• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1; RUN: llc < %s -O3 -march=x86-64 -mcpu=core2 | FileCheck %s -check-prefix=X64
2; RUN: llc < %s -O3 -march=x86 -mcpu=core2 | FileCheck %s -check-prefix=X32
3
4; @simple is the most basic chain of address induction variables. Chaining
5; saves at least one register and avoids complex addressing and setup
6; code.
7;
8; X64: @simple
9; %x * 4
10; X64: shlq $2
11; no other address computation in the preheader
12; X64-NEXT: xorl
13; X64-NEXT: .align
14; X64: %loop
15; no complex address modes
16; X64-NOT: (%{{[^)]+}},%{{[^)]+}},
17;
18; X32: @simple
19; no expensive address computation in the preheader
20; X32-NOT: imul
21; X32: %loop
22; no complex address modes
23; X32-NOT: (%{{[^)]+}},%{{[^)]+}},
24define i32 @simple(i32* %a, i32* %b, i32 %x) nounwind {
25entry:
26  br label %loop
27loop:
28  %iv = phi i32* [ %a, %entry ], [ %iv4, %loop ]
29  %s = phi i32 [ 0, %entry ], [ %s4, %loop ]
30  %v = load i32* %iv
31  %iv1 = getelementptr inbounds i32* %iv, i32 %x
32  %v1 = load i32* %iv1
33  %iv2 = getelementptr inbounds i32* %iv1, i32 %x
34  %v2 = load i32* %iv2
35  %iv3 = getelementptr inbounds i32* %iv2, i32 %x
36  %v3 = load i32* %iv3
37  %s1 = add i32 %s, %v
38  %s2 = add i32 %s1, %v1
39  %s3 = add i32 %s2, %v2
40  %s4 = add i32 %s3, %v3
41  %iv4 = getelementptr inbounds i32* %iv3, i32 %x
42  %cmp = icmp eq i32* %iv4, %b
43  br i1 %cmp, label %exit, label %loop
44exit:
45  ret i32 %s4
46}
47
48; @user is not currently chained because the IV is live across memory ops.
49;
50; X64: @user
51; X64: shlq $4
52; X64: lea
53; X64: lea
54; X64: %loop
55; complex address modes
56; X64: (%{{[^)]+}},%{{[^)]+}},
57;
58; X32: @user
59; expensive address computation in the preheader
60; X32: imul
61; X32: %loop
62; complex address modes
63; X32: (%{{[^)]+}},%{{[^)]+}},
64define i32 @user(i32* %a, i32* %b, i32 %x) nounwind {
65entry:
66  br label %loop
67loop:
68  %iv = phi i32* [ %a, %entry ], [ %iv4, %loop ]
69  %s = phi i32 [ 0, %entry ], [ %s4, %loop ]
70  %v = load i32* %iv
71  %iv1 = getelementptr inbounds i32* %iv, i32 %x
72  %v1 = load i32* %iv1
73  %iv2 = getelementptr inbounds i32* %iv1, i32 %x
74  %v2 = load i32* %iv2
75  %iv3 = getelementptr inbounds i32* %iv2, i32 %x
76  %v3 = load i32* %iv3
77  %s1 = add i32 %s, %v
78  %s2 = add i32 %s1, %v1
79  %s3 = add i32 %s2, %v2
80  %s4 = add i32 %s3, %v3
81  %iv4 = getelementptr inbounds i32* %iv3, i32 %x
82  store i32 %s4, i32* %iv
83  %cmp = icmp eq i32* %iv4, %b
84  br i1 %cmp, label %exit, label %loop
85exit:
86  ret i32 %s4
87}
88
89; @extrastride is a slightly more interesting case of a single
90; complete chain with multiple strides. The test case IR is what LSR
91; used to do, and exactly what we don't want to do. LSR's new IV
92; chaining feature should now undo the damage.
