1 //===-- Local.cpp - Functions to perform local transformations ------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This family of functions perform various local transformations to the
11 // program.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "llvm/Transforms/Utils/Local.h"
16 #include "llvm/Constants.h"
17 #include "llvm/DIBuilder.h"
18 #include "llvm/DebugInfo.h"
19 #include "llvm/DerivedTypes.h"
20 #include "llvm/GlobalAlias.h"
21 #include "llvm/GlobalVariable.h"
22 #include "llvm/IRBuilder.h"
23 #include "llvm/Instructions.h"
24 #include "llvm/IntrinsicInst.h"
25 #include "llvm/Intrinsics.h"
26 #include "llvm/Metadata.h"
27 #include "llvm/Operator.h"
28 #include "llvm/ADT/DenseMap.h"
29 #include "llvm/ADT/SmallPtrSet.h"
30 #include "llvm/Analysis/Dominators.h"
31 #include "llvm/Analysis/InstructionSimplify.h"
32 #include "llvm/Analysis/MemoryBuiltins.h"
33 #include "llvm/Analysis/ProfileInfo.h"
34 #include "llvm/Analysis/ValueTracking.h"
35 #include "llvm/Support/CFG.h"
36 #include "llvm/Support/Debug.h"
37 #include "llvm/Support/GetElementPtrTypeIterator.h"
38 #include "llvm/Support/MathExtras.h"
39 #include "llvm/Support/ValueHandle.h"
40 #include "llvm/Support/raw_ostream.h"
41 #include "llvm/Target/TargetData.h"
42 using namespace llvm;
43
44 //===----------------------------------------------------------------------===//
45 // Local constant propagation.
46 //
47
48 /// ConstantFoldTerminator - If a terminator instruction is predicated on a
49 /// constant value, convert it into an unconditional branch to the constant
50 /// destination. This is a nontrivial operation because the successors of this
51 /// basic block must have their PHI nodes updated.
52 /// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch
53 /// conditions and indirectbr addresses this might make dead if
54 /// DeleteDeadConditions is true.
ConstantFoldTerminator(BasicBlock * BB,bool DeleteDeadConditions,const TargetLibraryInfo * TLI)55 bool llvm::ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions,
56 const TargetLibraryInfo *TLI) {
57 TerminatorInst *T = BB->getTerminator();
58 IRBuilder<> Builder(T);
59
60 // Branch - See if we are conditional jumping on constant
61 if (BranchInst *BI = dyn_cast<BranchInst>(T)) {
62 if (BI->isUnconditional()) return false; // Can't optimize uncond branch
63 BasicBlock *Dest1 = BI->getSuccessor(0);
64 BasicBlock *Dest2 = BI->getSuccessor(1);
65
66 if (ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition())) {
67 // Are we branching on constant?
68 // YES. Change to unconditional branch...
69 BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2;
70 BasicBlock *OldDest = Cond->getZExtValue() ? Dest2 : Dest1;
71
72 //cerr << "Function: " << T->getParent()->getParent()
73 // << "\nRemoving branch from " << T->getParent()
74 // << "\n\nTo: " << OldDest << endl;
75
76 // Let the basic block know that we are letting go of it. Based on this,
77 // it will adjust it's PHI nodes.
78 OldDest->removePredecessor(BB);
79
80 // Replace the conditional branch with an unconditional one.
81 Builder.CreateBr(Destination);
82 BI->eraseFromParent();
83 return true;
84 }
85
86 if (Dest2 == Dest1) { // Conditional branch to same location?
87 // This branch matches something like this:
88 // br bool %cond, label %Dest, label %Dest
89 // and changes it into: br label %Dest
90
91 // Let the basic block know that we are letting go of one copy of it.
92 assert(BI->getParent() && "Terminator not inserted in block!");
93 Dest1->removePredecessor(BI->getParent());
94
95 // Replace the conditional branch with an unconditional one.
96 Builder.CreateBr(Dest1);
97 Value *Cond = BI->getCondition();
98 BI->eraseFromParent();
99 if (DeleteDeadConditions)
100 RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI);
101 return true;
102 }
103 return false;
104 }
105
106 if (SwitchInst *SI = dyn_cast<SwitchInst>(T)) {
107 // If we are switching on a constant, we can convert the switch into a
108 // single branch instruction!
109 ConstantInt *CI = dyn_cast<ConstantInt>(SI->getCondition());
110 BasicBlock *TheOnlyDest = SI->getDefaultDest();
111 BasicBlock *DefaultDest = TheOnlyDest;
112
113 // Figure out which case it goes to.
114 for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
115 i != e; ++i) {
116 // Found case matching a constant operand?
117 if (i.getCaseValue() == CI) {
118 TheOnlyDest = i.getCaseSuccessor();
119 break;
120 }
121
122 // Check to see if this branch is going to the same place as the default
123 // dest. If so, eliminate it as an explicit compare.
