• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===-- LoopIdiomRecognize.cpp - Loop idiom recognition -------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass implements an idiom recognizer that transforms simple loops into a
11 // non-loop form.  In cases that this kicks in, it can be a significant
12 // performance win.
13 //
14 //===----------------------------------------------------------------------===//
15 //
16 // TODO List:
17 //
18 // Future loop memory idioms to recognize:
19 //   memcmp, memmove, strlen, etc.
20 // Future floating point idioms to recognize in -ffast-math mode:
21 //   fpowi
22 // Future integer operation idioms to recognize:
23 //   ctpop, ctlz, cttz
24 //
25 // Beware that isel's default lowering for ctpop is highly inefficient for
26 // i64 and larger types when i64 is legal and the value has few bits set.  It
27 // would be good to enhance isel to emit a loop for ctpop in this case.
28 //
29 // We should enhance the memset/memcpy recognition to handle multiple stores in
30 // the loop.  This would handle things like:
31 //   void foo(_Complex float *P)
32 //     for (i) { __real__(*P) = 0;  __imag__(*P) = 0; }
33 //
34 // We should enhance this to handle negative strides through memory.
35 // Alternatively (and perhaps better) we could rely on an earlier pass to force
36 // forward iteration through memory, which is generally better for cache
37 // behavior.  Negative strides *do* happen for memset/memcpy loops.
38 //
39 // This could recognize common matrix multiplies and dot product idioms and
40 // replace them with calls to BLAS (if linked in??).
41 //
42 //===----------------------------------------------------------------------===//
43 
44 #define DEBUG_TYPE "loop-idiom"
45 #include "llvm/Transforms/Scalar.h"
46 #include "llvm/IRBuilder.h"
47 #include "llvm/IntrinsicInst.h"
48 #include "llvm/Module.h"
49 #include "llvm/ADT/Statistic.h"
50 #include "llvm/Analysis/AliasAnalysis.h"
51 #include "llvm/Analysis/LoopPass.h"
52 #include "llvm/Analysis/ScalarEvolutionExpander.h"
53 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
54 #include "llvm/Analysis/ValueTracking.h"
55 #include "llvm/Support/Debug.h"
56 #include "llvm/Support/raw_ostream.h"
57 #include "llvm/Target/TargetData.h"
58 #include "llvm/Target/TargetLibraryInfo.h"
59 #include "llvm/Transforms/Utils/Local.h"
60 using namespace llvm;
61 
62 STATISTIC(NumMemSet, "Number of memset's formed from loop stores");
63 STATISTIC(NumMemCpy, "Number of memcpy's formed from loop load+stores");
64 
65 namespace {
66   class LoopIdiomRecognize : public LoopPass {
67     Loop *CurLoop;
68     const TargetData *TD;
69     DominatorTree *DT;
70     ScalarEvolution *SE;
71     TargetLibraryInfo *TLI;
72   public:
73     static char ID;
LoopIdiomRecognize()74     explicit LoopIdiomRecognize() : LoopPass(ID) {
75       initializeLoopIdiomRecognizePass(*PassRegistry::getPassRegistry());
76     }
77 
78     bool runOnLoop(Loop *L, LPPassManager &LPM);
79     bool runOnLoopBlock(BasicBlock *BB, const SCEV *BECount,
80                         SmallVectorImpl<BasicBlock*> &ExitBlocks);
81 
82     bool processLoopStore(StoreInst *SI, const SCEV *BECount);
83     bool processLoopMemSet(MemSetInst *MSI, const SCEV *BECount);
84 
85     bool processLoopStridedStore(Value *DestPtr, unsigned StoreSize,
86                                  unsigned StoreAlignment,
87                                  Value *SplatValue, Instruction *TheStore,
88                                  const SCEVAddRecExpr *Ev,
89                                  const SCEV *BECount);
90     bool processLoopStoreOfLoopLoad(StoreInst *SI, unsigned StoreSize,
91                                     const SCEVAddRecExpr *StoreEv,
92                                     const SCEVAddRecExpr *LoadEv,
93                                     const SCEV *BECount);
94 
95     /// This transformation requires natural loop information & requires that
96     /// loop preheaders be inserted into the CFG.
