1 //===- LoopSimplify.cpp - Loop Canonicalization Pass ----------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass performs several transformations to transform natural loops into a
11 // simpler form, which makes subsequent analyses and transformations simpler and
12 // more effective.
13 //
14 // Loop pre-header insertion guarantees that there is a single, non-critical
15 // entry edge from outside of the loop to the loop header. This simplifies a
16 // number of analyses and transformations, such as LICM.
17 //
18 // Loop exit-block insertion guarantees that all exit blocks from the loop
19 // (blocks which are outside of the loop that have predecessors inside of the
20 // loop) only have predecessors from inside of the loop (and are thus dominated
21 // by the loop header). This simplifies transformations such as store-sinking
22 // that are built into LICM.
23 //
24 // This pass also guarantees that loops will have exactly one backedge.
25 //
26 // Indirectbr instructions introduce several complications. If the loop
27 // contains or is entered by an indirectbr instruction, it may not be possible
28 // to transform the loop and make these guarantees. Client code should check
29 // that these conditions are true before relying on them.
30 //
31 // Note that the simplifycfg pass will clean up blocks which are split out but
32 // end up being unnecessary, so usage of this pass should not pessimize
33 // generated code.
34 //
35 // This pass obviously modifies the CFG, but updates loop information and
36 // dominator information.
37 //
38 //===----------------------------------------------------------------------===//
39
40 #define DEBUG_TYPE "loop-simplify"
41 #include "llvm/Transforms/Scalar.h"
42 #include "llvm/Constants.h"
43 #include "llvm/Instructions.h"
44 #include "llvm/IntrinsicInst.h"
45 #include "llvm/Function.h"
46 #include "llvm/LLVMContext.h"
47 #include "llvm/Type.h"
48 #include "llvm/Analysis/AliasAnalysis.h"
49 #include "llvm/Analysis/Dominators.h"
50 #include "llvm/Analysis/InstructionSimplify.h"
51 #include "llvm/Analysis/LoopPass.h"
52 #include "llvm/Analysis/ScalarEvolution.h"
53 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
54 #include "llvm/Transforms/Utils/Local.h"
55 #include "llvm/Support/CFG.h"
56 #include "llvm/Support/Debug.h"
57 #include "llvm/ADT/SetOperations.h"
58 #include "llvm/ADT/SetVector.h"
59 #include "llvm/ADT/Statistic.h"
60 #include "llvm/ADT/DepthFirstIterator.h"
61 using namespace llvm;
62
63 STATISTIC(NumInserted, "Number of pre-header or exit blocks inserted");
64 STATISTIC(NumNested , "Number of nested loops split out");
65
66 namespace {
67 struct LoopSimplify : public LoopPass {
68 static char ID; // Pass identification, replacement for typeid
LoopSimplify__anonff1c345d0111::LoopSimplify69 LoopSimplify() : LoopPass(ID) {
70 initializeLoopSimplifyPass(*PassRegistry::getPassRegistry());
71 }
72
73 // AA - If we have an alias analysis object to update, this is it, otherwise
74 // this is null.
75 AliasAnalysis *AA;
76 LoopInfo *LI;
77 DominatorTree *DT;
78 ScalarEvolution *SE;
79 Loop *L;
80 virtual bool runOnLoop(Loop *L, LPPassManager &LPM);
81
getAnalysisUsage__anonff1c345d0111::LoopSimplify82 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
83 // We need loop information to identify the loops...
84 AU.addRequired<DominatorTree>();
85 AU.addPreserved<DominatorTree>();
86
87 AU.addRequired<LoopInfo>();
88 AU.addPreserved<LoopInfo>();
89
90 AU.addPreserved<AliasAnalysis>();
91 AU.addPreserved<ScalarEvolution>();
92 AU.addPreservedID(BreakCriticalEdgesID); // No critical edges added.
93 }
94
95 /// verifyAnalysis() - Verify LoopSimplifyForm's guarantees.
