• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1//===- X86InstrFPStack.td - FPU Instruction Set ------------*- tablegen -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes the X86 x87 FPU instruction set, defining the
11// instructions, and properties of the instructions which are needed for code
12// generation, machine code emission, and analysis.
13//
14//===----------------------------------------------------------------------===//
15
16//===----------------------------------------------------------------------===//
17// FPStack specific DAG Nodes.
18//===----------------------------------------------------------------------===//
19
20def SDTX86FpGet2    : SDTypeProfile<2, 0, [SDTCisVT<0, f80>,
21                                           SDTCisVT<1, f80>]>;
22def SDTX86Fld       : SDTypeProfile<1, 2, [SDTCisFP<0>,
23                                           SDTCisPtrTy<1>,
24                                           SDTCisVT<2, OtherVT>]>;
25def SDTX86Fst       : SDTypeProfile<0, 3, [SDTCisFP<0>,
26                                           SDTCisPtrTy<1>,
27                                           SDTCisVT<2, OtherVT>]>;
28def SDTX86Fild      : SDTypeProfile<1, 2, [SDTCisFP<0>, SDTCisPtrTy<1>,
29                                           SDTCisVT<2, OtherVT>]>;
30def SDTX86Fnstsw    : SDTypeProfile<1, 1, [SDTCisVT<0, i16>, SDTCisVT<1, i16>]>;
31def SDTX86FpToIMem  : SDTypeProfile<0, 2, [SDTCisFP<0>, SDTCisPtrTy<1>]>;
32
33def SDTX86CwdStore  : SDTypeProfile<0, 1, [SDTCisPtrTy<0>]>;
34
35def X86fld          : SDNode<"X86ISD::FLD", SDTX86Fld,
36                             [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>;
37def X86fst          : SDNode<"X86ISD::FST", SDTX86Fst,
38                             [SDNPHasChain, SDNPInGlue, SDNPMayStore,
39                              SDNPMemOperand]>;
40def X86fild         : SDNode<"X86ISD::FILD", SDTX86Fild,
41                             [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>;
42def X86fildflag     : SDNode<"X86ISD::FILD_FLAG", SDTX86Fild,
43                             [SDNPHasChain, SDNPOutGlue, SDNPMayLoad,
44                              SDNPMemOperand]>;
45def X86fp_stsw      : SDNode<"X86ISD::FNSTSW16r", SDTX86Fnstsw>;
46def X86fp_to_i16mem : SDNode<"X86ISD::FP_TO_INT16_IN_MEM", SDTX86FpToIMem,
47                             [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>;
48def X86fp_to_i32mem : SDNode<"X86ISD::FP_TO_INT32_IN_MEM", SDTX86FpToIMem,
49                             [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>;
50def X86fp_to_i64mem : SDNode<"X86ISD::FP_TO_INT64_IN_MEM", SDTX86FpToIMem,
51                             [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>;
52def X86fp_cwd_get16 : SDNode<"X86ISD::FNSTCW16m",          SDTX86CwdStore,
53                             [SDNPHasChain, SDNPMayStore, SDNPSideEffect,
54                              SDNPMemOperand]>;
55
56//===----------------------------------------------------------------------===//
57// FPStack pattern fragments
58//===----------------------------------------------------------------------===//
59
60def fpimm0 : PatLeaf<(fpimm), [{
61  return N->isExactlyValue(+0.0);
62}]>;
63
64def fpimmneg0 : PatLeaf<(fpimm), [{
65  return N->isExactlyValue(-0.0);
66}]>;
67
68def fpimm1 : PatLeaf<(fpimm), [{
69  return N->isExactlyValue(+1.0);
70}]>;
71
72def fpimmneg1 : PatLeaf<(fpimm), [{
73  return N->isExactlyValue(-1.0);
74}]>;
75
76// Some 'special' instructions
77let usesCustomInserter = 1 in {  // Expanded after instruction selection.
78  def FP32_TO_INT16_IN_MEM : PseudoI<(outs), (ins i16mem:$dst, RFP32:$src),
79                              [(X86fp_to_i16mem RFP32:$src, addr:$dst)]>;
80  def FP32_TO_INT32_IN_MEM : PseudoI<(outs), (ins i32mem:$dst, RFP32:$src),
81                              [(X86fp_to_i32mem RFP32:$src, addr:$dst)]>;
82  def FP32_TO_INT64_IN_MEM : PseudoI<(outs), (ins i64mem:$dst, RFP32:$src),
83                              [(X86fp_to_i64mem RFP32:$src, addr:$dst)]>;
84  def FP64_TO_INT16_IN_MEM : PseudoI<(outs), (ins i16mem:$dst, RFP64:$src),
85                              [(X86fp_to_i16mem RFP64:$src, addr:$dst)]>;
86  def FP64_TO_INT32_IN_MEM : PseudoI<(outs), (ins i32mem:$dst, RFP64:$src),
87                              [(X86fp_to_i32mem RFP64:$src, addr:$dst)]>;
88  def FP64_TO_INT64_IN_MEM : PseudoI<(outs), (ins i64mem:$dst, RFP64:$src),
89                              [(X86fp_to_i64mem RFP64:$src, addr:$dst)]>;
90  def FP80_TO_INT16_IN_MEM : PseudoI<(outs), (ins i16mem:$dst, RFP80:$src),
91                              [(X86fp_to_i16mem RFP80:$src, addr:$dst)]>;
92  def FP80_TO_INT32_IN_MEM : PseudoI<(outs), (ins i32mem:$dst, RFP80:$src),
93                              [(X86fp_to_i32mem RFP80:$src, addr:$dst)]>;
94  def FP80_TO_INT64_IN_MEM : PseudoI<(outs), (ins i64mem:$dst, RFP80:$src),
95                              [(X86fp_to_i64mem RFP80:$src, addr:$dst)]>;
96}
97
98// All FP Stack operations are represented with four instructions here.  The
99// first three instructions, generated by the instruction selector, use "RFP32"
100// "RFP64" or "RFP80" registers: traditional register files to reference 32-bit,
101// 64-bit or 80-bit floating point values.  These sizes apply to the values,
102// not the registers, which are always 80 bits; RFP32, RFP64 and RFP80 can be
103// copied to each other without losing information.  These instructions are all
104// pseudo instructions and use the "_Fp" suffix.
