1 //===- CodeGenDAGPatterns.cpp - Read DAG patterns from .td file -----------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the CodeGenDAGPatterns class, which is used to read and
11 // represent the patterns present in a .td file for instructions.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "CodeGenDAGPatterns.h"
16 #include "llvm/TableGen/Error.h"
17 #include "llvm/TableGen/Record.h"
18 #include "llvm/ADT/StringExtras.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/Twine.h"
21 #include "llvm/Support/Debug.h"
22 #include "llvm/Support/ErrorHandling.h"
23 #include <algorithm>
24 #include <cstdio>
25 #include <set>
26 using namespace llvm;
27
28 //===----------------------------------------------------------------------===//
29 // EEVT::TypeSet Implementation
30 //===----------------------------------------------------------------------===//
31
isInteger(MVT::SimpleValueType VT)32 static inline bool isInteger(MVT::SimpleValueType VT) {
33 return EVT(VT).isInteger();
34 }
isFloatingPoint(MVT::SimpleValueType VT)35 static inline bool isFloatingPoint(MVT::SimpleValueType VT) {
36 return EVT(VT).isFloatingPoint();
37 }
isVector(MVT::SimpleValueType VT)38 static inline bool isVector(MVT::SimpleValueType VT) {
39 return EVT(VT).isVector();
40 }
isScalar(MVT::SimpleValueType VT)41 static inline bool isScalar(MVT::SimpleValueType VT) {
42 return !EVT(VT).isVector();
43 }
44
TypeSet(MVT::SimpleValueType VT,TreePattern & TP)45 EEVT::TypeSet::TypeSet(MVT::SimpleValueType VT, TreePattern &TP) {
46 if (VT == MVT::iAny)
47 EnforceInteger(TP);
48 else if (VT == MVT::fAny)
49 EnforceFloatingPoint(TP);
50 else if (VT == MVT::vAny)
51 EnforceVector(TP);
52 else {
53 assert((VT < MVT::LAST_VALUETYPE || VT == MVT::iPTR ||
54 VT == MVT::iPTRAny) && "Not a concrete type!");
55 TypeVec.push_back(VT);
56 }
57 }
58
59
TypeSet(const std::vector<MVT::SimpleValueType> & VTList)60 EEVT::TypeSet::TypeSet(const std::vector<MVT::SimpleValueType> &VTList) {
61 assert(!VTList.empty() && "empty list?");
62 TypeVec.append(VTList.begin(), VTList.end());
63
64 if (!VTList.empty())
65 assert(VTList[0] != MVT::iAny && VTList[0] != MVT::vAny &&
66 VTList[0] != MVT::fAny);
67
68 // Verify no duplicates.
69 array_pod_sort(TypeVec.begin(), TypeVec.end());
70 assert(std::unique(TypeVec.begin(), TypeVec.end()) == TypeVec.end());
71 }
72
73 /// FillWithPossibleTypes - Set to all legal types and return true, only valid
74 /// on completely unknown type sets.
FillWithPossibleTypes(TreePattern & TP,bool (* Pred)(MVT::SimpleValueType),const char * PredicateName)75 bool EEVT::TypeSet::FillWithPossibleTypes(TreePattern &TP,
76 bool (*Pred)(MVT::SimpleValueType),
77 const char *PredicateName) {
78 assert(isCompletelyUnknown());
79 const std::vector<MVT::SimpleValueType> &LegalTypes =
80 TP.getDAGPatterns().getTargetInfo().getLegalValueTypes();
81
82 for (unsigned i = 0, e = LegalTypes.size(); i != e; ++i)
83 if (Pred == 0 || Pred(LegalTypes[i]))
84 TypeVec.push_back(LegalTypes[i]);
85
86 // If we have nothing that matches the predicate, bail out.
87 if (TypeVec.empty())
88 TP.error("Type inference contradiction found, no " +
89 std::string(PredicateName) + " types found");
90 // No need to sort with one element.
91 if (TypeVec.size() == 1) return true;
92
93 // Remove duplicates.
94 array_pod_sort(TypeVec.begin(), TypeVec.end());
95 TypeVec.erase(std::unique(TypeVec.begin(), TypeVec.end()), TypeVec.end());
96
97 return true;
98 }
99
100 /// hasIntegerTypes - Return true if this TypeSet contains iAny or an
101 /// integer value type.
hasIntegerTypes() const102 bool EEVT::TypeSet::hasIntegerTypes() const {
103 for (unsigned i = 0, e = TypeVec.size(); i != e; ++i)
104 if (isInteger(TypeVec[i]))
105 return true;
106 return false;
107 }
108
109 /// hasFloatingPointTypes - Return true if this TypeSet contains an fAny or
110 /// a floating point value type.
hasFloatingPointTypes() const111 bool EEVT::TypeSet::hasFloatingPointTypes() const {
112 for (unsigned i = 0, e = TypeVec.size(); i != e; ++i)
113 if (isFloatingPoint(TypeVec[i]))
114 return true;
115 return false;
116 }
117
118 /// hasVectorTypes - Return true if this TypeSet contains a vAny or a vector
119 /// value type.
hasVectorTypes() const120 bool EEVT::TypeSet::hasVectorTypes() const {
121 for (unsigned i = 0, e = TypeVec.size(); i != e; ++i)
122 if (isVector(TypeVec[i]))
123 return true;
124 return false;
125 }
126
127
getName() const128 std::string EEVT::TypeSet::getName() const {
129 if (TypeVec.empty()) return "<empty>";
130
131 std::string Result;
132
133 for (unsigned i = 0, e = TypeVec.size(); i != e; ++i) {
134 std::string VTName = llvm::getEnumName(TypeVec[i]);
135 // Strip off MVT:: prefix if present.
136 if (VTName.substr(0,5) == "MVT::")
137 VTName = VTName.substr(5);
138 if (i) Result += ':';
139 Result += VTName;
140 }
141
142 if (TypeVec.size() == 1)
143 return Result;
144 return "{" + Result + "}";
145 }
146
147 /// MergeInTypeInfo - This merges in type information from the specified
148 /// argument. If 'this' changes, it returns true. If the two types are
149 /// contradictory (e.g. merge f32 into i32) then this throws an exception.
MergeInTypeInfo(const EEVT::TypeSet & InVT,TreePattern & TP)150 bool EEVT::TypeSet::MergeInTypeInfo(const EEVT::TypeSet &InVT, TreePattern &TP){
151 if (InVT.isCompletelyUnknown() || *this == InVT)
152 return false;
153
154 if (isCompletelyUnknown()) {
155 *this = InVT;
156 return true;
157 }
158
159 assert(TypeVec.size() >= 1 && InVT.TypeVec.size() >= 1 && "No unknowns");
160
161 // Handle the abstract cases, seeing if we can resolve them better.
162 switch (TypeVec[0]) {
163 default: break;
164 case MVT::iPTR:
165 case MVT::iPTRAny:
166 if (InVT.hasIntegerTypes()) {
167 EEVT::TypeSet InCopy(InVT);
168 InCopy.EnforceInteger(TP);
169 InCopy.EnforceScalar(TP);
170
171 if (InCopy.isConcrete()) {
172 // If the RHS has one integer type, upgrade iPTR to i32.
173 TypeVec[0] = InVT.TypeVec[0];
174 return true;
175 }
176
177 // If the input has multiple scalar integers, this doesn't add any info.
178 if (!InCopy.isCompletelyUnknown())
179 return false;
180 }
181 break;
182 }
183
184 // If the input constraint is iAny/iPTR and this is an integer type list,
185 // remove non-integer types from the list.
186 if ((InVT.TypeVec[0] == MVT::iPTR || InVT.TypeVec[0] == MVT::iPTRAny) &&
187 hasIntegerTypes()) {
188 bool MadeChange = EnforceInteger(TP);
189
190 // If we're merging in iPTR/iPTRAny and the node currently has a list of
191 // multiple different integer types, replace them with a single iPTR.
192 if ((InVT.TypeVec[0] == MVT::iPTR || InVT.TypeVec[0] == MVT::iPTRAny) &&
193 TypeVec.size() != 1) {
194 TypeVec.resize(1);
195 TypeVec[0] = InVT.TypeVec[0];
196 MadeChange = true;
197 }
198
199 return MadeChange;
200 }
201
202 // If this is a type list and the RHS is a typelist as well, eliminate entries
203 // from this list that aren't in the other one.
204 bool MadeChange = false;
205 TypeSet InputSet(*this);
206
207 for (unsigned i = 0; i != TypeVec.size(); ++i) {
208 bool InInVT = false;
209 for (unsigned j = 0, e = InVT.TypeVec.size(); j != e; ++j)
210 if (TypeVec[i] == InVT.TypeVec[j]) {
211 InInVT = true;
212 break;
213 }
214
215 if (InInVT) continue;
216 TypeVec.erase(TypeVec.begin()+i--);
217 MadeChange = true;
218 }
219
220 // If we removed all of our types, we have a type contradiction.
221 if (!TypeVec.empty())
222 return MadeChange;
223
224 // FIXME: Really want an SMLoc here!
225 TP.error("Type inference contradiction found, merging '" +
226 InVT.getName() + "' into '" + InputSet.getName() + "'");
227 return true; // unreachable
228 }
229
230 /// EnforceInteger - Remove all non-integer types from this set.
EnforceInteger(TreePattern & TP)231 bool EEVT::TypeSet::EnforceInteger(TreePattern &TP) {
232 // If we know nothing, then get the full set.
233 if (TypeVec.empty())
234 return FillWithPossibleTypes(TP, isInteger, "integer");
235 if (!hasFloatingPointTypes())
236 return false;
237
238 TypeSet InputSet(*this);
239
240 // Filter out all the fp types.
241 for (unsigned i = 0; i != TypeVec.size(); ++i)
242 if (!isInteger(TypeVec[i]))
243 TypeVec.erase(TypeVec.begin()+i--);
244
245 if (TypeVec.empty())
246 TP.error("Type inference contradiction found, '" +
247 InputSet.getName() + "' needs to be integer");
248 return true;
249 }
250
251 /// EnforceFloatingPoint - Remove all integer types from this set.
EnforceFloatingPoint(TreePattern & TP)252 bool EEVT::TypeSet::EnforceFloatingPoint(TreePattern &TP) {
253 // If we know nothing, then get the full set.
254 if (TypeVec.empty())
255 return FillWithPossibleTypes(TP, isFloatingPoint, "floating point");
256
257 if (!hasIntegerTypes())
258 return false;
259
260 TypeSet InputSet(*this);
261
262 // Filter out all the fp types.
263 for (unsigned i = 0; i != TypeVec.size(); ++i)
264 if (!isFloatingPoint(TypeVec[i]))
265 TypeVec.erase(TypeVec.begin()+i--);
266
267 if (TypeVec.empty())
268 TP.error("Type inference contradiction found, '" +
269 InputSet.getName() + "' needs to be floating point");
270 return true;
271 }
272
273 /// EnforceScalar - Remove all vector types from this.
EnforceScalar(TreePattern & TP)274 bool EEVT::TypeSet::EnforceScalar(TreePattern &TP) {
275 // If we know nothing, then get the full set.
276 if (TypeVec.empty())
277 return FillWithPossibleTypes(TP, isScalar, "scalar");
278
279 if (!hasVectorTypes())
280 return false;
281
282 TypeSet InputSet(*this);
283
284 // Filter out all the vector types.
285 for (unsigned i = 0; i != TypeVec.size(); ++i)
286 if (!isScalar(TypeVec[i]))
287 TypeVec.erase(TypeVec.begin()+i--);
288
289 if (TypeVec.empty())
290 TP.error("Type inference contradiction found, '" +
291 InputSet.getName() + "' needs to be scalar");
292 return true;
293 }
294
295 /// EnforceVector - Remove all vector types from this.
EnforceVector(TreePattern & TP)296 bool EEVT::TypeSet::EnforceVector(TreePattern &TP) {
297 // If we know nothing, then get the full set.
298 if (TypeVec.empty())
299 return FillWithPossibleTypes(TP, isVector, "vector");
300
301 TypeSet InputSet(*this);
302 bool MadeChange = false;
303
304 // Filter out all the scalar types.
305 for (unsigned i = 0; i != TypeVec.size(); ++i)
306 if (!isVector(TypeVec[i])) {
307 TypeVec.erase(TypeVec.begin()+i--);
308 MadeChange = true;
309 }
310
311 if (TypeVec.empty())
312 TP.error("Type inference contradiction found, '" +
313 InputSet.getName() + "' needs to be a vector");
314 return MadeChange;
315 }
316
317
318
319 /// EnforceSmallerThan - 'this' must be a smaller VT than Other. Update
320 /// this an other based on this information.
EnforceSmallerThan(EEVT::TypeSet & Other,TreePattern & TP)321 bool EEVT::TypeSet::EnforceSmallerThan(EEVT::TypeSet &Other, TreePattern &TP) {
322 // Both operands must be integer or FP, but we don't care which.
323 bool MadeChange = false;
324
325 if (isCompletelyUnknown())
326 MadeChange = FillWithPossibleTypes(TP);
327
328 if (Other.isCompletelyUnknown())
329 MadeChange = Other.FillWithPossibleTypes(TP);
330
331 // If one side is known to be integer or known to be FP but the other side has
332 // no information, get at least the type integrality info in there.