96 void verifyAnalysis() const;
97
98 private:
99 bool ProcessLoop(Loop *L, LPPassManager &LPM);
100 BasicBlock *RewriteLoopExitBlock(Loop *L, BasicBlock *Exit);
101 BasicBlock *InsertPreheaderForLoop(Loop *L);
102 Loop *SeparateNestedLoop(Loop *L, LPPassManager &LPM,
103 BasicBlock *Preheader);
104 BasicBlock *InsertUniqueBackedgeBlock(Loop *L, BasicBlock *Preheader);
105 void PlaceSplitBlockCarefully(BasicBlock *NewBB,
106 SmallVectorImpl<BasicBlock*> &SplitPreds,
107 Loop *L);
108 };
109 }
110
111 char LoopSimplify::ID = 0;
112 INITIALIZE_PASS_BEGIN(LoopSimplify, "loop-simplify",
113 "Canonicalize natural loops", true, false)
114 INITIALIZE_PASS_DEPENDENCY(DominatorTree)
115 INITIALIZE_PASS_DEPENDENCY(LoopInfo)
116 INITIALIZE_PASS_END(LoopSimplify, "loop-simplify",
117 "Canonicalize natural loops", true, false)
118
119 // Publicly exposed interface to pass...
120 char &llvm::LoopSimplifyID = LoopSimplify::ID;
createLoopSimplifyPass()121 Pass *llvm::createLoopSimplifyPass() { return new LoopSimplify(); }
122
123 /// runOnLoop - Run down all loops in the CFG (recursively, but we could do
124 /// it in any convenient order) inserting preheaders...
125 ///
runOnLoop(Loop * l,LPPassManager & LPM)126 bool LoopSimplify::runOnLoop(Loop *l, LPPassManager &LPM) {
127 L = l;
128 bool Changed = false;
129 LI = &getAnalysis<LoopInfo>();
130 AA = getAnalysisIfAvailable<AliasAnalysis>();
131 DT = &getAnalysis<DominatorTree>();
132 SE = getAnalysisIfAvailable<ScalarEvolution>();
133
134 Changed |= ProcessLoop(L, LPM);
135
136 return Changed;
137 }
138
139 /// ProcessLoop - Walk the loop structure in depth first order, ensuring that
140 /// all loops have preheaders.
141 ///
ProcessLoop(Loop * L,LPPassManager & LPM)142 bool LoopSimplify::ProcessLoop(Loop *L, LPPassManager &LPM) {
143 bool Changed = false;
144 ReprocessLoop:
145
146 // Check to see that no blocks (other than the header) in this loop have
147 // predecessors that are not in the loop. This is not valid for natural
148 // loops, but can occur if the blocks are unreachable. Since they are
149 // unreachable we can just shamelessly delete those CFG edges!
150 for (Loop::block_iterator BB = L->block_begin(), E = L->block_end();
151 BB != E; ++BB) {
152 if (*BB == L->getHeader()) continue;
153
154 SmallPtrSet<BasicBlock*, 4> BadPreds;
155 for (pred_iterator PI = pred_begin(*BB),
156 PE = pred_end(*BB); PI != PE; ++PI) {
157 BasicBlock *P = *PI;
158 if (!L->contains(P))
159 BadPreds.insert(P);
160 }
161
162 // Delete each unique out-of-loop (and thus dead) predecessor.
163 for (SmallPtrSet<BasicBlock*, 4>::iterator I = BadPreds.begin(),
164 E = BadPreds.end(); I != E; ++I) {
165
166 DEBUG(dbgs() << "LoopSimplify: Deleting edge from dead predecessor "
167 << (*I)->getName() << "\n");
168
169 // Inform each successor of each dead pred.
170 for (succ_iterator SI = succ_begin(*I), SE = succ_end(*I); SI != SE; ++SI)
171 (*SI)->removePredecessor(*I);
172 // Zap the dead pred's terminator and replace it with unreachable.
173 TerminatorInst *TI = (*I)->getTerminator();
174 TI->replaceAllUsesWith(UndefValue::get(TI->getType()));
175 (*I)->getTerminator()->eraseFromParent();
176 new UnreachableInst((*I)->getContext(), *I);
177 Changed = true;
178 }
179 }
180
181 // If there are exiting blocks with branches on undef, resolve the undef in
182 // the direction which will exit the loop. This will help simplify loop
183 // trip count computations.
184 SmallVector<BasicBlock*, 8> ExitingBlocks;
185 L->getExitingBlocks(ExitingBlocks);
186 for (SmallVectorImpl<BasicBlock *>::iterator I = ExitingBlocks.begin(),
187 E = ExitingBlocks.end(); I != E; ++I)
188 if (BranchInst *BI = dyn_cast<BranchInst>((*I)->getTerminator()))
189 if (BI->isConditional()) {
190 if (UndefValue *Cond = dyn_cast<UndefValue>(BI->getCondition())) {
191
192 DEBUG(dbgs() << "LoopSimplify: Resolving \"br i1 undef\" to exit in "
193 << (*I)->getName() << "\n");
194
195 BI->setCondition(ConstantInt::get(Cond->getType(),
196 !L->contains(BI->getSuccessor(0))));
197 Changed = true;
198 }
199 }
200
201 // Does the loop already have a preheader? If so, don't insert one.
