• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===-- UnrollLoopRuntime.cpp - Runtime Loop unrolling utilities ----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements some loop unrolling utilities for loops with run-time
11 // trip counts.  See LoopUnroll.cpp for unrolling loops with compile-time
12 // trip counts.
13 //
14 // The functions in this file are used to generate extra code when the
15 // run-time trip count modulo the unroll factor is not 0.  When this is the
16 // case, we need to generate code to execute these 'left over' iterations.
17 //
18 // The current strategy generates an if-then-else sequence prior to the
19 // unrolled loop to execute the 'left over' iterations.  Other strategies
20 // include generate a loop before or after the unrolled loop.
21 //
22 //===----------------------------------------------------------------------===//
23 
24 #define DEBUG_TYPE "loop-unroll"
25 #include "llvm/Transforms/Utils/UnrollLoop.h"
26 #include "llvm/BasicBlock.h"
27 #include "llvm/ADT/Statistic.h"
28 #include "llvm/Analysis/LoopIterator.h"
29 #include "llvm/Analysis/LoopPass.h"
30 #include "llvm/Analysis/ScalarEvolution.h"
31 #include "llvm/Analysis/ScalarEvolutionExpander.h"
32 #include "llvm/Support/Debug.h"
33 #include "llvm/Support/raw_ostream.h"
34 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
35 #include "llvm/Transforms/Utils/Cloning.h"
36 #include <algorithm>
37 
38 using namespace llvm;
39 
40 STATISTIC(NumRuntimeUnrolled,
41           "Number of loops unrolled with run-time trip counts");
42 
43 /// Connect the unrolling prolog code to the original loop.
44 /// The unrolling prolog code contains code to execute the
45 /// 'extra' iterations if the run-time trip count modulo the
46 /// unroll count is non-zero.
47 ///
48 /// This function performs the following:
49 /// - Create PHI nodes at prolog end block to combine values
50 ///   that exit the prolog code and jump around the prolog.
51 /// - Add a PHI operand to a PHI node at the loop exit block
52 ///   for values that exit the prolog and go around the loop.
53 /// - Branch around the original loop if the trip count is less
54 ///   than the unroll factor.
55 ///
ConnectProlog(Loop * L,Value * TripCount,unsigned Count,BasicBlock * LastPrologBB,BasicBlock * PrologEnd,BasicBlock * OrigPH,BasicBlock * NewPH,ValueToValueMapTy & LVMap,Pass * P)56 static void ConnectProlog(Loop *L, Value *TripCount, unsigned Count,
57                           BasicBlock *LastPrologBB, BasicBlock *PrologEnd,
58                           BasicBlock *OrigPH, BasicBlock *NewPH,
59                           ValueToValueMapTy &LVMap, Pass *P) {
60   BasicBlock *Latch = L->getLoopLatch();
61   assert(Latch != 0 && "Loop must have a latch");
62 
63   // Create a PHI node for each outgoing value from the original loop
64   // (which means it is an outgoing value from the prolog code too).
65   // The new PHI node is inserted in the prolog end basic block.
66   // The new PHI name is added as an operand of a PHI node in either
67   // the loop header or the loop exit block.
68   for (succ_iterator SBI = succ_begin(Latch), SBE = succ_end(Latch);
69        SBI != SBE; ++SBI) {
70     for (BasicBlock::iterator BBI = (*SBI)->begin();
71          PHINode *PN = dyn_cast<PHINode>(BBI); ++BBI) {
72 
73       // Add a new PHI node to the prolog end block and add the
74       // appropriate incoming values.
75       PHINode *NewPN = PHINode::Create(PN->getType(), 2, PN->getName()+".unr",
76                                        PrologEnd->getTerminator());
77       // Adding a value to the new PHI node from the original loop preheader.
78       // This is the value that skips all the prolog code.
79       if (L->contains(PN)) {
80         NewPN->addIncoming(PN->getIncomingValueForBlock(NewPH), OrigPH);
81       } else {
82         NewPN->addIncoming(Constant::getNullValue(PN->getType()), OrigPH);
83       }
84 
85       Value *V = PN->getIncomingValueForBlock(Latch);
86       if (Instruction *I = dyn_cast<Instruction>(V)) {
87         if (L->contains(I)) {
88           V = LVMap[I];
89         }
90       }
91       // Adding a value to the new PHI node from the last prolog block
92       // that was created.
93       NewPN->addIncoming(V, LastPrologBB);
94 
95       // Update the existing PHI node operand with the value from the
96       // new PHI node.  How this is done depends on if the existing
97       // PHI node is in the original loop block, or the exit block.