333 if (!hasFloatingPointTypes())
334 MadeChange |= Other.EnforceInteger(TP);
335 else if (!hasIntegerTypes())
336 MadeChange |= Other.EnforceFloatingPoint(TP);
337 if (!Other.hasFloatingPointTypes())
338 MadeChange |= EnforceInteger(TP);
339 else if (!Other.hasIntegerTypes())
340 MadeChange |= EnforceFloatingPoint(TP);
341
342 assert(!isCompletelyUnknown() && !Other.isCompletelyUnknown() &&
343 "Should have a type list now");
344
345 // If one contains vectors but the other doesn't pull vectors out.
346 if (!hasVectorTypes())
347 MadeChange |= Other.EnforceScalar(TP);
348 if (!hasVectorTypes())
349 MadeChange |= EnforceScalar(TP);
350
351 if (TypeVec.size() == 1 && Other.TypeVec.size() == 1) {
352 // If we are down to concrete types, this code does not currently
353 // handle nodes which have multiple types, where some types are
354 // integer, and some are fp. Assert that this is not the case.
355 assert(!(hasIntegerTypes() && hasFloatingPointTypes()) &&
356 !(Other.hasIntegerTypes() && Other.hasFloatingPointTypes()) &&
357 "SDTCisOpSmallerThanOp does not handle mixed int/fp types!");
358
359 // Otherwise, if these are both vector types, either this vector
360 // must have a larger bitsize than the other, or this element type
361 // must be larger than the other.
362 EVT Type(TypeVec[0]);
363 EVT OtherType(Other.TypeVec[0]);
364
365 if (hasVectorTypes() && Other.hasVectorTypes()) {
366 if (Type.getSizeInBits() >= OtherType.getSizeInBits())
367 if (Type.getVectorElementType().getSizeInBits()
368 >= OtherType.getVectorElementType().getSizeInBits())
369 TP.error("Type inference contradiction found, '" +
370 getName() + "' element type not smaller than '" +
371 Other.getName() +"'!");
372 }
373 else
374 // For scalar types, the bitsize of this type must be larger
375 // than that of the other.
376 if (Type.getSizeInBits() >= OtherType.getSizeInBits())
377 TP.error("Type inference contradiction found, '" +
378 getName() + "' is not smaller than '" +
379 Other.getName() +"'!");
380
381 }
382
383
384 // Handle int and fp as disjoint sets. This won't work for patterns
385 // that have mixed fp/int types but those are likely rare and would
386 // not have been accepted by this code previously.
387
388 // Okay, find the smallest type from the current set and remove it from the
389 // largest set.
390 MVT::SimpleValueType SmallestInt = MVT::LAST_VALUETYPE;
391 for (unsigned i = 0, e = TypeVec.size(); i != e; ++i)
392 if (isInteger(TypeVec[i])) {
393 SmallestInt = TypeVec[i];
394 break;
395 }
396 for (unsigned i = 1, e = TypeVec.size(); i != e; ++i)
397 if (isInteger(TypeVec[i]) && TypeVec[i] < SmallestInt)
398 SmallestInt = TypeVec[i];
399
400 MVT::SimpleValueType SmallestFP = MVT::LAST_VALUETYPE;
401 for (unsigned i = 0, e = TypeVec.size(); i != e; ++i)
402 if (isFloatingPoint(TypeVec[i])) {
403 SmallestFP = TypeVec[i];
404 break;
405 }
406 for (unsigned i = 1, e = TypeVec.size(); i != e; ++i)
407 if (isFloatingPoint(TypeVec[i]) && TypeVec[i] < SmallestFP)
408 SmallestFP = TypeVec[i];
409
410 int OtherIntSize = 0;
411 int OtherFPSize = 0;
412 for (SmallVector<MVT::SimpleValueType, 2>::iterator TVI =
413 Other.TypeVec.begin();
414 TVI != Other.TypeVec.end();
415 /* NULL */) {
416 if (isInteger(*TVI)) {
417 ++OtherIntSize;
418 if (*TVI == SmallestInt) {
419 TVI = Other.TypeVec.erase(TVI);
420 --OtherIntSize;
421 MadeChange = true;
422 continue;
423 }
424 }
425 else if (isFloatingPoint(*TVI)) {
426 ++OtherFPSize;
427 if (*TVI == SmallestFP) {
428 TVI = Other.TypeVec.erase(TVI);
429 --OtherFPSize;
430 MadeChange = true;
431 continue;
432 }
433 }
434 ++TVI;
435 }
436
437 // If this is the only type in the large set, the constraint can never be
438 // satisfied.
439 if ((Other.hasIntegerTypes() && OtherIntSize == 0)
440 || (Other.hasFloatingPointTypes() && OtherFPSize == 0))
441 TP.error("Type inference contradiction found, '" +
442 Other.getName() + "' has nothing larger than '" + getName() +"'!");
443
444 // Okay, find the largest type in the Other set and remove it from the
445 // current set.
446 MVT::SimpleValueType LargestInt = MVT::Other;
447 for (unsigned i = 0, e = Other.TypeVec.size(); i != e; ++i)
448 if (isInteger(Other.TypeVec[i])) {
449 LargestInt = Other.TypeVec[i];
450 break;
451 }
452 for (unsigned i = 1, e = Other.TypeVec.size(); i != e; ++i)
453 if (isInteger(Other.TypeVec[i]) && Other.TypeVec[i] > LargestInt)
454 LargestInt = Other.TypeVec[i];
455
456 MVT::SimpleValueType LargestFP = MVT::Other;
457 for (unsigned i = 0, e = Other.TypeVec.size(); i != e; ++i)
458 if (isFloatingPoint(Other.TypeVec[i])) {
459 LargestFP = Other.TypeVec[i];
460 break;
461 }
462 for (unsigned i = 1, e = Other.TypeVec.size(); i != e; ++i)
463 if (isFloatingPoint(Other.TypeVec[i]) && Other.TypeVec[i] > LargestFP)
464 LargestFP = Other.TypeVec[i];
465
466 int IntSize = 0;
467 int FPSize = 0;
468 for (SmallVector<MVT::SimpleValueType, 2>::iterator TVI =
469 TypeVec.begin();
470 TVI != TypeVec.end();
471 /* NULL */) {
472 if (isInteger(*TVI)) {
473 ++IntSize;
474 if (*TVI == LargestInt) {
475 TVI = TypeVec.erase(TVI);
476 --IntSize;
477 MadeChange = true;
478 continue;
479 }
480 }
481 else if (isFloatingPoint(*TVI)) {
482 ++FPSize;
483 if (*TVI == LargestFP) {
484 TVI = TypeVec.erase(TVI);
485 --FPSize;
486 MadeChange = true;
487 continue;
488 }
489 }
490 ++TVI;
491 }
492
493 // If this is the only type in the small set, the constraint can never be
494 // satisfied.
495 if ((hasIntegerTypes() && IntSize == 0)
496 || (hasFloatingPointTypes() && FPSize == 0))
497 TP.error("Type inference contradiction found, '" +
498 getName() + "' has nothing smaller than '" + Other.getName()+"'!");
499
500 return MadeChange;
501 }
502
503 /// EnforceVectorEltTypeIs - 'this' is now constrainted to be a vector type
504 /// whose element is specified by VTOperand.
EnforceVectorEltTypeIs(EEVT::TypeSet & VTOperand,TreePattern & TP)505 bool EEVT::TypeSet::EnforceVectorEltTypeIs(EEVT::TypeSet &VTOperand,
506 TreePattern &TP) {
507 // "This" must be a vector and "VTOperand" must be a scalar.
508 bool MadeChange = false;
509 MadeChange |= EnforceVector(TP);
510 MadeChange |= VTOperand.EnforceScalar(TP);
511
512 // If we know the vector type, it forces the scalar to agree.
513 if (isConcrete()) {
514 EVT IVT = getConcrete();
515 IVT = IVT.getVectorElementType();
516 return MadeChange |
517 VTOperand.MergeInTypeInfo(IVT.getSimpleVT().SimpleTy, TP);
518 }
519
520 // If the scalar type is known, filter out vector types whose element types
521 // disagree.
522 if (!VTOperand.isConcrete())
523 return MadeChange;
524
525 MVT::SimpleValueType VT = VTOperand.getConcrete();
526
527 TypeSet InputSet(*this);
528
529 // Filter out all the types which don't have the right element type.
530 for (unsigned i = 0; i != TypeVec.size(); ++i) {
531 assert(isVector(TypeVec[i]) && "EnforceVector didn't work");
532 if (EVT(TypeVec[i]).getVectorElementType().getSimpleVT().SimpleTy != VT) {
533 TypeVec.erase(TypeVec.begin()+i--);
534 MadeChange = true;
535 }
536 }
537
538 if (TypeVec.empty()) // FIXME: Really want an SMLoc here!
539 TP.error("Type inference contradiction found, forcing '" +
540 InputSet.getName() + "' to have a vector element");
541 return MadeChange;
542 }
543
544 /// EnforceVectorSubVectorTypeIs - 'this' is now constrainted to be a
545 /// vector type specified by VTOperand.
EnforceVectorSubVectorTypeIs(EEVT::TypeSet & VTOperand,TreePattern & TP)546 bool EEVT::TypeSet::EnforceVectorSubVectorTypeIs(EEVT::TypeSet &VTOperand,
547 TreePattern &TP) {
548 // "This" must be a vector and "VTOperand" must be a vector.
549 bool MadeChange = false;
550 MadeChange |= EnforceVector(TP);
551 MadeChange |= VTOperand.EnforceVector(TP);
552
553 // "This" must be larger than "VTOperand."
554 MadeChange |= VTOperand.EnforceSmallerThan(*this, TP);
555
556 // If we know the vector type, it forces the scalar types to agree.
557 if (isConcrete()) {
558 EVT IVT = getConcrete();
559 IVT = IVT.getVectorElementType();
560
561 EEVT::TypeSet EltTypeSet(IVT.getSimpleVT().SimpleTy, TP);
562 MadeChange |= VTOperand.EnforceVectorEltTypeIs(EltTypeSet, TP);
563 } else if (VTOperand.isConcrete()) {
564 EVT IVT = VTOperand.getConcrete();
565 IVT = IVT.getVectorElementType();
566
567 EEVT::TypeSet EltTypeSet(IVT.getSimpleVT().SimpleTy, TP);
568 MadeChange |= EnforceVectorEltTypeIs(EltTypeSet, TP);
569 }
570
571 return MadeChange;
572 }
573
574 //===----------------------------------------------------------------------===//
575 // Helpers for working with extended types.
576
operator ()(const Record * LHS,const Record * RHS) const577 bool RecordPtrCmp::operator()(const Record *LHS, const Record *RHS) const {
578 return LHS->getID() < RHS->getID();
579 }
580
581 /// Dependent variable map for CodeGenDAGPattern variant generation
582 typedef std::map<std::string, int> DepVarMap;
583
584 /// Const iterator shorthand for DepVarMap
585 typedef DepVarMap::const_iterator DepVarMap_citer;
586
FindDepVarsOf(TreePatternNode * N,DepVarMap & DepMap)587 static void FindDepVarsOf(TreePatternNode *N, DepVarMap &DepMap) {
588 if (N->isLeaf()) {
589 if (dynamic_cast<DefInit*>(N->getLeafValue()) != NULL)
590 DepMap[N->getName()]++;
591 } else {
592 for (size_t i = 0, e = N->getNumChildren(); i != e; ++i)
593 FindDepVarsOf(N->getChild(i), DepMap);
594 }
595 }
596
597 /// Find dependent variables within child patterns
FindDepVars(TreePatternNode * N,MultipleUseVarSet & DepVars)598 static void FindDepVars(TreePatternNode *N, MultipleUseVarSet &DepVars) {
599 DepVarMap depcounts;
600 FindDepVarsOf(N, depcounts);
601 for (DepVarMap_citer i = depcounts.begin(); i != depcounts.end(); ++i) {
602 if (i->second > 1) // std::pair<std::string, int>
603 DepVars.insert(i->first);
604 }
605 }
606
607 #ifndef NDEBUG
608 /// Dump the dependent variable set:
DumpDepVars(MultipleUseVarSet & DepVars)609 static void DumpDepVars(MultipleUseVarSet &DepVars) {
610 if (DepVars.empty()) {
611 DEBUG(errs() << "<empty set>");
612 } else {
613 DEBUG(errs() << "[ ");
614 for (MultipleUseVarSet::const_iterator i = DepVars.begin(),
615 e = DepVars.end(); i != e; ++i) {
616 DEBUG(errs() << (*i) << " ");
617 }
618 DEBUG(errs() << "]");
619 }
620 }
621 #endif
622
623
624 //===----------------------------------------------------------------------===//
625 // TreePredicateFn Implementation
626 //===----------------------------------------------------------------------===//
627
628 /// TreePredicateFn constructor. Here 'N' is a subclass of PatFrag.
