1 //===- CodeExtractor.cpp - Pull code region into a new function -----------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the interface to tear out a code region, such as an
11 // individual loop or a parallel section, into a new function, replacing it with
12 // a call to the new function.
13 //
14 //===----------------------------------------------------------------------===//
15
16 #include "llvm/Transforms/Utils/CodeExtractor.h"
17 #include "llvm/Constants.h"
18 #include "llvm/DerivedTypes.h"
19 #include "llvm/Instructions.h"
20 #include "llvm/Intrinsics.h"
21 #include "llvm/LLVMContext.h"
22 #include "llvm/Module.h"
23 #include "llvm/Pass.h"
24 #include "llvm/Analysis/Dominators.h"
25 #include "llvm/Analysis/LoopInfo.h"
26 #include "llvm/Analysis/RegionInfo.h"
27 #include "llvm/Analysis/RegionIterator.h"
28 #include "llvm/Analysis/Verifier.h"
29 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
30 #include "llvm/Support/CommandLine.h"
31 #include "llvm/Support/Debug.h"
32 #include "llvm/Support/ErrorHandling.h"
33 #include "llvm/Support/raw_ostream.h"
34 #include "llvm/ADT/SetVector.h"
35 #include "llvm/ADT/StringExtras.h"
36 #include <algorithm>
37 #include <set>
38 using namespace llvm;
39
40 // Provide a command-line option to aggregate function arguments into a struct
41 // for functions produced by the code extractor. This is useful when converting
42 // extracted functions to pthread-based code, as only one argument (void*) can
43 // be passed in to pthread_create().
44 static cl::opt<bool>
45 AggregateArgsOpt("aggregate-extracted-args", cl::Hidden,
46 cl::desc("Aggregate arguments to code-extracted functions"));
47
48 /// \brief Test whether a block is valid for extraction.
isBlockValidForExtraction(const BasicBlock & BB)49 static bool isBlockValidForExtraction(const BasicBlock &BB) {
50 // Landing pads must be in the function where they were inserted for cleanup.
51 if (BB.isLandingPad())
52 return false;
53
54 // Don't hoist code containing allocas, invokes, or vastarts.
55 for (BasicBlock::const_iterator I = BB.begin(), E = BB.end(); I != E; ++I) {
56 if (isa<AllocaInst>(I) || isa<InvokeInst>(I))
57 return false;
58 if (const CallInst *CI = dyn_cast<CallInst>(I))
59 if (const Function *F = CI->getCalledFunction())
60 if (F->getIntrinsicID() == Intrinsic::vastart)
61 return false;
62 }
63
64 return true;
65 }
66
67 /// \brief Build a set of blocks to extract if the input blocks are viable.
68 template <typename IteratorT>
buildExtractionBlockSet(IteratorT BBBegin,IteratorT BBEnd)69 static SetVector<BasicBlock *> buildExtractionBlockSet(IteratorT BBBegin,
70 IteratorT BBEnd) {
71 SetVector<BasicBlock *> Result;
72
73 assert(BBBegin != BBEnd);
74
75 // Loop over the blocks, adding them to our set-vector, and aborting with an
76 // empty set if we encounter invalid blocks.
77 for (IteratorT I = BBBegin, E = BBEnd; I != E; ++I) {
78 if (!Result.insert(*I))
79 llvm_unreachable("Repeated basic blocks in extraction input");
80
81 if (!isBlockValidForExtraction(**I)) {
82 Result.clear();
83 return Result;
84 }
85 }
86
87 #ifndef NDEBUG
88 for (SetVector<BasicBlock *>::iterator I = llvm::next(Result.begin()),
89 E = Result.end();
90 I != E; ++I)
91 for (pred_iterator PI = pred_begin(*I), PE = pred_end(*I);
92 PI != PE; ++PI)
93 assert(Result.count(*PI) &&
94 "No blocks in this region may have entries from outside the region"
95 " except for the first block!");
96 #endif
97
98 return Result;
99 }
100
101 /// \brief Helper to call buildExtractionBlockSet with an ArrayRef.
102 static SetVector<BasicBlock *>
buildExtractionBlockSet(ArrayRef<BasicBlock * > BBs)103 buildExtractionBlockSet(ArrayRef<BasicBlock *> BBs) {
104 return buildExtractionBlockSet(BBs.begin(), BBs.end());
105 }
106
107 /// \brief Helper to call buildExtractionBlockSet with a RegionNode.