124 if (i.getCaseSuccessor() == DefaultDest) {
125 // Remove this entry.
126 DefaultDest->removePredecessor(SI->getParent());
127 SI->removeCase(i);
128 --i; --e;
129 continue;
130 }
131
132 // Otherwise, check to see if the switch only branches to one destination.
133 // We do this by reseting "TheOnlyDest" to null when we find two non-equal
134 // destinations.
135 if (i.getCaseSuccessor() != TheOnlyDest) TheOnlyDest = 0;
136 }
137
138 if (CI && !TheOnlyDest) {
139 // Branching on a constant, but not any of the cases, go to the default
140 // successor.
141 TheOnlyDest = SI->getDefaultDest();
142 }
143
144 // If we found a single destination that we can fold the switch into, do so
145 // now.
146 if (TheOnlyDest) {
147 // Insert the new branch.
148 Builder.CreateBr(TheOnlyDest);
149 BasicBlock *BB = SI->getParent();
150
151 // Remove entries from PHI nodes which we no longer branch to...
152 for (unsigned i = 0, e = SI->getNumSuccessors(); i != e; ++i) {
153 // Found case matching a constant operand?
154 BasicBlock *Succ = SI->getSuccessor(i);
155 if (Succ == TheOnlyDest)
156 TheOnlyDest = 0; // Don't modify the first branch to TheOnlyDest
157 else
158 Succ->removePredecessor(BB);
159 }
160
161 // Delete the old switch.
162 Value *Cond = SI->getCondition();
163 SI->eraseFromParent();
164 if (DeleteDeadConditions)
165 RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI);
166 return true;
167 }
168
169 if (SI->getNumCases() == 1) {
170 // Otherwise, we can fold this switch into a conditional branch
171 // instruction if it has only one non-default destination.
172 SwitchInst::CaseIt FirstCase = SI->case_begin();
173 IntegersSubset& Case = FirstCase.getCaseValueEx();
174 if (Case.isSingleNumber()) {
175 // FIXME: Currently work with ConstantInt based numbers.
176 Value *Cond = Builder.CreateICmpEQ(SI->getCondition(),
177 Case.getSingleNumber(0).toConstantInt(),
178 "cond");
179
180 // Insert the new branch.
181 Builder.CreateCondBr(Cond, FirstCase.getCaseSuccessor(),
182 SI->getDefaultDest());
183
184 // Delete the old switch.
185 SI->eraseFromParent();
186 return true;
187 }
188 }
189 return false;
190 }
191
192 if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(T)) {
193 // indirectbr blockaddress(@F, @BB) -> br label @BB
194 if (BlockAddress *BA =
195 dyn_cast<BlockAddress>(IBI->getAddress()->stripPointerCasts())) {
196 BasicBlock *TheOnlyDest = BA->getBasicBlock();
197 // Insert the new branch.
198 Builder.CreateBr(TheOnlyDest);
199
200 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
201 if (IBI->getDestination(i) == TheOnlyDest)
202 TheOnlyDest = 0;
203 else
204 IBI->getDestination(i)->removePredecessor(IBI->getParent());
205 }
206 Value *Address = IBI->getAddress();
207 IBI->eraseFromParent();
208 if (DeleteDeadConditions)
209 RecursivelyDeleteTriviallyDeadInstructions(Address, TLI);
210
211 // If we didn't find our destination in the IBI successor list, then we
212 // have undefined behavior. Replace the unconditional branch with an
213 // 'unreachable' instruction.
214 if (TheOnlyDest) {
215 BB->getTerminator()->eraseFromParent();
216 new UnreachableInst(BB->getContext(), BB);
217 }
218
219 return true;
220 }
221 }
222
223 return false;
224 }
225
226
227 //===----------------------------------------------------------------------===//
228 // Local dead code elimination.
229 //
230
231 /// isInstructionTriviallyDead - Return true if the result produced by the
232 /// instruction is not used, and the instruction has no side effects.
233 ///
isInstructionTriviallyDead(Instruction * I,const TargetLibraryInfo * TLI)234 bool llvm::isInstructionTriviallyDead(Instruction *I,
235 const TargetLibraryInfo *TLI) {
236 if (!I->use_empty() || isa<TerminatorInst>(I)) return false;
237
238 // We don't want the landingpad instruction removed by anything this general.
239 if (isa<LandingPadInst>(I))
240 return false;
241
242 // We don't want debug info removed by anything this general, unless
243 // debug info is empty.
244 if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(I)) {
245 if (DDI->getAddress())
246 return false;
247 return true;
248 }
249 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(I)) {
250 if (DVI->getValue())
251 return false;
252 return true;
253 }
254
255 if (!I->mayHaveSideEffects()) return true;
256
257 // Special case intrinsics that "may have side effects" but can be deleted
258 // when dead.
259 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
260 // Safe to delete llvm.stacksave if dead.
