1 //===- BreakCriticalEdges.cpp - Critical Edge Elimination Pass ------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // BreakCriticalEdges pass - Break all of the critical edges in the CFG by
11 // inserting a dummy basic block. This pass may be "required" by passes that
12 // cannot deal with critical edges. For this usage, the structure type is
13 // forward declared. This pass obviously invalidates the CFG, but can update
14 // dominator trees.
15 //
16 //===----------------------------------------------------------------------===//
17
18 #define DEBUG_TYPE "break-crit-edges"
19 #include "llvm/Transforms/Scalar.h"
20 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
21 #include "llvm/Analysis/Dominators.h"
22 #include "llvm/Analysis/LoopInfo.h"
23 #include "llvm/Analysis/ProfileInfo.h"
24 #include "llvm/Function.h"
25 #include "llvm/Instructions.h"
26 #include "llvm/Type.h"
27 #include "llvm/Support/CFG.h"
28 #include "llvm/Support/ErrorHandling.h"
29 #include "llvm/ADT/SmallVector.h"
30 #include "llvm/ADT/Statistic.h"
31 using namespace llvm;
32
33 STATISTIC(NumBroken, "Number of blocks inserted");
34
35 namespace {
36 struct BreakCriticalEdges : public FunctionPass {
37 static char ID; // Pass identification, replacement for typeid
BreakCriticalEdges__anon63a85a0e0111::BreakCriticalEdges38 BreakCriticalEdges() : FunctionPass(ID) {
39 initializeBreakCriticalEdgesPass(*PassRegistry::getPassRegistry());
40 }
41
42 virtual bool runOnFunction(Function &F);
43
getAnalysisUsage__anon63a85a0e0111::BreakCriticalEdges44 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
45 AU.addPreserved<DominatorTree>();
46 AU.addPreserved<LoopInfo>();
47 AU.addPreserved<ProfileInfo>();
48
49 // No loop canonicalization guarantees are broken by this pass.
50 AU.addPreservedID(LoopSimplifyID);
51 }
52 };
53 }
54
55 char BreakCriticalEdges::ID = 0;
56 INITIALIZE_PASS(BreakCriticalEdges, "break-crit-edges",
57 "Break critical edges in CFG", false, false)
58
59 // Publicly exposed interface to pass...
60 char &llvm::BreakCriticalEdgesID = BreakCriticalEdges::ID;
createBreakCriticalEdgesPass()61 FunctionPass *llvm::createBreakCriticalEdgesPass() {
62 return new BreakCriticalEdges();
63 }
64
65 // runOnFunction - Loop over all of the edges in the CFG, breaking critical
66 // edges as they are found.
67 //
runOnFunction(Function & F)68 bool BreakCriticalEdges::runOnFunction(Function &F) {
69 bool Changed = false;
70 for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) {
71 TerminatorInst *TI = I->getTerminator();
72 if (TI->getNumSuccessors() > 1 && !isa<IndirectBrInst>(TI))
73 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
74 if (SplitCriticalEdge(TI, i, this)) {
75 ++NumBroken;
76 Changed = true;
77 }
78 }
79
80 return Changed;
81 }
82
83 //===----------------------------------------------------------------------===//
84 // Implementation of the external critical edge manipulation functions
85 //===----------------------------------------------------------------------===//
86
87 // isCriticalEdge - Return true if the specified edge is a critical edge.
88 // Critical edges are edges from a block with multiple successors to a block
89 // with multiple predecessors.
90 //
isCriticalEdge(const TerminatorInst * TI,unsigned SuccNum,bool AllowIdenticalEdges)91 bool llvm::isCriticalEdge(const TerminatorInst *TI, unsigned SuccNum,
92 bool AllowIdenticalEdges) {
93 assert(SuccNum < TI->getNumSuccessors() && "Illegal edge specification!");
94 if (TI->getNumSuccessors() == 1) return false;
95
96 const BasicBlock *Dest = TI->getSuccessor(SuccNum);
97 const_pred_iterator I = pred_begin(Dest), E = pred_end(Dest);
98
99 // If there is more than one predecessor, this is a critical edge...
100 assert(I != E && "No preds, but we have an edge to the block?");
101 const BasicBlock *FirstPred = *I;
102 ++I; // Skip one edge due to the incoming arc from TI.
103 if (!AllowIdenticalEdges)
104 return I != E;
105
106 // If AllowIdenticalEdges is true, then we allow this edge to be considered
107 // non-critical iff all preds come from TI's block.
