1 //===-- LoopIdiomRecognize.cpp - Loop idiom recognition -------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass implements an idiom recognizer that transforms simple loops into a
11 // non-loop form. In cases that this kicks in, it can be a significant
12 // performance win.
13 //
14 //===----------------------------------------------------------------------===//
15 //
16 // TODO List:
17 //
18 // Future loop memory idioms to recognize:
19 // memcmp, memmove, strlen, etc.
20 // Future floating point idioms to recognize in -ffast-math mode:
21 // fpowi
22 // Future integer operation idioms to recognize:
23 // ctpop, ctlz, cttz
24 //
25 // Beware that isel's default lowering for ctpop is highly inefficient for
26 // i64 and larger types when i64 is legal and the value has few bits set. It
27 // would be good to enhance isel to emit a loop for ctpop in this case.
28 //
29 // We should enhance the memset/memcpy recognition to handle multiple stores in
30 // the loop. This would handle things like:
31 // void foo(_Complex float *P)
32 // for (i) { __real__(*P) = 0; __imag__(*P) = 0; }
33 //
34 // We should enhance this to handle negative strides through memory.
35 // Alternatively (and perhaps better) we could rely on an earlier pass to force
36 // forward iteration through memory, which is generally better for cache
37 // behavior. Negative strides *do* happen for memset/memcpy loops.
38 //
39 // This could recognize common matrix multiplies and dot product idioms and
40 // replace them with calls to BLAS (if linked in??).
41 //
42 //===----------------------------------------------------------------------===//
43
44 #define DEBUG_TYPE "loop-idiom"
45 #include "llvm/Transforms/Scalar.h"
46 #include "llvm/IRBuilder.h"
47 #include "llvm/IntrinsicInst.h"
48 #include "llvm/Module.h"
49 #include "llvm/ADT/Statistic.h"
50 #include "llvm/Analysis/AliasAnalysis.h"
51 #include "llvm/Analysis/LoopPass.h"
52 #include "llvm/Analysis/ScalarEvolutionExpander.h"
53 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
54 #include "llvm/Analysis/ValueTracking.h"
55 #include "llvm/Support/Debug.h"
56 #include "llvm/Support/raw_ostream.h"
57 #include "llvm/Target/TargetData.h"
58 #include "llvm/Target/TargetLibraryInfo.h"
59 #include "llvm/Transforms/Utils/Local.h"
60 using namespace llvm;
61
62 STATISTIC(NumMemSet, "Number of memset's formed from loop stores");
63 STATISTIC(NumMemCpy, "Number of memcpy's formed from loop load+stores");
64
65 namespace {
66 class LoopIdiomRecognize : public LoopPass {
67 Loop *CurLoop;
68 const TargetData *TD;
69 DominatorTree *DT;
70 ScalarEvolution *SE;
71 TargetLibraryInfo *TLI;
72 public:
73 static char ID;
LoopIdiomRecognize()74 explicit LoopIdiomRecognize() : LoopPass(ID) {
75 initializeLoopIdiomRecognizePass(*PassRegistry::getPassRegistry());
76 }
77
78 bool runOnLoop(Loop *L, LPPassManager &LPM);
79 bool runOnLoopBlock(BasicBlock *BB, const SCEV *BECount,
80 SmallVectorImpl<BasicBlock*> &ExitBlocks);
81
82 bool processLoopStore(StoreInst *SI, const SCEV *BECount);
83 bool processLoopMemSet(MemSetInst *MSI, const SCEV *BECount);
84
85 bool processLoopStridedStore(Value *DestPtr, unsigned StoreSize,
86 unsigned StoreAlignment,
87 Value *SplatValue, Instruction *TheStore,
88 const SCEVAddRecExpr *Ev,
89 const SCEV *BECount);
90 bool processLoopStoreOfLoopLoad(StoreInst *SI, unsigned StoreSize,
91 const SCEVAddRecExpr *StoreEv,
92 const SCEVAddRecExpr *LoadEv,
93 const SCEV *BECount);
94
95 /// This transformation requires natural loop information & requires that
96 /// loop preheaders be inserted into the CFG.