202 BasicBlock *Preheader = L->getLoopPreheader();
203 if (!Preheader) {
204 Preheader = InsertPreheaderForLoop(L);
205 if (Preheader) {
206 ++NumInserted;
207 Changed = true;
208 }
209 }
210
211 // Next, check to make sure that all exit nodes of the loop only have
212 // predecessors that are inside of the loop. This check guarantees that the
213 // loop preheader/header will dominate the exit blocks. If the exit block has
214 // predecessors from outside of the loop, split the edge now.
215 SmallVector<BasicBlock*, 8> ExitBlocks;
216 L->getExitBlocks(ExitBlocks);
217
218 SmallSetVector<BasicBlock *, 8> ExitBlockSet(ExitBlocks.begin(),
219 ExitBlocks.end());
220 for (SmallSetVector<BasicBlock *, 8>::iterator I = ExitBlockSet.begin(),
221 E = ExitBlockSet.end(); I != E; ++I) {
222 BasicBlock *ExitBlock = *I;
223 for (pred_iterator PI = pred_begin(ExitBlock), PE = pred_end(ExitBlock);
224 PI != PE; ++PI)
225 // Must be exactly this loop: no subloops, parent loops, or non-loop preds
226 // allowed.
227 if (!L->contains(*PI)) {
228 if (RewriteLoopExitBlock(L, ExitBlock)) {
229 ++NumInserted;
230 Changed = true;
231 }
232 break;
233 }
234 }
235
236 // If the header has more than two predecessors at this point (from the
237 // preheader and from multiple backedges), we must adjust the loop.
238 BasicBlock *LoopLatch = L->getLoopLatch();
239 if (!LoopLatch) {
240 // If this is really a nested loop, rip it out into a child loop. Don't do
241 // this for loops with a giant number of backedges, just factor them into a
242 // common backedge instead.
243 if (L->getNumBackEdges() < 8) {
244 if (SeparateNestedLoop(L, LPM, Preheader)) {
245 ++NumNested;
246 // This is a big restructuring change, reprocess the whole loop.
247 Changed = true;
248 // GCC doesn't tail recursion eliminate this.
249 goto ReprocessLoop;
250 }
251 }
252
253 // If we either couldn't, or didn't want to, identify nesting of the loops,
254 // insert a new block that all backedges target, then make it jump to the
255 // loop header.
256 LoopLatch = InsertUniqueBackedgeBlock(L, Preheader);
257 if (LoopLatch) {
258 ++NumInserted;
259 Changed = true;
260 }
261 }
262
263 // Scan over the PHI nodes in the loop header. Since they now have only two
264 // incoming values (the loop is canonicalized), we may have simplified the PHI
265 // down to 'X = phi [X, Y]', which should be replaced with 'Y'.
266 PHINode *PN;
267 for (BasicBlock::iterator I = L->getHeader()->begin();
268 (PN = dyn_cast<PHINode>(I++)); )
269 if (Value *V = SimplifyInstruction(PN, 0, 0, DT)) {
270 if (AA) AA->deleteValue(PN);
271 if (SE) SE->forgetValue(PN);
272 PN->replaceAllUsesWith(V);
273 PN->eraseFromParent();
274 }
275
276 // If this loop has multiple exits and the exits all go to the same
277 // block, attempt to merge the exits. This helps several passes, such
278 // as LoopRotation, which do not support loops with multiple exits.
279 // SimplifyCFG also does this (and this code uses the same utility
280 // function), however this code is loop-aware, where SimplifyCFG is
281 // not. That gives it the advantage of being able to hoist
282 // loop-invariant instructions out of the way to open up more
283 // opportunities, and the disadvantage of having the responsibility
284 // to preserve dominator information.
285 bool UniqueExit = true;
286 if (!ExitBlocks.empty())
287 for (unsigned i = 1, e = ExitBlocks.size(); i != e; ++i)
288 if (ExitBlocks[i] != ExitBlocks[0]) {
289 UniqueExit = false;
290 break;
291 }
292 if (UniqueExit) {
293 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
294 BasicBlock *ExitingBlock = ExitingBlocks[i];
295 if (!ExitingBlock->getSinglePredecessor()) continue;
296 BranchInst *BI = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
297 if (!BI || !BI->isConditional()) continue;
298 CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition());
299 if (!CI || CI->getParent() != ExitingBlock) continue;
300
301 // Attempt to hoist out all instructions except for the
302 // comparison and the branch.