108 static SetVector<BasicBlock *>
buildExtractionBlockSet(const RegionNode & RN)109 buildExtractionBlockSet(const RegionNode &RN) {
110 if (!RN.isSubRegion())
111 // Just a single BasicBlock.
112 return buildExtractionBlockSet(RN.getNodeAs<BasicBlock>());
113
114 const Region &R = *RN.getNodeAs<Region>();
115
116 return buildExtractionBlockSet(R.block_begin(), R.block_end());
117 }
118
CodeExtractor(BasicBlock * BB,bool AggregateArgs)119 CodeExtractor::CodeExtractor(BasicBlock *BB, bool AggregateArgs)
120 : DT(0), AggregateArgs(AggregateArgs||AggregateArgsOpt),
121 Blocks(buildExtractionBlockSet(BB)), NumExitBlocks(~0U) {}
122
CodeExtractor(ArrayRef<BasicBlock * > BBs,DominatorTree * DT,bool AggregateArgs)123 CodeExtractor::CodeExtractor(ArrayRef<BasicBlock *> BBs, DominatorTree *DT,
124 bool AggregateArgs)
125 : DT(DT), AggregateArgs(AggregateArgs||AggregateArgsOpt),
126 Blocks(buildExtractionBlockSet(BBs)), NumExitBlocks(~0U) {}
127
CodeExtractor(DominatorTree & DT,Loop & L,bool AggregateArgs)128 CodeExtractor::CodeExtractor(DominatorTree &DT, Loop &L, bool AggregateArgs)
129 : DT(&DT), AggregateArgs(AggregateArgs||AggregateArgsOpt),
130 Blocks(buildExtractionBlockSet(L.getBlocks())), NumExitBlocks(~0U) {}
131
CodeExtractor(DominatorTree & DT,const RegionNode & RN,bool AggregateArgs)132 CodeExtractor::CodeExtractor(DominatorTree &DT, const RegionNode &RN,
133 bool AggregateArgs)
134 : DT(&DT), AggregateArgs(AggregateArgs||AggregateArgsOpt),
135 Blocks(buildExtractionBlockSet(RN)), NumExitBlocks(~0U) {}
136
137 /// definedInRegion - Return true if the specified value is defined in the
138 /// extracted region.
definedInRegion(const SetVector<BasicBlock * > & Blocks,Value * V)139 static bool definedInRegion(const SetVector<BasicBlock *> &Blocks, Value *V) {
140 if (Instruction *I = dyn_cast<Instruction>(V))
141 if (Blocks.count(I->getParent()))
142 return true;
143 return false;
144 }
145
146 /// definedInCaller - Return true if the specified value is defined in the
147 /// function being code extracted, but not in the region being extracted.
148 /// These values must be passed in as live-ins to the function.
definedInCaller(const SetVector<BasicBlock * > & Blocks,Value * V)149 static bool definedInCaller(const SetVector<BasicBlock *> &Blocks, Value *V) {
150 if (isa<Argument>(V)) return true;
151 if (Instruction *I = dyn_cast<Instruction>(V))
152 if (!Blocks.count(I->getParent()))
153 return true;
154 return false;
155 }
156
findInputsOutputs(ValueSet & Inputs,ValueSet & Outputs) const157 void CodeExtractor::findInputsOutputs(ValueSet &Inputs,
158 ValueSet &Outputs) const {
159 for (SetVector<BasicBlock *>::const_iterator I = Blocks.begin(),
160 E = Blocks.end();
161 I != E; ++I) {
162 BasicBlock *BB = *I;
163
164 // If a used value is defined outside the region, it's an input. If an
165 // instruction is used outside the region, it's an output.
166 for (BasicBlock::iterator II = BB->begin(), IE = BB->end();
167 II != IE; ++II) {
168 for (User::op_iterator OI = II->op_begin(), OE = II->op_end();
169 OI != OE; ++OI)
170 if (definedInCaller(Blocks, *OI))
171 Inputs.insert(*OI);
172
173 for (Value::use_iterator UI = II->use_begin(), UE = II->use_end();
174 UI != UE; ++UI)
175 if (!definedInRegion(Blocks, *UI)) {
176 Outputs.insert(II);
177 break;
178 }
179 }
180 }
181 }
182
183 /// severSplitPHINodes - If a PHI node has multiple inputs from outside of the
184 /// region, we need to split the entry block of the region so that the PHI node
185 /// is easier to deal with.
severSplitPHINodes(BasicBlock * & Header)186 void CodeExtractor::severSplitPHINodes(BasicBlock *&Header) {
187 unsigned NumPredsFromRegion = 0;
188 unsigned NumPredsOutsideRegion = 0;
189
190 if (Header != &Header->getParent()->getEntryBlock()) {
191 PHINode *PN = dyn_cast<PHINode>(Header->begin());
192 if (!PN) return; // No PHI nodes.
