1 //===-- UnrollLoopRuntime.cpp - Runtime Loop unrolling utilities ----------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements some loop unrolling utilities for loops with run-time
11 // trip counts. See LoopUnroll.cpp for unrolling loops with compile-time
12 // trip counts.
13 //
14 // The functions in this file are used to generate extra code when the
15 // run-time trip count modulo the unroll factor is not 0. When this is the
16 // case, we need to generate code to execute these 'left over' iterations.
17 //
18 // The current strategy generates an if-then-else sequence prior to the
19 // unrolled loop to execute the 'left over' iterations. Other strategies
20 // include generate a loop before or after the unrolled loop.
21 //
22 //===----------------------------------------------------------------------===//
23
24 #define DEBUG_TYPE "loop-unroll"
25 #include "llvm/Transforms/Utils/UnrollLoop.h"
26 #include "llvm/BasicBlock.h"
27 #include "llvm/ADT/Statistic.h"
28 #include "llvm/Analysis/LoopIterator.h"
29 #include "llvm/Analysis/LoopPass.h"
30 #include "llvm/Analysis/ScalarEvolution.h"
31 #include "llvm/Analysis/ScalarEvolutionExpander.h"
32 #include "llvm/Support/Debug.h"
33 #include "llvm/Support/raw_ostream.h"
34 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
35 #include "llvm/Transforms/Utils/Cloning.h"
36 #include <algorithm>
37
38 using namespace llvm;
39
40 STATISTIC(NumRuntimeUnrolled,
41 "Number of loops unrolled with run-time trip counts");
42
43 /// Connect the unrolling prolog code to the original loop.
44 /// The unrolling prolog code contains code to execute the
45 /// 'extra' iterations if the run-time trip count modulo the
46 /// unroll count is non-zero.
47 ///
48 /// This function performs the following:
49 /// - Create PHI nodes at prolog end block to combine values
50 /// that exit the prolog code and jump around the prolog.
51 /// - Add a PHI operand to a PHI node at the loop exit block
52 /// for values that exit the prolog and go around the loop.
53 /// - Branch around the original loop if the trip count is less
54 /// than the unroll factor.
55 ///
ConnectProlog(Loop * L,Value * TripCount,unsigned Count,BasicBlock * LastPrologBB,BasicBlock * PrologEnd,BasicBlock * OrigPH,BasicBlock * NewPH,ValueToValueMapTy & LVMap,Pass * P)56 static void ConnectProlog(Loop *L, Value *TripCount, unsigned Count,
57 BasicBlock *LastPrologBB, BasicBlock *PrologEnd,
58 BasicBlock *OrigPH, BasicBlock *NewPH,
59 ValueToValueMapTy &LVMap, Pass *P) {
60 BasicBlock *Latch = L->getLoopLatch();
61 assert(Latch != 0 && "Loop must have a latch");
62
63 // Create a PHI node for each outgoing value from the original loop
64 // (which means it is an outgoing value from the prolog code too).
65 // The new PHI node is inserted in the prolog end basic block.
66 // The new PHI name is added as an operand of a PHI node in either
67 // the loop header or the loop exit block.
68 for (succ_iterator SBI = succ_begin(Latch), SBE = succ_end(Latch);
69 SBI != SBE; ++SBI) {
70 for (BasicBlock::iterator BBI = (*SBI)->begin();
71 PHINode *PN = dyn_cast<PHINode>(BBI); ++BBI) {
72
73 // Add a new PHI node to the prolog end block and add the
74 // appropriate incoming values.
75 PHINode *NewPN = PHINode::Create(PN->getType(), 2, PN->getName()+".unr",
76 PrologEnd->getTerminator());
77 // Adding a value to the new PHI node from the original loop preheader.
78 // This is the value that skips all the prolog code.
79 if (L->contains(PN)) {
80 NewPN->addIncoming(PN->getIncomingValueForBlock(NewPH), OrigPH);
81 } else {
82 NewPN->addIncoming(Constant::getNullValue(PN->getType()), OrigPH);
83 }
84
85 Value *V = PN->getIncomingValueForBlock(Latch);
86 if (Instruction *I = dyn_cast<Instruction>(V)) {
87 if (L->contains(I)) {
88 V = LVMap[I];
89 }
90 }
91 // Adding a value to the new PHI node from the last prolog block
92 // that was created.
93 NewPN->addIncoming(V, LastPrologBB);
94
95 // Update the existing PHI node operand with the value from the
96 // new PHI node. How this is done depends on if the existing
97 // PHI node is in the original loop block, or the exit block.