105// In some cases there are additional variants with a mixture of different
106// register sizes.
107// The second instruction is defined with FPI, which is the actual instruction
108// emitted by the assembler.  These use "RST" registers, although frequently
109// the actual register(s) used are implicit.  These are always 80 bits.
110// The FP stackifier pass converts one to the other after register allocation
111// occurs.
112//
113// Note that the FpI instruction should have instruction selection info (e.g.
114// a pattern) and the FPI instruction should have emission info (e.g. opcode
115// encoding and asm printing info).
116
117// Pseudo Instruction for FP stack return values.
118def FpPOP_RETVAL : FpI_<(outs RFP80:$dst), (ins), SpecialFP, []>;
119
120// FpIf32, FpIf64 - Floating Point Pseudo Instruction template.
121// f32 instructions can use SSE1 and are predicated on FPStackf32 == !SSE1.
122// f64 instructions can use SSE2 and are predicated on FPStackf64 == !SSE2.
123// f80 instructions cannot use SSE and use neither of these.
124class FpIf32<dag outs, dag ins, FPFormat fp, list<dag> pattern> :
125  FpI_<outs, ins, fp, pattern>, Requires<[FPStackf32]>;
126class FpIf64<dag outs, dag ins, FPFormat fp, list<dag> pattern> :
127  FpI_<outs, ins, fp, pattern>, Requires<[FPStackf64]>;
128
129// Factoring for arithmetic.
130multiclass FPBinary_rr<SDNode OpNode> {
131// Register op register -> register
132// These are separated out because they have no reversed form.
133def _Fp32 : FpIf32<(outs RFP32:$dst), (ins RFP32:$src1, RFP32:$src2), TwoArgFP,
134                [(set RFP32:$dst, (OpNode RFP32:$src1, RFP32:$src2))]>;
135def _Fp64 : FpIf64<(outs RFP64:$dst), (ins RFP64:$src1, RFP64:$src2), TwoArgFP,
136                [(set RFP64:$dst, (OpNode RFP64:$src1, RFP64:$src2))]>;
137def _Fp80 : FpI_<(outs RFP80:$dst), (ins RFP80:$src1, RFP80:$src2), TwoArgFP,
138                [(set RFP80:$dst, (OpNode RFP80:$src1, RFP80:$src2))]>;
139}
140// The FopST0 series are not included here because of the irregularities
141// in where the 'r' goes in assembly output.
142// These instructions cannot address 80-bit memory.
143multiclass FPBinary<SDNode OpNode, Format fp, string asmstring> {
144// ST(0) = ST(0) + [mem]
145def _Fp32m  : FpIf32<(outs RFP32:$dst),
146                     (ins RFP32:$src1, f32mem:$src2), OneArgFPRW,
147                  [(set RFP32:$dst,
148                    (OpNode RFP32:$src1, (loadf32 addr:$src2)))]>;
149def _Fp64m  : FpIf64<(outs RFP64:$dst),
150                     (ins RFP64:$src1, f64mem:$src2), OneArgFPRW,
151                  [(set RFP64:$dst,
152                    (OpNode RFP64:$src1, (loadf64 addr:$src2)))]>;
153def _Fp64m32: FpIf64<(outs RFP64:$dst),
154                     (ins RFP64:$src1, f32mem:$src2), OneArgFPRW,
155                  [(set RFP64:$dst,
156                    (OpNode RFP64:$src1, (f64 (extloadf32 addr:$src2))))]>;
157def _Fp80m32: FpI_<(outs RFP80:$dst),
158                   (ins RFP80:$src1, f32mem:$src2), OneArgFPRW,
159                  [(set RFP80:$dst,
160                    (OpNode RFP80:$src1, (f80 (extloadf32 addr:$src2))))]>;
161def _Fp80m64: FpI_<(outs RFP80:$dst),
162                   (ins RFP80:$src1, f64mem:$src2), OneArgFPRW,
163                  [(set RFP80:$dst,
164                    (OpNode RFP80:$src1, (f80 (extloadf64 addr:$src2))))]>;
165def _F32m  : FPI<0xD8, fp, (outs), (ins f32mem:$src),
166                 !strconcat("f", asmstring, "{s}\t$src")> {
167  let mayLoad = 1;
168}
169def _F64m  : FPI<0xDC, fp, (outs), (ins f64mem:$src),
170                 !strconcat("f", asmstring, "{l}\t$src")> {
171  let mayLoad = 1;
172}
173// ST(0) = ST(0) + [memint]
174def _FpI16m32 : FpIf32<(outs RFP32:$dst), (ins RFP32:$src1, i16mem:$src2),
175                       OneArgFPRW,
176                    [(set RFP32:$dst, (OpNode RFP32:$src1,
177                                       (X86fild addr:$src2, i16)))]>;
178def _FpI32m32 : FpIf32<(outs RFP32:$dst), (ins RFP32:$src1, i32mem:$src2),
179                       OneArgFPRW,
180                    [(set RFP32:$dst, (OpNode RFP32:$src1,
181                                       (X86fild addr:$src2, i32)))]>;
182def _FpI16m64 : FpIf64<(outs RFP64:$dst), (ins RFP64:$src1, i16mem:$src2),
183                       OneArgFPRW,
184                    [(set RFP64:$dst, (OpNode RFP64:$src1,
185                                       (X86fild addr:$src2, i16)))]>;
186def _FpI32m64 : FpIf64<(outs RFP64:$dst), (ins RFP64:$src1, i32mem:$src2),
187                       OneArgFPRW,
188                    [(set RFP64:$dst, (OpNode RFP64:$src1,
189                                       (X86fild addr:$src2, i32)))]>;
190def _FpI16m80 : FpI_<(outs RFP80:$dst), (ins RFP80:$src1, i16mem:$src2),
191                       OneArgFPRW,
192                    [(set RFP80:$dst, (OpNode RFP80:$src1,
193                                       (X86fild addr:$src2, i16)))]>;
194def _FpI32m80 : FpI_<(outs RFP80:$dst), (ins RFP80:$src1, i32mem:$src2),
195                       OneArgFPRW,
196                    [(set RFP80:$dst, (OpNode RFP80:$src1,
197                                       (X86fild addr:$src2, i32)))]>;
198def _FI16m  : FPI<0xDE, fp, (outs), (ins i16mem:$src),
199                  !strconcat("fi", asmstring, "{s}\t$src")> {
200  let mayLoad = 1;
201}
202def _FI32m  : FPI<0xDA, fp, (outs), (ins i32mem:$src),
203                  !strconcat("fi", asmstring, "{l}\t$src")> {
204  let mayLoad = 1;
205}
206}
207
208let Defs = [FPSW] in {
209defm ADD : FPBinary_rr<fadd>;
210defm SUB : FPBinary_rr<fsub>;
211defm MUL : FPBinary_rr<fmul>;
212defm DIV : FPBinary_rr<fdiv>;
213defm ADD : FPBinary<fadd, MRM0m, "add">;
214defm SUB : FPBinary<fsub, MRM4m, "sub">;
215defm SUBR: FPBinary<fsub ,MRM5m, "subr">;
216defm MUL : FPBinary<fmul, MRM1m, "mul">;
217defm DIV : FPBinary<fdiv, MRM6m, "div">;
218defm DIVR: FPBinary<fdiv, MRM7m, "divr">;
219}
220
221class FPST0rInst<bits<8> o, string asm>
222  : FPI<o, AddRegFrm, (outs), (ins RST:$op), asm>, D8;
223class FPrST0Inst<bits<8> o, string asm>
224  : FPI<o, AddRegFrm, (outs), (ins RST:$op), asm>, DC;
225class FPrST0PInst<bits<8> o, string asm>
226  : FPI<o, AddRegFrm, (outs), (ins RST:$op), asm>, DE;
227
228// NOTE: GAS and apparently all other AT&T style assemblers have a broken notion
229// of some of the 'reverse' forms of the fsub and fdiv instructions.  As such,
230// we have to put some 'r's in and take them out of weird places.