193
194 // If the header node contains any PHI nodes, check to see if there is more
195 // than one entry from outside the region. If so, we need to sever the
196 // header block into two.
197 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
198 if (Blocks.count(PN->getIncomingBlock(i)))
199 ++NumPredsFromRegion;
200 else
201 ++NumPredsOutsideRegion;
202
203 // If there is one (or fewer) predecessor from outside the region, we don't
204 // need to do anything special.
205 if (NumPredsOutsideRegion <= 1) return;
206 }
207
208 // Otherwise, we need to split the header block into two pieces: one
209 // containing PHI nodes merging values from outside of the region, and a
210 // second that contains all of the code for the block and merges back any
211 // incoming values from inside of the region.
212 BasicBlock::iterator AfterPHIs = Header->getFirstNonPHI();
213 BasicBlock *NewBB = Header->splitBasicBlock(AfterPHIs,
214 Header->getName()+".ce");
215
216 // We only want to code extract the second block now, and it becomes the new
217 // header of the region.
218 BasicBlock *OldPred = Header;
219 Blocks.remove(OldPred);
220 Blocks.insert(NewBB);
221 Header = NewBB;
222
223 // Okay, update dominator sets. The blocks that dominate the new one are the
224 // blocks that dominate TIBB plus the new block itself.
225 if (DT)
226 DT->splitBlock(NewBB);
227
228 // Okay, now we need to adjust the PHI nodes and any branches from within the
229 // region to go to the new header block instead of the old header block.
230 if (NumPredsFromRegion) {
231 PHINode *PN = cast<PHINode>(OldPred->begin());
232 // Loop over all of the predecessors of OldPred that are in the region,
233 // changing them to branch to NewBB instead.
234 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
235 if (Blocks.count(PN->getIncomingBlock(i))) {
236 TerminatorInst *TI = PN->getIncomingBlock(i)->getTerminator();
237 TI->replaceUsesOfWith(OldPred, NewBB);
238 }
239
240 // Okay, everything within the region is now branching to the right block, we
241 // just have to update the PHI nodes now, inserting PHI nodes into NewBB.
242 for (AfterPHIs = OldPred->begin(); isa<PHINode>(AfterPHIs); ++AfterPHIs) {
243 PHINode *PN = cast<PHINode>(AfterPHIs);
244 // Create a new PHI node in the new region, which has an incoming value
245 // from OldPred of PN.
246 PHINode *NewPN = PHINode::Create(PN->getType(), 1 + NumPredsFromRegion,
247 PN->getName()+".ce", NewBB->begin());
248 NewPN->addIncoming(PN, OldPred);
249
250 // Loop over all of the incoming value in PN, moving them to NewPN if they
251 // are from the extracted region.
252 for (unsigned i = 0; i != PN->getNumIncomingValues(); ++i) {
253 if (Blocks.count(PN->getIncomingBlock(i))) {
254 NewPN->addIncoming(PN->getIncomingValue(i), PN->getIncomingBlock(i));
255 PN->removeIncomingValue(i);
256 --i;
257 }
258 }
259 }
260 }
261 }
262
splitReturnBlocks()263 void CodeExtractor::splitReturnBlocks() {
264 for (SetVector<BasicBlock *>::iterator I = Blocks.begin(), E = Blocks.end();
265 I != E; ++I)
266 if (ReturnInst *RI = dyn_cast<ReturnInst>((*I)->getTerminator())) {
267 BasicBlock *New = (*I)->splitBasicBlock(RI, (*I)->getName()+".ret");
268 if (DT) {
269 // Old dominates New. New node dominates all other nodes dominated
270 // by Old.
