignToReg<[XMM0,XMM1,XMM2]>>>>,
69  CCIfType<[f32,f64], CCAssignToReg<[ST0, ST1]>>,
70  CCDelegateTo<RetCC_X86Common>
71]>;
72
73// X86-32 FastCC return-value convention.
74def RetCC_X86_32_Fast : CallingConv<[
75  // The X86-32 fastcc returns 1, 2, or 3 FP values in XMM0-2 if the target has
76  // SSE2.
77  // This can happen when a float, 2 x float, or 3 x float vector is split by
78  // target lowering, and is returned in 1-3 sse regs.
79  CCIfType<[f32], CCIfSubtarget<"hasSSE2()", CCAssignToReg<[XMM0,XMM1,XMM2]>>>,
80  CCIfType<[f64], CCIfSubtarget<"hasSSE2()", CCAssignToReg<[XMM0,XMM1,XMM2]>>>,
81
82  // For integers, ECX can be used as an extra return register
83  CCIfType<[i8],  CCAssignToReg<[AL, DL, CL]>>,
84  CCIfType<[i16], CCAssignToReg<[AX, DX, CX]>>,
85  CCIfType<[i32], CCAssignToReg<[EAX, EDX, ECX]>>,
86
87  // Otherwise, it is the same as the common X86 calling convention.
88  CCDelegateTo<RetCC_X86Common>
89]>;
90
91// X86-64 C return-value convention.
92def RetCC_X86_64_C : CallingConv<[
93  // The X86-64 calling convention always returns FP values in XMM0.
94  CCIfType<[f32], CCAssignToReg<[XMM0, XMM1]>>,
95  CCIfType<[f64], CCAssignToReg<[XMM0, XMM1]>>,
96
97  // MMX vector types are always returned in XMM0.
98  CCIfType<[x86mmx], CCAssignToReg<[XMM0, XMM1]>>,
99  CCDelegateTo<RetCC_X86Common>
100]>;
101
102// X86-Win64 C return-value convention.
103def RetCC_X86_Win64_C : CallingConv<[
104  // The X86-Win64 calling convention always returns __m64 values in RAX.
105  CCIfType<[x86mmx], CCBitConvertToType<i64>>,
106
107  // Otherwise, everything is the same as 'normal' X86-64 C CC.
108  CCDelegateTo<RetCC_X86_64_C>
109]>;
110
111
112// This is the root return-value convention for the X86-32 backend.
113def RetCC_X86_32 : CallingConv<[
114  // If FastCC, use RetCC_X86_32_Fast.
115  CCIfCC<"CallingConv::Fast", CCDelegateTo<RetCC_X86_32_Fast>>,
116  // Otherwise, use RetCC_X86_32_C.
117  CCDelegateTo<RetCC_X86_32_C>
118]>;
119
120// This is the root return-value convention for the X86-64 backend.
121def RetCC_X86_64 : CallingConv<[
122  // Mingw64 and native Win64 use Win64 CC
123  CCIfSubtarget<"isTargetWin64()", CCDelegateTo<RetCC_X86_Win64_C>>,
124
125  // Otherwise, drop to normal X86-64 CC
126  CCDelegateTo<RetCC_X86_64_C>
127]>;
128
129// This is the return-value convention used for the entire X86 backend.
130def RetCC_X86 : CallingConv<[
131  CCIfSubtarget<"is64Bit()", CCDelegateTo<RetCC_X86_64>>,
132  CCDelegateTo<RetCC_X86_32>
133]>;
134
135//===----------------------------------------------------------------------===//
136// X86-64 Argument Calling Conventions
137//===----------------------------------------------------------------------===//
138
139def CC_X86_64_C : CallingConv<[
140  // Handles byval parameters.
141  CCIfByVal<CCPassByVal<8, 8>>,
142
143  // Promote i8/i16 arguments to i32.
144  CCIfType<[i8, i16], CCPromoteToType<i32>>,
145
146  // The 'nest' parameter, if any, is passed in R10.
147  CCIfNest<CCAssignToReg<[R10]>>,
148
149  // The first 6 integer arguments are passed in integer registers.
150  CCIfType<[i32], CCAssignToReg<[EDI, ESI, EDX, ECX, R8D, R9D]>>,
151  CCIfType<[i64], CCAssignToReg<[RDI, RSI, RDX, RCX, R8 , R9 ]>>,
152
153  // The first 8 MMX vector arguments are passed in XMM registers on Darwin.