98       if (L->contains(PN)) {
99         PN->setIncomingValue(PN->getBasicBlockIndex(NewPH), NewPN);
100       } else {
101         PN->addIncoming(NewPN, PrologEnd);
102       }
103     }
104   }
105 
106   // Create a branch around the orignal loop, which is taken if the
107   // trip count is less than the unroll factor.
108   Instruction *InsertPt = PrologEnd->getTerminator();
109   Instruction *BrLoopExit =
110     new ICmpInst(InsertPt, ICmpInst::ICMP_ULT, TripCount,
111                  ConstantInt::get(TripCount->getType(), Count));
112   BasicBlock *Exit = L->getUniqueExitBlock();
113   assert(Exit != 0 && "Loop must have a single exit block only");
114   // Split the exit to maintain loop canonicalization guarantees
115   SmallVector<BasicBlock*, 4> Preds(pred_begin(Exit), pred_end(Exit));
116   if (!Exit->isLandingPad()) {
117     SplitBlockPredecessors(Exit, Preds, ".unr-lcssa", P);
118   } else {
119     SmallVector<BasicBlock*, 2> NewBBs;
120     SplitLandingPadPredecessors(Exit, Preds, ".unr1-lcssa", ".unr2-lcssa",
121                                 P, NewBBs);
122   }
123   // Add the branch to the exit block (around the unrolled loop)
124   BranchInst::Create(Exit, NewPH, BrLoopExit, InsertPt);
125   InsertPt->eraseFromParent();
126 }
127 
128 /// Create a clone of the blocks in a loop and connect them together.
129 /// This function doesn't create a clone of the loop structure.
130 ///
131 /// There are two value maps that are defined and used.  VMap is
132 /// for the values in the current loop instance.  LVMap contains
133 /// the values from the last loop instance.  We need the LVMap values
134 /// to update the initial values for the current loop instance.
135 ///
CloneLoopBlocks(Loop * L,bool FirstCopy,BasicBlock * InsertTop,BasicBlock * InsertBot,std::vector<BasicBlock * > & NewBlocks,LoopBlocksDFS & LoopBlocks,ValueToValueMapTy & VMap,ValueToValueMapTy & LVMap,LoopInfo * LI)136 static void CloneLoopBlocks(Loop *L,
137                             bool FirstCopy,
138                             BasicBlock *InsertTop,
139                             BasicBlock *InsertBot,
140                             std::vector<BasicBlock *> &NewBlocks,
141                             LoopBlocksDFS &LoopBlocks,
142                             ValueToValueMapTy &VMap,
143                             ValueToValueMapTy &LVMap,
144                             LoopInfo *LI) {
145 
146   BasicBlock *Preheader = L->getLoopPreheader();
147   BasicBlock *Header = L->getHeader();
148   BasicBlock *Latch = L->getLoopLatch();
149   Function *F = Header->getParent();
150   LoopBlocksDFS::RPOIterator BlockBegin = LoopBlocks.beginRPO();
151   LoopBlocksDFS::RPOIterator BlockEnd = LoopBlocks.endRPO();
152   // For each block in the original loop, create a new copy,
153   // and update the value map with the newly created values.
154   for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) {
155     BasicBlock *NewBB = CloneBasicBlock(*BB, VMap, ".unr", F);
156     NewBlocks.push_back(NewBB);
157 
158     if (Loop *ParentLoop = L->getParentLoop())
159       ParentLoop->addBasicBlockToLoop(NewBB, LI->getBase());
160 
161     VMap[*BB] = NewBB;
162     if (Header == *BB) {
163       // For the first block, add a CFG connection to this newly
164       // created block
165       InsertTop->getTerminator()->setSuccessor(0, NewBB);
166 
167       // Change the incoming values to the ones defined in the
168       // previously cloned loop.
169       for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
170         PHINode *NewPHI = cast<PHINode>(VMap[I]);
171         if (FirstCopy) {
172           // We replace the first phi node with the value from the preheader
173           VMap[I] = NewPHI->getIncomingValueForBlock(Preheader);
174           NewBB->getInstList().erase(NewPHI);
175         } else {
176           // Update VMap with values from the previous block
177           unsigned idx = NewPHI->getBasicBlockIndex(Latch);
178           Value *InVal = NewPHI->getIncomingValue(idx);
179           if (Instruction *I = dyn_cast<Instruction>(InVal))
180             if (L->contains(I))
181               InVal = LVMap[InVal];
182           NewPHI->setIncomingValue(idx, InVal);
183           NewPHI->setIncomingBlock(idx, InsertTop);
184         }
185       }
186     }
187 
188     if (Latch == *BB) {
189       VMap.erase((*BB)->getTerminator());
190       NewBB->getTerminator()->eraseFromParent();
191       BranchInst::Create(InsertBot, NewBB);
192     }
193   }
194   // LastValueMap is updated with the values for the current loop
195   // which are used the next time this function is called.