271 DomTreeNode *OldNode = DT->getNode(*I);
272 SmallVector<DomTreeNode*, 8> Children;
273 for (DomTreeNode::iterator DI = OldNode->begin(), DE = OldNode->end();
274 DI != DE; ++DI)
275 Children.push_back(*DI);
276
277 DomTreeNode *NewNode = DT->addNewBlock(New, *I);
278
279 for (SmallVector<DomTreeNode*, 8>::iterator I = Children.begin(),
280 E = Children.end(); I != E; ++I)
281 DT->changeImmediateDominator(*I, NewNode);
282 }
283 }
284 }
285
286 /// constructFunction - make a function based on inputs and outputs, as follows:
287 /// f(in0, ..., inN, out0, ..., outN)
288 ///
constructFunction(const ValueSet & inputs,const ValueSet & outputs,BasicBlock * header,BasicBlock * newRootNode,BasicBlock * newHeader,Function * oldFunction,Module * M)289 Function *CodeExtractor::constructFunction(const ValueSet &inputs,
290 const ValueSet &outputs,
291 BasicBlock *header,
292 BasicBlock *newRootNode,
293 BasicBlock *newHeader,
294 Function *oldFunction,
295 Module *M) {
296 DEBUG(dbgs() << "inputs: " << inputs.size() << "\n");
297 DEBUG(dbgs() << "outputs: " << outputs.size() << "\n");
298
299 // This function returns unsigned, outputs will go back by reference.
300 switch (NumExitBlocks) {
301 case 0:
302 case 1: RetTy = Type::getVoidTy(header->getContext()); break;
303 case 2: RetTy = Type::getInt1Ty(header->getContext()); break;
304 default: RetTy = Type::getInt16Ty(header->getContext()); break;
305 }
306
307 std::vector<Type*> paramTy;
308
309 // Add the types of the input values to the function's argument list
310 for (ValueSet::const_iterator i = inputs.begin(), e = inputs.end();
311 i != e; ++i) {
312 const Value *value = *i;
313 DEBUG(dbgs() << "value used in func: " << *value << "\n");
314 paramTy.push_back(value->getType());
315 }
316
317 // Add the types of the output values to the function's argument list.
318 for (ValueSet::const_iterator I = outputs.begin(), E = outputs.end();
319 I != E; ++I) {
320 DEBUG(dbgs() << "instr used in func: " << **I << "\n");
321 if (AggregateArgs)
322 paramTy.push_back((*I)->getType());
323 else
324 paramTy.push_back(PointerType::getUnqual((*I)->getType()));
325 }
326
327 DEBUG(dbgs() << "Function type: " << *RetTy << " f(");
328 for (std::vector<Type*>::iterator i = paramTy.begin(),
329 e = paramTy.end(); i != e; ++i)
330 DEBUG(dbgs() << **i << ", ");
331 DEBUG(dbgs() << ")\n");
332
333 if (AggregateArgs && (inputs.size() + outputs.size() > 0)) {
334 PointerType *StructPtr =
335 PointerType::getUnqual(StructType::get(M->getContext(), paramTy));
336 paramTy.clear();
337 paramTy.push_back(StructPtr);
338 }
339 FunctionType *funcType =
340 FunctionType::get(RetTy, paramTy, false);
341
342 // Create the new function
343 Function *newFunction = Function::Create(funcType,
344 GlobalValue::InternalLinkage,
345 oldFunction->getName() + "_" +
346 header->getName(), M);
347 // If the old function is no-throw, so is the new one.
348 if (oldFunction->doesNotThrow())
349 newFunction->setDoesNotThrow(true);
350
351 newFunction->getBasicBlockList().push_back(newRootNode);
352
353 // Create an iterator to name all of the arguments we inserted.
354 Function::arg_iterator AI = newFunction->arg_begin();
355
356 // Rewrite all users of the inputs in the extracted region to use the
357 // arguments (or appropriate addressing into struct) instead.
358 for (unsigned i = 0, e = inputs.size(); i != e; ++i) {
359 Value *RewriteVal;
360 if (AggregateArgs) {
361 Value *Idx[2];
362 Idx[0] = Constant::getNullValue(Type::getInt32Ty(header->getContext()));
363 Idx[1] = ConstantInt::get(Type::getInt32Ty(header->getContext()), i);
364 TerminatorInst *TI = newFunction->begin()->getTerminator();
365 GetElementPtrInst *GEP =
366 GetElementPtrInst::Create(AI, Idx, "gep_" + inputs[i]->getName(), TI);
367 RewriteVal = new LoadInst(GEP, "loadgep_" + inputs[i]->getName(), TI);
368 } else
369 RewriteVal = AI++;
370
371 std::vector<User*> Users(inputs[i]->use_begin(), inputs[i]->use_end());
372 for (std::vector<User*>::iterator use = Users.begin(), useE = Users.end();
373 use != useE; ++use)
374 if (Instruction* inst = dyn_cast<Instruction>(*use))
375 if (Blocks.count(inst->getParent()))
376 inst->replaceUsesOfWith(inputs[i], RewriteVal);
377 }
378
379 // Set names for input and output arguments.