231def ADD_FST0r   : FPST0rInst <0xC0, "fadd\t$op">;
232def ADD_FrST0   : FPrST0Inst <0xC0, "fadd\t{%st(0), $op|$op, ST(0)}">;
233def ADD_FPrST0  : FPrST0PInst<0xC0, "faddp\t$op">;
234def SUBR_FST0r  : FPST0rInst <0xE8, "fsubr\t$op">;
235def SUB_FrST0   : FPrST0Inst <0xE8, "fsub{r}\t{%st(0), $op|$op, ST(0)}">;
236def SUB_FPrST0  : FPrST0PInst<0xE8, "fsub{r}p\t$op">;
237def SUB_FST0r   : FPST0rInst <0xE0, "fsub\t$op">;
238def SUBR_FrST0  : FPrST0Inst <0xE0, "fsub{|r}\t{%st(0), $op|$op, ST(0)}">;
239def SUBR_FPrST0 : FPrST0PInst<0xE0, "fsub{|r}p\t$op">;
240def MUL_FST0r   : FPST0rInst <0xC8, "fmul\t$op">;
241def MUL_FrST0   : FPrST0Inst <0xC8, "fmul\t{%st(0), $op|$op, ST(0)}">;
242def MUL_FPrST0  : FPrST0PInst<0xC8, "fmulp\t$op">;
243def DIVR_FST0r  : FPST0rInst <0xF8, "fdivr\t$op">;
244def DIV_FrST0   : FPrST0Inst <0xF8, "fdiv{r}\t{%st(0), $op|$op, ST(0)}">;
245def DIV_FPrST0  : FPrST0PInst<0xF8, "fdiv{r}p\t$op">;
246def DIV_FST0r   : FPST0rInst <0xF0, "fdiv\t$op">;
247def DIVR_FrST0  : FPrST0Inst <0xF0, "fdiv{|r}\t{%st(0), $op|$op, ST(0)}">;
248def DIVR_FPrST0 : FPrST0PInst<0xF0, "fdiv{|r}p\t$op">;
249
250def COM_FST0r   : FPST0rInst <0xD0, "fcom\t$op">;
251def COMP_FST0r  : FPST0rInst <0xD8, "fcomp\t$op">;
252
253// Unary operations.
254multiclass FPUnary<SDNode OpNode, bits<8> opcode, string asmstring> {
255def _Fp32  : FpIf32<(outs RFP32:$dst), (ins RFP32:$src), OneArgFPRW,
256                 [(set RFP32:$dst, (OpNode RFP32:$src))]>;
257def _Fp64  : FpIf64<(outs RFP64:$dst), (ins RFP64:$src), OneArgFPRW,
258                 [(set RFP64:$dst, (OpNode RFP64:$src))]>;
259def _Fp80  : FpI_<(outs RFP80:$dst), (ins RFP80:$src), OneArgFPRW,
260                 [(set RFP80:$dst, (OpNode RFP80:$src))]>;
261def _F     : FPI<opcode, RawFrm, (outs), (ins), asmstring>, D9;
262}
263
264let Defs = [FPSW] in {
265defm CHS : FPUnary<fneg, 0xE0, "fchs">;
266defm ABS : FPUnary<fabs, 0xE1, "fabs">;
267defm SQRT: FPUnary<fsqrt,0xFA, "fsqrt">;
268defm SIN : FPUnary<fsin, 0xFE, "fsin">;
269defm COS : FPUnary<fcos, 0xFF, "fcos">;
270
271let neverHasSideEffects = 1 in {
272def TST_Fp32  : FpIf32<(outs), (ins RFP32:$src), OneArgFP, []>;
273def TST_Fp64  : FpIf64<(outs), (ins RFP64:$src), OneArgFP, []>;
274def TST_Fp80  : FpI_<(outs), (ins RFP80:$src), OneArgFP, []>;
275}
276def TST_F  : FPI<0xE4, RawFrm, (outs), (ins), "ftst">, D9;
277} // Defs = [FPSW]
278
279// Versions of FP instructions that take a single memory operand.  Added for the
280//   disassembler; remove as they are included with patterns elsewhere.