97     ///
getAnalysisUsage(AnalysisUsage & AU) const98     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
99       AU.addRequired<LoopInfo>();
100       AU.addPreserved<LoopInfo>();
101       AU.addRequiredID(LoopSimplifyID);
102       AU.addPreservedID(LoopSimplifyID);
103       AU.addRequiredID(LCSSAID);
104       AU.addPreservedID(LCSSAID);
105       AU.addRequired<AliasAnalysis>();
106       AU.addPreserved<AliasAnalysis>();
107       AU.addRequired<ScalarEvolution>();
108       AU.addPreserved<ScalarEvolution>();
109       AU.addPreserved<DominatorTree>();
110       AU.addRequired<DominatorTree>();
111       AU.addRequired<TargetLibraryInfo>();
112     }
113   };
114 }
115 
116 char LoopIdiomRecognize::ID = 0;
117 INITIALIZE_PASS_BEGIN(LoopIdiomRecognize, "loop-idiom", "Recognize loop idioms",
118                       false, false)
INITIALIZE_PASS_DEPENDENCY(LoopInfo)119 INITIALIZE_PASS_DEPENDENCY(LoopInfo)
120 INITIALIZE_PASS_DEPENDENCY(DominatorTree)
121 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
122 INITIALIZE_PASS_DEPENDENCY(LCSSA)
123 INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
124 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)
125 INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
126 INITIALIZE_PASS_END(LoopIdiomRecognize, "loop-idiom", "Recognize loop idioms",
127                     false, false)
128 
129 Pass *llvm::createLoopIdiomPass() { return new LoopIdiomRecognize(); }
130 
131 /// deleteDeadInstruction - Delete this instruction.  Before we do, go through
132 /// and zero out all the operands of this instruction.  If any of them become
133 /// dead, delete them and the computation tree that feeds them.
134 ///
deleteDeadInstruction(Instruction * I,ScalarEvolution & SE,const TargetLibraryInfo * TLI)135 static void deleteDeadInstruction(Instruction *I, ScalarEvolution &SE,
136                                   const TargetLibraryInfo *TLI) {
137   SmallVector<Instruction*, 32> NowDeadInsts;
138 
139   NowDeadInsts.push_back(I);
140 
141   // Before we touch this instruction, remove it from SE!
142   do {
143     Instruction *DeadInst = NowDeadInsts.pop_back_val();
144 
145     // This instruction is dead, zap it, in stages.  Start by removing it from
146     // SCEV.
147     SE.forgetValue(DeadInst);
148 
149     for (unsigned op = 0, e = DeadInst->getNumOperands(); op != e; ++op) {
150       Value *Op = DeadInst->getOperand(op);
151       DeadInst->setOperand(op, 0);
152 
153       // If this operand just became dead, add it to the NowDeadInsts list.
154       if (!Op->use_empty()) continue;
155 
156       if (Instruction *OpI = dyn_cast<Instruction>(Op))
157         if (isInstructionTriviallyDead(OpI, TLI))
158           NowDeadInsts.push_back(OpI);
159     }
160 
161     DeadInst->eraseFromParent();
162 
163   } while (!NowDeadInsts.empty());
164 }
165 
166 /// deleteIfDeadInstruction - If the specified value is a dead instruction,
167 /// delete it and any recursively used instructions.
deleteIfDeadInstruction(Value * V,ScalarEvolution & SE,const TargetLibraryInfo * TLI)168 static void deleteIfDeadInstruction(Value *V, ScalarEvolution &SE,
169                                     const TargetLibraryInfo *TLI) {
170   if (Instruction *I = dyn_cast<Instruction>(V))
171     if (isInstructionTriviallyDead(I, TLI))
172       deleteDeadInstruction(I, SE, TLI);
173 }
174 
runOnLoop(Loop * L,LPPassManager & LPM)175 bool LoopIdiomRecognize::runOnLoop(Loop *L, LPPassManager &LPM) {
176   CurLoop = L;
177 
178   // Disable loop idiom recognition if the function's name is a common idiom.