TreePredicateFn(TreePattern * N)629 TreePredicateFn::TreePredicateFn(TreePattern *N) : PatFragRec(N) {
630 assert((getPredCode().empty() || getImmCode().empty()) &&
631 ".td file corrupt: can't have a node predicate *and* an imm predicate");
632 }
633
getPredCode() const634 std::string TreePredicateFn::getPredCode() const {
635 return PatFragRec->getRecord()->getValueAsString("PredicateCode");
636 }
637
getImmCode() const638 std::string TreePredicateFn::getImmCode() const {
639 return PatFragRec->getRecord()->getValueAsString("ImmediateCode");
640 }
641
642
643 /// isAlwaysTrue - Return true if this is a noop predicate.
isAlwaysTrue() const644 bool TreePredicateFn::isAlwaysTrue() const {
645 return getPredCode().empty() && getImmCode().empty();
646 }
647
648 /// Return the name to use in the generated code to reference this, this is
649 /// "Predicate_foo" if from a pattern fragment "foo".
getFnName() const650 std::string TreePredicateFn::getFnName() const {
651 return "Predicate_" + PatFragRec->getRecord()->getName();
652 }
653
654 /// getCodeToRunOnSDNode - Return the code for the function body that
655 /// evaluates this predicate. The argument is expected to be in "Node",
656 /// not N. This handles casting and conversion to a concrete node type as
657 /// appropriate.
getCodeToRunOnSDNode() const658 std::string TreePredicateFn::getCodeToRunOnSDNode() const {
659 // Handle immediate predicates first.
660 std::string ImmCode = getImmCode();
661 if (!ImmCode.empty()) {
662 std::string Result =
663 " int64_t Imm = cast<ConstantSDNode>(Node)->getSExtValue();\n";
664 return Result + ImmCode;
665 }
666
667 // Handle arbitrary node predicates.
668 assert(!getPredCode().empty() && "Don't have any predicate code!");
669 std::string ClassName;
670 if (PatFragRec->getOnlyTree()->isLeaf())
671 ClassName = "SDNode";
672 else {
673 Record *Op = PatFragRec->getOnlyTree()->getOperator();
674 ClassName = PatFragRec->getDAGPatterns().getSDNodeInfo(Op).getSDClassName();
675 }
676 std::string Result;
677 if (ClassName == "SDNode")
678 Result = " SDNode *N = Node;\n";
679 else
680 Result = " " + ClassName + "*N = cast<" + ClassName + ">(Node);\n";
681
682 return Result + getPredCode();
683 }
684
685 //===----------------------------------------------------------------------===//
686 // PatternToMatch implementation
687 //
688
689
690 /// getPatternSize - Return the 'size' of this pattern. We want to match large
691 /// patterns before small ones. This is used to determine the size of a
692 /// pattern.
getPatternSize(const TreePatternNode * P,const CodeGenDAGPatterns & CGP)693 static unsigned getPatternSize(const TreePatternNode *P,
694 const CodeGenDAGPatterns &CGP) {
695 unsigned Size = 3; // The node itself.
696 // If the root node is a ConstantSDNode, increases its size.
697 // e.g. (set R32:$dst, 0).
698 if (P->isLeaf() && dynamic_cast<IntInit*>(P->getLeafValue()))
699 Size += 2;
700
701 // FIXME: This is a hack to statically increase the priority of patterns
702 // which maps a sub-dag to a complex pattern. e.g. favors LEA over ADD.
703 // Later we can allow complexity / cost for each pattern to be (optionally)
704 // specified. To get best possible pattern match we'll need to dynamically
705 // calculate the complexity of all patterns a dag can potentially map to.
706 const ComplexPattern *AM = P->getComplexPatternInfo(CGP);
707 if (AM)
708 Size += AM->getNumOperands() * 3;
709
710 // If this node has some predicate function that must match, it adds to the
711 // complexity of this node.
712 if (!P->getPredicateFns().empty())
713 ++Size;
714
715 // Count children in the count if they are also nodes.
716 for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) {
717 TreePatternNode *Child = P->getChild(i);
718 if (!Child->isLeaf() && Child->getNumTypes() &&
719 Child->getType(0) != MVT::Other)
720 Size += getPatternSize(Child, CGP);
721 else if (Child->isLeaf()) {
722 if (dynamic_cast<IntInit*>(Child->getLeafValue()))
723 Size += 5; // Matches a ConstantSDNode (+3) and a specific value (+2).
724 else if (Child->getComplexPatternInfo(CGP))
725 Size += getPatternSize(Child, CGP);
726 else if (!Child->getPredicateFns().empty())
727 ++Size;
728 }
729 }
730
731 return Size;
732 }
733
734 /// Compute the complexity metric for the input pattern. This roughly
735 /// corresponds to the number of nodes that are covered.
736 unsigned PatternToMatch::
getPatternComplexity(const CodeGenDAGPatterns & CGP) const737 getPatternComplexity(const CodeGenDAGPatterns &CGP) const {
738 return getPatternSize(getSrcPattern(), CGP) + getAddedComplexity();
739 }
740
741
742 /// getPredicateCheck - Return a single string containing all of this
743 /// pattern's predicates concatenated with "&&" operators.
744 ///
getPredicateCheck() const745 std::string PatternToMatch::getPredicateCheck() const {
746 std::string PredicateCheck;
747 for (unsigned i = 0, e = Predicates->getSize(); i != e; ++i) {
748 if (DefInit *Pred = dynamic_cast<DefInit*>(Predicates->getElement(i))) {
749 Record *Def = Pred->getDef();
750 if (!Def->isSubClassOf("Predicate")) {
751 #ifndef NDEBUG
752 Def->dump();
753 #endif
754 llvm_unreachable("Unknown predicate type!");
755 }
756 if (!PredicateCheck.empty())
757 PredicateCheck += " && ";
758 PredicateCheck += "(" + Def->getValueAsString("CondString") + ")";
759 }
760 }
761
762 return PredicateCheck;
763 }
764
765 //===----------------------------------------------------------------------===//
766 // SDTypeConstraint implementation
767 //
768
SDTypeConstraint(Record * R)769 SDTypeConstraint::SDTypeConstraint(Record *R) {
770 OperandNo = R->getValueAsInt("OperandNum");
771
772 if (R->isSubClassOf("SDTCisVT")) {
773 ConstraintType = SDTCisVT;
774 x.SDTCisVT_Info.VT = getValueType(R->getValueAsDef("VT"));
775 if (x.SDTCisVT_Info.VT == MVT::isVoid)
776 throw TGError(R->getLoc(), "Cannot use 'Void' as type to SDTCisVT");
777
778 } else if (R->isSubClassOf("SDTCisPtrTy")) {
779 ConstraintType = SDTCisPtrTy;
780 } else if (R->isSubClassOf("SDTCisInt")) {
781 ConstraintType = SDTCisInt;
782 } else if (R->isSubClassOf("SDTCisFP")) {
783 ConstraintType = SDTCisFP;
784 } else if (R->isSubClassOf("SDTCisVec")) {
785 ConstraintType = SDTCisVec;
786 } else if (R->isSubClassOf("SDTCisSameAs")) {
787 ConstraintType = SDTCisSameAs;
788 x.SDTCisSameAs_Info.OtherOperandNum = R->getValueAsInt("OtherOperandNum");
789 } else if (R->isSubClassOf("SDTCisVTSmallerThanOp")) {
790 ConstraintType = SDTCisVTSmallerThanOp;
791 x.SDTCisVTSmallerThanOp_Info.OtherOperandNum =
792 R->getValueAsInt("OtherOperandNum");
793 } else if (R->isSubClassOf("SDTCisOpSmallerThanOp")) {
794 ConstraintType = SDTCisOpSmallerThanOp;
795 x.SDTCisOpSmallerThanOp_Info.BigOperandNum =
796 R->getValueAsInt("BigOperandNum");
797 } else if (R->isSubClassOf("SDTCisEltOfVec")) {
798 ConstraintType = SDTCisEltOfVec;
799 x.SDTCisEltOfVec_Info.OtherOperandNum = R->getValueAsInt("OtherOpNum");
800 } else if (R->isSubClassOf("SDTCisSubVecOfVec")) {
801 ConstraintType = SDTCisSubVecOfVec;
802 x.SDTCisSubVecOfVec_Info.OtherOperandNum =
803 R->getValueAsInt("OtherOpNum");
804 } else {
805 errs() << "Unrecognized SDTypeConstraint '" << R->getName() << "'!\n";
806 exit(1);
807 }
808 }
809
810 /// getOperandNum - Return the node corresponding to operand #OpNo in tree
811 /// N, and the result number in ResNo.
getOperandNum(unsigned OpNo,TreePatternNode * N,const SDNodeInfo & NodeInfo,unsigned & ResNo)812 static TreePatternNode *getOperandNum(unsigned OpNo, TreePatternNode *N,
813 const SDNodeInfo &NodeInfo,
814 unsigned &ResNo) {
815 unsigned NumResults = NodeInfo.getNumResults();
816 if (OpNo < NumResults) {
817 ResNo = OpNo;
818 return N;
819 }
820
821 OpNo -= NumResults;
822
823 if (OpNo >= N->getNumChildren()) {
824 errs() << "Invalid operand number in type constraint "
825 << (OpNo+NumResults) << " ";
826 N->dump();
827 errs() << '\n';
828 exit(1);
829 }
830
831 return N->getChild(OpNo);
832 }
833
834 /// ApplyTypeConstraint - Given a node in a pattern, apply this type
835 /// constraint to the nodes operands. This returns true if it makes a
836 /// change, false otherwise. If a type contradiction is found, throw an
837 /// exception.
ApplyTypeConstraint(TreePatternNode * N,const SDNodeInfo & NodeInfo,TreePattern & TP) const838 bool SDTypeConstraint::ApplyTypeConstraint(TreePatternNode *N,
839 const SDNodeInfo &NodeInfo,
840 TreePattern &TP) const {
841 unsigned ResNo = 0; // The result number being referenced.
842 TreePatternNode *NodeToApply = getOperandNum(OperandNo, N, NodeInfo, ResNo);
843
844 switch (ConstraintType) {
845 case SDTCisVT:
846 // Operand must be a particular type.
847 return NodeToApply->UpdateNodeType(ResNo, x.SDTCisVT_Info.VT, TP);
848 case SDTCisPtrTy:
849 // Operand must be same as target pointer type.
850 return NodeToApply->UpdateNodeType(ResNo, MVT::iPTR, TP);
851 case SDTCisInt:
852 // Require it to be one of the legal integer VTs.
853 return NodeToApply->getExtType(ResNo).EnforceInteger(TP);
854 case SDTCisFP:
855 // Require it to be one of the legal fp VTs.
856 return NodeToApply->getExtType(ResNo).EnforceFloatingPoint(TP);
857 case SDTCisVec:
858 // Require it to be one of the legal vector VTs.
859 return NodeToApply->getExtType(ResNo).EnforceVector(TP);
860 case SDTCisSameAs: {
861 unsigned OResNo = 0;
862 TreePatternNode *OtherNode =
863 getOperandNum(x.SDTCisSameAs_Info.OtherOperandNum, N, NodeInfo, OResNo);
864 return NodeToApply->UpdateNodeType(OResNo, OtherNode->getExtType(ResNo),TP)|
865 OtherNode->UpdateNodeType(ResNo,NodeToApply->getExtType(OResNo),TP);
866 }
867 case SDTCisVTSmallerThanOp: {
868 // The NodeToApply must be a leaf node that is a VT. OtherOperandNum must
869 // have an integer type that is smaller than the VT.
870 if (!NodeToApply->isLeaf() ||
871 !dynamic_cast<DefInit*>(NodeToApply->getLeafValue()) ||
872 !static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef()
873 ->isSubClassOf("ValueType"))
874 TP.error(N->getOperator()->getName() + " expects a VT operand!");
875 MVT::SimpleValueType VT =
876 getValueType(static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef());
877
878 EEVT::TypeSet TypeListTmp(VT, TP);
879
880 unsigned OResNo = 0;
881 TreePatternNode *OtherNode =
882 getOperandNum(x.SDTCisVTSmallerThanOp_Info.OtherOperandNum, N, NodeInfo,
883 OResNo);
884
885 return TypeListTmp.EnforceSmallerThan(OtherNode->getExtType(OResNo), TP);
886 }
887 case SDTCisOpSmallerThanOp: {
888 unsigned BResNo = 0;
889 TreePatternNode *BigOperand =
890 getOperandNum(x.SDTCisOpSmallerThanOp_Info.BigOperandNum, N, NodeInfo,
891 BResNo);
892 return NodeToApply->getExtType(ResNo).
893 EnforceSmallerThan(BigOperand->getExtType(BResNo), TP);
894 }
895 case SDTCisEltOfVec: {
896 unsigned VResNo = 0;
897 TreePatternNode *VecOperand =
898 getOperandNum(x.SDTCisEltOfVec_Info.OtherOperandNum, N, NodeInfo,
899 VResNo);
900
901 // Filter vector types out of VecOperand that don't have the right element
902 // type.
903 return VecOperand->getExtType(VResNo).
904 EnforceVectorEltTypeIs(NodeToApply->getExtType(ResNo), TP);
905 }
906 case SDTCisSubVecOfVec: {
907 unsigned VResNo = 0;
908 TreePatternNode *BigVecOperand =
909 getOperandNum(x.SDTCisSubVecOfVec_Info.OtherOperandNum, N, NodeInfo,
910 VResNo);
911
912 // Filter vector types out of BigVecOperand that don't have the
913 // right subvector type.
914 return BigVecOperand->getExtType(VResNo).