154  CCIfType<[x86mmx],
155            CCIfSubtarget<"isTargetDarwin()",
156            CCIfSubtarget<"hasSSE2()",
157            CCPromoteToType<v2i64>>>>,
158
159  // The first 8 FP/Vector arguments are passed in XMM registers.
160  CCIfType<[f32, f64, v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
161            CCIfSubtarget<"hasSSE1()",
162            CCAssignToReg<[XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7]>>>,
163
164  // The first 8 256-bit vector arguments are passed in YMM registers, unless
165  // this is a vararg function.
166  // FIXME: This isn't precisely correct; the x86-64 ABI document says that
167  // fixed arguments to vararg functions are supposed to be passed in
168  // registers.  Actually modeling that would be a lot of work, though.
169  CCIfNotVarArg<CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64],
170                          CCIfSubtarget<"hasAVX()",
171                          CCAssignToReg<[YMM0, YMM1, YMM2, YMM3,
172                                         YMM4, YMM5, YMM6, YMM7]>>>>,
173
174  // Integer/FP values get stored in stack slots that are 8 bytes in size and
175  // 8-byte aligned if there are no more registers to hold them.
176  CCIfType<[i32, i64, f32, f64], CCAssignToStack<8, 8>>,
177
178  // Long doubles get stack slots whose size and alignment depends on the
179  // subtarget.
180  CCIfType<[f80], CCAssignToStack<0, 0>>,
181
182  // Vectors get 16-byte stack slots that are 16-byte aligned.
183  CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], CCAssignToStack<16, 16>>,
184
185  // 256-bit vectors get 32-byte stack slots that are 32-byte aligned.
186  CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64],
187           CCAssignToStack<32, 32>>
188]>;
189
190// Calling convention used on Win64
191def CC_X86_Win64_C : CallingConv<[
192  // FIXME: Handle byval stuff.
193  // FIXME: Handle varargs.
194
195  // Promote i8/i16 arguments to i32.
196  CCIfType<[i8, i16], CCPromoteToType<i32>>,
197
198  // The 'nest' parameter, if any, is passed in R10.
199  CCIfNest<CCAssignToReg<[R10]>>,
200
201  // 128 bit vectors are passed by pointer
202  CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], CCPassIndirect<i64>>,
203
204
205  // 256 bit vectors are passed by pointer
206  CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64], CCPassIndirect<i64>>,
207
208  // The first 4 MMX vector arguments are passed in GPRs.
209  CCIfType<[x86mmx], CCBitConvertToType<i64>>,
210
211  // The first 4 integer arguments are passed in integer registers.
212  CCIfType<[i32], CCAssignToRegWithShadow<[ECX , EDX , R8D , R9D ],
213                                          [XMM0, XMM1, XMM2, XMM3]>>,
214
215  // Do not pass the sret argument in RCX, the Win64 thiscall calling
216  // convention requires "this" to be passed in RCX.
217  CCIfCC<"CallingConv::X86_ThisCall",
218    CCIfSRet<CCIfType<[i64], CCAssignToRegWithShadow<[RDX , R8  , R9  ],
219                                                     [XMM1, XMM2, XMM3]>>>>,
220
221  CCIfType<[i64], CCAssignToRegWithShadow<[RCX , RDX , R8  , R9  ],
222                                          [XMM0, XMM1, XMM2, XMM3]>>,
223
224  // The first 4 FP/Vector arguments are passed in XMM registers.
225  CCIfType<[f32, f64, v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
226           CCAssignToRegWithShadow<[XMM0, XMM1, XMM2, XMM3],
227                                   [RCX , RDX , R8  , R9  ]>>,
228
229  // Integer/FP values get stored in stack slots that are 8 bytes in size and
230  // 8-byte aligned if there are no more registers to hold them.
231  CCIfType<[i32, i64, f32, f64], CCAssignToStack<8, 8>>,
232
233  // Long doubles get stack slots whose size and alignment depends on the
234  // subtarget.
235  CCIfType<[f80], CCAssignToStack<0, 0>>
236]>;
237
238def CC_X86_64_GHC : CallingConv<[
239  // Promote i8/i16/i32 arguments to i64.