97 ///
getAnalysisUsage(AnalysisUsage & AU) const98 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
99 AU.addRequired<LoopInfo>();
100 AU.addPreserved<LoopInfo>();
101 AU.addRequiredID(LoopSimplifyID);
102 AU.addPreservedID(LoopSimplifyID);
103 AU.addRequiredID(LCSSAID);
104 AU.addPreservedID(LCSSAID);
105 AU.addRequired<AliasAnalysis>();
106 AU.addPreserved<AliasAnalysis>();
107 AU.addRequired<ScalarEvolution>();
108 AU.addPreserved<ScalarEvolution>();
109 AU.addPreserved<DominatorTree>();
110 AU.addRequired<DominatorTree>();
111 AU.addRequired<TargetLibraryInfo>();
112 }
113 };
114 }
115
116 char LoopIdiomRecognize::ID = 0;
117 INITIALIZE_PASS_BEGIN(LoopIdiomRecognize, "loop-idiom", "Recognize loop idioms",
118 false, false)
INITIALIZE_PASS_DEPENDENCY(LoopInfo)119 INITIALIZE_PASS_DEPENDENCY(LoopInfo)
120 INITIALIZE_PASS_DEPENDENCY(DominatorTree)
121 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
122 INITIALIZE_PASS_DEPENDENCY(LCSSA)
123 INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
124 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)
125 INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
126 INITIALIZE_PASS_END(LoopIdiomRecognize, "loop-idiom", "Recognize loop idioms",
127 false, false)
128
129 Pass *llvm::createLoopIdiomPass() { return new LoopIdiomRecognize(); }
130
131 /// deleteDeadInstruction - Delete this instruction. Before we do, go through
132 /// and zero out all the operands of this instruction. If any of them become
133 /// dead, delete them and the computation tree that feeds them.
134 ///
deleteDeadInstruction(Instruction * I,ScalarEvolution & SE,const TargetLibraryInfo * TLI)135 static void deleteDeadInstruction(Instruction *I, ScalarEvolution &SE,
136 const TargetLibraryInfo *TLI) {
137 SmallVector<Instruction*, 32> NowDeadInsts;
138
139 NowDeadInsts.push_back(I);
140
141 // Before we touch this instruction, remove it from SE!
142 do {
143 Instruction *DeadInst = NowDeadInsts.pop_back_val();
144
145 // This instruction is dead, zap it, in stages. Start by removing it from
146 // SCEV.
147 SE.forgetValue(DeadInst);
148
149 for (unsigned op = 0, e = DeadInst->getNumOperands(); op != e; ++op) {
150 Value *Op = DeadInst->getOperand(op);
151 DeadInst->setOperand(op, 0);
152
153 // If this operand just became dead, add it to the NowDeadInsts list.
154 if (!Op->use_empty()) continue;
155
156 if (Instruction *OpI = dyn_cast<Instruction>(Op))
157 if (isInstructionTriviallyDead(OpI, TLI))
158 NowDeadInsts.push_back(OpI);
159 }
160
161 DeadInst->eraseFromParent();
162
163 } while (!NowDeadInsts.empty());
164 }
165
166 /// deleteIfDeadInstruction - If the specified value is a dead instruction,
167 /// delete it and any recursively used instructions.
deleteIfDeadInstruction(Value * V,ScalarEvolution & SE,const TargetLibraryInfo * TLI)168 static void deleteIfDeadInstruction(Value *V, ScalarEvolution &SE,
169 const TargetLibraryInfo *TLI) {
170 if (Instruction *I = dyn_cast<Instruction>(V))
171 if (isInstructionTriviallyDead(I, TLI))
172 deleteDeadInstruction(I, SE, TLI);
173 }
174
runOnLoop(Loop * L,LPPassManager & LPM)175 bool LoopIdiomRecognize::runOnLoop(Loop *L, LPPassManager &LPM) {
176 CurLoop = L;
177
178 // Disable loop idiom recognition if the function's name is a common idiom.
179 StringRef Name = L->getHeader()->getParent()->getName();
180 if (Name == "memset" || Name == "memcpy")
181 return false;
182
183 // The trip count of the loop must be analyzable.
184 SE = &getAnalysis<ScalarEvolution>();
185 if (!SE->hasLoopInvariantBackedgeTakenCount(L))
186 return false;
187 const SCEV *BECount = SE->getBackedgeTakenCount(L);
188 if (isa<SCEVCouldNotCompute>(BECount)) return false;
189
190 // If this loop executes exactly one time, then it should be peeled, not
191 // optimized by this pass.
192 if (const SCEVConstant *BECst = dyn_cast<SCEVConstant>(BECount))
193 if (BECst->getValue()->getValue() == 0)
194 return false;
195
196 // We require target data for now.