303 bool AllInvariant = true;
304 for (BasicBlock::iterator I = ExitingBlock->begin(); &*I != BI; ) {
305 Instruction *Inst = I++;
306 // Skip debug info intrinsics.
307 if (isa<DbgInfoIntrinsic>(Inst))
308 continue;
309 if (Inst == CI)
310 continue;
311 if (!L->makeLoopInvariant(Inst, Changed,
312 Preheader ? Preheader->getTerminator() : 0)) {
313 AllInvariant = false;
314 break;
315 }
316 }
317 if (!AllInvariant) continue;
318
319 // The block has now been cleared of all instructions except for
320 // a comparison and a conditional branch. SimplifyCFG may be able
321 // to fold it now.
322 if (!FoldBranchToCommonDest(BI)) continue;
323
324 // Success. The block is now dead, so remove it from the loop,
325 // update the dominator tree and delete it.
326 DEBUG(dbgs() << "LoopSimplify: Eliminating exiting block "
327 << ExitingBlock->getName() << "\n");
328
329 // If any reachable control flow within this loop has changed, notify
330 // ScalarEvolution. Currently assume the parent loop doesn't change
331 // (spliting edges doesn't count). If blocks, CFG edges, or other values
332 // in the parent loop change, then we need call to forgetLoop() for the
333 // parent instead.
334 if (SE)
335 SE->forgetLoop(L);
336
337 assert(pred_begin(ExitingBlock) == pred_end(ExitingBlock));
338 Changed = true;
339 LI->removeBlock(ExitingBlock);
340
341 DomTreeNode *Node = DT->getNode(ExitingBlock);
342 const std::vector<DomTreeNodeBase<BasicBlock> *> &Children =
343 Node->getChildren();
344 while (!Children.empty()) {
345 DomTreeNode *Child = Children.front();
346 DT->changeImmediateDominator(Child, Node->getIDom());
347 }
348 DT->eraseNode(ExitingBlock);
349
350 BI->getSuccessor(0)->removePredecessor(ExitingBlock);
351 BI->getSuccessor(1)->removePredecessor(ExitingBlock);
352 ExitingBlock->eraseFromParent();
353 }
354 }
355
356 return Changed;
357 }
358
359 /// InsertPreheaderForLoop - Once we discover that a loop doesn't have a
360 /// preheader, this method is called to insert one. This method has two phases:
361 /// preheader insertion and analysis updating.
362 ///
InsertPreheaderForLoop(Loop * L)363 BasicBlock *LoopSimplify::InsertPreheaderForLoop(Loop *L) {
364 BasicBlock *Header = L->getHeader();
365
366 // Compute the set of predecessors of the loop that are not in the loop.
367 SmallVector<BasicBlock*, 8> OutsideBlocks;
368 for (pred_iterator PI = pred_begin(Header), PE = pred_end(Header);
369 PI != PE; ++PI) {
370 BasicBlock *P = *PI;
371 if (!L->contains(P)) { // Coming in from outside the loop?
372 // If the loop is branched to from an indirect branch, we won't
373 // be able to fully transform the loop, because it prohibits
374 // edge splitting.
375 if (isa<IndirectBrInst>(P->getTerminator())) return 0;
376
377 // Keep track of it.
378 OutsideBlocks.push_back(P);
379 }
380 }
381
382 // Split out the loop pre-header.
383 BasicBlock *PreheaderBB;
384 if (!Header->isLandingPad()) {
385 PreheaderBB = SplitBlockPredecessors(Header, OutsideBlocks, ".preheader",
386 this);
387 } else {
388 SmallVector<BasicBlock*, 2> NewBBs;
389 SplitLandingPadPredecessors(Header, OutsideBlocks, ".preheader",
390 ".split-lp", this, NewBBs);
391 PreheaderBB = NewBBs[0];
392 }
393
394 PreheaderBB->getTerminator()->setDebugLoc(
395 Header->getFirstNonPHI()->getDebugLoc());
396 DEBUG(dbgs() << "LoopSimplify: Creating pre-header "
397 << PreheaderBB->getName() << "\n");
398
399 // Make sure that NewBB is put someplace intelligent, which doesn't mess up
400 // code layout too horribly.