179   StringRef Name = L->getHeader()->getParent()->getName();
180   if (Name == "memset" || Name == "memcpy")
181     return false;
182 
183   // The trip count of the loop must be analyzable.
184   SE = &getAnalysis<ScalarEvolution>();
185   if (!SE->hasLoopInvariantBackedgeTakenCount(L))
186     return false;
187   const SCEV *BECount = SE->getBackedgeTakenCount(L);
188   if (isa<SCEVCouldNotCompute>(BECount)) return false;
189 
190   // If this loop executes exactly one time, then it should be peeled, not
191   // optimized by this pass.
192   if (const SCEVConstant *BECst = dyn_cast<SCEVConstant>(BECount))
193     if (BECst->getValue()->getValue() == 0)
194       return false;
195 
196   // We require target data for now.
197   TD = getAnalysisIfAvailable<TargetData>();
198   if (TD == 0) return false;
199 
200   DT = &getAnalysis<DominatorTree>();
201   LoopInfo &LI = getAnalysis<LoopInfo>();
202   TLI = &getAnalysis<TargetLibraryInfo>();
203 
204   SmallVector<BasicBlock*, 8> ExitBlocks;
205   CurLoop->getUniqueExitBlocks(ExitBlocks);
206 
207   DEBUG(dbgs() << "loop-idiom Scanning: F["
208                << L->getHeader()->getParent()->getName()
209                << "] Loop %" << L->getHeader()->getName() << "\n");
210 
211   bool MadeChange = false;
212   // Scan all the blocks in the loop that are not in subloops.
213   for (Loop::block_iterator BI = L->block_begin(), E = L->block_end(); BI != E;
214        ++BI) {
215     // Ignore blocks in subloops.
216     if (LI.getLoopFor(*BI) != CurLoop)
217       continue;
218 
219     MadeChange |= runOnLoopBlock(*BI, BECount, ExitBlocks);
220   }
221   return MadeChange;
222 }
223 
224 /// runOnLoopBlock - Process the specified block, which lives in a counted loop
225 /// with the specified backedge count.  This block is known to be in the current
226 /// loop and not in any subloops.
runOnLoopBlock(BasicBlock * BB,const SCEV * BECount,SmallVectorImpl<BasicBlock * > & ExitBlocks)227 bool LoopIdiomRecognize::runOnLoopBlock(BasicBlock *BB, const SCEV *BECount,
228                                      SmallVectorImpl<BasicBlock*> &ExitBlocks) {
229   // We can only promote stores in this block if they are unconditionally
230   // executed in the loop.  For a block to be unconditionally executed, it has
231   // to dominate all the exit blocks of the loop.  Verify this now.
232   for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i)
233     if (!DT->dominates(BB, ExitBlocks[i]))
234       return false;
235 
236   bool MadeChange = false;
237   for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ) {
238     Instruction *Inst = I++;
239     // Look for store instructions, which may be optimized to memset/memcpy.
240     if (StoreInst *SI = dyn_cast<StoreInst>(Inst))  {
241       WeakVH InstPtr(I);
242       if (!processLoopStore(SI, BECount)) continue;
243       MadeChange = true;
244 
245       // If processing the store invalidated our iterator, start over from the
246       // top of the block.
247       if (InstPtr == 0)
248         I = BB->begin();
249       continue;
250     }
251 
252     // Look for memset instructions, which may be optimized to a larger memset.
253     if (MemSetInst *MSI = dyn_cast<MemSetInst>(Inst))  {
254       WeakVH InstPtr(I);
255       if (!processLoopMemSet(MSI, BECount)) continue;
256       MadeChange = true;
257 
258       // If processing the memset invalidated our iterator, start over from the
259       // top of the block.