261 if (II->getIntrinsicID() == Intrinsic::stacksave)
262 return true;
263
264 // Lifetime intrinsics are dead when their right-hand is undef.
265 if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
266 II->getIntrinsicID() == Intrinsic::lifetime_end)
267 return isa<UndefValue>(II->getArgOperand(1));
268 }
269
270 if (isAllocLikeFn(I, TLI)) return true;
271
272 if (CallInst *CI = isFreeCall(I, TLI))
273 if (Constant *C = dyn_cast<Constant>(CI->getArgOperand(0)))
274 return C->isNullValue() || isa<UndefValue>(C);
275
276 return false;
277 }
278
279 /// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a
280 /// trivially dead instruction, delete it. If that makes any of its operands
281 /// trivially dead, delete them too, recursively. Return true if any
282 /// instructions were deleted.
283 bool
RecursivelyDeleteTriviallyDeadInstructions(Value * V,const TargetLibraryInfo * TLI)284 llvm::RecursivelyDeleteTriviallyDeadInstructions(Value *V,
285 const TargetLibraryInfo *TLI) {
286 Instruction *I = dyn_cast<Instruction>(V);
287 if (!I || !I->use_empty() || !isInstructionTriviallyDead(I, TLI))
288 return false;
289
290 SmallVector<Instruction*, 16> DeadInsts;
291 DeadInsts.push_back(I);
292
293 do {
294 I = DeadInsts.pop_back_val();
295
296 // Null out all of the instruction's operands to see if any operand becomes
297 // dead as we go.
298 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
299 Value *OpV = I->getOperand(i);
300 I->setOperand(i, 0);
301
302 if (!OpV->use_empty()) continue;
303
304 // If the operand is an instruction that became dead as we nulled out the
305 // operand, and if it is 'trivially' dead, delete it in a future loop
306 // iteration.
307 if (Instruction *OpI = dyn_cast<Instruction>(OpV))
308 if (isInstructionTriviallyDead(OpI, TLI))
309 DeadInsts.push_back(OpI);
310 }
311
312 I->eraseFromParent();
313 } while (!DeadInsts.empty());
314
315 return true;
316 }
317
318 /// areAllUsesEqual - Check whether the uses of a value are all the same.
319 /// This is similar to Instruction::hasOneUse() except this will also return
320 /// true when there are no uses or multiple uses that all refer to the same
321 /// value.
areAllUsesEqual(Instruction * I)322 static bool areAllUsesEqual(Instruction *I) {
323 Value::use_iterator UI = I->use_begin();
324 Value::use_iterator UE = I->use_end();
325 if (UI == UE)
326 return true;
327
328 User *TheUse = *UI;
329 for (++UI; UI != UE; ++UI) {
330 if (*UI != TheUse)
331 return false;
332 }
333 return true;
334 }
335
336 /// RecursivelyDeleteDeadPHINode - If the specified value is an effectively
337 /// dead PHI node, due to being a def-use chain of single-use nodes that
338 /// either forms a cycle or is terminated by a trivially dead instruction,
339 /// delete it. If that makes any of its operands trivially dead, delete them
340 /// too, recursively. Return true if a change was made.
RecursivelyDeleteDeadPHINode(PHINode * PN,const TargetLibraryInfo * TLI)341 bool llvm::RecursivelyDeleteDeadPHINode(PHINode *PN,
342 const TargetLibraryInfo *TLI) {
343 SmallPtrSet<Instruction*, 4> Visited;
344 for (Instruction *I = PN; areAllUsesEqual(I) && !I->mayHaveSideEffects();
345 I = cast<Instruction>(*I->use_begin())) {
346 if (I->use_empty())
347 return RecursivelyDeleteTriviallyDeadInstructions(I, TLI);
348
349 // If we find an instruction more than once, we're on a cycle that
350 // won't prove fruitful.
351 if (!Visited.insert(I)) {
352 // Break the cycle and delete the instruction and its operands.
353 I->replaceAllUsesWith(UndefValue::get(I->getType()));
354 (void)RecursivelyDeleteTriviallyDeadInstructions(I, TLI);
355 return true;
356 }
357 }
358 return false;
359 }
360
361 /// SimplifyInstructionsInBlock - Scan the specified basic block and try to
362 /// simplify any instructions in it and recursively delete dead instructions.
363 ///
364 /// This returns true if it changed the code, note that it can delete
365 /// instructions in other blocks as well in this block.
SimplifyInstructionsInBlock(BasicBlock * BB,const TargetData * TD,const TargetLibraryInfo * TLI)366 bool llvm::SimplifyInstructionsInBlock(BasicBlock *BB, const TargetData *TD,
367 const TargetLibraryInfo *TLI) {
368 bool MadeChange = false;
369
370 #ifndef NDEBUG
371 // In debug builds, ensure that the terminator of the block is never replaced
372 // or deleted by these simplifications. The idea of simplification is that it
373 // cannot introduce new instructions, and there is no way to replace the
374 // terminator of a block without introducing a new instruction.