915 EnforceVectorSubVectorTypeIs(NodeToApply->getExtType(ResNo), TP);
916 }
917 }
918 llvm_unreachable("Invalid ConstraintType!");
919 }
920
921 //===----------------------------------------------------------------------===//
922 // SDNodeInfo implementation
923 //
SDNodeInfo(Record * R)924 SDNodeInfo::SDNodeInfo(Record *R) : Def(R) {
925 EnumName = R->getValueAsString("Opcode");
926 SDClassName = R->getValueAsString("SDClass");
927 Record *TypeProfile = R->getValueAsDef("TypeProfile");
928 NumResults = TypeProfile->getValueAsInt("NumResults");
929 NumOperands = TypeProfile->getValueAsInt("NumOperands");
930
931 // Parse the properties.
932 Properties = 0;
933 std::vector<Record*> PropList = R->getValueAsListOfDefs("Properties");
934 for (unsigned i = 0, e = PropList.size(); i != e; ++i) {
935 if (PropList[i]->getName() == "SDNPCommutative") {
936 Properties |= 1 << SDNPCommutative;
937 } else if (PropList[i]->getName() == "SDNPAssociative") {
938 Properties |= 1 << SDNPAssociative;
939 } else if (PropList[i]->getName() == "SDNPHasChain") {
940 Properties |= 1 << SDNPHasChain;
941 } else if (PropList[i]->getName() == "SDNPOutGlue") {
942 Properties |= 1 << SDNPOutGlue;
943 } else if (PropList[i]->getName() == "SDNPInGlue") {
944 Properties |= 1 << SDNPInGlue;
945 } else if (PropList[i]->getName() == "SDNPOptInGlue") {
946 Properties |= 1 << SDNPOptInGlue;
947 } else if (PropList[i]->getName() == "SDNPMayStore") {
948 Properties |= 1 << SDNPMayStore;
949 } else if (PropList[i]->getName() == "SDNPMayLoad") {
950 Properties |= 1 << SDNPMayLoad;
951 } else if (PropList[i]->getName() == "SDNPSideEffect") {
952 Properties |= 1 << SDNPSideEffect;
953 } else if (PropList[i]->getName() == "SDNPMemOperand") {
954 Properties |= 1 << SDNPMemOperand;
955 } else if (PropList[i]->getName() == "SDNPVariadic") {
956 Properties |= 1 << SDNPVariadic;
957 } else {
958 errs() << "Unknown SD Node property '" << PropList[i]->getName()
959 << "' on node '" << R->getName() << "'!\n";
960 exit(1);
961 }
962 }
963
964
965 // Parse the type constraints.
966 std::vector<Record*> ConstraintList =
967 TypeProfile->getValueAsListOfDefs("Constraints");
968 TypeConstraints.assign(ConstraintList.begin(), ConstraintList.end());
969 }
970
971 /// getKnownType - If the type constraints on this node imply a fixed type
972 /// (e.g. all stores return void, etc), then return it as an
973 /// MVT::SimpleValueType. Otherwise, return EEVT::Other.
getKnownType(unsigned ResNo) const974 MVT::SimpleValueType SDNodeInfo::getKnownType(unsigned ResNo) const {
975 unsigned NumResults = getNumResults();
976 assert(NumResults <= 1 &&
977 "We only work with nodes with zero or one result so far!");
978 assert(ResNo == 0 && "Only handles single result nodes so far");
979
980 for (unsigned i = 0, e = TypeConstraints.size(); i != e; ++i) {
981 // Make sure that this applies to the correct node result.
982 if (TypeConstraints[i].OperandNo >= NumResults) // FIXME: need value #
983 continue;
984
985 switch (TypeConstraints[i].ConstraintType) {
986 default: break;
987 case SDTypeConstraint::SDTCisVT:
988 return TypeConstraints[i].x.SDTCisVT_Info.VT;
989 case SDTypeConstraint::SDTCisPtrTy:
990 return MVT::iPTR;
991 }
992 }
993 return MVT::Other;
994 }
995
996 //===----------------------------------------------------------------------===//
997 // TreePatternNode implementation
998 //
999
~TreePatternNode()1000 TreePatternNode::~TreePatternNode() {
1001 #if 0 // FIXME: implement refcounted tree nodes!
1002 for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1003 delete getChild(i);
1004 #endif
1005 }
1006
GetNumNodeResults(Record * Operator,CodeGenDAGPatterns & CDP)1007 static unsigned GetNumNodeResults(Record *Operator, CodeGenDAGPatterns &CDP) {
1008 if (Operator->getName() == "set" ||
1009 Operator->getName() == "implicit")
1010 return 0; // All return nothing.
1011
1012 if (Operator->isSubClassOf("Intrinsic"))
1013 return CDP.getIntrinsic(Operator).IS.RetVTs.size();
1014
1015 if (Operator->isSubClassOf("SDNode"))
1016 return CDP.getSDNodeInfo(Operator).getNumResults();
1017
1018 if (Operator->isSubClassOf("PatFrag")) {
1019 // If we've already parsed this pattern fragment, get it. Otherwise, handle
1020 // the forward reference case where one pattern fragment references another
1021 // before it is processed.
1022 if (TreePattern *PFRec = CDP.getPatternFragmentIfRead(Operator))
1023 return PFRec->getOnlyTree()->getNumTypes();
1024
1025 // Get the result tree.
1026 DagInit *Tree = Operator->getValueAsDag("Fragment");
1027 Record *Op = 0;
1028 if (Tree && dynamic_cast<DefInit*>(Tree->getOperator()))
1029 Op = dynamic_cast<DefInit*>(Tree->getOperator())->getDef();
1030 assert(Op && "Invalid Fragment");
1031 return GetNumNodeResults(Op, CDP);
1032 }
1033
1034 if (Operator->isSubClassOf("Instruction")) {
1035 CodeGenInstruction &InstInfo = CDP.getTargetInfo().getInstruction(Operator);
1036
1037 // FIXME: Should allow access to all the results here.
1038 unsigned NumDefsToAdd = InstInfo.Operands.NumDefs ? 1 : 0;
1039
1040 // Add on one implicit def if it has a resolvable type.
1041 if (InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo()) !=MVT::Other)
1042 ++NumDefsToAdd;
1043 return NumDefsToAdd;
1044 }
1045
1046 if (Operator->isSubClassOf("SDNodeXForm"))
1047 return 1; // FIXME: Generalize SDNodeXForm
1048
1049 Operator->dump();
1050 errs() << "Unhandled node in GetNumNodeResults\n";
1051 exit(1);
1052 }
1053
print(raw_ostream & OS) const1054 void TreePatternNode::print(raw_ostream &OS) const {
1055 if (isLeaf())
1056 OS << *getLeafValue();
1057 else
1058 OS << '(' << getOperator()->getName();
1059
1060 for (unsigned i = 0, e = Types.size(); i != e; ++i)
1061 OS << ':' << getExtType(i).getName();
1062
1063 if (!isLeaf()) {
1064 if (getNumChildren() != 0) {
1065 OS << " ";
1066 getChild(0)->print(OS);
1067 for (unsigned i = 1, e = getNumChildren(); i != e; ++i) {
1068 OS << ", ";
1069 getChild(i)->print(OS);
1070 }
1071 }
1072 OS << ")";
1073 }
1074
1075 for (unsigned i = 0, e = PredicateFns.size(); i != e; ++i)
1076 OS << "<<P:" << PredicateFns[i].getFnName() << ">>";
1077 if (TransformFn)
1078 OS << "<<X:" << TransformFn->getName() << ">>";
1079 if (!getName().empty())
1080 OS << ":$" << getName();
1081
1082 }
dump() const1083 void TreePatternNode::dump() const {
1084 print(errs());
1085 }
1086
1087 /// isIsomorphicTo - Return true if this node is recursively
1088 /// isomorphic to the specified node. For this comparison, the node's
1089 /// entire state is considered. The assigned name is ignored, since
1090 /// nodes with differing names are considered isomorphic. However, if
1091 /// the assigned name is present in the dependent variable set, then
1092 /// the assigned name is considered significant and the node is
1093 /// isomorphic if the names match.
isIsomorphicTo(const TreePatternNode * N,const MultipleUseVarSet & DepVars) const1094 bool TreePatternNode::isIsomorphicTo(const TreePatternNode *N,
1095 const MultipleUseVarSet &DepVars) const {
1096 if (N == this) return true;
1097 if (N->isLeaf() != isLeaf() || getExtTypes() != N->getExtTypes() ||
1098 getPredicateFns() != N->getPredicateFns() ||
1099 getTransformFn() != N->getTransformFn())
1100 return false;
1101
1102 if (isLeaf()) {
1103 if (DefInit *DI = dynamic_cast<DefInit*>(getLeafValue())) {
1104 if (DefInit *NDI = dynamic_cast<DefInit*>(N->getLeafValue())) {
1105 return ((DI->getDef() == NDI->getDef())
1106 && (DepVars.find(getName()) == DepVars.end()
1107 || getName() == N->getName()));
1108 }
1109 }
1110 return getLeafValue() == N->getLeafValue();
1111 }
1112
1113 if (N->getOperator() != getOperator() ||
1114 N->getNumChildren() != getNumChildren()) return false;
1115 for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1116 if (!getChild(i)->isIsomorphicTo(N->getChild(i), DepVars))
1117 return false;
1118 return true;
1119 }
1120
1121 /// clone - Make a copy of this tree and all of its children.
1122 ///
clone() const1123 TreePatternNode *TreePatternNode::clone() const {
1124 TreePatternNode *New;
1125 if (isLeaf()) {
1126 New = new TreePatternNode(getLeafValue(), getNumTypes());
1127 } else {
1128 std::vector<TreePatternNode*> CChildren;
1129 CChildren.reserve(Children.size());
1130 for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1131 CChildren.push_back(getChild(i)->clone());
1132 New = new TreePatternNode(getOperator(), CChildren, getNumTypes());
1133 }
1134 New->setName(getName());
1135 New->Types = Types;
1136 New->setPredicateFns(getPredicateFns());
1137 New->setTransformFn(getTransformFn());
1138 return New;
1139 }
1140
1141 /// RemoveAllTypes - Recursively strip all the types of this tree.
RemoveAllTypes()1142 void TreePatternNode::RemoveAllTypes() {
1143 for (unsigned i = 0, e = Types.size(); i != e; ++i)
1144 Types[i] = EEVT::TypeSet(); // Reset to unknown type.
1145 if (isLeaf()) return;
1146 for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1147 getChild(i)->RemoveAllTypes();
1148 }
1149
1150
1151 /// SubstituteFormalArguments - Replace the formal arguments in this tree
1152 /// with actual values specified by ArgMap.
1153 void TreePatternNode::
SubstituteFormalArguments(std::map<std::string,TreePatternNode * > & ArgMap)1154 SubstituteFormalArguments(std::map<std::string, TreePatternNode*> &ArgMap) {
1155 if (isLeaf()) return;
1156
1157 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) {
1158 TreePatternNode *Child = getChild(i);
1159 if (Child->isLeaf()) {
1160 Init *Val = Child->getLeafValue();
1161 if (dynamic_cast<DefInit*>(Val) &&
1162 static_cast<DefInit*>(Val)->getDef()->getName() == "node") {
1163 // We found a use of a formal argument, replace it with its value.
1164 TreePatternNode *NewChild = ArgMap[Child->getName()];
1165 assert(NewChild && "Couldn't find formal argument!");
1166 assert((Child->getPredicateFns().empty() ||
1167 NewChild->getPredicateFns() == Child->getPredicateFns()) &&
1168 "Non-empty child predicate clobbered!");
1169 setChild(i, NewChild);
1170 }
1171 } else {
1172 getChild(i)->SubstituteFormalArguments(ArgMap);
1173 }
1174 }
1175 }
1176
1177
1178 /// InlinePatternFragments - If this pattern refers to any pattern
1179 /// fragments, inline them into place, giving us a pattern without any
1180 /// PatFrag references.
InlinePatternFragments(TreePattern & TP)1181 TreePatternNode *TreePatternNode::InlinePatternFragments(TreePattern &TP) {
1182 if (isLeaf()) return this; // nothing to do.
1183 Record *Op = getOperator();
1184
1185 if (!Op->isSubClassOf("PatFrag")) {
1186 // Just recursively inline children nodes.
1187 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) {
1188 TreePatternNode *Child = getChild(i);
1189 TreePatternNode *NewChild = Child->InlinePatternFragments(TP);
1190
1191 assert((Child->getPredicateFns().empty() ||
1192 NewChild->getPredicateFns() == Child->getPredicateFns()) &&
1193 "Non-empty child predicate clobbered!");
1194
1195 setChild(i, NewChild);
1196 }
1197 return this;
1198 }
1199
1200 // Otherwise, we found a reference to a fragment. First, look up its
1201 // TreePattern record.
1202 TreePattern *Frag = TP.getDAGPatterns().getPatternFragment(Op);
1203
1204 // Verify that we are passing the right number of operands.
1205 if (Frag->getNumArgs() != Children.size())
1206 TP.error("'" + Op->getName() + "' fragment requires " +
1207 utostr(Frag->getNumArgs()) + " operands!");
1208
1209 TreePatternNode *FragTree = Frag->getOnlyTree()->clone();
1210
1211 TreePredicateFn PredFn(Frag);
1212 if (!PredFn.isAlwaysTrue())
1213 FragTree->addPredicateFn(PredFn);
1214
1215 // Resolve formal arguments to their actual value.