260       if (InstPtr == 0)
261         I = BB->begin();
262       continue;
263     }
264   }
265 
266   return MadeChange;
267 }
268 
269 
270 /// processLoopStore - See if this store can be promoted to a memset or memcpy.
processLoopStore(StoreInst * SI,const SCEV * BECount)271 bool LoopIdiomRecognize::processLoopStore(StoreInst *SI, const SCEV *BECount) {
272   if (!SI->isSimple()) return false;
273 
274   Value *StoredVal = SI->getValueOperand();
275   Value *StorePtr = SI->getPointerOperand();
276 
277   // Reject stores that are so large that they overflow an unsigned.
278   uint64_t SizeInBits = TD->getTypeSizeInBits(StoredVal->getType());
279   if ((SizeInBits & 7) || (SizeInBits >> 32) != 0)
280     return false;
281 
282   // See if the pointer expression is an AddRec like {base,+,1} on the current
283   // loop, which indicates a strided store.  If we have something else, it's a
284   // random store we can't handle.
285   const SCEVAddRecExpr *StoreEv =
286     dyn_cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr));
287   if (StoreEv == 0 || StoreEv->getLoop() != CurLoop || !StoreEv->isAffine())
288     return false;
289 
290   // Check to see if the stride matches the size of the store.  If so, then we
291   // know that every byte is touched in the loop.
292   unsigned StoreSize = (unsigned)SizeInBits >> 3;
293   const SCEVConstant *Stride = dyn_cast<SCEVConstant>(StoreEv->getOperand(1));
294 
295   if (Stride == 0 || StoreSize != Stride->getValue()->getValue()) {
296     // TODO: Could also handle negative stride here someday, that will require
297     // the validity check in mayLoopAccessLocation to be updated though.
298     // Enable this to print exact negative strides.
299     if (0 && Stride && StoreSize == -Stride->getValue()->getValue()) {
300       dbgs() << "NEGATIVE STRIDE: " << *SI << "\n";
301       dbgs() << "BB: " << *SI->getParent();
302     }
303 
304     return false;
305   }
306 
307   // See if we can optimize just this store in isolation.
308   if (processLoopStridedStore(StorePtr, StoreSize, SI->getAlignment(),
309                               StoredVal, SI, StoreEv, BECount))
310     return true;
311 
312   // If the stored value is a strided load in the same loop with the same stride
313   // this this may be transformable into a memcpy.  This kicks in for stuff like
314   //   for (i) A[i] = B[i];
315   if (LoadInst *LI = dyn_cast<LoadInst>(StoredVal)) {
316     const SCEVAddRecExpr *LoadEv =
317       dyn_cast<SCEVAddRecExpr>(SE->getSCEV(LI->getOperand(0)));
318     if (LoadEv && LoadEv->getLoop() == CurLoop && LoadEv->isAffine() &&
319         StoreEv->getOperand(1) == LoadEv->getOperand(1) && LI->isSimple())
320       if (processLoopStoreOfLoopLoad(SI, StoreSize, StoreEv, LoadEv, BECount))
321         return true;
322   }
323   //errs() << "UNHANDLED strided store: " << *StoreEv << " - " << *SI << "\n";
324 
325   return false;
326 }
327 
328 /// processLoopMemSet - See if this memset can be promoted to a large memset.
329 bool LoopIdiomRecognize::
processLoopMemSet(MemSetInst * MSI,const SCEV * BECount)330 processLoopMemSet(MemSetInst *MSI, const SCEV *BECount) {
331   // We can only handle non-volatile memsets with a constant size.
332   if (MSI->isVolatile() || !isa<ConstantInt>(MSI->getLength())) return false;
333 
334   // If we're not allowed to hack on memset, we fail.