380 if (!AggregateArgs) {
381 AI = newFunction->arg_begin();
382 for (unsigned i = 0, e = inputs.size(); i != e; ++i, ++AI)
383 AI->setName(inputs[i]->getName());
384 for (unsigned i = 0, e = outputs.size(); i != e; ++i, ++AI)
385 AI->setName(outputs[i]->getName()+".out");
386 }
387
388 // Rewrite branches to basic blocks outside of the loop to new dummy blocks
389 // within the new function. This must be done before we lose track of which
390 // blocks were originally in the code region.
391 std::vector<User*> Users(header->use_begin(), header->use_end());
392 for (unsigned i = 0, e = Users.size(); i != e; ++i)
393 // The BasicBlock which contains the branch is not in the region
394 // modify the branch target to a new block
395 if (TerminatorInst *TI = dyn_cast<TerminatorInst>(Users[i]))
396 if (!Blocks.count(TI->getParent()) &&
397 TI->getParent()->getParent() == oldFunction)
398 TI->replaceUsesOfWith(header, newHeader);
399
400 return newFunction;
401 }
402
403 /// FindPhiPredForUseInBlock - Given a value and a basic block, find a PHI
404 /// that uses the value within the basic block, and return the predecessor
405 /// block associated with that use, or return 0 if none is found.
FindPhiPredForUseInBlock(Value * Used,BasicBlock * BB)406 static BasicBlock* FindPhiPredForUseInBlock(Value* Used, BasicBlock* BB) {
407 for (Value::use_iterator UI = Used->use_begin(),
408 UE = Used->use_end(); UI != UE; ++UI) {
409 PHINode *P = dyn_cast<PHINode>(*UI);
410 if (P && P->getParent() == BB)
411 return P->getIncomingBlock(UI);
412 }
413
414 return 0;
415 }
416
417 /// emitCallAndSwitchStatement - This method sets up the caller side by adding
418 /// the call instruction, splitting any PHI nodes in the header block as
419 /// necessary.
420 void CodeExtractor::
emitCallAndSwitchStatement(Function * newFunction,BasicBlock * codeReplacer,ValueSet & inputs,ValueSet & outputs)421 emitCallAndSwitchStatement(Function *newFunction, BasicBlock *codeReplacer,
422 ValueSet &inputs, ValueSet &outputs) {
423 // Emit a call to the new function, passing in: *pointer to struct (if
424 // aggregating parameters), or plan inputs and allocated memory for outputs
425 std::vector<Value*> params, StructValues, ReloadOutputs, Reloads;
426
427 LLVMContext &Context = newFunction->getContext();
428
429 // Add inputs as params, or to be filled into the struct
430 for (ValueSet::iterator i = inputs.begin(), e = inputs.end(); i != e; ++i)
431 if (AggregateArgs)
432 StructValues.push_back(*i);
433 else
434 params.push_back(*i);
435
436 // Create allocas for the outputs
437 for (ValueSet::iterator i = outputs.begin(), e = outputs.end(); i != e; ++i) {
438 if (AggregateArgs) {
439 StructValues.push_back(*i);
440 } else {
441 AllocaInst *alloca =
442 new AllocaInst((*i)->getType(), 0, (*i)->getName()+".loc",
443 codeReplacer->getParent()->begin()->begin());
444 ReloadOutputs.push_back(alloca);
445 params.push_back(alloca);
446 }
447 }
448
449 AllocaInst *Struct = 0;
450 if (AggregateArgs && (inputs.size() + outputs.size() > 0)) {
451 std::vector<Type*> ArgTypes;
452 for (ValueSet::iterator v = StructValues.begin(),
453 ve = StructValues.end(); v != ve; ++v)
454 ArgTypes.push_back((*v)->getType());
455
456 // Allocate a struct at the beginning of this function
457 Type *StructArgTy = StructType::get(newFunction->getContext(), ArgTypes);
458 Struct =
459 new AllocaInst(StructArgTy, 0, "structArg",
460 codeReplacer->getParent()->begin()->begin());
461 params.push_back(Struct);
462
463 for (unsigned i = 0, e = inputs.size(); i != e; ++i) {
464 Value *Idx[2];