401 PlaceSplitBlockCarefully(PreheaderBB, OutsideBlocks, L);
402
403 return PreheaderBB;
404 }
405
406 /// RewriteLoopExitBlock - Ensure that the loop preheader dominates all exit
407 /// blocks. This method is used to split exit blocks that have predecessors
408 /// outside of the loop.
RewriteLoopExitBlock(Loop * L,BasicBlock * Exit)409 BasicBlock *LoopSimplify::RewriteLoopExitBlock(Loop *L, BasicBlock *Exit) {
410 SmallVector<BasicBlock*, 8> LoopBlocks;
411 for (pred_iterator I = pred_begin(Exit), E = pred_end(Exit); I != E; ++I) {
412 BasicBlock *P = *I;
413 if (L->contains(P)) {
414 // Don't do this if the loop is exited via an indirect branch.
415 if (isa<IndirectBrInst>(P->getTerminator())) return 0;
416
417 LoopBlocks.push_back(P);
418 }
419 }
420
421 assert(!LoopBlocks.empty() && "No edges coming in from outside the loop?");
422 BasicBlock *NewExitBB = 0;
423
424 if (Exit->isLandingPad()) {
425 SmallVector<BasicBlock*, 2> NewBBs;
426 SplitLandingPadPredecessors(Exit, ArrayRef<BasicBlock*>(&LoopBlocks[0],
427 LoopBlocks.size()),
428 ".loopexit", ".nonloopexit",
429 this, NewBBs);
430 NewExitBB = NewBBs[0];
431 } else {
432 NewExitBB = SplitBlockPredecessors(Exit, LoopBlocks, ".loopexit", this);
433 }
434
435 DEBUG(dbgs() << "LoopSimplify: Creating dedicated exit block "
436 << NewExitBB->getName() << "\n");
437 return NewExitBB;
438 }
439
440 /// AddBlockAndPredsToSet - Add the specified block, and all of its
441 /// predecessors, to the specified set, if it's not already in there. Stop
442 /// predecessor traversal when we reach StopBlock.
AddBlockAndPredsToSet(BasicBlock * InputBB,BasicBlock * StopBlock,std::set<BasicBlock * > & Blocks)443 static void AddBlockAndPredsToSet(BasicBlock *InputBB, BasicBlock *StopBlock,
444 std::set<BasicBlock*> &Blocks) {
445 std::vector<BasicBlock *> WorkList;
446 WorkList.push_back(InputBB);
447 do {
448 BasicBlock *BB = WorkList.back(); WorkList.pop_back();
449 if (Blocks.insert(BB).second && BB != StopBlock)
450 // If BB is not already processed and it is not a stop block then
451 // insert its predecessor in the work list
452 for (pred_iterator I = pred_begin(BB), E = pred_end(BB); I != E; ++I) {
453 BasicBlock *WBB = *I;
454 WorkList.push_back(WBB);
455 }
456 } while(!WorkList.empty());
457 }
458
459 /// FindPHIToPartitionLoops - The first part of loop-nestification is to find a
460 /// PHI node that tells us how to partition the loops.
FindPHIToPartitionLoops(Loop * L,DominatorTree * DT,AliasAnalysis * AA,LoopInfo * LI)461 static PHINode *FindPHIToPartitionLoops(Loop *L, DominatorTree *DT,
462 AliasAnalysis *AA, LoopInfo *LI) {
463 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ) {
464 PHINode *PN = cast<PHINode>(I);
465 ++I;
466 if (Value *V = SimplifyInstruction(PN, 0, 0, DT)) {
467 // This is a degenerate PHI already, don't modify it!
468 PN->replaceAllUsesWith(V);
469 if (AA) AA->deleteValue(PN);
470 PN->eraseFromParent();
471 continue;
472 }
473
474 // Scan this PHI node looking for a use of the PHI node by itself.
475 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
476 if (PN->getIncomingValue(i) == PN &&
477 L->contains(PN->getIncomingBlock(i)))
478 // We found something tasty to remove.
479 return PN;
480 }
481 return 0;
482 }
483
484 // PlaceSplitBlockCarefully - If the block isn't already, move the new block to
485 // right after some 'outside block' block. This prevents the preheader from
486 // being placed inside the loop body, e.g. when the loop hasn't been rotated.