335   if (!TLI->has(LibFunc::memset))
336     return false;
337 
338   Value *Pointer = MSI->getDest();
339 
340   // See if the pointer expression is an AddRec like {base,+,1} on the current
341   // loop, which indicates a strided store.  If we have something else, it's a
342   // random store we can't handle.
343   const SCEVAddRecExpr *Ev = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Pointer));
344   if (Ev == 0 || Ev->getLoop() != CurLoop || !Ev->isAffine())
345     return false;
346 
347   // Reject memsets that are so large that they overflow an unsigned.
348   uint64_t SizeInBytes = cast<ConstantInt>(MSI->getLength())->getZExtValue();
349   if ((SizeInBytes >> 32) != 0)
350     return false;
351 
352   // Check to see if the stride matches the size of the memset.  If so, then we
353   // know that every byte is touched in the loop.
354   const SCEVConstant *Stride = dyn_cast<SCEVConstant>(Ev->getOperand(1));
355 
356   // TODO: Could also handle negative stride here someday, that will require the
357   // validity check in mayLoopAccessLocation to be updated though.
358   if (Stride == 0 || MSI->getLength() != Stride->getValue())
359     return false;
360 
361   return processLoopStridedStore(Pointer, (unsigned)SizeInBytes,
362                                  MSI->getAlignment(), MSI->getValue(),
363                                  MSI, Ev, BECount);
364 }
365 
366 
367 /// mayLoopAccessLocation - Return true if the specified loop might access the
368 /// specified pointer location, which is a loop-strided access.  The 'Access'
369 /// argument specifies what the verboten forms of access are (read or write).
mayLoopAccessLocation(Value * Ptr,AliasAnalysis::ModRefResult Access,Loop * L,const SCEV * BECount,unsigned StoreSize,AliasAnalysis & AA,Instruction * IgnoredStore)370 static bool mayLoopAccessLocation(Value *Ptr,AliasAnalysis::ModRefResult Access,
371                                   Loop *L, const SCEV *BECount,
372                                   unsigned StoreSize, AliasAnalysis &AA,
373                                   Instruction *IgnoredStore) {
374   // Get the location that may be stored across the loop.  Since the access is
375   // strided positively through memory, we say that the modified location starts
376   // at the pointer and has infinite size.
377   uint64_t AccessSize = AliasAnalysis::UnknownSize;
378 
379   // If the loop iterates a fixed number of times, we can refine the access size
380   // to be exactly the size of the memset, which is (BECount+1)*StoreSize
381   if (const SCEVConstant *BECst = dyn_cast<SCEVConstant>(BECount))
382     AccessSize = (BECst->getValue()->getZExtValue()+1)*StoreSize;
383 
384   // TODO: For this to be really effective, we have to dive into the pointer
385   // operand in the store.  Store to &A[i] of 100 will always return may alias
386   // with store of &A[100], we need to StoreLoc to be "A" with size of 100,
387   // which will then no-alias a store to &A[100].
388   AliasAnalysis::Location StoreLoc(Ptr, AccessSize);
389 
390   for (Loop::block_iterator BI = L->block_begin(), E = L->block_end(); BI != E;
391        ++BI)
392     for (BasicBlock::iterator I = (*BI)->begin(), E = (*BI)->end(); I != E; ++I)
393       if (&*I != IgnoredStore &&
394           (AA.getModRefInfo(I, StoreLoc) & Access))
395         return true;
396 
397   return false;
398 }
399 
400 /// getMemSetPatternValue - If a strided store of the specified value is safe to
401 /// turn into a memset_pattern16, return a ConstantArray of 16 bytes that should
402 /// be passed in.  Otherwise, return null.
403 ///
404 /// Note that we don't ever attempt to use memset_pattern8 or 4, because these
405 /// just replicate their input array and then pass on to memset_pattern16.
getMemSetPatternValue(Value * V,const TargetData & TD)406 static Constant *getMemSetPatternValue(Value *V, const TargetData &TD) {
407   // If the value isn't a constant, we can't promote it to being in a constant
408   // array.  We could theoretically do a store to an alloca or something, but
409   // that doesn't seem worthwhile.