1216 if (Frag->getNumArgs()) {
1217 // Compute the map of formal to actual arguments.
1218 std::map<std::string, TreePatternNode*> ArgMap;
1219 for (unsigned i = 0, e = Frag->getNumArgs(); i != e; ++i)
1220 ArgMap[Frag->getArgName(i)] = getChild(i)->InlinePatternFragments(TP);
1221
1222 FragTree->SubstituteFormalArguments(ArgMap);
1223 }
1224
1225 FragTree->setName(getName());
1226 for (unsigned i = 0, e = Types.size(); i != e; ++i)
1227 FragTree->UpdateNodeType(i, getExtType(i), TP);
1228
1229 // Transfer in the old predicates.
1230 for (unsigned i = 0, e = getPredicateFns().size(); i != e; ++i)
1231 FragTree->addPredicateFn(getPredicateFns()[i]);
1232
1233 // Get a new copy of this fragment to stitch into here.
1234 //delete this; // FIXME: implement refcounting!
1235
1236 // The fragment we inlined could have recursive inlining that is needed. See
1237 // if there are any pattern fragments in it and inline them as needed.
1238 return FragTree->InlinePatternFragments(TP);
1239 }
1240
1241 /// getImplicitType - Check to see if the specified record has an implicit
1242 /// type which should be applied to it. This will infer the type of register
1243 /// references from the register file information, for example.
1244 ///
getImplicitType(Record * R,unsigned ResNo,bool NotRegisters,TreePattern & TP)1245 static EEVT::TypeSet getImplicitType(Record *R, unsigned ResNo,
1246 bool NotRegisters, TreePattern &TP) {
1247 // Check to see if this is a register operand.
1248 if (R->isSubClassOf("RegisterOperand")) {
1249 assert(ResNo == 0 && "Regoperand ref only has one result!");
1250 if (NotRegisters)
1251 return EEVT::TypeSet(); // Unknown.
1252 Record *RegClass = R->getValueAsDef("RegClass");
1253 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
1254 return EEVT::TypeSet(T.getRegisterClass(RegClass).getValueTypes());
1255 }
1256
1257 // Check to see if this is a register or a register class.
1258 if (R->isSubClassOf("RegisterClass")) {
1259 assert(ResNo == 0 && "Regclass ref only has one result!");
1260 if (NotRegisters)
1261 return EEVT::TypeSet(); // Unknown.
1262 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
1263 return EEVT::TypeSet(T.getRegisterClass(R).getValueTypes());
1264 }
1265
1266 if (R->isSubClassOf("PatFrag")) {
1267 assert(ResNo == 0 && "FIXME: PatFrag with multiple results?");
1268 // Pattern fragment types will be resolved when they are inlined.
1269 return EEVT::TypeSet(); // Unknown.
1270 }
1271
1272 if (R->isSubClassOf("Register")) {
1273 assert(ResNo == 0 && "Registers only produce one result!");
1274 if (NotRegisters)
1275 return EEVT::TypeSet(); // Unknown.
1276 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
1277 return EEVT::TypeSet(T.getRegisterVTs(R));
1278 }
1279
1280 if (R->isSubClassOf("SubRegIndex")) {
1281 assert(ResNo == 0 && "SubRegisterIndices only produce one result!");
1282 return EEVT::TypeSet();
1283 }
1284
1285 if (R->isSubClassOf("ValueType") || R->isSubClassOf("CondCode")) {
1286 assert(ResNo == 0 && "This node only has one result!");
1287 // Using a VTSDNode or CondCodeSDNode.
1288 return EEVT::TypeSet(MVT::Other, TP);
1289 }
1290
1291 if (R->isSubClassOf("ComplexPattern")) {
1292 assert(ResNo == 0 && "FIXME: ComplexPattern with multiple results?");
1293 if (NotRegisters)
1294 return EEVT::TypeSet(); // Unknown.
1295 return EEVT::TypeSet(TP.getDAGPatterns().getComplexPattern(R).getValueType(),
1296 TP);
1297 }
1298 if (R->isSubClassOf("PointerLikeRegClass")) {
1299 assert(ResNo == 0 && "Regclass can only have one result!");
1300 return EEVT::TypeSet(MVT::iPTR, TP);
1301 }
1302
1303 if (R->getName() == "node" || R->getName() == "srcvalue" ||
1304 R->getName() == "zero_reg") {
1305 // Placeholder.
1306 return EEVT::TypeSet(); // Unknown.
1307 }
1308
1309 TP.error("Unknown node flavor used in pattern: " + R->getName());
1310 return EEVT::TypeSet(MVT::Other, TP);
1311 }
1312
1313
1314 /// getIntrinsicInfo - If this node corresponds to an intrinsic, return the
1315 /// CodeGenIntrinsic information for it, otherwise return a null pointer.
1316 const CodeGenIntrinsic *TreePatternNode::
getIntrinsicInfo(const CodeGenDAGPatterns & CDP) const1317 getIntrinsicInfo(const CodeGenDAGPatterns &CDP) const {
1318 if (getOperator() != CDP.get_intrinsic_void_sdnode() &&
1319 getOperator() != CDP.get_intrinsic_w_chain_sdnode() &&
1320 getOperator() != CDP.get_intrinsic_wo_chain_sdnode())
1321 return 0;
1322
1323 unsigned IID =
1324 dynamic_cast<IntInit*>(getChild(0)->getLeafValue())->getValue();
1325 return &CDP.getIntrinsicInfo(IID);
1326 }
1327
1328 /// getComplexPatternInfo - If this node corresponds to a ComplexPattern,
1329 /// return the ComplexPattern information, otherwise return null.
1330 const ComplexPattern *
getComplexPatternInfo(const CodeGenDAGPatterns & CGP) const1331 TreePatternNode::getComplexPatternInfo(const CodeGenDAGPatterns &CGP) const {
1332 if (!isLeaf()) return 0;
1333
1334 DefInit *DI = dynamic_cast<DefInit*>(getLeafValue());
1335 if (DI && DI->getDef()->isSubClassOf("ComplexPattern"))
1336 return &CGP.getComplexPattern(DI->getDef());
1337 return 0;
1338 }
1339
1340 /// NodeHasProperty - Return true if this node has the specified property.
NodeHasProperty(SDNP Property,const CodeGenDAGPatterns & CGP) const1341 bool TreePatternNode::NodeHasProperty(SDNP Property,
1342 const CodeGenDAGPatterns &CGP) const {
1343 if (isLeaf()) {
1344 if (const ComplexPattern *CP = getComplexPatternInfo(CGP))
1345 return CP->hasProperty(Property);
1346 return false;
1347 }
1348
1349 Record *Operator = getOperator();
1350 if (!Operator->isSubClassOf("SDNode")) return false;
1351
1352 return CGP.getSDNodeInfo(Operator).hasProperty(Property);
1353 }
1354
1355
1356
1357
1358 /// TreeHasProperty - Return true if any node in this tree has the specified
1359 /// property.
TreeHasProperty(SDNP Property,const CodeGenDAGPatterns & CGP) const1360 bool TreePatternNode::TreeHasProperty(SDNP Property,
1361 const CodeGenDAGPatterns &CGP) const {
1362 if (NodeHasProperty(Property, CGP))
1363 return true;
1364 for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1365 if (getChild(i)->TreeHasProperty(Property, CGP))
1366 return true;
1367 return false;
1368 }
1369
1370 /// isCommutativeIntrinsic - Return true if the node corresponds to a
1371 /// commutative intrinsic.
1372 bool
isCommutativeIntrinsic(const CodeGenDAGPatterns & CDP) const1373 TreePatternNode::isCommutativeIntrinsic(const CodeGenDAGPatterns &CDP) const {
1374 if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP))
1375 return Int->isCommutative;
1376 return false;
1377 }
1378
1379
1380 /// ApplyTypeConstraints - Apply all of the type constraints relevant to
1381 /// this node and its children in the tree. This returns true if it makes a
1382 /// change, false otherwise. If a type contradiction is found, throw an
1383 /// exception.
ApplyTypeConstraints(TreePattern & TP,bool NotRegisters)1384 bool TreePatternNode::ApplyTypeConstraints(TreePattern &TP, bool NotRegisters) {
1385 CodeGenDAGPatterns &CDP = TP.getDAGPatterns();
1386 if (isLeaf()) {
1387 if (DefInit *DI = dynamic_cast<DefInit*>(getLeafValue())) {
1388 // If it's a regclass or something else known, include the type.
1389 bool MadeChange = false;
1390 for (unsigned i = 0, e = Types.size(); i != e; ++i)
1391 MadeChange |= UpdateNodeType(i, getImplicitType(DI->getDef(), i,
1392 NotRegisters, TP), TP);
1393 return MadeChange;
1394 }
1395
1396 if (IntInit *II = dynamic_cast<IntInit*>(getLeafValue())) {
1397 assert(Types.size() == 1 && "Invalid IntInit");
1398
1399 // Int inits are always integers. :)
1400 bool MadeChange = Types[0].EnforceInteger(TP);
1401
1402 if (!Types[0].isConcrete())
1403 return MadeChange;
1404
1405 MVT::SimpleValueType VT = getType(0);
1406 if (VT == MVT::iPTR || VT == MVT::iPTRAny)
1407 return MadeChange;
1408
1409 unsigned Size = EVT(VT).getSizeInBits();
1410 // Make sure that the value is representable for this type.
1411 if (Size >= 32) return MadeChange;
1412
1413 // Check that the value doesn't use more bits than we have. It must either
1414 // be a sign- or zero-extended equivalent of the original.
1415 int64_t SignBitAndAbove = II->getValue() >> (Size - 1);
1416 if (SignBitAndAbove == -1 || SignBitAndAbove == 0 || SignBitAndAbove == 1)
1417 return MadeChange;
1418
1419 TP.error("Integer value '" + itostr(II->getValue()) +
1420 "' is out of range for type '" + getEnumName(getType(0)) + "'!");
1421 return MadeChange;
1422 }
1423 return false;
1424 }
1425
1426 // special handling for set, which isn't really an SDNode.
1427 if (getOperator()->getName() == "set") {
1428 assert(getNumTypes() == 0 && "Set doesn't produce a value");
1429 assert(getNumChildren() >= 2 && "Missing RHS of a set?");
1430 unsigned NC = getNumChildren();
1431
1432 TreePatternNode *SetVal = getChild(NC-1);
1433 bool MadeChange = SetVal->ApplyTypeConstraints(TP, NotRegisters);
1434
1435 for (unsigned i = 0; i < NC-1; ++i) {
1436 TreePatternNode *Child = getChild(i);
1437 MadeChange |= Child->ApplyTypeConstraints(TP, NotRegisters);
1438
1439 // Types of operands must match.
1440 MadeChange |= Child->UpdateNodeType(0, SetVal->getExtType(i), TP);
1441 MadeChange |= SetVal->UpdateNodeType(i, Child->getExtType(0), TP);
1442 }
1443 return MadeChange;
1444 }
1445
1446 if (getOperator()->getName() == "implicit") {
1447 assert(getNumTypes() == 0 && "Node doesn't produce a value");
1448
1449 bool MadeChange = false;
1450 for (unsigned i = 0; i < getNumChildren(); ++i)
1451 MadeChange = getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
1452 return MadeChange;
1453 }
1454
1455 if (getOperator()->getName() == "COPY_TO_REGCLASS") {
1456 bool MadeChange = false;
1457 MadeChange |= getChild(0)->ApplyTypeConstraints(TP, NotRegisters);
1458 MadeChange |= getChild(1)->ApplyTypeConstraints(TP, NotRegisters);
1459
1460 assert(getChild(0)->getNumTypes() == 1 &&
1461 getChild(1)->getNumTypes() == 1 && "Unhandled case");
1462
1463 // child #1 of COPY_TO_REGCLASS should be a register class. We don't care
1464 // what type it gets, so if it didn't get a concrete type just give it the
1465 // first viable type from the reg class.
1466 if (!getChild(1)->hasTypeSet(0) &&
1467 !getChild(1)->getExtType(0).isCompletelyUnknown()) {
1468 MVT::SimpleValueType RCVT = getChild(1)->getExtType(0).getTypeList()[0];
1469 MadeChange |= getChild(1)->UpdateNodeType(0, RCVT, TP);
1470 }
1471 return MadeChange;
1472 }
1473
1474 if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP)) {
1475 bool MadeChange = false;
1476
1477 // Apply the result type to the node.
1478 unsigned NumRetVTs = Int->IS.RetVTs.size();
1479 unsigned NumParamVTs = Int->IS.ParamVTs.size();
1480
1481 for (unsigned i = 0, e = NumRetVTs; i != e; ++i)
1482 MadeChange |= UpdateNodeType(i, Int->IS.RetVTs[i], TP);
1483
1484 if (getNumChildren() != NumParamVTs + 1)
1485 TP.error("Intrinsic '" + Int->Name + "' expects " +
1486 utostr(NumParamVTs) + " operands, not " +
1487 utostr(getNumChildren() - 1) + " operands!");
1488
1489 // Apply type info to the intrinsic ID.