196   for (ValueToValueMapTy::iterator VI = VMap.begin(), VE = VMap.end();
197        VI != VE; ++VI) {
198     LVMap[VI->first] = VI->second;
199   }
200 }
201 
202 /// Insert code in the prolog code when unrolling a loop with a
203 /// run-time trip-count.
204 ///
205 /// This method assumes that the loop unroll factor is total number
206 /// of loop bodes in the loop after unrolling. (Some folks refer
207 /// to the unroll factor as the number of *extra* copies added).
208 /// We assume also that the loop unroll factor is a power-of-two. So, after
209 /// unrolling the loop, the number of loop bodies executed is 2,
210 /// 4, 8, etc.  Note - LLVM converts the if-then-sequence to a switch
211 /// instruction in SimplifyCFG.cpp.  Then, the backend decides how code for
212 /// the switch instruction is generated.
213 ///
214 ///    extraiters = tripcount % loopfactor
215 ///    if (extraiters == 0) jump Loop:
216 ///    if (extraiters == loopfactor) jump L1
217 ///    if (extraiters == loopfactor-1) jump L2
218 ///    ...
219 ///    L1:  LoopBody;
220 ///    L2:  LoopBody;
221 ///    ...
222 ///    if tripcount < loopfactor jump End
223 ///    Loop:
224 ///    ...
225 ///    End:
226 ///
UnrollRuntimeLoopProlog(Loop * L,unsigned Count,LoopInfo * LI,LPPassManager * LPM)227 bool llvm::UnrollRuntimeLoopProlog(Loop *L, unsigned Count, LoopInfo *LI,
228                                    LPPassManager *LPM) {
229   // for now, only unroll loops that contain a single exit
230   if (!L->getExitingBlock())
231     return false;
232 
233   // Make sure the loop is in canonical form, and there is a single
234   // exit block only.
235   if (!L->isLoopSimplifyForm() || L->getUniqueExitBlock() == 0)
236     return false;
237 
238   // Use Scalar Evolution to compute the trip count.  This allows more
239   // loops to be unrolled than relying on induction var simplification
240   if (!LPM)
241     return false;
242   ScalarEvolution *SE = LPM->getAnalysisIfAvailable<ScalarEvolution>();
243   if (SE == 0)
244     return false;
245 
246   // Only unroll loops with a computable trip count and the trip count needs
247   // to be an int value (allowing a pointer type is a TODO item)
248   const SCEV *BECount = SE->getBackedgeTakenCount(L);
249   if (isa<SCEVCouldNotCompute>(BECount) || !BECount->getType()->isIntegerTy())
250     return false;
251 
252   // Add 1 since the backedge count doesn't include the first loop iteration
253   const SCEV *TripCountSC =
254     SE->getAddExpr(BECount, SE->getConstant(BECount->getType(), 1));
255   if (isa<SCEVCouldNotCompute>(TripCountSC))
256     return false;
257 
258   // We only handle cases when the unroll factor is a power of 2.
259   // Count is the loop unroll factor, the number of extra copies added + 1.