410   Constant *C = dyn_cast<Constant>(V);
411   if (C == 0) return 0;
412 
413   // Only handle simple values that are a power of two bytes in size.
414   uint64_t Size = TD.getTypeSizeInBits(V->getType());
415   if (Size == 0 || (Size & 7) || (Size & (Size-1)))
416     return 0;
417 
418   // Don't care enough about darwin/ppc to implement this.
419   if (TD.isBigEndian())
420     return 0;
421 
422   // Convert to size in bytes.
423   Size /= 8;
424 
425   // TODO: If CI is larger than 16-bytes, we can try slicing it in half to see
426   // if the top and bottom are the same (e.g. for vectors and large integers).
427   if (Size > 16) return 0;
428 
429   // If the constant is exactly 16 bytes, just use it.
430   if (Size == 16) return C;
431 
432   // Otherwise, we'll use an array of the constants.
433   unsigned ArraySize = 16/Size;
434   ArrayType *AT = ArrayType::get(V->getType(), ArraySize);
435   return ConstantArray::get(AT, std::vector<Constant*>(ArraySize, C));
436 }
437 
438 
439 /// processLoopStridedStore - We see a strided store of some value.  If we can
440 /// transform this into a memset or memset_pattern in the loop preheader, do so.
441 bool LoopIdiomRecognize::
processLoopStridedStore(Value * DestPtr,unsigned StoreSize,unsigned StoreAlignment,Value * StoredVal,Instruction * TheStore,const SCEVAddRecExpr * Ev,const SCEV * BECount)442 processLoopStridedStore(Value *DestPtr, unsigned StoreSize,
443                         unsigned StoreAlignment, Value *StoredVal,
444                         Instruction *TheStore, const SCEVAddRecExpr *Ev,
445                         const SCEV *BECount) {
446 
447   // If the stored value is a byte-wise value (like i32 -1), then it may be
448   // turned into a memset of i8 -1, assuming that all the consecutive bytes
449   // are stored.  A store of i32 0x01020304 can never be turned into a memset,
450   // but it can be turned into memset_pattern if the target supports it.
451   Value *SplatValue = isBytewiseValue(StoredVal);
452   Constant *PatternValue = 0;
453 
454   // If we're allowed to form a memset, and the stored value would be acceptable
455   // for memset, use it.
456   if (SplatValue && TLI->has(LibFunc::memset) &&
457       // Verify that the stored value is loop invariant.  If not, we can't
458       // promote the memset.
459       CurLoop->isLoopInvariant(SplatValue)) {
460     // Keep and use SplatValue.
461     PatternValue = 0;
462   } else if (TLI->has(LibFunc::memset_pattern16) &&
463              (PatternValue = getMemSetPatternValue(StoredVal, *TD))) {
464     // It looks like we can use PatternValue!
465     SplatValue = 0;
466   } else {
467     // Otherwise, this isn't an idiom we can transform.  For example, we can't
468     // do anything with a 3-byte store.
469     return false;
470   }
471 
472   // The trip count of the loop and the base pointer of the addrec SCEV is
473   // guaranteed to be loop invariant, which means that it should dominate the
474   // header.  This allows us to insert code for it in the preheader.
475   BasicBlock *Preheader = CurLoop->getLoopPreheader();
476   IRBuilder<> Builder(Preheader->getTerminator());
477   SCEVExpander Expander(*SE, "loop-idiom");
478 
479   // Okay, we have a strided store "p[i]" of a splattable value.  We can turn
480   // this into a memset in the loop preheader now if we want.  However, this
481   // would be unsafe to do if there is anything else in the loop that may read
482   // or write to the aliased location.  Check for any overlap by generating the
483   // base pointer and checking the region.