281def FCOM32m  : FPI<0xD8, MRM2m, (outs), (ins f32mem:$src), "fcom{s}\t$src">;
282def FCOMP32m : FPI<0xD8, MRM3m, (outs), (ins f32mem:$src), "fcomp{s}\t$src">;
283
284def FLDENVm  : FPI<0xD9, MRM4m, (outs), (ins f32mem:$src), "fldenv\t$src">;
285def FSTENVm  : FPI<0xD9, MRM6m, (outs f32mem:$dst), (ins), "fnstenv\t$dst">;
286
287def FICOM32m : FPI<0xDA, MRM2m, (outs), (ins i32mem:$src), "ficom{l}\t$src">;
288def FICOMP32m: FPI<0xDA, MRM3m, (outs), (ins i32mem:$src), "ficomp{l}\t$src">;
289
290def FCOM64m  : FPI<0xDC, MRM2m, (outs), (ins f64mem:$src), "fcom{l}\t$src">;
291def FCOMP64m : FPI<0xDC, MRM3m, (outs), (ins f64mem:$src), "fcomp{l}\t$src">;
292
293def FRSTORm  : FPI<0xDD, MRM4m, (outs f32mem:$dst), (ins), "frstor\t$dst">;
294def FSAVEm   : FPI<0xDD, MRM6m, (outs f32mem:$dst), (ins), "fnsave\t$dst">;
295def FNSTSWm  : FPI<0xDD, MRM7m, (outs f32mem:$dst), (ins), "fnstsw\t$dst">;
296
297def FICOM16m : FPI<0xDE, MRM2m, (outs), (ins i16mem:$src), "ficom{s}\t$src">;
298def FICOMP16m: FPI<0xDE, MRM3m, (outs), (ins i16mem:$src), "ficomp{s}\t$src">;
299
300def FBLDm    : FPI<0xDF, MRM4m, (outs), (ins f32mem:$src), "fbld\t$src">;
301def FBSTPm   : FPI<0xDF, MRM6m, (outs f32mem:$dst), (ins), "fbstp\t$dst">;
302
303// Floating point cmovs.
304class FpIf32CMov<dag outs, dag ins, FPFormat fp, list<dag> pattern> :
305  FpI_<outs, ins, fp, pattern>, Requires<[FPStackf32, HasCMov]>;
306class FpIf64CMov<dag outs, dag ins, FPFormat fp, list<dag> pattern> :
307  FpI_<outs, ins, fp, pattern>, Requires<[FPStackf64, HasCMov]>;
308
309multiclass FPCMov<PatLeaf cc> {
310  def _Fp32  : FpIf32CMov<(outs RFP32:$dst), (ins RFP32:$src1, RFP32:$src2),
311                       CondMovFP,
312                     [(set RFP32:$dst, (X86cmov RFP32:$src1, RFP32:$src2,
313                                        cc, EFLAGS))]>;
314  def _Fp64  : FpIf64CMov<(outs RFP64:$dst), (ins RFP64:$src1, RFP64:$src2),
315                       CondMovFP,
316                     [(set RFP64:$dst, (X86cmov RFP64:$src1, RFP64:$src2,
317                                        cc, EFLAGS))]>;
318  def _Fp80  : FpI_<(outs RFP80:$dst), (ins RFP80:$src1, RFP80:$src2),
319                     CondMovFP,
320                     [(set RFP80:$dst, (X86cmov RFP80:$src1, RFP80:$src2,
321                                        cc, EFLAGS))]>,
322                                        Requires<[HasCMov]>;
323}
324
325let Defs = [FPSW] in {
326let Uses = [EFLAGS], Constraints = "$src1 = $dst" in {
327defm CMOVB  : FPCMov<X86_COND_B>;
328defm CMOVBE : FPCMov<X86_COND_BE>;
329defm CMOVE  : FPCMov<X86_COND_E>;
330defm CMOVP  : FPCMov<X86_COND_P>;
331defm CMOVNB : FPCMov<X86_COND_AE>;
332defm CMOVNBE: FPCMov<X86_COND_A>;
333defm CMOVNE : FPCMov<X86_COND_NE>;
334defm CMOVNP : FPCMov<X86_COND_NP>;
335} // Uses = [EFLAGS], Constraints = "$src1 = $dst"
336
337let Predicates = [HasCMov] in {
338// These are not factored because there's no clean way to pass DA/DB.
339def CMOVB_F  : FPI<0xC0, AddRegFrm, (outs RST:$op), (ins),
340                  "fcmovb\t{$op, %st(0)|ST(0), $op}">, DA;
341def CMOVBE_F : FPI<0xD0, AddRegFrm, (outs RST:$op), (ins),
342                  "fcmovbe\t{$op, %st(0)|ST(0), $op}">, DA;
343def CMOVE_F  : FPI<0xC8, AddRegFrm, (outs RST:$op), (ins),
344                  "fcmove\t{$op, %st(0)|ST(0), $op}">, DA;
345def CMOVP_F  : FPI<0xD8, AddRegFrm, (outs RST:$op), (ins),
346                  "fcmovu\t {$op, %st(0)|ST(0), $op}">, DA;
347def CMOVNB_F : FPI<0xC0, AddRegFrm, (outs RST:$op), (ins),
348                  "fcmovnb\t{$op, %st(0)|ST(0), $op}">, DB;
349def CMOVNBE_F: FPI<0xD0, AddRegFrm, (outs RST:$op), (ins),
350                  "fcmovnbe\t{$op, %st(0)|ST(0), $op}">, DB;
351def CMOVNE_F : FPI<0xC8, AddRegFrm, (outs RST:$op), (ins),
352                  "fcmovne\t{$op, %st(0)|ST(0), $op}">, DB;
353def CMOVNP_F : FPI<0xD8, AddRegFrm, (outs RST:$op), (ins),
354                  "fcmovnu\t{$op, %st(0)|ST(0), $op}">, DB;
355} // Predicates = [HasCMov]
356
357// Floating point loads & stores.