260   if ((Count & (Count-1)) != 0)
261     return false;
262 
263   // If this loop is nested, then the loop unroller changes the code in
264   // parent loop, so the Scalar Evolution pass needs to be run again
265   if (Loop *ParentLoop = L->getParentLoop())
266     SE->forgetLoop(ParentLoop);
267 
268   BasicBlock *PH = L->getLoopPreheader();
269   BasicBlock *Header = L->getHeader();
270   BasicBlock *Latch = L->getLoopLatch();
271   // It helps to splits the original preheader twice, one for the end of the
272   // prolog code and one for a new loop preheader
273   BasicBlock *PEnd = SplitEdge(PH, Header, LPM->getAsPass());
274   BasicBlock *NewPH = SplitBlock(PEnd, PEnd->getTerminator(), LPM->getAsPass());
275   BranchInst *PreHeaderBR = cast<BranchInst>(PH->getTerminator());
276 
277   // Compute the number of extra iterations required, which is:
278   //  extra iterations = run-time trip count % (loop unroll factor + 1)
279   SCEVExpander Expander(*SE, "loop-unroll");
280   Value *TripCount = Expander.expandCodeFor(TripCountSC, TripCountSC->getType(),
281                                             PreHeaderBR);
282   Type *CountTy = TripCount->getType();
283   BinaryOperator *ModVal =
284     BinaryOperator::CreateURem(TripCount,
285                                ConstantInt::get(CountTy, Count),
286                                "xtraiter");
287   ModVal->insertBefore(PreHeaderBR);
288 
289   // Check if for no extra iterations, then jump to unrolled loop
290   Value *BranchVal = new ICmpInst(PreHeaderBR,
291                                   ICmpInst::ICMP_NE, ModVal,
292                                   ConstantInt::get(CountTy, 0), "lcmp");
293   // Branch to either the extra iterations or the unrolled loop
294   // We will fix up the true branch label when adding loop body copies
295   BranchInst::Create(PEnd, PEnd, BranchVal, PreHeaderBR);
296   assert(PreHeaderBR->isUnconditional() &&
297          PreHeaderBR->getSuccessor(0) == PEnd &&
298          "CFG edges in Preheader are not correct");
299   PreHeaderBR->eraseFromParent();
300 
301   ValueToValueMapTy LVMap;
302   Function *F = Header->getParent();
303   // These variables are used to update the CFG links in each iteration
304   BasicBlock *CompareBB = 0;
305   BasicBlock *LastLoopBB = PH;
306   // Get an ordered list of blocks in the loop to help with the ordering of the
307   // cloned blocks in the prolog code
308   LoopBlocksDFS LoopBlocks(L);
309   LoopBlocks.perform(LI);
310 
311   //
312   // For each extra loop iteration, create a copy of the loop's basic blocks
313   // and generate a condition that branches to the copy depending on the
314   // number of 'left over' iterations.
315   //
316   for (unsigned leftOverIters = Count-1; leftOverIters > 0; --leftOverIters) {
317     std::vector<BasicBlock*> NewBlocks;
318     ValueToValueMapTy VMap;
319 
320     // Clone all the basic blocks in the loop, but we don't clone the loop
321     // This function adds the appropriate CFG connections.
322     CloneLoopBlocks(L, (leftOverIters == Count-1), LastLoopBB, PEnd, NewBlocks,
323                     LoopBlocks, VMap, LVMap, LI);
324     LastLoopBB = cast<BasicBlock>(VMap[Latch]);
325 
326     // Insert the cloned blocks into function just before the original loop
327     F->getBasicBlockList().splice(PEnd, F->getBasicBlockList(),
328                                   NewBlocks[0], F->end());
329 
330     // Generate the code for the comparison which determines if the loop
331     // prolog code needs to be executed.
332     if (leftOverIters == Count-1) {
333       // There is no compare block for the fall-thru case when for the last
334       // left over iteration
335       CompareBB = NewBlocks[0];
336     } else {
337       // Create a new block for the comparison
338       BasicBlock *NewBB = BasicBlock::Create(CompareBB->getContext(), "unr.cmp",
339                                              F, CompareBB);
340       if (Loop *ParentLoop = L->getParentLoop()) {
341         // Add the new block to the parent loop, if needed
342         ParentLoop->addBasicBlockToLoop(NewBB, LI->getBase());
343       }
344 
345       // The comparison w/ the extra iteration value and branch
346       Value *BranchVal = new ICmpInst(*NewBB, ICmpInst::ICMP_EQ, ModVal,
347                                       ConstantInt::get(CountTy, leftOverIters),
348                                       "un.tmp");
349       // Branch to either the extra iterations or the unrolled loop
350       BranchInst::Create(NewBlocks[0], CompareBB,
351                          BranchVal, NewBB);
352       CompareBB = NewBB;
353       PH->getTerminator()->setSuccessor(0, NewBB);
354       VMap[NewPH] = CompareBB;
355     }
356 
357     // Rewrite the cloned instruction operands to use the values
358     // created when the clone is created.
359     for (unsigned i = 0, e = NewBlocks.size(); i != e; ++i) {
360       for (BasicBlock::iterator I = NewBlocks[i]->begin(),
361              E = NewBlocks[i]->end(); I != E; ++I) {
362         RemapInstruction(I, VMap,
363                          RF_NoModuleLevelChanges|RF_IgnoreMissingEntries);
364       }
365     }
366   }
367 
368   // Connect the prolog code to the original loop and update the
369   // PHI functions.
370   ConnectProlog(L, TripCount, Count, LastLoopBB, PEnd, PH, NewPH, LVMap,
371                 LPM->getAsPass());
372   NumRuntimeUnrolled++;
373   return true;
374 }
375