484   unsigned AddrSpace = cast<PointerType>(DestPtr->getType())->getAddressSpace();
485   Value *BasePtr =
486     Expander.expandCodeFor(Ev->getStart(), Builder.getInt8PtrTy(AddrSpace),
487                            Preheader->getTerminator());
488 
489 
490   if (mayLoopAccessLocation(BasePtr, AliasAnalysis::ModRef,
491                             CurLoop, BECount,
492                             StoreSize, getAnalysis<AliasAnalysis>(), TheStore)){
493     Expander.clear();
494     // If we generated new code for the base pointer, clean up.
495     deleteIfDeadInstruction(BasePtr, *SE, TLI);
496     return false;
497   }
498 
499   // Okay, everything looks good, insert the memset.
500 
501   // The # stored bytes is (BECount+1)*Size.  Expand the trip count out to
502   // pointer size if it isn't already.
503   Type *IntPtr = TD->getIntPtrType(DestPtr->getContext());
504   BECount = SE->getTruncateOrZeroExtend(BECount, IntPtr);
505 
506   const SCEV *NumBytesS = SE->getAddExpr(BECount, SE->getConstant(IntPtr, 1),
507                                          SCEV::FlagNUW);
508   if (StoreSize != 1)
509     NumBytesS = SE->getMulExpr(NumBytesS, SE->getConstant(IntPtr, StoreSize),
510                                SCEV::FlagNUW);
511 
512   Value *NumBytes =
513     Expander.expandCodeFor(NumBytesS, IntPtr, Preheader->getTerminator());
514 
515   CallInst *NewCall;
516   if (SplatValue)
517     NewCall = Builder.CreateMemSet(BasePtr, SplatValue,NumBytes,StoreAlignment);
518   else {
519     Module *M = TheStore->getParent()->getParent()->getParent();
520     Value *MSP = M->getOrInsertFunction("memset_pattern16",
521                                         Builder.getVoidTy(),
522                                         Builder.getInt8PtrTy(),
523                                         Builder.getInt8PtrTy(), IntPtr,
524                                         (void*)0);
525 
526     // Otherwise we should form a memset_pattern16.  PatternValue is known to be
527     // an constant array of 16-bytes.  Plop the value into a mergable global.
528     GlobalVariable *GV = new GlobalVariable(*M, PatternValue->getType(), true,
529                                             GlobalValue::InternalLinkage,
530                                             PatternValue, ".memset_pattern");
531     GV->setUnnamedAddr(true); // Ok to merge these.
532     GV->setAlignment(16);
533     Value *PatternPtr = ConstantExpr::getBitCast(GV, Builder.getInt8PtrTy());
534     NewCall = Builder.CreateCall3(MSP, BasePtr, PatternPtr, NumBytes);
535   }
536 
537   DEBUG(dbgs() << "  Formed memset: " << *NewCall << "\n"
538                << "    from store to: " << *Ev << " at: " << *TheStore << "\n");
539   NewCall->setDebugLoc(TheStore->getDebugLoc());
540 
541   // Okay, the memset has been formed.  Zap the original store and anything that
542   // feeds into it.
543   deleteDeadInstruction(TheStore, *SE, TLI);
544   ++NumMemSet;
545   return true;
546 }
547 
548 /// processLoopStoreOfLoopLoad - We see a strided store whose value is a
549 /// same-strided load.
550 bool LoopIdiomRecognize::
processLoopStoreOfLoopLoad(StoreInst * SI,unsigned StoreSize,const SCEVAddRecExpr * StoreEv,const SCEVAddRecExpr * LoadEv,const SCEV * BECount)551 processLoopStoreOfLoopLoad(StoreInst *SI, unsigned StoreSize,
552                            const SCEVAddRecExpr *StoreEv,
553                            const SCEVAddRecExpr *LoadEv,
554                            const SCEV *BECount) {
555   // If we're not allowed to form memcpy, we fail.