375 AssertingVH<Instruction> TerminatorVH(--BB->end());
376 #endif
377
378 for (BasicBlock::iterator BI = BB->begin(), E = --BB->end(); BI != E; ) {
379 assert(!BI->isTerminator());
380 Instruction *Inst = BI++;
381
382 WeakVH BIHandle(BI);
383 if (recursivelySimplifyInstruction(Inst, TD)) {
384 MadeChange = true;
385 if (BIHandle != BI)
386 BI = BB->begin();
387 continue;
388 }
389
390 MadeChange |= RecursivelyDeleteTriviallyDeadInstructions(Inst, TLI);
391 if (BIHandle != BI)
392 BI = BB->begin();
393 }
394 return MadeChange;
395 }
396
397 //===----------------------------------------------------------------------===//
398 // Control Flow Graph Restructuring.
399 //
400
401
402 /// RemovePredecessorAndSimplify - Like BasicBlock::removePredecessor, this
403 /// method is called when we're about to delete Pred as a predecessor of BB. If
404 /// BB contains any PHI nodes, this drops the entries in the PHI nodes for Pred.
405 ///
406 /// Unlike the removePredecessor method, this attempts to simplify uses of PHI
407 /// nodes that collapse into identity values. For example, if we have:
408 /// x = phi(1, 0, 0, 0)
409 /// y = and x, z
410 ///
411 /// .. and delete the predecessor corresponding to the '1', this will attempt to
412 /// recursively fold the and to 0.
RemovePredecessorAndSimplify(BasicBlock * BB,BasicBlock * Pred,TargetData * TD)413 void llvm::RemovePredecessorAndSimplify(BasicBlock *BB, BasicBlock *Pred,
414 TargetData *TD) {
415 // This only adjusts blocks with PHI nodes.
416 if (!isa<PHINode>(BB->begin()))
417 return;
418
419 // Remove the entries for Pred from the PHI nodes in BB, but do not simplify
420 // them down. This will leave us with single entry phi nodes and other phis
421 // that can be removed.
422 BB->removePredecessor(Pred, true);
423
424 WeakVH PhiIt = &BB->front();
425 while (PHINode *PN = dyn_cast<PHINode>(PhiIt)) {
426 PhiIt = &*++BasicBlock::iterator(cast<Instruction>(PhiIt));
427 Value *OldPhiIt = PhiIt;
428
429 if (!recursivelySimplifyInstruction(PN, TD))
430 continue;
431
432 // If recursive simplification ended up deleting the next PHI node we would
433 // iterate to, then our iterator is invalid, restart scanning from the top
434 // of the block.
435 if (PhiIt != OldPhiIt) PhiIt = &BB->front();
436 }
437 }
438
439
440 /// MergeBasicBlockIntoOnlyPred - DestBB is a block with one predecessor and its
441 /// predecessor is known to have one successor (DestBB!). Eliminate the edge
442 /// between them, moving the instructions in the predecessor into DestBB and
443 /// deleting the predecessor block.
444 ///
MergeBasicBlockIntoOnlyPred(BasicBlock * DestBB,Pass * P)445 void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB, Pass *P) {
446 // If BB has single-entry PHI nodes, fold them.
447 while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) {
448 Value *NewVal = PN->getIncomingValue(0);
449 // Replace self referencing PHI with undef, it must be dead.
450 if (NewVal == PN) NewVal = UndefValue::get(PN->getType());
451 PN->replaceAllUsesWith(NewVal);
452 PN->eraseFromParent();
453 }
454
455 BasicBlock *PredBB = DestBB->getSinglePredecessor();
456 assert(PredBB && "Block doesn't have a single predecessor!");
457
458 // Zap anything that took the address of DestBB. Not doing this will give the
459 // address an invalid value.
460 if (DestBB->hasAddressTaken()) {
461 BlockAddress *BA = BlockAddress::get(DestBB);
462 Constant *Replacement =
463 ConstantInt::get(llvm::Type::getInt32Ty(BA->getContext()), 1);
464 BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement,
465 BA->getType()));
466 BA->destroyConstant();
467 }
468
469 // Anything that branched to PredBB now branches to DestBB.
470 PredBB->replaceAllUsesWith(DestBB);
471
472 // Splice all the instructions from PredBB to DestBB.
473 PredBB->getTerminator()->eraseFromParent();
474 DestBB->getInstList().splice(DestBB->begin(), PredBB->getInstList());
475
476 if (P) {
477 DominatorTree *DT = P->getAnalysisIfAvailable<DominatorTree>();
478 if (DT) {
479 BasicBlock *PredBBIDom = DT->getNode(PredBB)->getIDom()->getBlock();
480 DT->changeImmediateDominator(DestBB, PredBBIDom);
481 DT->eraseNode(PredBB);
482 }
483 ProfileInfo *PI = P->getAnalysisIfAvailable<ProfileInfo>();
484 if (PI) {
485 PI->replaceAllUses(PredBB, DestBB);
486 PI->removeEdge(ProfileInfo::getEdge(PredBB, DestBB));
487 }
488 }
489 // Nuke BB.