108 while (I != E) {
109 const BasicBlock *P = *I;
110 if (P != FirstPred)
111 return true;
112 // Note: leave this as is until no one ever compiles with either gcc 4.0.1
113 // or Xcode 2. This seems to work around the pred_iterator assert in PR 2207
114 E = pred_end(P);
115 ++I;
116 }
117 return false;
118 }
119
120 /// createPHIsForSplitLoopExit - When a loop exit edge is split, LCSSA form
121 /// may require new PHIs in the new exit block. This function inserts the
122 /// new PHIs, as needed. Preds is a list of preds inside the loop, SplitBB
123 /// is the new loop exit block, and DestBB is the old loop exit, now the
124 /// successor of SplitBB.
createPHIsForSplitLoopExit(ArrayRef<BasicBlock * > Preds,BasicBlock * SplitBB,BasicBlock * DestBB)125 static void createPHIsForSplitLoopExit(ArrayRef<BasicBlock *> Preds,
126 BasicBlock *SplitBB,
127 BasicBlock *DestBB) {
128 // SplitBB shouldn't have anything non-trivial in it yet.
129 assert((SplitBB->getFirstNonPHI() == SplitBB->getTerminator() ||
130 SplitBB->isLandingPad()) && "SplitBB has non-PHI nodes!");
131
132 // For each PHI in the destination block.
133 for (BasicBlock::iterator I = DestBB->begin();
134 PHINode *PN = dyn_cast<PHINode>(I); ++I) {
135 unsigned Idx = PN->getBasicBlockIndex(SplitBB);
136 Value *V = PN->getIncomingValue(Idx);
137
138 // If the input is a PHI which already satisfies LCSSA, don't create
139 // a new one.
140 if (const PHINode *VP = dyn_cast<PHINode>(V))
141 if (VP->getParent() == SplitBB)
142 continue;
143
144 // Otherwise a new PHI is needed. Create one and populate it.
145 PHINode *NewPN =
146 PHINode::Create(PN->getType(), Preds.size(), "split",
147 SplitBB->isLandingPad() ?
148 SplitBB->begin() : SplitBB->getTerminator());
149 for (unsigned i = 0, e = Preds.size(); i != e; ++i)
150 NewPN->addIncoming(V, Preds[i]);
151
152 // Update the original PHI.
153 PN->setIncomingValue(Idx, NewPN);
154 }
155 }
156
157 /// SplitCriticalEdge - If this edge is a critical edge, insert a new node to
158 /// split the critical edge. This will update DominatorTree information if it
159 /// is available, thus calling this pass will not invalidate either of them.
160 /// This returns the new block if the edge was split, null otherwise.
161 ///
162 /// If MergeIdenticalEdges is true (not the default), *all* edges from TI to the
163 /// specified successor will be merged into the same critical edge block.
164 /// This is most commonly interesting with switch instructions, which may
165 /// have many edges to any one destination. This ensures that all edges to that
166 /// dest go to one block instead of each going to a different block, but isn't
167 /// the standard definition of a "critical edge".
168 ///
169 /// It is invalid to call this function on a critical edge that starts at an
170 /// IndirectBrInst. Splitting these edges will almost always create an invalid
171 /// program because the address of the new block won't be the one that is jumped
172 /// to.
173 ///
SplitCriticalEdge(TerminatorInst * TI,unsigned SuccNum,Pass * P,bool MergeIdenticalEdges,bool DontDeleteUselessPhis,bool SplitLandingPads)174 BasicBlock *llvm::SplitCriticalEdge(TerminatorInst *TI, unsigned SuccNum,
175 Pass *P, bool MergeIdenticalEdges,
176 bool DontDeleteUselessPhis,
177 bool SplitLandingPads) {
178 if (!isCriticalEdge(TI, SuccNum, MergeIdenticalEdges)) return 0;
179
180 assert(!isa<IndirectBrInst>(TI) &&
181 "Cannot split critical edge from IndirectBrInst");
182
183 BasicBlock *TIBB = TI->getParent();
184 BasicBlock *DestBB = TI->getSuccessor(SuccNum);
185
186 // Splitting the critical edge to a landing pad block is non-trivial. Don't do
187 // it in this generic function.
188 if (DestBB->isLandingPad()) return 0;
189
190 // Create a new basic block, linking it into the CFG.
191 BasicBlock *NewBB = BasicBlock::Create(TI->getContext(),
192 TIBB->getName() + "." + DestBB->getName() + "_crit_edge");
193 // Create our unconditional branch.
194 BranchInst *NewBI = BranchInst::Create(DestBB, NewBB);
195 NewBI->setDebugLoc(TI->getDebugLoc());
196
197 // Branch to the new block, breaking the edge.
198 TI->setSuccessor(SuccNum, NewBB);
199
200 // Insert the block into the function... right after the block TI lives in.