556   if (!TLI->has(LibFunc::memcpy))
557     return false;
558 
559   LoadInst *LI = cast<LoadInst>(SI->getValueOperand());
560 
561   // The trip count of the loop and the base pointer of the addrec SCEV is
562   // guaranteed to be loop invariant, which means that it should dominate the
563   // header.  This allows us to insert code for it in the preheader.
564   BasicBlock *Preheader = CurLoop->getLoopPreheader();
565   IRBuilder<> Builder(Preheader->getTerminator());
566   SCEVExpander Expander(*SE, "loop-idiom");
567 
568   // Okay, we have a strided store "p[i]" of a loaded value.  We can turn
569   // this into a memcpy in the loop preheader now if we want.  However, this
570   // would be unsafe to do if there is anything else in the loop that may read
571   // or write the memory region we're storing to.  This includes the load that
572   // feeds the stores.  Check for an alias by generating the base address and
573   // checking everything.
574   Value *StoreBasePtr =
575     Expander.expandCodeFor(StoreEv->getStart(),
576                            Builder.getInt8PtrTy(SI->getPointerAddressSpace()),
577                            Preheader->getTerminator());
578 
579   if (mayLoopAccessLocation(StoreBasePtr, AliasAnalysis::ModRef,
580                             CurLoop, BECount, StoreSize,
581                             getAnalysis<AliasAnalysis>(), SI)) {
582     Expander.clear();
583     // If we generated new code for the base pointer, clean up.
584     deleteIfDeadInstruction(StoreBasePtr, *SE, TLI);
585     return false;
586   }
587 
588   // For a memcpy, we have to make sure that the input array is not being
589   // mutated by the loop.
590   Value *LoadBasePtr =
591     Expander.expandCodeFor(LoadEv->getStart(),
592                            Builder.getInt8PtrTy(LI->getPointerAddressSpace()),
593                            Preheader->getTerminator());
594 
595   if (mayLoopAccessLocation(LoadBasePtr, AliasAnalysis::Mod, CurLoop, BECount,
596                             StoreSize, getAnalysis<AliasAnalysis>(), SI)) {
597     Expander.clear();
598     // If we generated new code for the base pointer, clean up.
599     deleteIfDeadInstruction(LoadBasePtr, *SE, TLI);
600     deleteIfDeadInstruction(StoreBasePtr, *SE, TLI);
601     return false;
602   }
603 
604   // Okay, everything is safe, we can transform this!
605 
606 
607   // The # stored bytes is (BECount+1)*Size.  Expand the trip count out to
608   // pointer size if it isn't already.
609   Type *IntPtr = TD->getIntPtrType(SI->getContext());
610   BECount = SE->getTruncateOrZeroExtend(BECount, IntPtr);
611 
612   const SCEV *NumBytesS = SE->getAddExpr(BECount, SE->getConstant(IntPtr, 1),
613                                          SCEV::FlagNUW);
614   if (StoreSize != 1)
615     NumBytesS = SE->getMulExpr(NumBytesS, SE->getConstant(IntPtr, StoreSize),
616                                SCEV::FlagNUW);
617 
618   Value *NumBytes =
619     Expander.expandCodeFor(NumBytesS, IntPtr, Preheader->getTerminator());
620 
621   CallInst *NewCall =
622     Builder.CreateMemCpy(StoreBasePtr, LoadBasePtr, NumBytes,
623                          std::min(SI->getAlignment(), LI->getAlignment()));
624   NewCall->setDebugLoc(SI->getDebugLoc());
625 
626   DEBUG(dbgs() << "  Formed memcpy: " << *NewCall << "\n"
627                << "    from load ptr=" << *LoadEv << " at: " << *LI << "\n"
628                << "    from store ptr=" << *StoreEv << " at: " << *SI << "\n");
629 
630 
631   // Okay, the memset has been formed.  Zap the original store and anything that
632   // feeds into it.
633   deleteDeadInstruction(SI, *SE, TLI);
634   ++NumMemCpy;
635   return true;
636 }
637