240  CCIfType<[i8, i16, i32], CCPromoteToType<i64>>,
241
242  // Pass in STG registers: Base, Sp, Hp, R1, R2, R3, R4, R5, R6, SpLim
243  CCIfType<[i64],
244            CCAssignToReg<[R13, RBP, R12, RBX, R14, RSI, RDI, R8, R9, R15]>>,
245
246  // Pass in STG registers: F1, F2, F3, F4, D1, D2
247  CCIfType<[f32, f64, v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
248            CCIfSubtarget<"hasSSE1()",
249            CCAssignToReg<[XMM1, XMM2, XMM3, XMM4, XMM5, XMM6]>>>
250]>;
251
252//===----------------------------------------------------------------------===//
253// X86 C Calling Convention
254//===----------------------------------------------------------------------===//
255
256/// CC_X86_32_Common - In all X86-32 calling conventions, extra integers and FP
257/// values are spilled on the stack, and the first 4 vector values go in XMM
258/// regs.
259def CC_X86_32_Common : CallingConv<[
260  // Handles byval parameters.
261  CCIfByVal<CCPassByVal<4, 4>>,
262
263  // The first 3 float or double arguments, if marked 'inreg' and if the call
264  // is not a vararg call and if SSE2 is available, are passed in SSE registers.
265  CCIfNotVarArg<CCIfInReg<CCIfType<[f32,f64],
266                CCIfSubtarget<"hasSSE2()",
267                CCAssignToReg<[XMM0,XMM1,XMM2]>>>>>,
268
269  // The first 3 __m64 vector arguments are passed in mmx registers if the
270  // call is not a vararg call.
271  CCIfNotVarArg<CCIfType<[x86mmx],
272                CCAssignToReg<[MM0, MM1, MM2]>>>,
273
274  // Integer/Float values get stored in stack slots that are 4 bytes in
275  // size and 4-byte aligned.
276  CCIfType<[i32, f32], CCAssignToStack<4, 4>>,
277
278  // Doubles get 8-byte slots that are 4-byte aligned.
279  CCIfType<[f64], CCAssignToStack<8, 4>>,
280
281  // Long doubles get slots whose size depends on the subtarget.
282  CCIfType<[f80], CCAssignToStack<0, 4>>,
283
284  // The first 4 SSE vector arguments are passed in XMM registers.
285  CCIfNotVarArg<CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
286                CCAssignToReg<[XMM0, XMM1, XMM2, XMM3]>>>,
287
288  // The first 4 AVX 256-bit vector arguments are passed in YMM registers.
289  CCIfNotVarArg<CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64],
290                CCIfSubtarget<"hasAVX()",
291                CCAssignToReg<[YMM0, YMM1, YMM2, YMM3]>>>>,
292
293  // Other SSE vectors get 16-byte stack slots that are 16-byte aligned.
294  CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], CCAssignToStack<16, 16>>,
295
296  // 256-bit AVX vectors get 32-byte stack slots that are 32-byte aligned.
297  CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64],
298           CCAssignToStack<32, 32>>,
299
300  // __m64 vectors get 8-byte stack slots that are 4-byte aligned. They are
301  // passed in the parameter area.
302  CCIfType<[x86mmx], CCAssignToStack<8, 4>>]>;
303
304def CC_X86_32_C : CallingConv<[
305  // Promote i8/i16 arguments to i32.
306  CCIfType<[i8, i16], CCPromoteToType<i32>>,
307
308  // The 'nest' parameter, if any, is passed in ECX.
309  CCIfNest<CCAssignToReg<[ECX]>>,
310
311  // The first 3 integer arguments, if marked 'inreg' and if the call is not
312  // a vararg call, are passed in integer registers.
313  CCIfNotVarArg<CCIfInReg<CCIfType<[i32], CCAssignToReg<[EAX, EDX, ECX]>>>>,
314
315  // Otherwise, same as everything else.
316  CCDelegateTo<CC_X86_32_Common>
317]>;
318
319def CC_X86_32_FastCall : CallingConv<[
320  // Promote i8/i16 arguments to i32.
321  CCIfType<[i8, i16], CCPromoteToType<i32>>,
322
323  // The 'nest' parameter, if any, is passed in EAX.
324  CCIfNest<CCAssignToReg<[EAX]>>,
325
326  // The first 2 integer arguments are passed in ECX/EDX
327  CCIfType<[i32], CCAssignToReg<[ECX, EDX]>>,
328
329  // Otherwise, same as everything else.
330  CCDelegateTo<CC_X86_32_Common>
331]>;
332
333def CC_X86_32_ThisCall : CallingConv<[
334  // Promote i8/i16 arguments to i32.