490 PredBB->eraseFromParent();
491 }
492
493 /// CanPropagatePredecessorsForPHIs - Return true if we can fold BB, an
494 /// almost-empty BB ending in an unconditional branch to Succ, into succ.
495 ///
496 /// Assumption: Succ is the single successor for BB.
497 ///
CanPropagatePredecessorsForPHIs(BasicBlock * BB,BasicBlock * Succ)498 static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) {
499 assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!");
500
501 DEBUG(dbgs() << "Looking to fold " << BB->getName() << " into "
502 << Succ->getName() << "\n");
503 // Shortcut, if there is only a single predecessor it must be BB and merging
504 // is always safe
505 if (Succ->getSinglePredecessor()) return true;
506
507 // Make a list of the predecessors of BB
508 SmallPtrSet<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB));
509
510 // Look at all the phi nodes in Succ, to see if they present a conflict when
511 // merging these blocks
512 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
513 PHINode *PN = cast<PHINode>(I);
514
515 // If the incoming value from BB is again a PHINode in
516 // BB which has the same incoming value for *PI as PN does, we can
517 // merge the phi nodes and then the blocks can still be merged
518 PHINode *BBPN = dyn_cast<PHINode>(PN->getIncomingValueForBlock(BB));
519 if (BBPN && BBPN->getParent() == BB) {
520 for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) {
521 BasicBlock *IBB = PN->getIncomingBlock(PI);
522 if (BBPreds.count(IBB) &&
523 BBPN->getIncomingValueForBlock(IBB) != PN->getIncomingValue(PI)) {
524 DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() << " in "
525 << Succ->getName() << " is conflicting with "
526 << BBPN->getName() << " with regard to common predecessor "
527 << IBB->getName() << "\n");
528 return false;
529 }
530 }
531 } else {
532 Value* Val = PN->getIncomingValueForBlock(BB);
533 for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) {
534 // See if the incoming value for the common predecessor is equal to the
535 // one for BB, in which case this phi node will not prevent the merging
536 // of the block.
537 BasicBlock *IBB = PN->getIncomingBlock(PI);
538 if (BBPreds.count(IBB) && Val != PN->getIncomingValue(PI)) {
539 DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() << " in "
540 << Succ->getName() << " is conflicting with regard to common "
541 << "predecessor " << IBB->getName() << "\n");
542 return false;
543 }
544 }
545 }
546 }
547
548 return true;
549 }
550
551 /// TryToSimplifyUncondBranchFromEmptyBlock - BB is known to contain an
552 /// unconditional branch, and contains no instructions other than PHI nodes,
553 /// potential side-effect free intrinsics and the branch. If possible,
554 /// eliminate BB by rewriting all the predecessors to branch to the successor
555 /// block and return true. If we can't transform, return false.
TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock * BB)556 bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB) {
557 assert(BB != &BB->getParent()->getEntryBlock() &&
558 "TryToSimplifyUncondBranchFromEmptyBlock called on entry block!");
559
560 // We can't eliminate infinite loops.
561 BasicBlock *Succ = cast<BranchInst>(BB->getTerminator())->getSuccessor(0);
562 if (BB == Succ) return false;
563
564 // Check to see if merging these blocks would cause conflicts for any of the
565 // phi nodes in BB or Succ. If not, we can safely merge.
566 if (!CanPropagatePredecessorsForPHIs(BB, Succ)) return false;
567
568 // Check for cases where Succ has multiple predecessors and a PHI node in BB
569 // has uses which will not disappear when the PHI nodes are merged. It is
570 // possible to handle such cases, but difficult: it requires checking whether
571 // BB dominates Succ, which is non-trivial to calculate in the case where
572 // Succ has multiple predecessors. Also, it requires checking whether
573 // constructing the necessary self-referential PHI node doesn't intoduce any
574 // conflicts; this isn't too difficult, but the previous code for doing this
575 // was incorrect.
576 //
577 // Note that if this check finds a live use, BB dominates Succ, so BB is
578 // something like a loop pre-header (or rarely, a part of an irreducible CFG);
579 // folding the branch isn't profitable in that case anyway.