PlaceSplitBlockCarefully(BasicBlock * NewBB,SmallVectorImpl<BasicBlock * > & SplitPreds,Loop * L)487 void LoopSimplify::PlaceSplitBlockCarefully(BasicBlock *NewBB,
488 SmallVectorImpl<BasicBlock*> &SplitPreds,
489 Loop *L) {
490 // Check to see if NewBB is already well placed.
491 Function::iterator BBI = NewBB; --BBI;
492 for (unsigned i = 0, e = SplitPreds.size(); i != e; ++i) {
493 if (&*BBI == SplitPreds[i])
494 return;
495 }
496
497 // If it isn't already after an outside block, move it after one. This is
498 // always good as it makes the uncond branch from the outside block into a
499 // fall-through.
500
501 // Figure out *which* outside block to put this after. Prefer an outside
502 // block that neighbors a BB actually in the loop.
503 BasicBlock *FoundBB = 0;
504 for (unsigned i = 0, e = SplitPreds.size(); i != e; ++i) {
505 Function::iterator BBI = SplitPreds[i];
506 if (++BBI != NewBB->getParent()->end() &&
507 L->contains(BBI)) {
508 FoundBB = SplitPreds[i];
509 break;
510 }
511 }
512
513 // If our heuristic for a *good* bb to place this after doesn't find
514 // anything, just pick something. It's likely better than leaving it within
515 // the loop.
516 if (!FoundBB)
517 FoundBB = SplitPreds[0];
518 NewBB->moveAfter(FoundBB);
519 }
520
521
522 /// SeparateNestedLoop - If this loop has multiple backedges, try to pull one of
523 /// them out into a nested loop. This is important for code that looks like
524 /// this:
525 ///
526 /// Loop:
527 /// ...
528 /// br cond, Loop, Next
529 /// ...
530 /// br cond2, Loop, Out
531 ///
532 /// To identify this common case, we look at the PHI nodes in the header of the
533 /// loop. PHI nodes with unchanging values on one backedge correspond to values
534 /// that change in the "outer" loop, but not in the "inner" loop.
535 ///
536 /// If we are able to separate out a loop, return the new outer loop that was
537 /// created.
538 ///
SeparateNestedLoop(Loop * L,LPPassManager & LPM,BasicBlock * Preheader)539 Loop *LoopSimplify::SeparateNestedLoop(Loop *L, LPPassManager &LPM,
540 BasicBlock *Preheader) {
541 // Don't try to separate loops without a preheader.
542 if (!Preheader)
543 return 0;
544
545 // The header is not a landing pad; preheader insertion should ensure this.
546 assert(!L->getHeader()->isLandingPad() &&
547 "Can't insert backedge to landing pad");
548
549 PHINode *PN = FindPHIToPartitionLoops(L, DT, AA, LI);
550 if (PN == 0) return 0; // No known way to partition.
551
552 // Pull out all predecessors that have varying values in the loop. This
553 // handles the case when a PHI node has multiple instances of itself as
554 // arguments.
555 SmallVector<BasicBlock*, 8> OuterLoopPreds;
556 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
557 if (PN->getIncomingValue(i) != PN ||
558 !L->contains(PN->getIncomingBlock(i))) {
559 // We can't split indirectbr edges.
560 if (isa<IndirectBrInst>(PN->getIncomingBlock(i)->getTerminator()))
561 return 0;
562 OuterLoopPreds.push_back(PN->getIncomingBlock(i));
563 }
564 }
565 DEBUG(dbgs() << "LoopSimplify: Splitting out a new outer loop\n");
566
567 // If ScalarEvolution is around and knows anything about values in
568 // this loop, tell it to forget them, because we're about to
569 // substantially change it.
570 if (SE)
571 SE->forgetLoop(L);
572
573 BasicBlock *Header = L->getHeader();
574 BasicBlock *NewBB =
575 SplitBlockPredecessors(Header, OuterLoopPreds, ".outer", this);
576
577 // Make sure that NewBB is put someplace intelligent, which doesn't mess up
578 // code layout too horribly.
579 PlaceSplitBlockCarefully(NewBB, OuterLoopPreds, L);
580
581 // Create the new outer loop.
582 Loop *NewOuter = new Loop();
583
584 // Change the parent loop to use the outer loop as its child now.
585 if (Loop *Parent = L->getParentLoop())
586 Parent->replaceChildLoopWith(L, NewOuter);
587 else
588 LI->changeTopLevelLoop(L, NewOuter);
589
590 // L is now a subloop of our outer loop.