465 Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context));
466 Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), i);
467 GetElementPtrInst *GEP =
468 GetElementPtrInst::Create(Struct, Idx,
469 "gep_" + StructValues[i]->getName());
470 codeReplacer->getInstList().push_back(GEP);
471 StoreInst *SI = new StoreInst(StructValues[i], GEP);
472 codeReplacer->getInstList().push_back(SI);
473 }
474 }
475
476 // Emit the call to the function
477 CallInst *call = CallInst::Create(newFunction, params,
478 NumExitBlocks > 1 ? "targetBlock" : "");
479 codeReplacer->getInstList().push_back(call);
480
481 Function::arg_iterator OutputArgBegin = newFunction->arg_begin();
482 unsigned FirstOut = inputs.size();
483 if (!AggregateArgs)
484 std::advance(OutputArgBegin, inputs.size());
485
486 // Reload the outputs passed in by reference
487 for (unsigned i = 0, e = outputs.size(); i != e; ++i) {
488 Value *Output = 0;
489 if (AggregateArgs) {
490 Value *Idx[2];
491 Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context));
492 Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), FirstOut + i);
493 GetElementPtrInst *GEP
494 = GetElementPtrInst::Create(Struct, Idx,
495 "gep_reload_" + outputs[i]->getName());
496 codeReplacer->getInstList().push_back(GEP);
497 Output = GEP;
498 } else {
499 Output = ReloadOutputs[i];
500 }
501 LoadInst *load = new LoadInst(Output, outputs[i]->getName()+".reload");
502 Reloads.push_back(load);
503 codeReplacer->getInstList().push_back(load);
504 std::vector<User*> Users(outputs[i]->use_begin(), outputs[i]->use_end());
505 for (unsigned u = 0, e = Users.size(); u != e; ++u) {
506 Instruction *inst = cast<Instruction>(Users[u]);
507 if (!Blocks.count(inst->getParent()))
508 inst->replaceUsesOfWith(outputs[i], load);
509 }
510 }
511
512 // Now we can emit a switch statement using the call as a value.
513 SwitchInst *TheSwitch =
514 SwitchInst::Create(Constant::getNullValue(Type::getInt16Ty(Context)),
515 codeReplacer, 0, codeReplacer);
516
517 // Since there may be multiple exits from the original region, make the new
518 // function return an unsigned, switch on that number. This loop iterates
519 // over all of the blocks in the extracted region, updating any terminator
520 // instructions in the to-be-extracted region that branch to blocks that are
521 // not in the region to be extracted.
522 std::map<BasicBlock*, BasicBlock*> ExitBlockMap;
523
524 unsigned switchVal = 0;
525 for (SetVector<BasicBlock*>::const_iterator i = Blocks.begin(),
526 e = Blocks.end(); i != e; ++i) {
527 TerminatorInst *TI = (*i)->getTerminator();
528 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
529 if (!Blocks.count(TI->getSuccessor(i))) {
530 BasicBlock *OldTarget = TI->getSuccessor(i);
531 // add a new basic block which returns the appropriate value
532 BasicBlock *&NewTarget = ExitBlockMap[OldTarget];
533 if (!NewTarget) {
534 // If we don't already have an exit stub for this non-extracted
535 // destination, create one now!
536 NewTarget = BasicBlock::Create(Context,
537 OldTarget->getName() + ".exitStub",
538 newFunction);
539 unsigned SuccNum = switchVal++;
540
541 Value *brVal = 0;
542 switch (NumExitBlocks) {
543 case 0:
544 case 1: break; // No value needed.
545 case 2: // Conditional branch, return a bool
546 brVal = ConstantInt::get(Type::getInt1Ty(Context), !SuccNum);
547 break;
548 default:
549 brVal = ConstantInt::get(Type::getInt16Ty(Context), SuccNum);
550 break;
551 }
552
553 ReturnInst *NTRet = ReturnInst::Create(Context, brVal, NewTarget);
554
555 // Update the switch instruction.