93;
94; X64: extrastride:
95; We currently don't handle this on X64 because the sexts cause
96; strange increment expressions like this:
97; IV + ((sext i32 (2 * %s) to i64) + (-1 * (sext i32 %s to i64)))
98;
99; X32: extrastride:
100; no spills in the preheader
101; X32-NOT: mov{{.*}}(%esp){{$}}
102; X32: %for.body{{$}}
103; no complex address modes
104; X32-NOT: (%{{[^)]+}},%{{[^)]+}},
105; no reloads
106; X32-NOT: (%esp)
107define void @extrastride(i8* nocapture %main, i32 %main_stride, i32* nocapture %res, i32 %x, i32 %y, i32 %z) nounwind {
108entry:
109  %cmp8 = icmp eq i32 %z, 0
110  br i1 %cmp8, label %for.end, label %for.body.lr.ph
111
112for.body.lr.ph:                                   ; preds = %entry
113  %add.ptr.sum = shl i32 %main_stride, 1 ; s*2
114  %add.ptr1.sum = add i32 %add.ptr.sum, %main_stride ; s*3
115  %add.ptr2.sum = add i32 %x, %main_stride ; s + x
116  %add.ptr4.sum = shl i32 %main_stride, 2 ; s*4
117  %add.ptr3.sum = add i32 %add.ptr2.sum, %add.ptr4.sum ; total IV stride = s*5+x
118  br label %for.body
119
120for.body:                                         ; preds = %for.body.lr.ph, %for.body
121  %main.addr.011 = phi i8* [ %main, %for.body.lr.ph ], [ %add.ptr6, %for.body ]
122  %i.010 = phi i32 [ 0, %for.body.lr.ph ], [ %inc, %for.body ]
123  %res.addr.09 = phi i32* [ %res, %for.body.lr.ph ], [ %add.ptr7, %for.body ]
124  %0 = bitcast i8* %main.addr.011 to i32*
125  %1 = load i32* %0, align 4
126  %add.ptr = getelementptr inbounds i8* %main.addr.011, i32 %main_stride
127  %2 = bitcast i8* %add.ptr to i32*
128  %3 = load i32* %2, align 4
129  %add.ptr1 = getelementptr inbounds i8* %main.addr.011, i32 %add.ptr.sum
130  %4 = bitcast i8* %add.ptr1 to i32*
131  %5 = load i32* %4, align 4
132  %add.ptr2 = getelementptr inbounds i8* %main.addr.011, i32 %add.ptr1.sum
133  %6 = bitcast i8* %add.ptr2 to i32*
134  %7 = load i32* %6, align 4
135  %add.ptr3 = getelementptr inbounds i8* %main.addr.011, i32 %add.ptr4.sum
136  %8 = bitcast i8* %add.ptr3 to i32*
137  %9 = load i32* %8, align 4
138  %add = add i32 %3, %1
139  %add4 = add i32 %add, %5
140  %add5 = add i32 %add4, %7
141  %add6 = add i32 %add5, %9
142  store i32 %add6, i32* %res.addr.09, align 4
143  %add.ptr6 = getelementptr inbounds i8* %main.addr.011, i32 %add.ptr3.sum
144  %add.ptr7 = getelementptr inbounds i32* %res.addr.09, i32 %y
145  %inc = add i32 %i.010, 1
146  %cmp = icmp eq i32 %inc, %z
147  br i1 %cmp, label %for.end, label %for.body
148
149for.end:                                          ; preds = %for.body, %entry
150  ret void
151}
152
153; @foldedidx is an unrolled variant of this loop:
154;  for (unsigned long i = 0; i < len; i += s) {
155;    c[i] = a[i] + b[i];
156;  }
157; where 's' can be folded into the addressing mode.
158; Consequently, we should *not* form any chains.
159;
160; X64: foldedidx:
161; X64: movzbl -3(
162;
163; X32: foldedidx:
164; X32: movzbl -3(
165define void @foldedidx(i8* nocapture %a, i8* nocapture %b, i8* nocapture %c) nounwind ssp {
166entry:
167  br label %for.body
168
169for.body:                                         ; preds = %for.body, %entry
170  %i.07 = phi i32 [ 0, %entry ], [ %inc.3, %for.body ]
171  %arrayidx = getelementptr inbounds i8* %a, i32 %i.07
172  %0 = load i8* %arrayidx, align 1
173  %conv5 = zext i8 %0 to i32
174  %arrayidx1 = getelementptr inbounds i8* %b, i32 %i.07
175  %1 = load i8* %arrayidx1, align 1
176  %conv26 = zext i8 %1 to i32
177  %add = add nsw i32 %conv26, %conv5
178  %conv3 = trunc i32 %add to i8
179  %arrayidx4 = getelementptr inbounds i8* %c, i32 %i.07
180  store i8 %conv3, i8* %arrayidx4, align 1
181  %inc1 = or i32 %i.07, 1
182  %arrayidx.1 = getelementptr inbounds i8* %a, i32 %inc1
183  %2 = load i8* %arrayidx.1, align 1
184  %conv5.1 = zext i8 %2 to i32
185  %arrayidx1.1 = getelementptr inbounds i8* %b, i32 %inc1
186  %3 = load i8* %arrayidx1.1, align 1
187  %conv26.1 = zext i8 %3 to i32
188  %add.1 = add nsw i32 %conv26.1, %conv5.1
189  %conv3.1 = trunc i32 %add.1 to i8
190  %arrayidx4.1 = getelementptr inbounds i8* %c, i32 %inc1
191  store i8 %conv3.1, i8* %arrayidx4.1, align 1
192  %inc.12 = or i32 %i.07, 2
193  %arrayidx.2 = getelementptr inbounds i8* %a, i32 %inc.12
194  %4 = load i8* %arrayidx.2, align 1
195  %conv5.2 = zext i8 %4 to i32
196  %arrayidx1.2 = getelementptr inbounds i8* %b, i32 %inc.12
197  %5 = load i8* %arrayidx1.2, align 1
198  %conv26.2 = zext i8 %5 to i32
199  %add.2 = add nsw i32 %conv26.2, %conv5.2
200  %conv3.2 = trunc i32 %add.2 to i8
201  %arrayidx4.2 = getelementptr inbounds i8* %c, i32 %inc.12
202  store i8 %conv3.2, i8* %arrayidx4.2, align 1
203  %inc.23 = or i32 %i.07, 3
204  %arrayidx.3 = getelementptr inbounds i8* %a, i32 %inc.23
205  %6 = load i8* %arrayidx.3, align 1
206  %conv5.3 = zext i8 %6 to i32
207  %arrayidx1.3 = getelementptr inbounds i8* %b, i32 %inc.23
208  %7 = load i8* %arrayidx1.3, align 1
209  %conv26.3 = zext i8 %7 to i32
210  %add.3 = add nsw i32 %conv26.3, %conv5.3
211  %conv3.3 = trunc i32 %add.3 to i8
212  %arrayidx4.3 = getelementptr inbounds i8* %c, i32 %inc.23
213  store i8 %conv3.3, i8* %arrayidx4.3, align 1
214  %inc.3 = add nsw i32 %i.07, 4
215  %exitcond.3 = icmp eq i32 %inc.3, 400
216  br i1 %exitcond.3, label %for.end, label %for.body
217
218for.end:                                          ; preds = %for.body
219  ret void
220}
221
222; @multioper tests instructions with multiple IV user operands. We
223; should be able to chain them independent of each other.