201 Function &F = *TIBB->getParent();
202 Function::iterator FBBI = TIBB;
203 F.getBasicBlockList().insert(++FBBI, NewBB);
204
205 // If there are any PHI nodes in DestBB, we need to update them so that they
206 // merge incoming values from NewBB instead of from TIBB.
207 {
208 unsigned BBIdx = 0;
209 for (BasicBlock::iterator I = DestBB->begin(); isa<PHINode>(I); ++I) {
210 // We no longer enter through TIBB, now we come in through NewBB.
211 // Revector exactly one entry in the PHI node that used to come from
212 // TIBB to come from NewBB.
213 PHINode *PN = cast<PHINode>(I);
214
215 // Reuse the previous value of BBIdx if it lines up. In cases where we
216 // have multiple phi nodes with *lots* of predecessors, this is a speed
217 // win because we don't have to scan the PHI looking for TIBB. This
218 // happens because the BB list of PHI nodes are usually in the same
219 // order.
220 if (PN->getIncomingBlock(BBIdx) != TIBB)
221 BBIdx = PN->getBasicBlockIndex(TIBB);
222 PN->setIncomingBlock(BBIdx, NewBB);
223 }
224 }
225
226 // If there are any other edges from TIBB to DestBB, update those to go
227 // through the split block, making those edges non-critical as well (and
228 // reducing the number of phi entries in the DestBB if relevant).
229 if (MergeIdenticalEdges) {
230 for (unsigned i = SuccNum+1, e = TI->getNumSuccessors(); i != e; ++i) {
231 if (TI->getSuccessor(i) != DestBB) continue;
232
233 // Remove an entry for TIBB from DestBB phi nodes.
234 DestBB->removePredecessor(TIBB, DontDeleteUselessPhis);
235
236 // We found another edge to DestBB, go to NewBB instead.
237 TI->setSuccessor(i, NewBB);
238 }
239 }
240
241
242
243 // If we don't have a pass object, we can't update anything...
244 if (P == 0) return NewBB;
245
246 DominatorTree *DT = P->getAnalysisIfAvailable<DominatorTree>();
247 LoopInfo *LI = P->getAnalysisIfAvailable<LoopInfo>();
248 ProfileInfo *PI = P->getAnalysisIfAvailable<ProfileInfo>();
249
250 // If we have nothing to update, just return.
251 if (DT == 0 && LI == 0 && PI == 0)
252 return NewBB;
253
254 // Now update analysis information. Since the only predecessor of NewBB is
255 // the TIBB, TIBB clearly dominates NewBB. TIBB usually doesn't dominate
256 // anything, as there are other successors of DestBB. However, if all other
257 // predecessors of DestBB are already dominated by DestBB (e.g. DestBB is a
258 // loop header) then NewBB dominates DestBB.
259 SmallVector<BasicBlock*, 8> OtherPreds;
260
261 // If there is a PHI in the block, loop over predecessors with it, which is
262 // faster than iterating pred_begin/end.
263 if (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) {
264 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
265 if (PN->getIncomingBlock(i) != NewBB)
266 OtherPreds.push_back(PN->getIncomingBlock(i));
267 } else {
268 for (pred_iterator I = pred_begin(DestBB), E = pred_end(DestBB);
269 I != E; ++I) {
270 BasicBlock *P = *I;
271 if (P != NewBB)
272 OtherPreds.push_back(P);
273 }
274 }
275
276 bool NewBBDominatesDestBB = true;
277
278 // Should we update DominatorTree information?
279 if (DT) {
280 DomTreeNode *TINode = DT->getNode(TIBB);
281
282 // The new block is not the immediate dominator for any other nodes, but
283 // TINode is the immediate dominator for the new node.
284 //
285 if (TINode) { // Don't break unreachable code!
286 DomTreeNode *NewBBNode = DT->addNewBlock(NewBB, TIBB);
287 DomTreeNode *DestBBNode = 0;
288
289 // If NewBBDominatesDestBB hasn't been computed yet, do so with DT.
290 if (!OtherPreds.empty()) {
291 DestBBNode = DT->getNode(DestBB);
292 while (!OtherPreds.empty() && NewBBDominatesDestBB) {
293 if (DomTreeNode *OPNode = DT->getNode(OtherPreds.back()))
294 NewBBDominatesDestBB = DT->dominates(DestBBNode, OPNode);
295 OtherPreds.pop_back();
296 }
297 OtherPreds.clear();
298 }
299
300 // If NewBBDominatesDestBB, then NewBB dominates DestBB, otherwise it
301 // doesn't dominate anything.
302 if (NewBBDominatesDestBB) {
303 if (!DestBBNode) DestBBNode = DT->getNode(DestBB);
304 DT->changeImmediateDominator(DestBBNode, NewBBNode);
305 }
306 }
307 }
308
309 // Update LoopInfo if it is around.