358let canFoldAsLoad = 1 in {
359def LD_Fp32m   : FpIf32<(outs RFP32:$dst), (ins f32mem:$src), ZeroArgFP,
360                  [(set RFP32:$dst, (loadf32 addr:$src))]>;
361let isReMaterializable = 1 in
362  def LD_Fp64m : FpIf64<(outs RFP64:$dst), (ins f64mem:$src), ZeroArgFP,
363                  [(set RFP64:$dst, (loadf64 addr:$src))]>;
364def LD_Fp80m   : FpI_<(outs RFP80:$dst), (ins f80mem:$src), ZeroArgFP,
365                  [(set RFP80:$dst, (loadf80 addr:$src))]>;
366}
367def LD_Fp32m64 : FpIf64<(outs RFP64:$dst), (ins f32mem:$src), ZeroArgFP,
368                  [(set RFP64:$dst, (f64 (extloadf32 addr:$src)))]>;
369def LD_Fp64m80 : FpI_<(outs RFP80:$dst), (ins f64mem:$src), ZeroArgFP,
370                  [(set RFP80:$dst, (f80 (extloadf64 addr:$src)))]>;
371def LD_Fp32m80 : FpI_<(outs RFP80:$dst), (ins f32mem:$src), ZeroArgFP,
372                  [(set RFP80:$dst, (f80 (extloadf32 addr:$src)))]>;
373def ILD_Fp16m32: FpIf32<(outs RFP32:$dst), (ins i16mem:$src), ZeroArgFP,
374                  [(set RFP32:$dst, (X86fild addr:$src, i16))]>;
375def ILD_Fp32m32: FpIf32<(outs RFP32:$dst), (ins i32mem:$src), ZeroArgFP,
376                  [(set RFP32:$dst, (X86fild addr:$src, i32))]>;
377def ILD_Fp64m32: FpIf32<(outs RFP32:$dst), (ins i64mem:$src), ZeroArgFP,
378                  [(set RFP32:$dst, (X86fild addr:$src, i64))]>;
379def ILD_Fp16m64: FpIf64<(outs RFP64:$dst), (ins i16mem:$src), ZeroArgFP,
380                  [(set RFP64:$dst, (X86fild addr:$src, i16))]>;
381def ILD_Fp32m64: FpIf64<(outs RFP64:$dst), (ins i32mem:$src), ZeroArgFP,
382                  [(set RFP64:$dst, (X86fild addr:$src, i32))]>;
383def ILD_Fp64m64: FpIf64<(outs RFP64:$dst), (ins i64mem:$src), ZeroArgFP,
384                  [(set RFP64:$dst, (X86fild addr:$src, i64))]>;
385def ILD_Fp16m80: FpI_<(outs RFP80:$dst), (ins i16mem:$src), ZeroArgFP,
386                  [(set RFP80:$dst, (X86fild addr:$src, i16))]>;
387def ILD_Fp32m80: FpI_<(outs RFP80:$dst), (ins i32mem:$src), ZeroArgFP,
388                  [(set RFP80:$dst, (X86fild addr:$src, i32))]>;
389def ILD_Fp64m80: FpI_<(outs RFP80:$dst), (ins i64mem:$src), ZeroArgFP,
390                  [(set RFP80:$dst, (X86fild addr:$src, i64))]>;
391
392def ST_Fp32m   : FpIf32<(outs), (ins f32mem:$op, RFP32:$src), OneArgFP,
393                  [(store RFP32:$src, addr:$op)]>;
394def ST_Fp64m32 : FpIf64<(outs), (ins f32mem:$op, RFP64:$src), OneArgFP,
395                  [(truncstoref32 RFP64:$src, addr:$op)]>;
396def ST_Fp64m   : FpIf64<(outs), (ins f64mem:$op, RFP64:$src), OneArgFP,
397                  [(store RFP64:$src, addr:$op)]>;
398def ST_Fp80m32 : FpI_<(outs), (ins f32mem:$op, RFP80:$src), OneArgFP,
399                  [(truncstoref32 RFP80:$src, addr:$op)]>;
400def ST_Fp80m64 : FpI_<(outs), (ins f64mem:$op, RFP80:$src), OneArgFP,
401                  [(truncstoref64 RFP80:$src, addr:$op)]>;
402// FST does not support 80-bit memory target; FSTP must be used.
403
404let mayStore = 1, neverHasSideEffects = 1 in {
405def ST_FpP32m    : FpIf32<(outs), (ins f32mem:$op, RFP32:$src), OneArgFP, []>;
406def ST_FpP64m32  : FpIf64<(outs), (ins f32mem:$op, RFP64:$src), OneArgFP, []>;
407def ST_FpP64m    : FpIf64<(outs), (ins f64mem:$op, RFP64:$src), OneArgFP, []>;
408def ST_FpP80m32  : FpI_<(outs), (ins f32mem:$op, RFP80:$src), OneArgFP, []>;
409def ST_FpP80m64  : FpI_<(outs), (ins f64mem:$op, RFP80:$src), OneArgFP, []>;
410}
411def ST_FpP80m    : FpI_<(outs), (ins f80mem:$op, RFP80:$src), OneArgFP,
412                    [(store RFP80:$src, addr:$op)]>;
413let mayStore = 1, neverHasSideEffects = 1 in {
414def IST_Fp16m32  : FpIf32<(outs), (ins i16mem:$op, RFP32:$src), OneArgFP, []>;
415def IST_Fp32m32  : FpIf32<(outs), (ins i32mem:$op, RFP32:$src), OneArgFP, []>;
416def IST_Fp64m32  : FpIf32<(outs), (ins i64mem:$op, RFP32:$src), OneArgFP, []>;
417def IST_Fp16m64  : FpIf64<(outs), (ins i16mem:$op, RFP64:$src), OneArgFP, []>;
418def IST_Fp32m64  : FpIf64<(outs), (ins i32mem:$op, RFP64:$src), OneArgFP, []>;
419def IST_Fp64m64  : FpIf64<(outs), (ins i64mem:$op, RFP64:$src), OneArgFP, []>;
420def IST_Fp16m80  : FpI_<(outs), (ins i16mem:$op, RFP80:$src), OneArgFP, []>;
421def IST_Fp32m80  : FpI_<(outs), (ins i32mem:$op, RFP80:$src), OneArgFP, []>;
422def IST_Fp64m80  : FpI_<(outs), (ins i64mem:$op, RFP80:$src), OneArgFP, []>;
423}
424
425let mayLoad = 1 in {
426def LD_F32m   : FPI<0xD9, MRM0m, (outs), (ins f32mem:$src), "fld{s}\t$src",
427                    IIC_FLD>;
428def LD_F64m   : FPI<0xDD, MRM0m, (outs), (ins f64mem:$src), "fld{l}\t$src",
429                    IIC_FLD>;
430def LD_F80m   : FPI<0xDB, MRM5m, (outs), (ins f80mem:$src), "fld{t}\t$src",