556 TheSwitch->addCase(ConstantInt::get(Type::getInt16Ty(Context),
557 SuccNum),
558 OldTarget);
559
560 // Restore values just before we exit
561 Function::arg_iterator OAI = OutputArgBegin;
562 for (unsigned out = 0, e = outputs.size(); out != e; ++out) {
563 // For an invoke, the normal destination is the only one that is
564 // dominated by the result of the invocation
565 BasicBlock *DefBlock = cast<Instruction>(outputs[out])->getParent();
566
567 bool DominatesDef = true;
568
569 if (InvokeInst *Invoke = dyn_cast<InvokeInst>(outputs[out])) {
570 DefBlock = Invoke->getNormalDest();
571
572 // Make sure we are looking at the original successor block, not
573 // at a newly inserted exit block, which won't be in the dominator
574 // info.
575 for (std::map<BasicBlock*, BasicBlock*>::iterator I =
576 ExitBlockMap.begin(), E = ExitBlockMap.end(); I != E; ++I)
577 if (DefBlock == I->second) {
578 DefBlock = I->first;
579 break;
580 }
581
582 // In the extract block case, if the block we are extracting ends
583 // with an invoke instruction, make sure that we don't emit a
584 // store of the invoke value for the unwind block.
585 if (!DT && DefBlock != OldTarget)
586 DominatesDef = false;
587 }
588
589 if (DT) {
590 DominatesDef = DT->dominates(DefBlock, OldTarget);
591
592 // If the output value is used by a phi in the target block,
593 // then we need to test for dominance of the phi's predecessor
594 // instead. Unfortunately, this a little complicated since we
595 // have already rewritten uses of the value to uses of the reload.
596 BasicBlock* pred = FindPhiPredForUseInBlock(Reloads[out],
597 OldTarget);
598 if (pred && DT && DT->dominates(DefBlock, pred))
599 DominatesDef = true;
600 }
601
602 if (DominatesDef) {
603 if (AggregateArgs) {
604 Value *Idx[2];
605 Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context));
606 Idx[1] = ConstantInt::get(Type::getInt32Ty(Context),
607 FirstOut+out);
608 GetElementPtrInst *GEP =
609 GetElementPtrInst::Create(OAI, Idx,
610 "gep_" + outputs[out]->getName(),
611 NTRet);
612 new StoreInst(outputs[out], GEP, NTRet);
613 } else {
614 new StoreInst(outputs[out], OAI, NTRet);
615 }
616 }
617 // Advance output iterator even if we don't emit a store
618 if (!AggregateArgs) ++OAI;
619 }
620 }
621
622 // rewrite the original branch instruction with this new target
623 TI->setSuccessor(i, NewTarget);
624 }
625 }
626
627 // Now that we've done the deed, simplify the switch instruction.
628 Type *OldFnRetTy = TheSwitch->getParent()->getParent()->getReturnType();
629 switch (NumExitBlocks) {
630 case 0:
631 // There are no successors (the block containing the switch itself), which
632 // means that previously this was the last part of the function, and hence
633 // this should be rewritten as a `ret'
634
635 // Check if the function should return a value
636 if (OldFnRetTy->isVoidTy()) {
637 ReturnInst::Create(Context, 0, TheSwitch); // Return void
638 } else if (OldFnRetTy == TheSwitch->getCondition()->getType()) {
639 // return what we have
640 ReturnInst::Create(Context, TheSwitch->getCondition(), TheSwitch);
641 } else {
642 // Otherwise we must have code extracted an unwind or something, just
643 // return whatever we want.
644 ReturnInst::Create(Context,
645 Constant::getNullValue(OldFnRetTy), TheSwitch);
646 }
647
648 TheSwitch->eraseFromParent();
649 break;
650 case 1:
651 // Only a single destination, change the switch into an unconditional
652 // branch.
653 BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch);
654 TheSwitch->eraseFromParent();
655 break;
656 case 2:
657 BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch->getSuccessor(2),
658 call, TheSwitch);
659 TheSwitch->eraseFromParent();
660 break;
661 default:
662 // Otherwise, make the default destination of the switch instruction be one
663 // of the other successors.