580 if (!Succ->getSinglePredecessor()) {
581 BasicBlock::iterator BBI = BB->begin();
582 while (isa<PHINode>(*BBI)) {
583 for (Value::use_iterator UI = BBI->use_begin(), E = BBI->use_end();
584 UI != E; ++UI) {
585 if (PHINode* PN = dyn_cast<PHINode>(*UI)) {
586 if (PN->getIncomingBlock(UI) != BB)
587 return false;
588 } else {
589 return false;
590 }
591 }
592 ++BBI;
593 }
594 }
595
596 DEBUG(dbgs() << "Killing Trivial BB: \n" << *BB);
597
598 if (isa<PHINode>(Succ->begin())) {
599 // If there is more than one pred of succ, and there are PHI nodes in
600 // the successor, then we need to add incoming edges for the PHI nodes
601 //
602 const SmallVector<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB));
603
604 // Loop over all of the PHI nodes in the successor of BB.
605 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
606 PHINode *PN = cast<PHINode>(I);
607 Value *OldVal = PN->removeIncomingValue(BB, false);
608 assert(OldVal && "No entry in PHI for Pred BB!");
609
610 // If this incoming value is one of the PHI nodes in BB, the new entries
611 // in the PHI node are the entries from the old PHI.
612 if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) {
613 PHINode *OldValPN = cast<PHINode>(OldVal);
614 for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i)
615 // Note that, since we are merging phi nodes and BB and Succ might
616 // have common predecessors, we could end up with a phi node with
617 // identical incoming branches. This will be cleaned up later (and
618 // will trigger asserts if we try to clean it up now, without also
619 // simplifying the corresponding conditional branch).
620 PN->addIncoming(OldValPN->getIncomingValue(i),
621 OldValPN->getIncomingBlock(i));
622 } else {
623 // Add an incoming value for each of the new incoming values.
624 for (unsigned i = 0, e = BBPreds.size(); i != e; ++i)
625 PN->addIncoming(OldVal, BBPreds[i]);
626 }
627 }
628 }
629
630 if (Succ->getSinglePredecessor()) {
631 // BB is the only predecessor of Succ, so Succ will end up with exactly
632 // the same predecessors BB had.
633
634 // Copy over any phi, debug or lifetime instruction.
635 BB->getTerminator()->eraseFromParent();
636 Succ->getInstList().splice(Succ->getFirstNonPHI(), BB->getInstList());
637 } else {
638 while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) {
639 // We explicitly check for such uses in CanPropagatePredecessorsForPHIs.
640 assert(PN->use_empty() && "There shouldn't be any uses here!");
641 PN->eraseFromParent();
642 }
643 }
644
645 // Everything that jumped to BB now goes to Succ.
646 BB->replaceAllUsesWith(Succ);
647 if (!Succ->hasName()) Succ->takeName(BB);
648 BB->eraseFromParent(); // Delete the old basic block.
649 return true;
650 }
651
652 /// EliminateDuplicatePHINodes - Check for and eliminate duplicate PHI
653 /// nodes in this block. This doesn't try to be clever about PHI nodes
654 /// which differ only in the order of the incoming values, but instcombine
655 /// orders them so it usually won't matter.
656 ///
EliminateDuplicatePHINodes(BasicBlock * BB)657 bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB) {
658 bool Changed = false;
659
660 // This implementation doesn't currently consider undef operands
661 // specially. Theoretically, two phis which are identical except for
662 // one having an undef where the other doesn't could be collapsed.
663
664 // Map from PHI hash values to PHI nodes. If multiple PHIs have
665 // the same hash value, the element is the first PHI in the
666 // linked list in CollisionMap.
667 DenseMap<uintptr_t, PHINode *> HashMap;
668
669 // Maintain linked lists of PHI nodes with common hash values.
670 DenseMap<PHINode *, PHINode *> CollisionMap;
671
672 // Examine each PHI.
673 for (BasicBlock::iterator I = BB->begin();
674 PHINode *PN = dyn_cast<PHINode>(I++); ) {
675 // Compute a hash value on the operands. Instcombine will likely have sorted
676 // them, which helps expose duplicates, but we have to check all the
677 // operands to be safe in case instcombine hasn't run.
678 uintptr_t Hash = 0;
679 // This hash algorithm is quite weak as hash functions go, but it seems
680 // to do a good enough job for this particular purpose, and is very quick.
681 for (User::op_iterator I = PN->op_begin(), E = PN->op_end(); I != E; ++I) {
682 Hash ^= reinterpret_cast<uintptr_t>(static_cast<Value *>(*I));
683 Hash = (Hash << 7) | (Hash >> (sizeof(uintptr_t) * CHAR_BIT - 7));
684 }
685 for (PHINode::block_iterator I = PN->block_begin(), E = PN->block_end();
686 I != E; ++I) {
687 Hash ^= reinterpret_cast<uintptr_t>(static_cast<BasicBlock *>(*I));
688 Hash = (Hash << 7) | (Hash >> (sizeof(uintptr_t) * CHAR_BIT - 7));
689 }
690 // Avoid colliding with the DenseMap sentinels ~0 and ~0-1.
691 Hash >>= 1;
692 // If we've never seen this hash value before, it's a unique PHI.