197 TD = getAnalysisIfAvailable<TargetData>();
198 if (TD == 0) return false;
199
200 DT = &getAnalysis<DominatorTree>();
201 LoopInfo &LI = getAnalysis<LoopInfo>();
202 TLI = &getAnalysis<TargetLibraryInfo>();
203
204 SmallVector<BasicBlock*, 8> ExitBlocks;
205 CurLoop->getUniqueExitBlocks(ExitBlocks);
206
207 DEBUG(dbgs() << "loop-idiom Scanning: F["
208 << L->getHeader()->getParent()->getName()
209 << "] Loop %" << L->getHeader()->getName() << "\n");
210
211 bool MadeChange = false;
212 // Scan all the blocks in the loop that are not in subloops.
213 for (Loop::block_iterator BI = L->block_begin(), E = L->block_end(); BI != E;
214 ++BI) {
215 // Ignore blocks in subloops.
216 if (LI.getLoopFor(*BI) != CurLoop)
217 continue;
218
219 MadeChange |= runOnLoopBlock(*BI, BECount, ExitBlocks);
220 }
221 return MadeChange;
222 }
223
224 /// runOnLoopBlock - Process the specified block, which lives in a counted loop
225 /// with the specified backedge count. This block is known to be in the current
226 /// loop and not in any subloops.
runOnLoopBlock(BasicBlock * BB,const SCEV * BECount,SmallVectorImpl<BasicBlock * > & ExitBlocks)227 bool LoopIdiomRecognize::runOnLoopBlock(BasicBlock *BB, const SCEV *BECount,
228 SmallVectorImpl<BasicBlock*> &ExitBlocks) {
229 // We can only promote stores in this block if they are unconditionally
230 // executed in the loop. For a block to be unconditionally executed, it has
231 // to dominate all the exit blocks of the loop. Verify this now.
232 for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i)
233 if (!DT->dominates(BB, ExitBlocks[i]))
234 return false;
235
236 bool MadeChange = false;
237 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ) {
238 Instruction *Inst = I++;
239 // Look for store instructions, which may be optimized to memset/memcpy.
240 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
241 WeakVH InstPtr(I);
242 if (!processLoopStore(SI, BECount)) continue;
243 MadeChange = true;
244
245 // If processing the store invalidated our iterator, start over from the
246 // top of the block.
247 if (InstPtr == 0)
248 I = BB->begin();
249 continue;
250 }
251
252 // Look for memset instructions, which may be optimized to a larger memset.
253 if (MemSetInst *MSI = dyn_cast<MemSetInst>(Inst)) {
254 WeakVH InstPtr(I);
255 if (!processLoopMemSet(MSI, BECount)) continue;
256 MadeChange = true;
257
258 // If processing the memset invalidated our iterator, start over from the
259 // top of the block.
260 if (InstPtr == 0)
261 I = BB->begin();
262 continue;
263 }
264 }
265
266 return MadeChange;
267 }
268
269
270 /// processLoopStore - See if this store can be promoted to a memset or memcpy.
processLoopStore(StoreInst * SI,const SCEV * BECount)271 bool LoopIdiomRecognize::processLoopStore(StoreInst *SI, const SCEV *BECount) {
272 if (!SI->isSimple()) return false;
273
274 Value *StoredVal = SI->getValueOperand();
275 Value *StorePtr = SI->getPointerOperand();
276
277 // Reject stores that are so large that they overflow an unsigned.
278 uint64_t SizeInBits = TD->getTypeSizeInBits(StoredVal->getType());
279 if ((SizeInBits & 7) || (SizeInBits >> 32) != 0)
280 return false;
281
282 // See if the pointer expression is an AddRec like {base,+,1} on the current
283 // loop, which indicates a strided store. If we have something else, it's a
284 // random store we can't handle.
285 const SCEVAddRecExpr *StoreEv =
286 dyn_cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr));
287 if (StoreEv == 0 || StoreEv->getLoop() != CurLoop || !StoreEv->isAffine())
288 return false;
289
290 // Check to see if the stride matches the size of the store. If so, then we
291 // know that every byte is touched in the loop.
292 unsigned StoreSize = (unsigned)SizeInBits >> 3;
293 const SCEVConstant *Stride = dyn_cast<SCEVConstant>(StoreEv->getOperand(1));
294
295 if (Stride == 0 || StoreSize != Stride->getValue()->getValue()) {
296 // TODO: Could also handle negative stride here someday, that will require
297 // the validity check in mayLoopAccessLocation to be updated though.