335  CCIfType<[i8, i16], CCPromoteToType<i32>>,
336
337  // Pass sret arguments indirectly through EAX
338  CCIfSRet<CCAssignToReg<[EAX]>>,
339
340  // The first integer argument is passed in ECX
341  CCIfType<[i32], CCAssignToReg<[ECX]>>,
342
343  // Otherwise, same as everything else.
344  CCDelegateTo<CC_X86_32_Common>
345]>;
346
347def CC_X86_32_FastCC : CallingConv<[
348  // Handles byval parameters.  Note that we can't rely on the delegation
349  // to CC_X86_32_Common for this because that happens after code that
350  // puts arguments in registers.
351  CCIfByVal<CCPassByVal<4, 4>>,
352
353  // Promote i8/i16 arguments to i32.
354  CCIfType<[i8, i16], CCPromoteToType<i32>>,
355
356  // The 'nest' parameter, if any, is passed in EAX.
357  CCIfNest<CCAssignToReg<[EAX]>>,
358
359  // The first 2 integer arguments are passed in ECX/EDX
360  CCIfType<[i32], CCAssignToReg<[ECX, EDX]>>,
361
362  // The first 3 float or double arguments, if the call is not a vararg
363  // call and if SSE2 is available, are passed in SSE registers.
364  CCIfNotVarArg<CCIfType<[f32,f64],
365                CCIfSubtarget<"hasSSE2()",
366                CCAssignToReg<[XMM0,XMM1,XMM2]>>>>,
367
368  // Doubles get 8-byte slots that are 8-byte aligned.
369  CCIfType<[f64], CCAssignToStack<8, 8>>,
370
371  // Otherwise, same as everything else.
372  CCDelegateTo<CC_X86_32_Common>
373]>;
374
375def CC_X86_32_GHC : CallingConv<[
376  // Promote i8/i16 arguments to i32.
377  CCIfType<[i8, i16], CCPromoteToType<i32>>,
378
379  // Pass in STG registers: Base, Sp, Hp, R1
380  CCIfType<[i32], CCAssignToReg<[EBX, EBP, EDI, ESI]>>
381]>;
382
383//===----------------------------------------------------------------------===//
384// X86 Root Argument Calling Conventions
385//===----------------------------------------------------------------------===//
386
387// This is the root argument convention for the X86-32 backend.
388def CC_X86_32 : CallingConv<[
389  CCIfCC<"CallingConv::X86_FastCall", CCDelegateTo<CC_X86_32_FastCall>>,
390  CCIfCC<"CallingConv::X86_ThisCall", CCDelegateTo<CC_X86_32_ThisCall>>,
391  CCIfCC<"CallingConv::Fast", CCDelegateTo<CC_X86_32_FastCC>>,
392  CCIfCC<"CallingConv::GHC", CCDelegateTo<CC_X86_32_GHC>>,
393
394  // Otherwise, drop to normal X86-32 CC
395  CCDelegateTo<CC_X86_32_C>
396]>;
397
398// This is the root argument convention for the X86-64 backend.
399def CC_X86_64 : CallingConv<[
400  CCIfCC<"CallingConv::GHC", CCDelegateTo<CC_X86_64_GHC>>,
401
402  // Mingw64 and native Win64 use Win64 CC
403  CCIfSubtarget<"isTargetWin64()", CCDelegateTo<CC_X86_Win64_C>>,
404
405  // Otherwise, drop to normal X86-64 CC
406  CCDelegateTo<CC_X86_64_C>
407]>;
408
409// This is the argument convention used for the entire X86 backend.
410def CC_X86 : CallingConv<[
411  CCIfSubtarget<"is64Bit()", CCDelegateTo<CC_X86_64>>,
412  CCDelegateTo<CC_X86_32>
413]>;
414
415//===----------------------------------------------------------------------===//
416// Callee-saved Registers.
417//===----------------------------------------------------------------------===//
418
419def CSR_NoRegs : CalleeSavedRegs<(add)>;
420
421def CSR_32 : CalleeSavedRegs<(add ESI, EDI, EBX, EBP)>;
422def CSR_64 : CalleeSavedRegs<(add RBX, R12, R13, R14, R15, RBP)>;
423
424def CSR_32EHRet : CalleeSavedRegs<(add EAX, EDX, CSR_32)>;
425def CSR_64EHRet : CalleeSavedRegs<(add RAX, RDX, CSR_64)>;
426
427def CSR_Win64 : CalleeSavedRegs<(add RBX, RBP, RDI, RSI, R12, R13, R14, R15,
428                                     (sequence "XMM%u", 6, 15))>;
429