224;
225; X64: @multioper
226; X64: %for.body
227; X64: movl %{{.*}},4)
228; X64-NEXT: leal 1(
229; X64-NEXT: movl %{{.*}},4)
230; X64-NEXT: leal 2(
231; X64-NEXT: movl %{{.*}},4)
232; X64-NEXT: leal 3(
233; X64-NEXT: movl %{{.*}},4)
234;
235; X32: @multioper
236; X32: %for.body
237; X32: movl %{{.*}},4)
238; X32-NEXT: leal 1(
239; X32-NEXT: movl %{{.*}},4)
240; X32-NEXT: leal 2(
241; X32-NEXT: movl %{{.*}},4)
242; X32-NEXT: leal 3(
243; X32-NEXT: movl %{{.*}},4)
244define void @multioper(i32* %a, i32 %n) nounwind {
245entry:
246  br label %for.body
247
248for.body:
249  %p = phi i32* [ %p.next, %for.body ], [ %a, %entry ]
250  %i = phi i32 [ %inc4, %for.body ], [ 0, %entry ]
251  store i32 %i, i32* %p, align 4
252  %inc1 = or i32 %i, 1
253  %add.ptr.i1 = getelementptr inbounds i32* %p, i32 1
254  store i32 %inc1, i32* %add.ptr.i1, align 4
255  %inc2 = add nsw i32 %i, 2
256  %add.ptr.i2 = getelementptr inbounds i32* %p, i32 2
257  store i32 %inc2, i32* %add.ptr.i2, align 4
258  %inc3 = add nsw i32 %i, 3
259  %add.ptr.i3 = getelementptr inbounds i32* %p, i32 3
260  store i32 %inc3, i32* %add.ptr.i3, align 4
261  %p.next = getelementptr inbounds i32* %p, i32 4
262  %inc4 = add nsw i32 %i, 4
263  %cmp = icmp slt i32 %inc4, %n
264  br i1 %cmp, label %for.body, label %exit
265
266exit:
267  ret void
268}
269
270; @testCmpZero has a ICmpZero LSR use that should not be hidden from
271; LSR. Profitable chains should have more than one nonzero increment
272; anyway.
273;
274; X32: @testCmpZero
275; X32: %for.body82.us
276; X32: dec
277; X32: jne
278define void @testCmpZero(i8* %src, i8* %dst, i32 %srcidx, i32 %dstidx, i32 %len) nounwind ssp {
279entry:
280  %dest0 = getelementptr inbounds i8* %src, i32 %srcidx
281  %source0 = getelementptr inbounds i8* %dst, i32 %dstidx
282  %add.ptr79.us.sum = add i32 %srcidx, %len
283  %lftr.limit = getelementptr i8* %src, i32 %add.ptr79.us.sum
284  br label %for.body82.us
285
286for.body82.us:
287  %dest = phi i8* [ %dest0, %entry ], [ %incdec.ptr91.us, %for.body82.us ]
288  %source = phi i8* [ %source0, %entry ], [ %add.ptr83.us, %for.body82.us ]
289  %0 = bitcast i8* %source to i32*
290  %1 = load i32* %0, align 4
291  %trunc = trunc i32 %1 to i8
292  %add.ptr83.us = getelementptr inbounds i8* %source, i32 4
293  %incdec.ptr91.us = getelementptr inbounds i8* %dest, i32 1
294  store i8 %trunc, i8* %dest, align 1
295  %exitcond = icmp eq i8* %incdec.ptr91.us, %lftr.limit
296  br i1 %exitcond, label %return, label %for.body82.us
297
298return:
299  ret void
300}
301