1490 MadeChange |= getChild(0)->UpdateNodeType(0, MVT::iPTR, TP);
1491
1492 for (unsigned i = 0, e = getNumChildren()-1; i != e; ++i) {
1493 MadeChange |= getChild(i+1)->ApplyTypeConstraints(TP, NotRegisters);
1494
1495 MVT::SimpleValueType OpVT = Int->IS.ParamVTs[i];
1496 assert(getChild(i+1)->getNumTypes() == 1 && "Unhandled case");
1497 MadeChange |= getChild(i+1)->UpdateNodeType(0, OpVT, TP);
1498 }
1499 return MadeChange;
1500 }
1501
1502 if (getOperator()->isSubClassOf("SDNode")) {
1503 const SDNodeInfo &NI = CDP.getSDNodeInfo(getOperator());
1504
1505 // Check that the number of operands is sane. Negative operands -> varargs.
1506 if (NI.getNumOperands() >= 0 &&
1507 getNumChildren() != (unsigned)NI.getNumOperands())
1508 TP.error(getOperator()->getName() + " node requires exactly " +
1509 itostr(NI.getNumOperands()) + " operands!");
1510
1511 bool MadeChange = NI.ApplyTypeConstraints(this, TP);
1512 for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1513 MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
1514 return MadeChange;
1515 }
1516
1517 if (getOperator()->isSubClassOf("Instruction")) {
1518 const DAGInstruction &Inst = CDP.getInstruction(getOperator());
1519 CodeGenInstruction &InstInfo =
1520 CDP.getTargetInfo().getInstruction(getOperator());
1521
1522 bool MadeChange = false;
1523
1524 // Apply the result types to the node, these come from the things in the
1525 // (outs) list of the instruction.
1526 // FIXME: Cap at one result so far.
1527 unsigned NumResultsToAdd = InstInfo.Operands.NumDefs ? 1 : 0;
1528 for (unsigned ResNo = 0; ResNo != NumResultsToAdd; ++ResNo) {
1529 Record *ResultNode = Inst.getResult(ResNo);
1530
1531 if (ResultNode->isSubClassOf("PointerLikeRegClass")) {
1532 MadeChange |= UpdateNodeType(ResNo, MVT::iPTR, TP);
1533 } else if (ResultNode->isSubClassOf("RegisterOperand")) {
1534 Record *RegClass = ResultNode->getValueAsDef("RegClass");
1535 const CodeGenRegisterClass &RC =
1536 CDP.getTargetInfo().getRegisterClass(RegClass);
1537 MadeChange |= UpdateNodeType(ResNo, RC.getValueTypes(), TP);
1538 } else if (ResultNode->getName() == "unknown") {
1539 // Nothing to do.
1540 } else {
1541 assert(ResultNode->isSubClassOf("RegisterClass") &&
1542 "Operands should be register classes!");
1543 const CodeGenRegisterClass &RC =
1544 CDP.getTargetInfo().getRegisterClass(ResultNode);
1545 MadeChange |= UpdateNodeType(ResNo, RC.getValueTypes(), TP);
1546 }
1547 }
1548
1549 // If the instruction has implicit defs, we apply the first one as a result.
1550 // FIXME: This sucks, it should apply all implicit defs.
1551 if (!InstInfo.ImplicitDefs.empty()) {
1552 unsigned ResNo = NumResultsToAdd;
1553
1554 // FIXME: Generalize to multiple possible types and multiple possible
1555 // ImplicitDefs.
1556 MVT::SimpleValueType VT =
1557 InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo());
1558
1559 if (VT != MVT::Other)
1560 MadeChange |= UpdateNodeType(ResNo, VT, TP);
1561 }
1562
1563 // If this is an INSERT_SUBREG, constrain the source and destination VTs to
1564 // be the same.
1565 if (getOperator()->getName() == "INSERT_SUBREG") {
1566 assert(getChild(0)->getNumTypes() == 1 && "FIXME: Unhandled");
1567 MadeChange |= UpdateNodeType(0, getChild(0)->getExtType(0), TP);
1568 MadeChange |= getChild(0)->UpdateNodeType(0, getExtType(0), TP);
1569 }
1570
1571 unsigned ChildNo = 0;
1572 for (unsigned i = 0, e = Inst.getNumOperands(); i != e; ++i) {
1573 Record *OperandNode = Inst.getOperand(i);
1574
1575 // If the instruction expects a predicate or optional def operand, we
1576 // codegen this by setting the operand to it's default value if it has a
1577 // non-empty DefaultOps field.
1578 if (OperandNode->isSubClassOf("OperandWithDefaultOps") &&
1579 !CDP.getDefaultOperand(OperandNode).DefaultOps.empty())
1580 continue;
1581
1582 // Verify that we didn't run out of provided operands.
1583 if (ChildNo >= getNumChildren())
1584 TP.error("Instruction '" + getOperator()->getName() +
1585 "' expects more operands than were provided.");
1586
1587 MVT::SimpleValueType VT;
1588 TreePatternNode *Child = getChild(ChildNo++);
1589 unsigned ChildResNo = 0; // Instructions always use res #0 of their op.
1590
1591 if (OperandNode->isSubClassOf("RegisterClass")) {
1592 const CodeGenRegisterClass &RC =
1593 CDP.getTargetInfo().getRegisterClass(OperandNode);
1594 MadeChange |= Child->UpdateNodeType(ChildResNo, RC.getValueTypes(), TP);
1595 } else if (OperandNode->isSubClassOf("RegisterOperand")) {
1596 Record *RegClass = OperandNode->getValueAsDef("RegClass");
1597 const CodeGenRegisterClass &RC =
1598 CDP.getTargetInfo().getRegisterClass(RegClass);
1599 MadeChange |= Child->UpdateNodeType(ChildResNo, RC.getValueTypes(), TP);
1600 } else if (OperandNode->isSubClassOf("Operand")) {
1601 VT = getValueType(OperandNode->getValueAsDef("Type"));
1602 MadeChange |= Child->UpdateNodeType(ChildResNo, VT, TP);
1603 } else if (OperandNode->isSubClassOf("PointerLikeRegClass")) {
1604 MadeChange |= Child->UpdateNodeType(ChildResNo, MVT::iPTR, TP);
1605 } else if (OperandNode->getName() == "unknown") {
1606 // Nothing to do.
1607 } else
1608 llvm_unreachable("Unknown operand type!");
1609
1610 MadeChange |= Child->ApplyTypeConstraints(TP, NotRegisters);
1611 }
1612
1613 if (ChildNo != getNumChildren())
1614 TP.error("Instruction '" + getOperator()->getName() +
1615 "' was provided too many operands!");
1616
1617 return MadeChange;
1618 }
1619
1620 assert(getOperator()->isSubClassOf("SDNodeXForm") && "Unknown node type!");
1621
1622 // Node transforms always take one operand.
1623 if (getNumChildren() != 1)
1624 TP.error("Node transform '" + getOperator()->getName() +
1625 "' requires one operand!");
1626
1627 bool MadeChange = getChild(0)->ApplyTypeConstraints(TP, NotRegisters);
1628
1629
1630 // If either the output or input of the xform does not have exact
1631 // type info. We assume they must be the same. Otherwise, it is perfectly
1632 // legal to transform from one type to a completely different type.
1633 #if 0
1634 if (!hasTypeSet() || !getChild(0)->hasTypeSet()) {
1635 bool MadeChange = UpdateNodeType(getChild(0)->getExtType(), TP);
1636 MadeChange |= getChild(0)->UpdateNodeType(getExtType(), TP);
1637 return MadeChange;
1638 }
1639 #endif
1640 return MadeChange;
1641 }
1642
1643 /// OnlyOnRHSOfCommutative - Return true if this value is only allowed on the
1644 /// RHS of a commutative operation, not the on LHS.
OnlyOnRHSOfCommutative(TreePatternNode * N)1645 static bool OnlyOnRHSOfCommutative(TreePatternNode *N) {
1646 if (!N->isLeaf() && N->getOperator()->getName() == "imm")
1647 return true;
1648 if (N->isLeaf() && dynamic_cast<IntInit*>(N->getLeafValue()))
1649 return true;
1650 return false;
1651 }
1652
1653
1654 /// canPatternMatch - If it is impossible for this pattern to match on this
1655 /// target, fill in Reason and return false. Otherwise, return true. This is
1656 /// used as a sanity check for .td files (to prevent people from writing stuff
1657 /// that can never possibly work), and to prevent the pattern permuter from
1658 /// generating stuff that is useless.
canPatternMatch(std::string & Reason,const CodeGenDAGPatterns & CDP)1659 bool TreePatternNode::canPatternMatch(std::string &Reason,
1660 const CodeGenDAGPatterns &CDP) {
1661 if (isLeaf()) return true;
1662
1663 for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1664 if (!getChild(i)->canPatternMatch(Reason, CDP))
1665 return false;
1666
1667 // If this is an intrinsic, handle cases that would make it not match. For
1668 // example, if an operand is required to be an immediate.
1669 if (getOperator()->isSubClassOf("Intrinsic")) {
1670 // TODO:
1671 return true;
1672 }
1673
1674 // If this node is a commutative operator, check that the LHS isn't an
1675 // immediate.
1676 const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(getOperator());
1677 bool isCommIntrinsic = isCommutativeIntrinsic(CDP);
1678 if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) {
1679 // Scan all of the operands of the node and make sure that only the last one
1680 // is a constant node, unless the RHS also is.
1681 if (!OnlyOnRHSOfCommutative(getChild(getNumChildren()-1))) {
1682 bool Skip = isCommIntrinsic ? 1 : 0; // First operand is intrinsic id.
1683 for (unsigned i = Skip, e = getNumChildren()-1; i != e; ++i)
1684 if (OnlyOnRHSOfCommutative(getChild(i))) {
1685 Reason="Immediate value must be on the RHS of commutative operators!";
1686 return false;
1687 }
1688 }
1689 }
1690
1691 return true;
1692 }
1693
1694 //===----------------------------------------------------------------------===//
1695 // TreePattern implementation
1696 //
1697
TreePattern(Record * TheRec,ListInit * RawPat,bool isInput,CodeGenDAGPatterns & cdp)1698 TreePattern::TreePattern(Record *TheRec, ListInit *RawPat, bool isInput,
1699 CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp){
1700 isInputPattern = isInput;
1701 for (unsigned i = 0, e = RawPat->getSize(); i != e; ++i)
1702 Trees.push_back(ParseTreePattern(RawPat->getElement(i), ""));
1703 }
1704
TreePattern(Record * TheRec,DagInit * Pat,bool isInput,CodeGenDAGPatterns & cdp)1705 TreePattern::TreePattern(Record *TheRec, DagInit *Pat, bool isInput,
1706 CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp){
1707 isInputPattern = isInput;
1708 Trees.push_back(ParseTreePattern(Pat, ""));
1709 }
1710
TreePattern(Record * TheRec,TreePatternNode * Pat,bool isInput,CodeGenDAGPatterns & cdp)1711 TreePattern::TreePattern(Record *TheRec, TreePatternNode *Pat, bool isInput,
1712 CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp){
1713 isInputPattern = isInput;
1714 Trees.push_back(Pat);
1715 }
1716
error(const std::string & Msg) const1717 void TreePattern::error(const std::string &Msg) const {
1718 dump();
1719 throw TGError(TheRecord->getLoc(), "In " + TheRecord->getName() + ": " + Msg);
1720 }
1721
ComputeNamedNodes()1722 void TreePattern::ComputeNamedNodes() {
1723 for (unsigned i = 0, e = Trees.size(); i != e; ++i)
1724 ComputeNamedNodes(Trees[i]);
1725 }
1726
ComputeNamedNodes(TreePatternNode * N)1727 void TreePattern::ComputeNamedNodes(TreePatternNode *N) {
1728 if (!N->getName().empty())
1729 NamedNodes[N->getName()].push_back(N);
1730
1731 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
1732 ComputeNamedNodes(N->getChild(i));
1733 }
1734
1735
ParseTreePattern(Init * TheInit,StringRef OpName)1736 TreePatternNode *TreePattern::ParseTreePattern(Init *TheInit, StringRef OpName){
1737 if (DefInit *DI = dynamic_cast<DefInit*>(TheInit)) {
1738 Record *R = DI->getDef();
1739
1740 // Direct reference to a leaf DagNode or PatFrag? Turn it into a
1741 // TreePatternNode of its own. For example:
1742 /// (foo GPR, imm) -> (foo GPR, (imm))
1743 if (R->isSubClassOf("SDNode") || R->isSubClassOf("PatFrag"))
1744 return ParseTreePattern(
1745 DagInit::get(DI, "",
1746 std::vector<std::pair<Init*, std::string> >()),
1747 OpName);
1748
1749 // Input argument?
1750 TreePatternNode *Res = new TreePatternNode(DI, 1);
1751 if (R->getName() == "node" && !OpName.empty()) {
1752 if (OpName.empty())
1753 error("'node' argument requires a name to match with operand list");
1754 Args.push_back(OpName);
1755 }
1756
1757 Res->setName(OpName);
1758 return Res;
1759 }
1760
1761 if (IntInit *II = dynamic_cast<IntInit*>(TheInit)) {
1762 if (!OpName.empty())
1763 error("Constant int argument should not have a name!");
1764 return new TreePatternNode(II, 1);
1765 }
1766
1767 if (BitsInit *BI = dynamic_cast<BitsInit*>(TheInit)) {
1768 // Turn this into an IntInit.