591 NewOuter->addChildLoop(L);
592
593 // Add the new loop to the pass manager queue.
594 LPM.insertLoopIntoQueue(NewOuter);
595
596 for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
597 I != E; ++I)
598 NewOuter->addBlockEntry(*I);
599
600 // Now reset the header in L, which had been moved by
601 // SplitBlockPredecessors for the outer loop.
602 L->moveToHeader(Header);
603
604 // Determine which blocks should stay in L and which should be moved out to
605 // the Outer loop now.
606 std::set<BasicBlock*> BlocksInL;
607 for (pred_iterator PI=pred_begin(Header), E = pred_end(Header); PI!=E; ++PI) {
608 BasicBlock *P = *PI;
609 if (DT->dominates(Header, P))
610 AddBlockAndPredsToSet(P, Header, BlocksInL);
611 }
612
613 // Scan all of the loop children of L, moving them to OuterLoop if they are
614 // not part of the inner loop.
615 const std::vector<Loop*> &SubLoops = L->getSubLoops();
616 for (size_t I = 0; I != SubLoops.size(); )
617 if (BlocksInL.count(SubLoops[I]->getHeader()))
618 ++I; // Loop remains in L
619 else
620 NewOuter->addChildLoop(L->removeChildLoop(SubLoops.begin() + I));
621
622 // Now that we know which blocks are in L and which need to be moved to
623 // OuterLoop, move any blocks that need it.
624 for (unsigned i = 0; i != L->getBlocks().size(); ++i) {
625 BasicBlock *BB = L->getBlocks()[i];
626 if (!BlocksInL.count(BB)) {
627 // Move this block to the parent, updating the exit blocks sets
628 L->removeBlockFromLoop(BB);
629 if ((*LI)[BB] == L)
630 LI->changeLoopFor(BB, NewOuter);
631 --i;
632 }
633 }
634
635 return NewOuter;
636 }
637
638
639
640 /// InsertUniqueBackedgeBlock - This method is called when the specified loop
641 /// has more than one backedge in it. If this occurs, revector all of these
642 /// backedges to target a new basic block and have that block branch to the loop
643 /// header. This ensures that loops have exactly one backedge.
644 ///
645 BasicBlock *
InsertUniqueBackedgeBlock(Loop * L,BasicBlock * Preheader)646 LoopSimplify::InsertUniqueBackedgeBlock(Loop *L, BasicBlock *Preheader) {
647 assert(L->getNumBackEdges() > 1 && "Must have > 1 backedge!");
648
649 // Get information about the loop
650 BasicBlock *Header = L->getHeader();
651 Function *F = Header->getParent();
652
653 // Unique backedge insertion currently depends on having a preheader.
654 if (!Preheader)
655 return 0;
656
657 // The header is not a landing pad; preheader insertion should ensure this.
658 assert(!Header->isLandingPad() && "Can't insert backedge to landing pad");
659
660 // Figure out which basic blocks contain back-edges to the loop header.
661 std::vector<BasicBlock*> BackedgeBlocks;
662 for (pred_iterator I = pred_begin(Header), E = pred_end(Header); I != E; ++I){
663 BasicBlock *P = *I;
664
665 // Indirectbr edges cannot be split, so we must fail if we find one.
666 if (isa<IndirectBrInst>(P->getTerminator()))
667 return 0;
668
669 if (P != Preheader) BackedgeBlocks.push_back(P);
670 }
671
672 // Create and insert the new backedge block...
673 BasicBlock *BEBlock = BasicBlock::Create(Header->getContext(),
674 Header->getName()+".backedge", F);
675 BranchInst *BETerminator = BranchInst::Create(Header, BEBlock);
676
677 DEBUG(dbgs() << "LoopSimplify: Inserting unique backedge block "
678 << BEBlock->getName() << "\n");
679
680 // Move the new backedge block to right after the last backedge block.
681 Function::iterator InsertPos = BackedgeBlocks.back(); ++InsertPos;
682 F->getBasicBlockList().splice(InsertPos, F->getBasicBlockList(), BEBlock);
683
684 // Now that the block has been inserted into the function, create PHI nodes in
685 // the backedge block which correspond to any PHI nodes in the header block.
686 for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
687 PHINode *PN = cast<PHINode>(I);
688 PHINode *NewPN = PHINode::Create(PN->getType(), BackedgeBlocks.size(),
689 PN->getName()+".be", BETerminator);
690 if (AA) AA->copyValue(PN, NewPN);
691
692 // Loop over the PHI node, moving all entries except the one for the
693 // preheader over to the new PHI node.