431                    IIC_FLD80>;
432def ILD_F16m  : FPI<0xDF, MRM0m, (outs), (ins i16mem:$src), "fild{s}\t$src",
433                    IIC_FILD>;
434def ILD_F32m  : FPI<0xDB, MRM0m, (outs), (ins i32mem:$src), "fild{l}\t$src",
435                    IIC_FILD>;
436def ILD_F64m  : FPI<0xDF, MRM5m, (outs), (ins i64mem:$src), "fild{ll}\t$src",
437                    IIC_FILD>;
438}
439let mayStore = 1 in {
440def ST_F32m   : FPI<0xD9, MRM2m, (outs), (ins f32mem:$dst), "fst{s}\t$dst",
441                    IIC_FST>;
442def ST_F64m   : FPI<0xDD, MRM2m, (outs), (ins f64mem:$dst), "fst{l}\t$dst",
443                    IIC_FST>;
444def ST_FP32m  : FPI<0xD9, MRM3m, (outs), (ins f32mem:$dst), "fstp{s}\t$dst",
445                    IIC_FST>;
446def ST_FP64m  : FPI<0xDD, MRM3m, (outs), (ins f64mem:$dst), "fstp{l}\t$dst",
447                    IIC_FST>;
448def ST_FP80m  : FPI<0xDB, MRM7m, (outs), (ins f80mem:$dst), "fstp{t}\t$dst",
449                    IIC_FST80>;
450def IST_F16m  : FPI<0xDF, MRM2m, (outs), (ins i16mem:$dst), "fist{s}\t$dst",
451                    IIC_FIST>;
452def IST_F32m  : FPI<0xDB, MRM2m, (outs), (ins i32mem:$dst), "fist{l}\t$dst",
453                    IIC_FIST>;
454def IST_FP16m : FPI<0xDF, MRM3m, (outs), (ins i16mem:$dst), "fistp{s}\t$dst",
455                    IIC_FIST>;
456def IST_FP32m : FPI<0xDB, MRM3m, (outs), (ins i32mem:$dst), "fistp{l}\t$dst",
457                    IIC_FIST>;
458def IST_FP64m : FPI<0xDF, MRM7m, (outs), (ins i64mem:$dst), "fistp{ll}\t$dst",
459                    IIC_FIST>;
460}
461
462// FISTTP requires SSE3 even though it's a FPStack op.
463let Predicates = [HasSSE3] in {
464def ISTT_Fp16m32 : FpI_<(outs), (ins i16mem:$op, RFP32:$src), OneArgFP,
465                    [(X86fp_to_i16mem RFP32:$src, addr:$op)]>;
466def ISTT_Fp32m32 : FpI_<(outs), (ins i32mem:$op, RFP32:$src), OneArgFP,
467                    [(X86fp_to_i32mem RFP32:$src, addr:$op)]>;
468def ISTT_Fp64m32 : FpI_<(outs), (ins i64mem:$op, RFP32:$src), OneArgFP,
469                    [(X86fp_to_i64mem RFP32:$src, addr:$op)]>;
470def ISTT_Fp16m64 : FpI_<(outs), (ins i16mem:$op, RFP64:$src), OneArgFP,
471                    [(X86fp_to_i16mem RFP64:$src, addr:$op)]>;
472def ISTT_Fp32m64 : FpI_<(outs), (ins i32mem:$op, RFP64:$src), OneArgFP,
473                    [(X86fp_to_i32mem RFP64:$src, addr:$op)]>;
474def ISTT_Fp64m64 : FpI_<(outs), (ins i64mem:$op, RFP64:$src), OneArgFP,
475                    [(X86fp_to_i64mem RFP64:$src, addr:$op)]>;
476def ISTT_Fp16m80 : FpI_<(outs), (ins i16mem:$op, RFP80:$src), OneArgFP,
477                    [(X86fp_to_i16mem RFP80:$src, addr:$op)]>;
478def ISTT_Fp32m80 : FpI_<(outs), (ins i32mem:$op, RFP80:$src), OneArgFP,
479                    [(X86fp_to_i32mem RFP80:$src, addr:$op)]>;
480def ISTT_Fp64m80 : FpI_<(outs), (ins i64mem:$op, RFP80:$src), OneArgFP,
481                    [(X86fp_to_i64mem RFP80:$src, addr:$op)]>;
482} // Predicates = [HasSSE3]
483
484let mayStore = 1 in {
485def ISTT_FP16m : FPI<0xDF, MRM1m, (outs), (ins i16mem:$dst), "fisttp{s}\t$dst",
486  IIC_FST>;
487def ISTT_FP32m : FPI<0xDB, MRM1m, (outs), (ins i32mem:$dst), "fisttp{l}\t$dst",
488  IIC_FST>;
489def ISTT_FP64m : FPI<0xDD, MRM1m, (outs), (ins i64mem:$dst),
490  "fisttp{ll}\t$dst", IIC_FST>;
491}
492
493// FP Stack manipulation instructions.
494def LD_Frr   : FPI<0xC0, AddRegFrm, (outs), (ins RST:$op), "fld\t$op",
495                   IIC_FLD>, D9;
496def ST_Frr   : FPI<0xD0, AddRegFrm, (outs), (ins RST:$op), "fst\t$op",
497                   IIC_FST>, DD;
498def ST_FPrr  : FPI<0xD8, AddRegFrm, (outs), (ins RST:$op), "fstp\t$op",
499                   IIC_FST>, DD;
500def XCH_F    : FPI<0xC8, AddRegFrm, (outs), (ins RST:$op), "fxch\t$op",
501                   IIC_FXCH>, D9;
502
503// Floating point constant loads.
504let isReMaterializable = 1 in {
505def LD_Fp032 : FpIf32<(outs RFP32:$dst), (ins), ZeroArgFP,
506                [(set RFP32:$dst, fpimm0)]>;
507def LD_Fp132 : FpIf32<(outs RFP32:$dst), (ins), ZeroArgFP,
508                [(set RFP32:$dst, fpimm1)]>;
509def LD_Fp064 : FpIf64<(outs RFP64:$dst), (ins), ZeroArgFP,
510                [(set RFP64:$dst, fpimm0)]>;
511def LD_Fp164 : FpIf64<(outs RFP64:$dst), (ins), ZeroArgFP,
512                [(set RFP64:$dst, fpimm1)]>;
513def LD_Fp080 : FpI_<(outs RFP80:$dst), (ins), ZeroArgFP,
514                [(set RFP80:$dst, fpimm0)]>;
515def LD_Fp180 : FpI_<(outs RFP80:$dst), (ins), ZeroArgFP,
516                [(set RFP80:$dst, fpimm1)]>;
517}
518
519def LD_F0 : FPI<0xEE, RawFrm, (outs), (ins), "fldz", IIC_FLDZ>, D9;
520def LD_F1 : FPI<0xE8, RawFrm, (outs), (ins), "fld1", IIC_FIST>, D9;
521
522
523// Floating point compares.