298 // Enable this to print exact negative strides.
299 if (0 && Stride && StoreSize == -Stride->getValue()->getValue()) {
300 dbgs() << "NEGATIVE STRIDE: " << *SI << "\n";
301 dbgs() << "BB: " << *SI->getParent();
302 }
303
304 return false;
305 }
306
307 // See if we can optimize just this store in isolation.
308 if (processLoopStridedStore(StorePtr, StoreSize, SI->getAlignment(),
309 StoredVal, SI, StoreEv, BECount))
310 return true;
311
312 // If the stored value is a strided load in the same loop with the same stride
313 // this this may be transformable into a memcpy. This kicks in for stuff like
314 // for (i) A[i] = B[i];
315 if (LoadInst *LI = dyn_cast<LoadInst>(StoredVal)) {
316 const SCEVAddRecExpr *LoadEv =
317 dyn_cast<SCEVAddRecExpr>(SE->getSCEV(LI->getOperand(0)));
318 if (LoadEv && LoadEv->getLoop() == CurLoop && LoadEv->isAffine() &&
319 StoreEv->getOperand(1) == LoadEv->getOperand(1) && LI->isSimple())
320 if (processLoopStoreOfLoopLoad(SI, StoreSize, StoreEv, LoadEv, BECount))
321 return true;
322 }
323 //errs() << "UNHANDLED strided store: " << *StoreEv << " - " << *SI << "\n";
324
325 return false;
326 }
327
328 /// processLoopMemSet - See if this memset can be promoted to a large memset.
329 bool LoopIdiomRecognize::
processLoopMemSet(MemSetInst * MSI,const SCEV * BECount)330 processLoopMemSet(MemSetInst *MSI, const SCEV *BECount) {
331 // We can only handle non-volatile memsets with a constant size.
332 if (MSI->isVolatile() || !isa<ConstantInt>(MSI->getLength())) return false;
333
334 // If we're not allowed to hack on memset, we fail.
335 if (!TLI->has(LibFunc::memset))
336 return false;
337
338 Value *Pointer = MSI->getDest();
339
340 // See if the pointer expression is an AddRec like {base,+,1} on the current
341 // loop, which indicates a strided store. If we have something else, it's a
342 // random store we can't handle.
343 const SCEVAddRecExpr *Ev = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Pointer));
344 if (Ev == 0 || Ev->getLoop() != CurLoop || !Ev->isAffine())
345 return false;
346
347 // Reject memsets that are so large that they overflow an unsigned.
348 uint64_t SizeInBytes = cast<ConstantInt>(MSI->getLength())->getZExtValue();
349 if ((SizeInBytes >> 32) != 0)
350 return false;
351
352 // Check to see if the stride matches the size of the memset. If so, then we
353 // know that every byte is touched in the loop.
354 const SCEVConstant *Stride = dyn_cast<SCEVConstant>(Ev->getOperand(1));
355
356 // TODO: Could also handle negative stride here someday, that will require the
357 // validity check in mayLoopAccessLocation to be updated though.
358 if (Stride == 0 || MSI->getLength() != Stride->getValue())
359 return false;
360
361 return processLoopStridedStore(Pointer, (unsigned)SizeInBytes,
362 MSI->getAlignment(), MSI->getValue(),
363 MSI, Ev, BECount);
364 }
365
366
367 /// mayLoopAccessLocation - Return true if the specified loop might access the
368 /// specified pointer location, which is a loop-strided access. The 'Access'
369 /// argument specifies what the verboten forms of access are (read or write).
mayLoopAccessLocation(Value * Ptr,AliasAnalysis::ModRefResult Access,Loop * L,const SCEV * BECount,unsigned StoreSize,AliasAnalysis & AA,Instruction * IgnoredStore)370 static bool mayLoopAccessLocation(Value *Ptr,AliasAnalysis::ModRefResult Access,
371 Loop *L, const SCEV *BECount,
372 unsigned StoreSize, AliasAnalysis &AA,
373 Instruction *IgnoredStore) {
374 // Get the location that may be stored across the loop. Since the access is
375 // strided positively through memory, we say that the modified location starts
376 // at the pointer and has infinite size.