310 if (LI) {
311 if (Loop *TIL = LI->getLoopFor(TIBB)) {
312 // If one or the other blocks were not in a loop, the new block is not
313 // either, and thus LI doesn't need to be updated.
314 if (Loop *DestLoop = LI->getLoopFor(DestBB)) {
315 if (TIL == DestLoop) {
316 // Both in the same loop, the NewBB joins loop.
317 DestLoop->addBasicBlockToLoop(NewBB, LI->getBase());
318 } else if (TIL->contains(DestLoop)) {
319 // Edge from an outer loop to an inner loop. Add to the outer loop.
320 TIL->addBasicBlockToLoop(NewBB, LI->getBase());
321 } else if (DestLoop->contains(TIL)) {
322 // Edge from an inner loop to an outer loop. Add to the outer loop.
323 DestLoop->addBasicBlockToLoop(NewBB, LI->getBase());
324 } else {
325 // Edge from two loops with no containment relation. Because these
326 // are natural loops, we know that the destination block must be the
327 // header of its loop (adding a branch into a loop elsewhere would
328 // create an irreducible loop).
329 assert(DestLoop->getHeader() == DestBB &&
330 "Should not create irreducible loops!");
331 if (Loop *P = DestLoop->getParentLoop())
332 P->addBasicBlockToLoop(NewBB, LI->getBase());
333 }
334 }
335 // If TIBB is in a loop and DestBB is outside of that loop, split the
336 // other exit blocks of the loop that also have predecessors outside
337 // the loop, to maintain a LoopSimplify guarantee.
338 if (!TIL->contains(DestBB) &&
339 P->mustPreserveAnalysisID(LoopSimplifyID)) {
340 assert(!TIL->contains(NewBB) &&
341 "Split point for loop exit is contained in loop!");
342
343 // Update LCSSA form in the newly created exit block.
344 if (P->mustPreserveAnalysisID(LCSSAID))
345 createPHIsForSplitLoopExit(TIBB, NewBB, DestBB);
346
347 // For each unique exit block...
348 // FIXME: This code is functionally equivalent to the corresponding
349 // loop in LoopSimplify.
350 SmallVector<BasicBlock *, 4> ExitBlocks;
351 TIL->getExitBlocks(ExitBlocks);
352 for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
353 // Collect all the preds that are inside the loop, and note
354 // whether there are any preds outside the loop.
355 SmallVector<BasicBlock *, 4> Preds;
356 bool HasPredOutsideOfLoop = false;
357 BasicBlock *Exit = ExitBlocks[i];
358 for (pred_iterator I = pred_begin(Exit), E = pred_end(Exit);
359 I != E; ++I) {
360 BasicBlock *P = *I;
361 if (TIL->contains(P)) {
362 if (isa<IndirectBrInst>(P->getTerminator())) {
363 Preds.clear();
364 break;
365 }
366 Preds.push_back(P);
367 } else {
368 HasPredOutsideOfLoop = true;
369 }
370 }
371 // If there are any preds not in the loop, we'll need to split
372 // the edges. The Preds.empty() check is needed because a block
373 // may appear multiple times in the list. We can't use
374 // getUniqueExitBlocks above because that depends on LoopSimplify
375 // form, which we're in the process of restoring!
376 if (!Preds.empty() && HasPredOutsideOfLoop) {
377 if (!Exit->isLandingPad()) {
378 BasicBlock *NewExitBB =
379 SplitBlockPredecessors(Exit, Preds, "split", P);
380 if (P->mustPreserveAnalysisID(LCSSAID))
381 createPHIsForSplitLoopExit(Preds, NewExitBB, Exit);
382 } else if (SplitLandingPads) {
383 SmallVector<BasicBlock*, 8> NewBBs;
384 SplitLandingPadPredecessors(Exit, Preds,
385 ".split1", ".split2",
386 P, NewBBs);
387 if (P->mustPreserveAnalysisID(LCSSAID))
388 createPHIsForSplitLoopExit(Preds, NewBBs[0], Exit);
389 }
390 }
391 }
392 }
393 // LCSSA form was updated above for the case where LoopSimplify is
394 // available, which means that all predecessors of loop exit blocks
395 // are within the loop. Without LoopSimplify form, it would be
396 // necessary to insert a new phi.
397 assert((!P->mustPreserveAnalysisID(LCSSAID) ||
398 P->mustPreserveAnalysisID(LoopSimplifyID)) &&
399 "SplitCriticalEdge doesn't know how to update LCCSA form "
400 "without LoopSimplify!");
401 }
402 }
403
404 // Update ProfileInfo if it is around.
405 if (PI)
406 PI->splitEdge(TIBB, DestBB, NewBB, MergeIdenticalEdges);
407
408 return NewBB;
409 }
410