98 if (L->contains(PN)) {
99 PN->setIncomingValue(PN->getBasicBlockIndex(NewPH), NewPN);
100 } else {
101 PN->addIncoming(NewPN, PrologEnd);
102 }
103 }
104 }
105
106 // Create a branch around the orignal loop, which is taken if the
107 // trip count is less than the unroll factor.
108 Instruction *InsertPt = PrologEnd->getTerminator();
109 Instruction *BrLoopExit =
110 new ICmpInst(InsertPt, ICmpInst::ICMP_ULT, TripCount,
111 ConstantInt::get(TripCount->getType(), Count));
112 BasicBlock *Exit = L->getUniqueExitBlock();
113 assert(Exit != 0 && "Loop must have a single exit block only");
114 // Split the exit to maintain loop canonicalization guarantees
115 SmallVector<BasicBlock*, 4> Preds(pred_begin(Exit), pred_end(Exit));
116 if (!Exit->isLandingPad()) {
117 SplitBlockPredecessors(Exit, Preds, ".unr-lcssa", P);
118 } else {
119 SmallVector<BasicBlock*, 2> NewBBs;
120 SplitLandingPadPredecessors(Exit, Preds, ".unr1-lcssa", ".unr2-lcssa",
121 P, NewBBs);
122 }
123 // Add the branch to the exit block (around the unrolled loop)
124 BranchInst::Create(Exit, NewPH, BrLoopExit, InsertPt);
125 InsertPt->eraseFromParent();
126 }
127
128 /// Create a clone of the blocks in a loop and connect them together.
129 /// This function doesn't create a clone of the loop structure.
130 ///
131 /// There are two value maps that are defined and used. VMap is
132 /// for the values in the current loop instance. LVMap contains
133 /// the values from the last loop instance. We need the LVMap values
134 /// to update the initial values for the current loop instance.
135 ///
CloneLoopBlocks(Loop * L,bool FirstCopy,BasicBlock * InsertTop,BasicBlock * InsertBot,std::vector<BasicBlock * > & NewBlocks,LoopBlocksDFS & LoopBlocks,ValueToValueMapTy & VMap,ValueToValueMapTy & LVMap,LoopInfo * LI)136 static void CloneLoopBlocks(Loop *L,
137 bool FirstCopy,
138 BasicBlock *InsertTop,
139 BasicBlock *InsertBot,
140 std::vector<BasicBlock *> &NewBlocks,
141 LoopBlocksDFS &LoopBlocks,
142 ValueToValueMapTy &VMap,
143 ValueToValueMapTy &LVMap,
144 LoopInfo *LI) {
145
146 BasicBlock *Preheader = L->getLoopPreheader();
147 BasicBlock *Header = L->getHeader();
148 BasicBlock *Latch = L->getLoopLatch();
149 Function *F = Header->getParent();
150 LoopBlocksDFS::RPOIterator BlockBegin = LoopBlocks.beginRPO();
151 LoopBlocksDFS::RPOIterator BlockEnd = LoopBlocks.endRPO();
152 // For each block in the original loop, create a new copy,
153 // and update the value map with the newly created values.
154 for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) {
155 BasicBlock *NewBB = CloneBasicBlock(*BB, VMap, ".unr", F);
156 NewBlocks.push_back(NewBB);
157
158 if (Loop *ParentLoop = L->getParentLoop())
159 ParentLoop->addBasicBlockToLoop(NewBB, LI->getBase());
160
161 VMap[*BB] = NewBB;
162 if (Header == *BB) {
163 // For the first block, add a CFG connection to this newly
164 // created block
165 InsertTop->getTerminator()->setSuccessor(0, NewBB);
166
167 // Change the incoming values to the ones defined in the
168 // previously cloned loop.
169 for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
170 PHINode *NewPHI = cast<PHINode>(VMap[I]);
171 if (FirstCopy) {
172 // We replace the first phi node with the value from the preheader
173 VMap[I] = NewPHI->getIncomingValueForBlock(Preheader);
174 NewBB->getInstList().erase(NewPHI);
175 } else {
176 // Update VMap with values from the previous block
177 unsigned idx = NewPHI->getBasicBlockIndex(Latch);
178 Value *InVal = NewPHI->getIncomingValue(idx);
179 if (Instruction *I = dyn_cast<Instruction>(InVal))
180 if (L->contains(I))
181 InVal = LVMap[InVal];
182 NewPHI->setIncomingValue(idx, InVal);
183 NewPHI->setIncomingBlock(idx, InsertTop);
184 }
185 }
186 }
187
188 if (Latch == *BB) {
189 VMap.erase((*BB)->getTerminator());
190 NewBB->getTerminator()->eraseFromParent();
191 BranchInst::Create(InsertBot, NewBB);
192 }
193 }
194 // LastValueMap is updated with the values for the current loop
195 // which are used the next time this function is called.