1769 Init *II = BI->convertInitializerTo(IntRecTy::get());
1770 if (II == 0 || !dynamic_cast<IntInit*>(II))
1771 error("Bits value must be constants!");
1772 return ParseTreePattern(II, OpName);
1773 }
1774
1775 DagInit *Dag = dynamic_cast<DagInit*>(TheInit);
1776 if (!Dag) {
1777 TheInit->dump();
1778 error("Pattern has unexpected init kind!");
1779 }
1780 DefInit *OpDef = dynamic_cast<DefInit*>(Dag->getOperator());
1781 if (!OpDef) error("Pattern has unexpected operator type!");
1782 Record *Operator = OpDef->getDef();
1783
1784 if (Operator->isSubClassOf("ValueType")) {
1785 // If the operator is a ValueType, then this must be "type cast" of a leaf
1786 // node.
1787 if (Dag->getNumArgs() != 1)
1788 error("Type cast only takes one operand!");
1789
1790 TreePatternNode *New = ParseTreePattern(Dag->getArg(0), Dag->getArgName(0));
1791
1792 // Apply the type cast.
1793 assert(New->getNumTypes() == 1 && "FIXME: Unhandled");
1794 New->UpdateNodeType(0, getValueType(Operator), *this);
1795
1796 if (!OpName.empty())
1797 error("ValueType cast should not have a name!");
1798 return New;
1799 }
1800
1801 // Verify that this is something that makes sense for an operator.
1802 if (!Operator->isSubClassOf("PatFrag") &&
1803 !Operator->isSubClassOf("SDNode") &&
1804 !Operator->isSubClassOf("Instruction") &&
1805 !Operator->isSubClassOf("SDNodeXForm") &&
1806 !Operator->isSubClassOf("Intrinsic") &&
1807 Operator->getName() != "set" &&
1808 Operator->getName() != "implicit")
1809 error("Unrecognized node '" + Operator->getName() + "'!");
1810
1811 // Check to see if this is something that is illegal in an input pattern.
1812 if (isInputPattern) {
1813 if (Operator->isSubClassOf("Instruction") ||
1814 Operator->isSubClassOf("SDNodeXForm"))
1815 error("Cannot use '" + Operator->getName() + "' in an input pattern!");
1816 } else {
1817 if (Operator->isSubClassOf("Intrinsic"))
1818 error("Cannot use '" + Operator->getName() + "' in an output pattern!");
1819
1820 if (Operator->isSubClassOf("SDNode") &&
1821 Operator->getName() != "imm" &&
1822 Operator->getName() != "fpimm" &&
1823 Operator->getName() != "tglobaltlsaddr" &&
1824 Operator->getName() != "tconstpool" &&
1825 Operator->getName() != "tjumptable" &&
1826 Operator->getName() != "tframeindex" &&
1827 Operator->getName() != "texternalsym" &&
1828 Operator->getName() != "tblockaddress" &&
1829 Operator->getName() != "tglobaladdr" &&
1830 Operator->getName() != "bb" &&
1831 Operator->getName() != "vt")
1832 error("Cannot use '" + Operator->getName() + "' in an output pattern!");
1833 }
1834
1835 std::vector<TreePatternNode*> Children;
1836
1837 // Parse all the operands.
1838 for (unsigned i = 0, e = Dag->getNumArgs(); i != e; ++i)
1839 Children.push_back(ParseTreePattern(Dag->getArg(i), Dag->getArgName(i)));
1840
1841 // If the operator is an intrinsic, then this is just syntactic sugar for for
1842 // (intrinsic_* <number>, ..children..). Pick the right intrinsic node, and
1843 // convert the intrinsic name to a number.
1844 if (Operator->isSubClassOf("Intrinsic")) {
1845 const CodeGenIntrinsic &Int = getDAGPatterns().getIntrinsic(Operator);
1846 unsigned IID = getDAGPatterns().getIntrinsicID(Operator)+1;
1847
1848 // If this intrinsic returns void, it must have side-effects and thus a
1849 // chain.
1850 if (Int.IS.RetVTs.empty())
1851 Operator = getDAGPatterns().get_intrinsic_void_sdnode();
1852 else if (Int.ModRef != CodeGenIntrinsic::NoMem)
1853 // Has side-effects, requires chain.
1854 Operator = getDAGPatterns().get_intrinsic_w_chain_sdnode();
1855 else // Otherwise, no chain.
1856 Operator = getDAGPatterns().get_intrinsic_wo_chain_sdnode();
1857
1858 TreePatternNode *IIDNode = new TreePatternNode(IntInit::get(IID), 1);
1859 Children.insert(Children.begin(), IIDNode);
1860 }
1861
1862 unsigned NumResults = GetNumNodeResults(Operator, CDP);
1863 TreePatternNode *Result = new TreePatternNode(Operator, Children, NumResults);
1864 Result->setName(OpName);
1865
1866 if (!Dag->getName().empty()) {
1867 assert(Result->getName().empty());
1868 Result->setName(Dag->getName());
1869 }
1870 return Result;
1871 }
1872
1873 /// SimplifyTree - See if we can simplify this tree to eliminate something that
1874 /// will never match in favor of something obvious that will. This is here
1875 /// strictly as a convenience to target authors because it allows them to write
1876 /// more type generic things and have useless type casts fold away.
1877 ///
1878 /// This returns true if any change is made.
SimplifyTree(TreePatternNode * & N)1879 static bool SimplifyTree(TreePatternNode *&N) {
1880 if (N->isLeaf())
1881 return false;
1882
1883 // If we have a bitconvert with a resolved type and if the source and
1884 // destination types are the same, then the bitconvert is useless, remove it.
1885 if (N->getOperator()->getName() == "bitconvert" &&
1886 N->getExtType(0).isConcrete() &&
1887 N->getExtType(0) == N->getChild(0)->getExtType(0) &&
1888 N->getName().empty()) {
1889 N = N->getChild(0);
1890 SimplifyTree(N);
1891 return true;
1892 }
1893
1894 // Walk all children.
1895 bool MadeChange = false;
1896 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
1897 TreePatternNode *Child = N->getChild(i);
1898 MadeChange |= SimplifyTree(Child);
1899 N->setChild(i, Child);
1900 }
1901 return MadeChange;
1902 }
1903
1904
1905
1906 /// InferAllTypes - Infer/propagate as many types throughout the expression
1907 /// patterns as possible. Return true if all types are inferred, false
1908 /// otherwise. Throw an exception if a type contradiction is found.
1909 bool TreePattern::
InferAllTypes(const StringMap<SmallVector<TreePatternNode *,1>> * InNamedTypes)1910 InferAllTypes(const StringMap<SmallVector<TreePatternNode*,1> > *InNamedTypes) {
1911 if (NamedNodes.empty())
1912 ComputeNamedNodes();
1913
1914 bool MadeChange = true;
1915 while (MadeChange) {
1916 MadeChange = false;
1917 for (unsigned i = 0, e = Trees.size(); i != e; ++i) {
1918 MadeChange |= Trees[i]->ApplyTypeConstraints(*this, false);
1919 MadeChange |= SimplifyTree(Trees[i]);
1920 }
1921
1922 // If there are constraints on our named nodes, apply them.
1923 for (StringMap<SmallVector<TreePatternNode*,1> >::iterator
1924 I = NamedNodes.begin(), E = NamedNodes.end(); I != E; ++I) {
1925 SmallVectorImpl<TreePatternNode*> &Nodes = I->second;
1926
1927 // If we have input named node types, propagate their types to the named
1928 // values here.
1929 if (InNamedTypes) {
1930 // FIXME: Should be error?
1931 assert(InNamedTypes->count(I->getKey()) &&
1932 "Named node in output pattern but not input pattern?");
1933
1934 const SmallVectorImpl<TreePatternNode*> &InNodes =
1935 InNamedTypes->find(I->getKey())->second;
1936
1937 // The input types should be fully resolved by now.
1938 for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
1939 // If this node is a register class, and it is the root of the pattern
1940 // then we're mapping something onto an input register. We allow
1941 // changing the type of the input register in this case. This allows
1942 // us to match things like:
1943 // def : Pat<(v1i64 (bitconvert(v2i32 DPR:$src))), (v1i64 DPR:$src)>;
1944 if (Nodes[i] == Trees[0] && Nodes[i]->isLeaf()) {
1945 DefInit *DI = dynamic_cast<DefInit*>(Nodes[i]->getLeafValue());
1946 if (DI && (DI->getDef()->isSubClassOf("RegisterClass") ||
1947 DI->getDef()->isSubClassOf("RegisterOperand")))
1948 continue;
1949 }
1950
1951 assert(Nodes[i]->getNumTypes() == 1 &&
1952 InNodes[0]->getNumTypes() == 1 &&
1953 "FIXME: cannot name multiple result nodes yet");
1954 MadeChange |= Nodes[i]->UpdateNodeType(0, InNodes[0]->getExtType(0),
1955 *this);
1956 }
1957 }
1958
1959 // If there are multiple nodes with the same name, they must all have the
1960 // same type.
1961 if (I->second.size() > 1) {
1962 for (unsigned i = 0, e = Nodes.size()-1; i != e; ++i) {
1963 TreePatternNode *N1 = Nodes[i], *N2 = Nodes[i+1];
1964 assert(N1->getNumTypes() == 1 && N2->getNumTypes() == 1 &&
1965 "FIXME: cannot name multiple result nodes yet");
1966
1967 MadeChange |= N1->UpdateNodeType(0, N2->getExtType(0), *this);
1968 MadeChange |= N2->UpdateNodeType(0, N1->getExtType(0), *this);
1969 }
1970 }
1971 }
1972 }
1973
1974 bool HasUnresolvedTypes = false;
1975 for (unsigned i = 0, e = Trees.size(); i != e; ++i)
1976 HasUnresolvedTypes |= Trees[i]->ContainsUnresolvedType();
1977 return !HasUnresolvedTypes;
1978 }
1979
print(raw_ostream & OS) const1980 void TreePattern::print(raw_ostream &OS) const {
1981 OS << getRecord()->getName();
1982 if (!Args.empty()) {
1983 OS << "(" << Args[0];
1984 for (unsigned i = 1, e = Args.size(); i != e; ++i)
1985 OS << ", " << Args[i];
1986 OS << ")";
1987 }
1988 OS << ": ";
1989
1990 if (Trees.size() > 1)
1991 OS << "[\n";
1992 for (unsigned i = 0, e = Trees.size(); i != e; ++i) {
1993 OS << "\t";
1994 Trees[i]->print(OS);
1995 OS << "\n";
1996 }
1997
1998 if (Trees.size() > 1)
1999 OS << "]\n";
2000 }
2001
dump() const2002 void TreePattern::dump() const { print(errs()); }
2003
2004 //===----------------------------------------------------------------------===//
2005 // CodeGenDAGPatterns implementation
2006 //
2007
CodeGenDAGPatterns(RecordKeeper & R)2008 CodeGenDAGPatterns::CodeGenDAGPatterns(RecordKeeper &R) :
2009 Records(R), Target(R) {
2010
2011 Intrinsics = LoadIntrinsics(Records, false);
2012 TgtIntrinsics = LoadIntrinsics(Records, true);
2013 ParseNodeInfo();
2014 ParseNodeTransforms();
2015 ParseComplexPatterns();
2016 ParsePatternFragments();
2017 ParseDefaultOperands();
2018 ParseInstructions();
2019 ParsePatterns();
2020
2021 // Generate variants. For example, commutative patterns can match
2022 // multiple ways. Add them to PatternsToMatch as well.
2023 GenerateVariants();
2024
2025 // Infer instruction flags. For example, we can detect loads,
2026 // stores, and side effects in many cases by examining an
2027 // instruction's pattern.
2028 InferInstructionFlags();
2029
2030 // Verify that instruction flags match the patterns.
2031 VerifyInstructionFlags();
2032 }
2033
~CodeGenDAGPatterns()2034 CodeGenDAGPatterns::~CodeGenDAGPatterns() {
2035 for (pf_iterator I = PatternFragments.begin(),
2036 E = PatternFragments.end(); I != E; ++I)
2037 delete I->second;
2038 }
2039
2040
getSDNodeNamed(const std::string & Name) const2041 Record *CodeGenDAGPatterns::getSDNodeNamed(const std::string &Name) const {
2042 Record *N = Records.getDef(Name);
2043 if (!N || !N->isSubClassOf("SDNode")) {
2044 errs() << "Error getting SDNode '" << Name << "'!\n";
2045 exit(1);
2046 }
2047 return N;
2048 }
2049
2050 // Parse all of the SDNode definitions for the target, populating SDNodes.
ParseNodeInfo()2051 void CodeGenDAGPatterns::ParseNodeInfo() {
2052 std::vector<Record*> Nodes = Records.getAllDerivedDefinitions("SDNode");
2053 while (!Nodes.empty()) {
2054 SDNodes.insert(std::make_pair(Nodes.back(), Nodes.back()));
2055 Nodes.pop_back();
2056 }
2057
2058 // Get the builtin intrinsic nodes.
2059 intrinsic_void_sdnode = getSDNodeNamed("intrinsic_void");
2060 intrinsic_w_chain_sdnode = getSDNodeNamed("intrinsic_w_chain");
2061 intrinsic_wo_chain_sdnode = getSDNodeNamed("intrinsic_wo_chain");
2062 }
2063
2064 /// ParseNodeTransforms - Parse all SDNodeXForm instances into the SDNodeXForms
2065 /// map, and emit them to the file as functions.