524def UCOM_Fpr32 : FpIf32<(outs), (ins RFP32:$lhs, RFP32:$rhs), CompareFP,
525                        [(set FPSW, (trunc (X86cmp RFP32:$lhs, RFP32:$rhs)))]>;
526def UCOM_Fpr64 : FpIf64<(outs), (ins RFP64:$lhs, RFP64:$rhs), CompareFP,
527                        [(set FPSW, (trunc (X86cmp RFP64:$lhs, RFP64:$rhs)))]>;
528def UCOM_Fpr80 : FpI_  <(outs), (ins RFP80:$lhs, RFP80:$rhs), CompareFP,
529                        [(set FPSW, (trunc (X86cmp RFP80:$lhs, RFP80:$rhs)))]>;
530} // Defs = [FPSW]
531
532// CC = ST(0) cmp ST(i)
533let Defs = [EFLAGS, FPSW] in {
534def UCOM_FpIr32: FpIf32<(outs), (ins RFP32:$lhs, RFP32:$rhs), CompareFP,
535                  [(set EFLAGS, (X86cmp RFP32:$lhs, RFP32:$rhs))]>;
536def UCOM_FpIr64: FpIf64<(outs), (ins RFP64:$lhs, RFP64:$rhs), CompareFP,
537                  [(set EFLAGS, (X86cmp RFP64:$lhs, RFP64:$rhs))]>;
538def UCOM_FpIr80: FpI_<(outs), (ins RFP80:$lhs, RFP80:$rhs), CompareFP,
539                  [(set EFLAGS, (X86cmp RFP80:$lhs, RFP80:$rhs))]>;
540}
541
542let Defs = [FPSW], Uses = [ST0] in {
543def UCOM_Fr    : FPI<0xE0, AddRegFrm,    // FPSW = cmp ST(0) with ST(i)
544                    (outs), (ins RST:$reg),
545                    "fucom\t$reg", IIC_FUCOM>, DD;
546def UCOM_FPr   : FPI<0xE8, AddRegFrm,    // FPSW = cmp ST(0) with ST(i), pop
547                    (outs), (ins RST:$reg),
548                    "fucomp\t$reg", IIC_FUCOM>, DD;
549def UCOM_FPPr  : FPI<0xE9, RawFrm,       // cmp ST(0) with ST(1), pop, pop
550                    (outs), (ins),
551                    "fucompp", IIC_FUCOM>, DA;
552}
553
554let Defs = [EFLAGS, FPSW], Uses = [ST0] in {
555def UCOM_FIr   : FPI<0xE8, AddRegFrm,     // CC = cmp ST(0) with ST(i)
556                    (outs), (ins RST:$reg),
557                    "fucomi\t$reg", IIC_FUCOMI>, DB;
558def UCOM_FIPr  : FPI<0xE8, AddRegFrm,     // CC = cmp ST(0) with ST(i), pop
559                    (outs), (ins RST:$reg),
560                    "fucompi\t$reg", IIC_FUCOMI>, DF;
561}
562
563let Defs = [EFLAGS, FPSW] in {
564def COM_FIr : FPI<0xF0, AddRegFrm, (outs), (ins RST:$reg),
565                  "fcomi\t$reg", IIC_FCOMI>, DB;
566def COM_FIPr : FPI<0xF0, AddRegFrm, (outs), (ins RST:$reg),
567                   "fcompi\t$reg", IIC_FCOMI>, DF;
568}
569
570// Floating point flag ops.
571let Defs = [AX], Uses = [FPSW] in
572def FNSTSW16r : I<0xE0, RawFrm,                  // AX = fp flags
573                  (outs), (ins), "fnstsw %ax",
574                  [(set AX, (X86fp_stsw FPSW))], IIC_FNSTSW>, DF;
575
576def FNSTCW16m : I<0xD9, MRM7m,                   // [mem16] = X87 control world
577                  (outs), (ins i16mem:$dst), "fnstcw\t$dst",
578                  [(X86fp_cwd_get16 addr:$dst)], IIC_FNSTCW>;
579
580let mayLoad = 1 in
581def FLDCW16m  : I<0xD9, MRM5m,                   // X87 control world = [mem16]
582                  (outs), (ins i16mem:$dst), "fldcw\t$dst", [], IIC_FLDCW>;
583
584// FPU control instructions
585let Defs = [FPSW] in
586def FNINIT : I<0xE3, RawFrm, (outs), (ins), "fninit", [], IIC_FNINIT>, DB;
587def FFREE : FPI<0xC0, AddRegFrm, (outs), (ins RST:$reg),
588                "ffree\t$reg", IIC_FFREE>, DD;
589
590// Clear exceptions
591
592let Defs = [FPSW] in
593def FNCLEX : I<0xE2, RawFrm, (outs), (ins), "fnclex", [], IIC_FNCLEX>, DB;
594
595// Operandless floating-point instructions for the disassembler.