693 std::pair<DenseMap<uintptr_t, PHINode *>::iterator, bool> Pair =
694 HashMap.insert(std::make_pair(Hash, PN));
695 if (Pair.second) continue;
696 // Otherwise it's either a duplicate or a hash collision.
697 for (PHINode *OtherPN = Pair.first->second; ; ) {
698 if (OtherPN->isIdenticalTo(PN)) {
699 // A duplicate. Replace this PHI with its duplicate.
700 PN->replaceAllUsesWith(OtherPN);
701 PN->eraseFromParent();
702 Changed = true;
703 break;
704 }
705 // A non-duplicate hash collision.
706 DenseMap<PHINode *, PHINode *>::iterator I = CollisionMap.find(OtherPN);
707 if (I == CollisionMap.end()) {
708 // Set this PHI to be the head of the linked list of colliding PHIs.
709 PHINode *Old = Pair.first->second;
710 Pair.first->second = PN;
711 CollisionMap[PN] = Old;
712 break;
713 }
714 // Proceed to the next PHI in the list.
715 OtherPN = I->second;
716 }
717 }
718
719 return Changed;
720 }
721
722 /// enforceKnownAlignment - If the specified pointer points to an object that
723 /// we control, modify the object's alignment to PrefAlign. This isn't
724 /// often possible though. If alignment is important, a more reliable approach
725 /// is to simply align all global variables and allocation instructions to
726 /// their preferred alignment from the beginning.
727 ///
enforceKnownAlignment(Value * V,unsigned Align,unsigned PrefAlign,const TargetData * TD)728 static unsigned enforceKnownAlignment(Value *V, unsigned Align,
729 unsigned PrefAlign, const TargetData *TD) {
730 V = V->stripPointerCasts();
731
732 if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
733 // If the preferred alignment is greater than the natural stack alignment
734 // then don't round up. This avoids dynamic stack realignment.
735 if (TD && TD->exceedsNaturalStackAlignment(PrefAlign))
736 return Align;
737 // If there is a requested alignment and if this is an alloca, round up.
738 if (AI->getAlignment() >= PrefAlign)
739 return AI->getAlignment();
740 AI->setAlignment(PrefAlign);
741 return PrefAlign;
742 }
743
744 if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
745 // If there is a large requested alignment and we can, bump up the alignment
746 // of the global.
747 if (GV->isDeclaration()) return Align;
748 // If the memory we set aside for the global may not be the memory used by
749 // the final program then it is impossible for us to reliably enforce the
750 // preferred alignment.
751 if (GV->isWeakForLinker()) return Align;
752
753 if (GV->getAlignment() >= PrefAlign)
754 return GV->getAlignment();
755 // We can only increase the alignment of the global if it has no alignment
756 // specified or if it is not assigned a section. If it is assigned a
757 // section, the global could be densely packed with other objects in the
758 // section, increasing the alignment could cause padding issues.
759 if (!GV->hasSection() || GV->getAlignment() == 0)
760 GV->setAlignment(PrefAlign);
761 return GV->getAlignment();
762 }
763
764 return Align;
765 }
766
767 /// getOrEnforceKnownAlignment - If the specified pointer has an alignment that
768 /// we can determine, return it, otherwise return 0. If PrefAlign is specified,
769 /// and it is more than the alignment of the ultimate object, see if we can
770 /// increase the alignment of the ultimate object, making this check succeed.
getOrEnforceKnownAlignment(Value * V,unsigned PrefAlign,const TargetData * TD)771 unsigned llvm::getOrEnforceKnownAlignment(Value *V, unsigned PrefAlign,
772 const TargetData *TD) {
773 assert(V->getType()->isPointerTy() &&
774 "getOrEnforceKnownAlignment expects a pointer!");
775 unsigned BitWidth = TD ? TD->getPointerSizeInBits() : 64;
776 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
777 ComputeMaskedBits(V, KnownZero, KnownOne, TD);
778 unsigned TrailZ = KnownZero.countTrailingOnes();
779
780 // Avoid trouble with rediculously large TrailZ values, such as
781 // those computed from a null pointer.
782 TrailZ = std::min(TrailZ, unsigned(sizeof(unsigned) * CHAR_BIT - 1));
783
784 unsigned Align = 1u << std::min(BitWidth - 1, TrailZ);
785
786 // LLVM doesn't support alignments larger than this currently.
787 Align = std::min(Align, +Value::MaximumAlignment);
788
789 if (PrefAlign > Align)
790 Align = enforceKnownAlignment(V, Align, PrefAlign, TD);
791
792 // We don't need to make any adjustment.
793 return Align;
794 }
795
796 ///===---------------------------------------------------------------------===//
797 /// Dbg Intrinsic utilities
798 ///
799
800 /// Inserts a llvm.dbg.value instrinsic before the stores to an alloca'd value
801 /// that has an associated llvm.dbg.decl intrinsic.