377 uint64_t AccessSize = AliasAnalysis::UnknownSize;
378
379 // If the loop iterates a fixed number of times, we can refine the access size
380 // to be exactly the size of the memset, which is (BECount+1)*StoreSize
381 if (const SCEVConstant *BECst = dyn_cast<SCEVConstant>(BECount))
382 AccessSize = (BECst->getValue()->getZExtValue()+1)*StoreSize;
383
384 // TODO: For this to be really effective, we have to dive into the pointer
385 // operand in the store. Store to &A[i] of 100 will always return may alias
386 // with store of &A[100], we need to StoreLoc to be "A" with size of 100,
387 // which will then no-alias a store to &A[100].
388 AliasAnalysis::Location StoreLoc(Ptr, AccessSize);
389
390 for (Loop::block_iterator BI = L->block_begin(), E = L->block_end(); BI != E;
391 ++BI)
392 for (BasicBlock::iterator I = (*BI)->begin(), E = (*BI)->end(); I != E; ++I)
393 if (&*I != IgnoredStore &&
394 (AA.getModRefInfo(I, StoreLoc) & Access))
395 return true;
396
397 return false;
398 }
399
400 /// getMemSetPatternValue - If a strided store of the specified value is safe to
401 /// turn into a memset_pattern16, return a ConstantArray of 16 bytes that should
402 /// be passed in. Otherwise, return null.
403 ///
404 /// Note that we don't ever attempt to use memset_pattern8 or 4, because these
405 /// just replicate their input array and then pass on to memset_pattern16.
getMemSetPatternValue(Value * V,const TargetData & TD)406 static Constant *getMemSetPatternValue(Value *V, const TargetData &TD) {
407 // If the value isn't a constant, we can't promote it to being in a constant
408 // array. We could theoretically do a store to an alloca or something, but
409 // that doesn't seem worthwhile.
410 Constant *C = dyn_cast<Constant>(V);
411 if (C == 0) return 0;
412
413 // Only handle simple values that are a power of two bytes in size.
414 uint64_t Size = TD.getTypeSizeInBits(V->getType());
415 if (Size == 0 || (Size & 7) || (Size & (Size-1)))
416 return 0;
417
418 // Don't care enough about darwin/ppc to implement this.
419 if (TD.isBigEndian())
420 return 0;
421
422 // Convert to size in bytes.
423 Size /= 8;
424
425 // TODO: If CI is larger than 16-bytes, we can try slicing it in half to see
426 // if the top and bottom are the same (e.g. for vectors and large integers).
427 if (Size > 16) return 0;
428
429 // If the constant is exactly 16 bytes, just use it.
430 if (Size == 16) return C;
431
432 // Otherwise, we'll use an array of the constants.
433 unsigned ArraySize = 16/Size;
434 ArrayType *AT = ArrayType::get(V->getType(), ArraySize);
435 return ConstantArray::get(AT, std::vector<Constant*>(ArraySize, C));
436 }
437
438
439 /// processLoopStridedStore - We see a strided store of some value. If we can
440 /// transform this into a memset or memset_pattern in the loop preheader, do so.
441 bool LoopIdiomRecognize::
processLoopStridedStore(Value * DestPtr,unsigned StoreSize,unsigned StoreAlignment,Value * StoredVal,Instruction * TheStore,const SCEVAddRecExpr * Ev,const SCEV * BECount)442 processLoopStridedStore(Value *DestPtr, unsigned StoreSize,
443 unsigned StoreAlignment, Value *StoredVal,
444 Instruction *TheStore, const SCEVAddRecExpr *Ev,
445 const SCEV *BECount) {
446
447 // If the stored value is a byte-wise value (like i32 -1), then it may be
448 // turned into a memset of i8 -1, assuming that all the consecutive bytes
449 // are stored. A store of i32 0x01020304 can never be turned into a memset,
450 // but it can be turned into memset_pattern if the target supports it.
451 Value *SplatValue = isBytewiseValue(StoredVal);
452 Constant *PatternValue = 0;
453
454 // If we're allowed to form a memset, and the stored value would be acceptable
455 // for memset, use it.
456 if (SplatValue && TLI->has(LibFunc::memset) &&
457 // Verify that the stored value is loop invariant. If not, we can't
458 // promote the memset.
459 CurLoop->isLoopInvariant(SplatValue)) {
460 // Keep and use SplatValue.