694 unsigned PreheaderIdx = ~0U;
695 bool HasUniqueIncomingValue = true;
696 Value *UniqueValue = 0;
697 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
698 BasicBlock *IBB = PN->getIncomingBlock(i);
699 Value *IV = PN->getIncomingValue(i);
700 if (IBB == Preheader) {
701 PreheaderIdx = i;
702 } else {
703 NewPN->addIncoming(IV, IBB);
704 if (HasUniqueIncomingValue) {
705 if (UniqueValue == 0)
706 UniqueValue = IV;
707 else if (UniqueValue != IV)
708 HasUniqueIncomingValue = false;
709 }
710 }
711 }
712
713 // Delete all of the incoming values from the old PN except the preheader's
714 assert(PreheaderIdx != ~0U && "PHI has no preheader entry??");
715 if (PreheaderIdx != 0) {
716 PN->setIncomingValue(0, PN->getIncomingValue(PreheaderIdx));
717 PN->setIncomingBlock(0, PN->getIncomingBlock(PreheaderIdx));
718 }
719 // Nuke all entries except the zero'th.
720 for (unsigned i = 0, e = PN->getNumIncomingValues()-1; i != e; ++i)
721 PN->removeIncomingValue(e-i, false);
722
723 // Finally, add the newly constructed PHI node as the entry for the BEBlock.
724 PN->addIncoming(NewPN, BEBlock);
725
726 // As an optimization, if all incoming values in the new PhiNode (which is a
727 // subset of the incoming values of the old PHI node) have the same value,
728 // eliminate the PHI Node.
729 if (HasUniqueIncomingValue) {
730 NewPN->replaceAllUsesWith(UniqueValue);
731 if (AA) AA->deleteValue(NewPN);
732 BEBlock->getInstList().erase(NewPN);
733 }
734 }
735
736 // Now that all of the PHI nodes have been inserted and adjusted, modify the
737 // backedge blocks to just to the BEBlock instead of the header.
738 for (unsigned i = 0, e = BackedgeBlocks.size(); i != e; ++i) {
739 TerminatorInst *TI = BackedgeBlocks[i]->getTerminator();
740 for (unsigned Op = 0, e = TI->getNumSuccessors(); Op != e; ++Op)
741 if (TI->getSuccessor(Op) == Header)
742 TI->setSuccessor(Op, BEBlock);
743 }
744
745 //===--- Update all analyses which we must preserve now -----------------===//
746
747 // Update Loop Information - we know that this block is now in the current
748 // loop and all parent loops.
749 L->addBasicBlockToLoop(BEBlock, LI->getBase());
750
751 // Update dominator information
752 DT->splitBlock(BEBlock);
753
754 return BEBlock;
755 }
756
verifyAnalysis() const757 void LoopSimplify::verifyAnalysis() const {
758 // It used to be possible to just assert L->isLoopSimplifyForm(), however
759 // with the introduction of indirectbr, there are now cases where it's
760 // not possible to transform a loop as necessary. We can at least check
761 // that there is an indirectbr near any time there's trouble.
762
763 // Indirectbr can interfere with preheader and unique backedge insertion.
764 if (!L->getLoopPreheader() || !L->getLoopLatch()) {
765 bool HasIndBrPred = false;
766 for (pred_iterator PI = pred_begin(L->getHeader()),
767 PE = pred_end(L->getHeader()); PI != PE; ++PI)
768 if (isa<IndirectBrInst>((*PI)->getTerminator())) {
769 HasIndBrPred = true;
770 break;
771 }
772 assert(HasIndBrPred &&
773 "LoopSimplify has no excuse for missing loop header info!");
774 (void)HasIndBrPred;
775 }
776
777 // Indirectbr can interfere with exit block canonicalization.
778 if (!L->hasDedicatedExits()) {
779 bool HasIndBrExiting = false;
780 SmallVector<BasicBlock*, 8> ExitingBlocks;
781 L->getExitingBlocks(ExitingBlocks);
782 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
783 if (isa<IndirectBrInst>((ExitingBlocks[i])->getTerminator())) {
784 HasIndBrExiting = true;
785 break;
786 }
787 }
788
789 assert(HasIndBrExiting &&
790 "LoopSimplify has no excuse for missing exit block info!");
791 (void)HasIndBrExiting;
792 }
793 }
794