596def WAIT : I<0x9B, RawFrm, (outs), (ins), "wait", [], IIC_WAIT>;
597
598def FNOP : I<0xD0, RawFrm, (outs), (ins), "fnop", [], IIC_FNOP>, D9;
599def FXAM : I<0xE5, RawFrm, (outs), (ins), "fxam", [], IIC_FXAM>, D9;
600def FLDL2T : I<0xE9, RawFrm, (outs), (ins), "fldl2t", [], IIC_FLDL>, D9;
601def FLDL2E : I<0xEA, RawFrm, (outs), (ins), "fldl2e", [], IIC_FLDL>, D9;
602def FLDPI : I<0xEB, RawFrm, (outs), (ins), "fldpi", [], IIC_FLDL>, D9;
603def FLDLG2 : I<0xEC, RawFrm, (outs), (ins), "fldlg2", [], IIC_FLDL>, D9;
604def FLDLN2 : I<0xED, RawFrm, (outs), (ins), "fldln2", [], IIC_FLDL>, D9;
605def F2XM1 : I<0xF0, RawFrm, (outs), (ins), "f2xm1", [], IIC_F2XM1>, D9;
606def FYL2X : I<0xF1, RawFrm, (outs), (ins), "fyl2x", [], IIC_FYL2X>, D9;
607def FPTAN : I<0xF2, RawFrm, (outs), (ins), "fptan", [], IIC_FPTAN>, D9;
608def FPATAN : I<0xF3, RawFrm, (outs), (ins), "fpatan", [], IIC_FPATAN>, D9;
609def FXTRACT : I<0xF4, RawFrm, (outs), (ins), "fxtract", [], IIC_FXTRACT>, D9;
610def FPREM1 : I<0xF5, RawFrm, (outs), (ins), "fprem1", [], IIC_FPREM1>, D9;
611def FDECSTP : I<0xF6, RawFrm, (outs), (ins), "fdecstp", [], IIC_FPSTP>, D9;
612def FINCSTP : I<0xF7, RawFrm, (outs), (ins), "fincstp", [], IIC_FPSTP>, D9;
613def FPREM : I<0xF8, RawFrm, (outs), (ins), "fprem", [], IIC_FPREM>, D9;
614def FYL2XP1 : I<0xF9, RawFrm, (outs), (ins), "fyl2xp1", [], IIC_FYL2XP1>, D9;
615def FSINCOS : I<0xFB, RawFrm, (outs), (ins), "fsincos", [], IIC_FSINCOS>, D9;
616def FRNDINT : I<0xFC, RawFrm, (outs), (ins), "frndint", [], IIC_FRNDINT>, D9;
617def FSCALE : I<0xFD, RawFrm, (outs), (ins), "fscale", [], IIC_FSCALE>, D9;
618def FCOMPP : I<0xD9, RawFrm, (outs), (ins), "fcompp", [], IIC_FCOMPP>, DE;
619
620def FXSAVE : I<0xAE, MRM0m, (outs opaque512mem:$dst), (ins),
621               "fxsave\t$dst", [], IIC_FXSAVE>, TB;
622def FXSAVE64 : I<0xAE, MRM0m, (outs opaque512mem:$dst), (ins),
623                 "fxsaveq\t$dst", [], IIC_FXSAVE>, TB, REX_W,
624                 Requires<[In64BitMode]>;
625def FXRSTOR : I<0xAE, MRM1m, (outs), (ins opaque512mem:$src),
626                "fxrstor\t$src", [], IIC_FXRSTOR>, TB;
627def FXRSTOR64 : I<0xAE, MRM1m, (outs), (ins opaque512mem:$src),
628                  "fxrstorq\t$src", [], IIC_FXRSTOR>, TB, REX_W,
629                  Requires<[In64BitMode]>;
630
631//===----------------------------------------------------------------------===//
632// Non-Instruction Patterns
633//===----------------------------------------------------------------------===//
634
635// Required for RET of f32 / f64 / f80 values.
636def : Pat<(X86fld addr:$src, f32), (LD_Fp32m addr:$src)>;
637def : Pat<(X86fld addr:$src, f64), (LD_Fp64m addr:$src)>;
638def : Pat<(X86fld addr:$src, f80), (LD_Fp80m addr:$src)>;
639
640// Required for CALL which return f32 / f64 / f80 values.
641def : Pat<(X86fst RFP32:$src, addr:$op, f32), (ST_Fp32m addr:$op, RFP32:$src)>;
642def : Pat<(X86fst RFP64:$src, addr:$op, f32), (ST_Fp64m32 addr:$op,
643                                                          RFP64:$src)>;
644def : Pat<(X86fst RFP64:$src, addr:$op, f64), (ST_Fp64m addr:$op, RFP64:$src)>;
645def : Pat<(X86fst RFP80:$src, addr:$op, f32), (ST_Fp80m32 addr:$op,
646                                                          RFP80:$src)>;
647def : Pat<(X86fst RFP80:$src, addr:$op, f64), (ST_Fp80m64 addr:$op,
648                                                          RFP80:$src)>;
649def : Pat<(X86fst RFP80:$src, addr:$op, f80), (ST_FpP80m addr:$op,
650                                                         RFP80:$src)>;
651
652// Floating point constant -0.0 and -1.0
653def : Pat<(f32 fpimmneg0), (CHS_Fp32 (LD_Fp032))>, Requires<[FPStackf32]>;
654def : Pat<(f32 fpimmneg1), (CHS_Fp32 (LD_Fp132))>, Requires<[FPStackf32]>;
655def : Pat<(f64 fpimmneg0), (CHS_Fp64 (LD_Fp064))>, Requires<[FPStackf64]>;
656def : Pat<(f64 fpimmneg1), (CHS_Fp64 (LD_Fp164))>, Requires<[FPStackf64]>;
657def : Pat<(f80 fpimmneg0), (CHS_Fp80 (LD_Fp080))>;
658def : Pat<(f80 fpimmneg1), (CHS_Fp80 (LD_Fp180))>;
659
660// Used to conv. i64 to f64 since there isn't a SSE version.
661def : Pat<(X86fildflag addr:$src, i64), (ILD_Fp64m64 addr:$src)>;
662
663// FP extensions map onto simple pseudo-value conversions if they are to/from
664// the FP stack.
665def : Pat<(f64 (fextend RFP32:$src)), (COPY_TO_REGCLASS RFP32:$src, RFP64)>,
666          Requires<[FPStackf32]>;
667def : Pat<(f80 (fextend RFP32:$src)), (COPY_TO_REGCLASS RFP32:$src, RFP80)>,
668           Requires<[FPStackf32]>;
669def : Pat<(f80 (fextend RFP64:$src)), (COPY_TO_REGCLASS RFP64:$src, RFP80)>,
670           Requires<[FPStackf64]>;
671
672// FP truncations map onto simple pseudo-value conversions if they are to/from
673// the FP stack.  We have validated that only value-preserving truncations make
674// it through isel.
675def : Pat<(f32 (fround RFP64:$src)), (COPY_TO_REGCLASS RFP64:$src, RFP32)>,
676          Requires<[FPStackf32]>;
677def : Pat<(f32 (fround RFP80:$src)), (COPY_TO_REGCLASS RFP80:$src, RFP32)>,
678           Requires<[FPStackf32]>;
679def : Pat<(f64 (fround RFP80:$src)), (COPY_TO_REGCLASS RFP80:$src, RFP64)>,
680           Requires<[FPStackf64]>;
681