ConvertDebugDeclareToDebugValue(DbgDeclareInst * DDI,StoreInst * SI,DIBuilder & Builder)802 bool llvm::ConvertDebugDeclareToDebugValue(DbgDeclareInst *DDI,
803 StoreInst *SI, DIBuilder &Builder) {
804 DIVariable DIVar(DDI->getVariable());
805 if (!DIVar.Verify())
806 return false;
807
808 Instruction *DbgVal = NULL;
809 // If an argument is zero extended then use argument directly. The ZExt
810 // may be zapped by an optimization pass in future.
811 Argument *ExtendedArg = NULL;
812 if (ZExtInst *ZExt = dyn_cast<ZExtInst>(SI->getOperand(0)))
813 ExtendedArg = dyn_cast<Argument>(ZExt->getOperand(0));
814 if (SExtInst *SExt = dyn_cast<SExtInst>(SI->getOperand(0)))
815 ExtendedArg = dyn_cast<Argument>(SExt->getOperand(0));
816 if (ExtendedArg)
817 DbgVal = Builder.insertDbgValueIntrinsic(ExtendedArg, 0, DIVar, SI);
818 else
819 DbgVal = Builder.insertDbgValueIntrinsic(SI->getOperand(0), 0, DIVar, SI);
820
821 // Propagate any debug metadata from the store onto the dbg.value.
822 DebugLoc SIDL = SI->getDebugLoc();
823 if (!SIDL.isUnknown())
824 DbgVal->setDebugLoc(SIDL);
825 // Otherwise propagate debug metadata from dbg.declare.
826 else
827 DbgVal->setDebugLoc(DDI->getDebugLoc());
828 return true;
829 }
830
831 /// Inserts a llvm.dbg.value instrinsic before the stores to an alloca'd value
832 /// that has an associated llvm.dbg.decl intrinsic.
ConvertDebugDeclareToDebugValue(DbgDeclareInst * DDI,LoadInst * LI,DIBuilder & Builder)833 bool llvm::ConvertDebugDeclareToDebugValue(DbgDeclareInst *DDI,
834 LoadInst *LI, DIBuilder &Builder) {
835 DIVariable DIVar(DDI->getVariable());
836 if (!DIVar.Verify())
837 return false;
838
839 Instruction *DbgVal =
840 Builder.insertDbgValueIntrinsic(LI->getOperand(0), 0,
841 DIVar, LI);
842
843 // Propagate any debug metadata from the store onto the dbg.value.
844 DebugLoc LIDL = LI->getDebugLoc();
845 if (!LIDL.isUnknown())
846 DbgVal->setDebugLoc(LIDL);
847 // Otherwise propagate debug metadata from dbg.declare.
848 else
849 DbgVal->setDebugLoc(DDI->getDebugLoc());
850 return true;
851 }
852
853 /// LowerDbgDeclare - Lowers llvm.dbg.declare intrinsics into appropriate set
854 /// of llvm.dbg.value intrinsics.
LowerDbgDeclare(Function & F)855 bool llvm::LowerDbgDeclare(Function &F) {
856 DIBuilder DIB(*F.getParent());
857 SmallVector<DbgDeclareInst *, 4> Dbgs;
858 for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI)
859 for (BasicBlock::iterator BI = FI->begin(), BE = FI->end(); BI != BE; ++BI) {
860 if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(BI))
861 Dbgs.push_back(DDI);
862 }
863 if (Dbgs.empty())
864 return false;
865
866 for (SmallVector<DbgDeclareInst *, 4>::iterator I = Dbgs.begin(),
867 E = Dbgs.end(); I != E; ++I) {
868 DbgDeclareInst *DDI = *I;
869 if (AllocaInst *AI = dyn_cast_or_null<AllocaInst>(DDI->getAddress())) {
870 bool RemoveDDI = true;
871 for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end();
872 UI != E; ++UI)
873 if (StoreInst *SI = dyn_cast<StoreInst>(*UI))
874 ConvertDebugDeclareToDebugValue(DDI, SI, DIB);
875 else if (LoadInst *LI = dyn_cast<LoadInst>(*UI))
876 ConvertDebugDeclareToDebugValue(DDI, LI, DIB);
877 else
878 RemoveDDI = false;
879 if (RemoveDDI)
880 DDI->eraseFromParent();
881 }
882 }
883 return true;
884 }
885
886 /// FindAllocaDbgDeclare - Finds the llvm.dbg.declare intrinsic describing the
887 /// alloca 'V', if any.
FindAllocaDbgDeclare(Value * V)888 DbgDeclareInst *llvm::FindAllocaDbgDeclare(Value *V) {
889 if (MDNode *DebugNode = MDNode::getIfExists(V->getContext(), V))
890 for (Value::use_iterator UI = DebugNode->use_begin(),
891 E = DebugNode->use_end(); UI != E; ++UI)
892 if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(*UI))
893 return DDI;
894
895 return 0;
896 }
897