196 for (ValueToValueMapTy::iterator VI = VMap.begin(), VE = VMap.end();
197 VI != VE; ++VI) {
198 LVMap[VI->first] = VI->second;
199 }
200 }
201
202 /// Insert code in the prolog code when unrolling a loop with a
203 /// run-time trip-count.
204 ///
205 /// This method assumes that the loop unroll factor is total number
206 /// of loop bodes in the loop after unrolling. (Some folks refer
207 /// to the unroll factor as the number of *extra* copies added).
208 /// We assume also that the loop unroll factor is a power-of-two. So, after
209 /// unrolling the loop, the number of loop bodies executed is 2,
210 /// 4, 8, etc. Note - LLVM converts the if-then-sequence to a switch
211 /// instruction in SimplifyCFG.cpp. Then, the backend decides how code for
212 /// the switch instruction is generated.
213 ///
214 /// extraiters = tripcount % loopfactor
215 /// if (extraiters == 0) jump Loop:
216 /// if (extraiters == loopfactor) jump L1
217 /// if (extraiters == loopfactor-1) jump L2
218 /// ...
219 /// L1: LoopBody;
220 /// L2: LoopBody;
221 /// ...
222 /// if tripcount < loopfactor jump End
223 /// Loop:
224 /// ...
225 /// End:
226 ///
UnrollRuntimeLoopProlog(Loop * L,unsigned Count,LoopInfo * LI,LPPassManager * LPM)227 bool llvm::UnrollRuntimeLoopProlog(Loop *L, unsigned Count, LoopInfo *LI,
228 LPPassManager *LPM) {
229 // for now, only unroll loops that contain a single exit
230 if (!L->getExitingBlock())
231 return false;
232
233 // Make sure the loop is in canonical form, and there is a single
234 // exit block only.
235 if (!L->isLoopSimplifyForm() || L->getUniqueExitBlock() == 0)
236 return false;
237
238 // Use Scalar Evolution to compute the trip count. This allows more
239 // loops to be unrolled than relying on induction var simplification
240 if (!LPM)
241 return false;
242 ScalarEvolution *SE = LPM->getAnalysisIfAvailable<ScalarEvolution>();
243 if (SE == 0)
244 return false;
245
246 // Only unroll loops with a computable trip count and the trip count needs
247 // to be an int value (allowing a pointer type is a TODO item)
248 const SCEV *BECount = SE->getBackedgeTakenCount(L);
249 if (isa<SCEVCouldNotCompute>(BECount) || !BECount->getType()->isIntegerTy())
250 return false;
251
252 // Add 1 since the backedge count doesn't include the first loop iteration
253 const SCEV *TripCountSC =
254 SE->getAddExpr(BECount, SE->getConstant(BECount->getType(), 1));
255 if (isa<SCEVCouldNotCompute>(TripCountSC))
256 return false;
257
258 // We only handle cases when the unroll factor is a power of 2.
259 // Count is the loop unroll factor, the number of extra copies added + 1.