664 TheSwitch->setCondition(call);
665 TheSwitch->setDefaultDest(TheSwitch->getSuccessor(NumExitBlocks));
666 // Remove redundant case
667 SwitchInst::CaseIt ToBeRemoved(TheSwitch, NumExitBlocks-1);
668 TheSwitch->removeCase(ToBeRemoved);
669 break;
670 }
671 }
672
moveCodeToFunction(Function * newFunction)673 void CodeExtractor::moveCodeToFunction(Function *newFunction) {
674 Function *oldFunc = (*Blocks.begin())->getParent();
675 Function::BasicBlockListType &oldBlocks = oldFunc->getBasicBlockList();
676 Function::BasicBlockListType &newBlocks = newFunction->getBasicBlockList();
677
678 for (SetVector<BasicBlock*>::const_iterator i = Blocks.begin(),
679 e = Blocks.end(); i != e; ++i) {
680 // Delete the basic block from the old function, and the list of blocks
681 oldBlocks.remove(*i);
682
683 // Insert this basic block into the new function
684 newBlocks.push_back(*i);
685 }
686 }
687
extractCodeRegion()688 Function *CodeExtractor::extractCodeRegion() {
689 if (!isEligible())
690 return 0;
691
692 ValueSet inputs, outputs;
693
694 // Assumption: this is a single-entry code region, and the header is the first
695 // block in the region.
696 BasicBlock *header = *Blocks.begin();
697
698 // If we have to split PHI nodes or the entry block, do so now.
699 severSplitPHINodes(header);
700
701 // If we have any return instructions in the region, split those blocks so
702 // that the return is not in the region.
703 splitReturnBlocks();
704
705 Function *oldFunction = header->getParent();
706
707 // This takes place of the original loop
708 BasicBlock *codeReplacer = BasicBlock::Create(header->getContext(),
709 "codeRepl", oldFunction,
710 header);
711
712 // The new function needs a root node because other nodes can branch to the
713 // head of the region, but the entry node of a function cannot have preds.
714 BasicBlock *newFuncRoot = BasicBlock::Create(header->getContext(),
715 "newFuncRoot");
716 newFuncRoot->getInstList().push_back(BranchInst::Create(header));
717
718 // Find inputs to, outputs from the code region.
719 findInputsOutputs(inputs, outputs);
720
721 SmallPtrSet<BasicBlock *, 1> ExitBlocks;
722 for (SetVector<BasicBlock *>::iterator I = Blocks.begin(), E = Blocks.end();
723 I != E; ++I)
724 for (succ_iterator SI = succ_begin(*I), SE = succ_end(*I); SI != SE; ++SI)
725 if (!Blocks.count(*SI))
726 ExitBlocks.insert(*SI);
727 NumExitBlocks = ExitBlocks.size();
728
729 // Construct new function based on inputs/outputs & add allocas for all defs.
730 Function *newFunction = constructFunction(inputs, outputs, header,
731 newFuncRoot,
732 codeReplacer, oldFunction,
733 oldFunction->getParent());
734
735 emitCallAndSwitchStatement(newFunction, codeReplacer, inputs, outputs);
736
737 moveCodeToFunction(newFunction);
738
739 // Loop over all of the PHI nodes in the header block, and change any
740 // references to the old incoming edge to be the new incoming edge.
741 for (BasicBlock::iterator I = header->begin(); isa<PHINode>(I); ++I) {
742 PHINode *PN = cast<PHINode>(I);
743 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
744 if (!Blocks.count(PN->getIncomingBlock(i)))
745 PN->setIncomingBlock(i, newFuncRoot);
746 }
747
748 // Look at all successors of the codeReplacer block. If any of these blocks
749 // had PHI nodes in them, we need to update the "from" block to be the code
750 // replacer, not the original block in the extracted region.
751 std::vector<BasicBlock*> Succs(succ_begin(codeReplacer),
752 succ_end(codeReplacer));
753 for (unsigned i = 0, e = Succs.size(); i != e; ++i)
754 for (BasicBlock::iterator I = Succs[i]->begin(); isa<PHINode>(I); ++I) {
755 PHINode *PN = cast<PHINode>(I);
756 std::set<BasicBlock*> ProcessedPreds;
757 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
758 if (Blocks.count(PN->getIncomingBlock(i))) {
759 if (ProcessedPreds.insert(PN->getIncomingBlock(i)).second)
760 PN->setIncomingBlock(i, codeReplacer);
761 else {
762 // There were multiple entries in the PHI for this block, now there
763 // is only one, so remove the duplicated entries.
764 PN->removeIncomingValue(i, false);
765 --i; --e;
766 }
767 }
768 }
769
770 //cerr << "NEW FUNCTION: " << *newFunction;
771 // verifyFunction(*newFunction);
772
773 // cerr << "OLD FUNCTION: " << *oldFunction;
774 // verifyFunction(*oldFunction);
775
776 DEBUG(if (verifyFunction(*newFunction))
777 report_fatal_error("verifyFunction failed!"));
778 return newFunction;
779 }
780