461 PatternValue = 0;
462 } else if (TLI->has(LibFunc::memset_pattern16) &&
463 (PatternValue = getMemSetPatternValue(StoredVal, *TD))) {
464 // It looks like we can use PatternValue!
465 SplatValue = 0;
466 } else {
467 // Otherwise, this isn't an idiom we can transform. For example, we can't
468 // do anything with a 3-byte store.
469 return false;
470 }
471
472 // The trip count of the loop and the base pointer of the addrec SCEV is
473 // guaranteed to be loop invariant, which means that it should dominate the
474 // header. This allows us to insert code for it in the preheader.
475 BasicBlock *Preheader = CurLoop->getLoopPreheader();
476 IRBuilder<> Builder(Preheader->getTerminator());
477 SCEVExpander Expander(*SE, "loop-idiom");
478
479 // Okay, we have a strided store "p[i]" of a splattable value. We can turn
480 // this into a memset in the loop preheader now if we want. However, this
481 // would be unsafe to do if there is anything else in the loop that may read
482 // or write to the aliased location. Check for any overlap by generating the
483 // base pointer and checking the region.
484 unsigned AddrSpace = cast<PointerType>(DestPtr->getType())->getAddressSpace();
485 Value *BasePtr =
486 Expander.expandCodeFor(Ev->getStart(), Builder.getInt8PtrTy(AddrSpace),
487 Preheader->getTerminator());
488
489
490 if (mayLoopAccessLocation(BasePtr, AliasAnalysis::ModRef,
491 CurLoop, BECount,
492 StoreSize, getAnalysis<AliasAnalysis>(), TheStore)){
493 Expander.clear();
494 // If we generated new code for the base pointer, clean up.
495 deleteIfDeadInstruction(BasePtr, *SE, TLI);
496 return false;
497 }
498
499 // Okay, everything looks good, insert the memset.
500
501 // The # stored bytes is (BECount+1)*Size. Expand the trip count out to
502 // pointer size if it isn't already.
503 Type *IntPtr = TD->getIntPtrType(DestPtr->getContext());
504 BECount = SE->getTruncateOrZeroExtend(BECount, IntPtr);
505
506 const SCEV *NumBytesS = SE->getAddExpr(BECount, SE->getConstant(IntPtr, 1),
507 SCEV::FlagNUW);
508 if (StoreSize != 1)
509 NumBytesS = SE->getMulExpr(NumBytesS, SE->getConstant(IntPtr, StoreSize),
510 SCEV::FlagNUW);
511
512 Value *NumBytes =
513 Expander.expandCodeFor(NumBytesS, IntPtr, Preheader->getTerminator());
514
515 CallInst *NewCall;
516 if (SplatValue)
517 NewCall = Builder.CreateMemSet(BasePtr, SplatValue,NumBytes,StoreAlignment);
518 else {
519 Module *M = TheStore->getParent()->getParent()->getParent();
520 Value *MSP = M->getOrInsertFunction("memset_pattern16",
521 Builder.getVoidTy(),
522 Builder.getInt8PtrTy(),
523 Builder.getInt8PtrTy(), IntPtr,
524 (void*)0);
525
526 // Otherwise we should form a memset_pattern16. PatternValue is known to be
527 // an constant array of 16-bytes. Plop the value into a mergable global.
528 GlobalVariable *GV = new GlobalVariable(*M, PatternValue->getType(), true,
529 GlobalValue::InternalLinkage,
530 PatternValue, ".memset_pattern");
531 GV->setUnnamedAddr(true); // Ok to merge these.
532 GV->setAlignment(16);
533 Value *PatternPtr = ConstantExpr::getBitCast(GV, Builder.getInt8PtrTy());
534 NewCall = Builder.CreateCall3(MSP, BasePtr, PatternPtr, NumBytes);
535 }
536
537 DEBUG(dbgs() << " Formed memset: " << *NewCall << "\n"
538 << " from store to: " << *Ev << " at: " << *TheStore << "\n");
539 NewCall->setDebugLoc(TheStore->getDebugLoc());
540
541 // Okay, the memset has been formed. Zap the original store and anything that
542 // feeds into it.
543 deleteDeadInstruction(TheStore, *SE, TLI);
544 ++NumMemSet;
545 return true;
546 }
547
548 /// processLoopStoreOfLoopLoad - We see a strided store whose value is a
549 /// same-strided load.