260 if ((Count & (Count-1)) != 0)
261 return false;
262
263 // If this loop is nested, then the loop unroller changes the code in
264 // parent loop, so the Scalar Evolution pass needs to be run again
265 if (Loop *ParentLoop = L->getParentLoop())
266 SE->forgetLoop(ParentLoop);
267
268 BasicBlock *PH = L->getLoopPreheader();
269 BasicBlock *Header = L->getHeader();
270 BasicBlock *Latch = L->getLoopLatch();
271 // It helps to splits the original preheader twice, one for the end of the
272 // prolog code and one for a new loop preheader
273 BasicBlock *PEnd = SplitEdge(PH, Header, LPM->getAsPass());
274 BasicBlock *NewPH = SplitBlock(PEnd, PEnd->getTerminator(), LPM->getAsPass());
275 BranchInst *PreHeaderBR = cast<BranchInst>(PH->getTerminator());
276
277 // Compute the number of extra iterations required, which is:
278 // extra iterations = run-time trip count % (loop unroll factor + 1)
279 SCEVExpander Expander(*SE, "loop-unroll");
280 Value *TripCount = Expander.expandCodeFor(TripCountSC, TripCountSC->getType(),
281 PreHeaderBR);
282 Type *CountTy = TripCount->getType();
283 BinaryOperator *ModVal =
284 BinaryOperator::CreateURem(TripCount,
285 ConstantInt::get(CountTy, Count),
286 "xtraiter");
287 ModVal->insertBefore(PreHeaderBR);
288
289 // Check if for no extra iterations, then jump to unrolled loop
290 Value *BranchVal = new ICmpInst(PreHeaderBR,
291 ICmpInst::ICMP_NE, ModVal,
292 ConstantInt::get(CountTy, 0), "lcmp");
293 // Branch to either the extra iterations or the unrolled loop
294 // We will fix up the true branch label when adding loop body copies
295 BranchInst::Create(PEnd, PEnd, BranchVal, PreHeaderBR);
296 assert(PreHeaderBR->isUnconditional() &&
297 PreHeaderBR->getSuccessor(0) == PEnd &&
298 "CFG edges in Preheader are not correct");
299 PreHeaderBR->eraseFromParent();
300
301 ValueToValueMapTy LVMap;
302 Function *F = Header->getParent();
303 // These variables are used to update the CFG links in each iteration
304 BasicBlock *CompareBB = 0;
305 BasicBlock *LastLoopBB = PH;
306 // Get an ordered list of blocks in the loop to help with the ordering of the
307 // cloned blocks in the prolog code
308 LoopBlocksDFS LoopBlocks(L);
309 LoopBlocks.perform(LI);
310
311 //
312 // For each extra loop iteration, create a copy of the loop's basic blocks
313 // and generate a condition that branches to the copy depending on the
314 // number of 'left over' iterations.
315 //
316 for (unsigned leftOverIters = Count-1; leftOverIters > 0; --leftOverIters) {
317 std::vector<BasicBlock*> NewBlocks;
318 ValueToValueMapTy VMap;
319
320 // Clone all the basic blocks in the loop, but we don't clone the loop
321 // This function adds the appropriate CFG connections.
322 CloneLoopBlocks(L, (leftOverIters == Count-1), LastLoopBB, PEnd, NewBlocks,
323 LoopBlocks, VMap, LVMap, LI);
324 LastLoopBB = cast<BasicBlock>(VMap[Latch]);
325
326 // Insert the cloned blocks into function just before the original loop
327 F->getBasicBlockList().splice(PEnd, F->getBasicBlockList(),
328 NewBlocks[0], F->end());
329
330 // Generate the code for the comparison which determines if the loop
331 // prolog code needs to be executed.
332 if (leftOverIters == Count-1) {
333 // There is no compare block for the fall-thru case when for the last
334 // left over iteration
335 CompareBB = NewBlocks[0];
336 } else {
337 // Create a new block for the comparison
338 BasicBlock *NewBB = BasicBlock::Create(CompareBB->getContext(), "unr.cmp",
339 F, CompareBB);
340 if (Loop *ParentLoop = L->getParentLoop()) {
341 // Add the new block to the parent loop, if needed
342 ParentLoop->addBasicBlockToLoop(NewBB, LI->getBase());
343 }
344
345 // The comparison w/ the extra iteration value and branch
346 Value *BranchVal = new ICmpInst(*NewBB, ICmpInst::ICMP_EQ, ModVal,
347 ConstantInt::get(CountTy, leftOverIters),
348 "un.tmp");
349 // Branch to either the extra iterations or the unrolled loop
350 BranchInst::Create(NewBlocks[0], CompareBB,
351 BranchVal, NewBB);
352 CompareBB = NewBB;
353 PH->getTerminator()->setSuccessor(0, NewBB);
354 VMap[NewPH] = CompareBB;
355 }
356
357 // Rewrite the cloned instruction operands to use the values
358 // created when the clone is created.
359 for (unsigned i = 0, e = NewBlocks.size(); i != e; ++i) {
360 for (BasicBlock::iterator I = NewBlocks[i]->begin(),
361 E = NewBlocks[i]->end(); I != E; ++I) {
362 RemapInstruction(I, VMap,
363 RF_NoModuleLevelChanges|RF_IgnoreMissingEntries);
364 }
365 }
366 }
367
368 // Connect the prolog code to the original loop and update the
369 // PHI functions.
370 ConnectProlog(L, TripCount, Count, LastLoopBB, PEnd, PH, NewPH, LVMap,
371 LPM->getAsPass());
372 NumRuntimeUnrolled++;
373 return true;
374 }
375