550 bool LoopIdiomRecognize::
processLoopStoreOfLoopLoad(StoreInst * SI,unsigned StoreSize,const SCEVAddRecExpr * StoreEv,const SCEVAddRecExpr * LoadEv,const SCEV * BECount)551 processLoopStoreOfLoopLoad(StoreInst *SI, unsigned StoreSize,
552 const SCEVAddRecExpr *StoreEv,
553 const SCEVAddRecExpr *LoadEv,
554 const SCEV *BECount) {
555 // If we're not allowed to form memcpy, we fail.
556 if (!TLI->has(LibFunc::memcpy))
557 return false;
558
559 LoadInst *LI = cast<LoadInst>(SI->getValueOperand());
560
561 // The trip count of the loop and the base pointer of the addrec SCEV is
562 // guaranteed to be loop invariant, which means that it should dominate the
563 // header. This allows us to insert code for it in the preheader.
564 BasicBlock *Preheader = CurLoop->getLoopPreheader();
565 IRBuilder<> Builder(Preheader->getTerminator());
566 SCEVExpander Expander(*SE, "loop-idiom");
567
568 // Okay, we have a strided store "p[i]" of a loaded value. We can turn
569 // this into a memcpy in the loop preheader now if we want. However, this
570 // would be unsafe to do if there is anything else in the loop that may read
571 // or write the memory region we're storing to. This includes the load that
572 // feeds the stores. Check for an alias by generating the base address and
573 // checking everything.
574 Value *StoreBasePtr =
575 Expander.expandCodeFor(StoreEv->getStart(),
576 Builder.getInt8PtrTy(SI->getPointerAddressSpace()),
577 Preheader->getTerminator());
578
579 if (mayLoopAccessLocation(StoreBasePtr, AliasAnalysis::ModRef,
580 CurLoop, BECount, StoreSize,
581 getAnalysis<AliasAnalysis>(), SI)) {
582 Expander.clear();
583 // If we generated new code for the base pointer, clean up.
584 deleteIfDeadInstruction(StoreBasePtr, *SE, TLI);
585 return false;
586 }
587
588 // For a memcpy, we have to make sure that the input array is not being
589 // mutated by the loop.
590 Value *LoadBasePtr =
591 Expander.expandCodeFor(LoadEv->getStart(),
592 Builder.getInt8PtrTy(LI->getPointerAddressSpace()),
593 Preheader->getTerminator());
594
595 if (mayLoopAccessLocation(LoadBasePtr, AliasAnalysis::Mod, CurLoop, BECount,
596 StoreSize, getAnalysis<AliasAnalysis>(), SI)) {
597 Expander.clear();
598 // If we generated new code for the base pointer, clean up.
599 deleteIfDeadInstruction(LoadBasePtr, *SE, TLI);
600 deleteIfDeadInstruction(StoreBasePtr, *SE, TLI);
601 return false;
602 }
603
604 // Okay, everything is safe, we can transform this!
605
606
607 // The # stored bytes is (BECount+1)*Size. Expand the trip count out to
608 // pointer size if it isn't already.
609 Type *IntPtr = TD->getIntPtrType(SI->getContext());
610 BECount = SE->getTruncateOrZeroExtend(BECount, IntPtr);
611
612 const SCEV *NumBytesS = SE->getAddExpr(BECount, SE->getConstant(IntPtr, 1),
613 SCEV::FlagNUW);
614 if (StoreSize != 1)
615 NumBytesS = SE->getMulExpr(NumBytesS, SE->getConstant(IntPtr, StoreSize),
616 SCEV::FlagNUW);
617
618 Value *NumBytes =
619 Expander.expandCodeFor(NumBytesS, IntPtr, Preheader->getTerminator());
620
621 CallInst *NewCall =
622 Builder.CreateMemCpy(StoreBasePtr, LoadBasePtr, NumBytes,
623 std::min(SI->getAlignment(), LI->getAlignment()));
624 NewCall->setDebugLoc(SI->getDebugLoc());
625
626 DEBUG(dbgs() << " Formed memcpy: " << *NewCall << "\n"
627 << " from load ptr=" << *LoadEv << " at: " << *LI << "\n"
628 << " from store ptr=" << *StoreEv << " at: " << *SI << "\n");
629
630
631 // Okay, the memset has been formed. Zap the original store and anything that
632 // feeds into it.
633 deleteDeadInstruction(SI, *SE, TLI);
634 ++NumMemCpy;
635 return true;
636 }
637