ParseNodeTransforms()2066 void CodeGenDAGPatterns::ParseNodeTransforms() {
2067 std::vector<Record*> Xforms = Records.getAllDerivedDefinitions("SDNodeXForm");
2068 while (!Xforms.empty()) {
2069 Record *XFormNode = Xforms.back();
2070 Record *SDNode = XFormNode->getValueAsDef("Opcode");
2071 std::string Code = XFormNode->getValueAsString("XFormFunction");
2072 SDNodeXForms.insert(std::make_pair(XFormNode, NodeXForm(SDNode, Code)));
2073
2074 Xforms.pop_back();
2075 }
2076 }
2077
ParseComplexPatterns()2078 void CodeGenDAGPatterns::ParseComplexPatterns() {
2079 std::vector<Record*> AMs = Records.getAllDerivedDefinitions("ComplexPattern");
2080 while (!AMs.empty()) {
2081 ComplexPatterns.insert(std::make_pair(AMs.back(), AMs.back()));
2082 AMs.pop_back();
2083 }
2084 }
2085
2086
2087 /// ParsePatternFragments - Parse all of the PatFrag definitions in the .td
2088 /// file, building up the PatternFragments map. After we've collected them all,
2089 /// inline fragments together as necessary, so that there are no references left
2090 /// inside a pattern fragment to a pattern fragment.
2091 ///
ParsePatternFragments()2092 void CodeGenDAGPatterns::ParsePatternFragments() {
2093 std::vector<Record*> Fragments = Records.getAllDerivedDefinitions("PatFrag");
2094
2095 // First step, parse all of the fragments.
2096 for (unsigned i = 0, e = Fragments.size(); i != e; ++i) {
2097 DagInit *Tree = Fragments[i]->getValueAsDag("Fragment");
2098 TreePattern *P = new TreePattern(Fragments[i], Tree, true, *this);
2099 PatternFragments[Fragments[i]] = P;
2100
2101 // Validate the argument list, converting it to set, to discard duplicates.
2102 std::vector<std::string> &Args = P->getArgList();
2103 std::set<std::string> OperandsSet(Args.begin(), Args.end());
2104
2105 if (OperandsSet.count(""))
2106 P->error("Cannot have unnamed 'node' values in pattern fragment!");
2107
2108 // Parse the operands list.
2109 DagInit *OpsList = Fragments[i]->getValueAsDag("Operands");
2110 DefInit *OpsOp = dynamic_cast<DefInit*>(OpsList->getOperator());
2111 // Special cases: ops == outs == ins. Different names are used to
2112 // improve readability.
2113 if (!OpsOp ||
2114 (OpsOp->getDef()->getName() != "ops" &&
2115 OpsOp->getDef()->getName() != "outs" &&
2116 OpsOp->getDef()->getName() != "ins"))
2117 P->error("Operands list should start with '(ops ... '!");
2118
2119 // Copy over the arguments.
2120 Args.clear();
2121 for (unsigned j = 0, e = OpsList->getNumArgs(); j != e; ++j) {
2122 if (!dynamic_cast<DefInit*>(OpsList->getArg(j)) ||
2123 static_cast<DefInit*>(OpsList->getArg(j))->
2124 getDef()->getName() != "node")
2125 P->error("Operands list should all be 'node' values.");
2126 if (OpsList->getArgName(j).empty())
2127 P->error("Operands list should have names for each operand!");
2128 if (!OperandsSet.count(OpsList->getArgName(j)))
2129 P->error("'" + OpsList->getArgName(j) +
2130 "' does not occur in pattern or was multiply specified!");
2131 OperandsSet.erase(OpsList->getArgName(j));
2132 Args.push_back(OpsList->getArgName(j));
2133 }
2134
2135 if (!OperandsSet.empty())
2136 P->error("Operands list does not contain an entry for operand '" +
2137 *OperandsSet.begin() + "'!");
2138
2139 // If there is a code init for this fragment, keep track of the fact that
2140 // this fragment uses it.
2141 TreePredicateFn PredFn(P);
2142 if (!PredFn.isAlwaysTrue())
2143 P->getOnlyTree()->addPredicateFn(PredFn);
2144
2145 // If there is a node transformation corresponding to this, keep track of
2146 // it.
2147 Record *Transform = Fragments[i]->getValueAsDef("OperandTransform");
2148 if (!getSDNodeTransform(Transform).second.empty()) // not noop xform?
2149 P->getOnlyTree()->setTransformFn(Transform);
2150 }
2151
2152 // Now that we've parsed all of the tree fragments, do a closure on them so
2153 // that there are not references to PatFrags left inside of them.
2154 for (unsigned i = 0, e = Fragments.size(); i != e; ++i) {
2155 TreePattern *ThePat = PatternFragments[Fragments[i]];
2156 ThePat->InlinePatternFragments();
2157
2158 // Infer as many types as possible. Don't worry about it if we don't infer
2159 // all of them, some may depend on the inputs of the pattern.
2160 try {
2161 ThePat->InferAllTypes();
2162 } catch (...) {
2163 // If this pattern fragment is not supported by this target (no types can
2164 // satisfy its constraints), just ignore it. If the bogus pattern is
2165 // actually used by instructions, the type consistency error will be
2166 // reported there.
2167 }
2168
2169 // If debugging, print out the pattern fragment result.
2170 DEBUG(ThePat->dump());
2171 }
2172 }
2173
ParseDefaultOperands()2174 void CodeGenDAGPatterns::ParseDefaultOperands() {
2175 std::vector<Record*> DefaultOps;
2176 DefaultOps = Records.getAllDerivedDefinitions("OperandWithDefaultOps");
2177
2178 // Find some SDNode.
2179 assert(!SDNodes.empty() && "No SDNodes parsed?");
2180 Init *SomeSDNode = DefInit::get(SDNodes.begin()->first);
2181
2182 for (unsigned i = 0, e = DefaultOps.size(); i != e; ++i) {
2183 DagInit *DefaultInfo = DefaultOps[i]->getValueAsDag("DefaultOps");
2184
2185 // Clone the DefaultInfo dag node, changing the operator from 'ops' to
2186 // SomeSDnode so that we can parse this.
2187 std::vector<std::pair<Init*, std::string> > Ops;
2188 for (unsigned op = 0, e = DefaultInfo->getNumArgs(); op != e; ++op)
2189 Ops.push_back(std::make_pair(DefaultInfo->getArg(op),
2190 DefaultInfo->getArgName(op)));
2191 DagInit *DI = DagInit::get(SomeSDNode, "", Ops);
2192
2193 // Create a TreePattern to parse this.
2194 TreePattern P(DefaultOps[i], DI, false, *this);
2195 assert(P.getNumTrees() == 1 && "This ctor can only produce one tree!");
2196
2197 // Copy the operands over into a DAGDefaultOperand.
2198 DAGDefaultOperand DefaultOpInfo;
2199
2200 TreePatternNode *T = P.getTree(0);
2201 for (unsigned op = 0, e = T->getNumChildren(); op != e; ++op) {
2202 TreePatternNode *TPN = T->getChild(op);
2203 while (TPN->ApplyTypeConstraints(P, false))
2204 /* Resolve all types */;
2205
2206 if (TPN->ContainsUnresolvedType()) {
2207 throw "Value #" + utostr(i) + " of OperandWithDefaultOps '" +
2208 DefaultOps[i]->getName() +"' doesn't have a concrete type!";
2209 }
2210 DefaultOpInfo.DefaultOps.push_back(TPN);
2211 }
2212
2213 // Insert it into the DefaultOperands map so we can find it later.
2214 DefaultOperands[DefaultOps[i]] = DefaultOpInfo;
2215 }
2216 }
2217
2218 /// HandleUse - Given "Pat" a leaf in the pattern, check to see if it is an
2219 /// instruction input. Return true if this is a real use.
HandleUse(TreePattern * I,TreePatternNode * Pat,std::map<std::string,TreePatternNode * > & InstInputs)2220 static bool HandleUse(TreePattern *I, TreePatternNode *Pat,
2221 std::map<std::string, TreePatternNode*> &InstInputs) {
2222 // No name -> not interesting.
2223 if (Pat->getName().empty()) {
2224 if (Pat->isLeaf()) {
2225 DefInit *DI = dynamic_cast<DefInit*>(Pat->getLeafValue());
2226 if (DI && (DI->getDef()->isSubClassOf("RegisterClass") ||
2227 DI->getDef()->isSubClassOf("RegisterOperand")))
2228 I->error("Input " + DI->getDef()->getName() + " must be named!");
2229 }
2230 return false;
2231 }
2232
2233 Record *Rec;
2234 if (Pat->isLeaf()) {
2235 DefInit *DI = dynamic_cast<DefInit*>(Pat->getLeafValue());
2236 if (!DI) I->error("Input $" + Pat->getName() + " must be an identifier!");
2237 Rec = DI->getDef();
2238 } else {
2239 Rec = Pat->getOperator();
2240 }
2241
2242 // SRCVALUE nodes are ignored.
2243 if (Rec->getName() == "srcvalue")
2244 return false;
2245
2246 TreePatternNode *&Slot = InstInputs[Pat->getName()];
2247 if (!Slot) {
2248 Slot = Pat;
2249 return true;
2250 }
2251 Record *SlotRec;
2252 if (Slot->isLeaf()) {
2253 SlotRec = dynamic_cast<DefInit*>(Slot->getLeafValue())->getDef();
2254 } else {
2255 assert(Slot->getNumChildren() == 0 && "can't be a use with children!");
2256 SlotRec = Slot->getOperator();
2257 }
2258
2259 // Ensure that the inputs agree if we've already seen this input.
2260 if (Rec != SlotRec)
2261 I->error("All $" + Pat->getName() + " inputs must agree with each other");
2262 if (Slot->getExtTypes() != Pat->getExtTypes())
2263 I->error("All $" + Pat->getName() + " inputs must agree with each other");
2264 return true;
2265 }
2266
2267 /// FindPatternInputsAndOutputs - Scan the specified TreePatternNode (which is
2268 /// part of "I", the instruction), computing the set of inputs and outputs of
2269 /// the pattern. Report errors if we see anything naughty.
2270 void CodeGenDAGPatterns::
FindPatternInputsAndOutputs(TreePattern * I,TreePatternNode * Pat,std::map<std::string,TreePatternNode * > & InstInputs,std::map<std::string,TreePatternNode * > & InstResults,std::vector<Record * > & InstImpResults)2271 FindPatternInputsAndOutputs(TreePattern *I, TreePatternNode *Pat,
2272 std::map<std::string, TreePatternNode*> &InstInputs,
2273 std::map<std::string, TreePatternNode*>&InstResults,
2274 std::vector<Record*> &InstImpResults) {
2275 if (Pat->isLeaf()) {
2276 bool isUse = HandleUse(I, Pat, InstInputs);
2277 if (!isUse && Pat->getTransformFn())
2278 I->error("Cannot specify a transform function for a non-input value!");
2279 return;
2280 }
2281
2282 if (Pat->getOperator()->getName() == "implicit") {
2283 for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) {
2284 TreePatternNode *Dest = Pat->getChild(i);
2285 if (!Dest->isLeaf())
2286 I->error("implicitly defined value should be a register!");
2287
2288 DefInit *Val = dynamic_cast<DefInit*>(Dest->getLeafValue());
2289 if (!Val || !Val->getDef()->isSubClassOf("Register"))
2290 I->error("implicitly defined value should be a register!");
2291 InstImpResults.push_back(Val->getDef());
2292 }
2293 return;
2294 }
2295
2296 if (Pat->getOperator()->getName() != "set") {
2297 // If this is not a set, verify that the children nodes are not void typed,
2298 // and recurse.
2299 for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) {
2300 if (Pat->getChild(i)->getNumTypes() == 0)
2301 I->error("Cannot have void nodes inside of patterns!");
2302 FindPatternInputsAndOutputs(I, Pat->getChild(i), InstInputs, InstResults,
2303 InstImpResults);
2304 }
2305
2306 // If this is a non-leaf node with no children, treat it basically as if
2307 // it were a leaf. This handles nodes like (imm).
2308 bool isUse = HandleUse(I, Pat, InstInputs);
2309
2310 if (!isUse && Pat->getTransformFn())
2311 I->error("Cannot specify a transform function for a non-input value!");
2312 return;
2313 }
2314
2315 // Otherwise, this is a set, validate and collect instruction results.
2316 if (Pat->getNumChildren() == 0)
2317 I->error("set requires operands!");
2318
2319 if (Pat->getTransformFn())
2320 I->error("Cannot specify a transform function on a set node!");
2321
2322 // Check the set destinations.
2323 unsigned NumDests = Pat->getNumChildren()-1;
2324 for (unsigned i = 0; i != NumDests; ++i) {
2325 TreePatternNode *Dest = Pat->getChild(i);
2326 if (!Dest->isLeaf())
2327 I->error("set destination should be a register!");
2328
2329 DefInit *Val = dynamic_cast<DefInit*>(Dest->getLeafValue());
2330 if (!Val)
2331 I->error("set destination should be a register!");
2332
2333 if (Val->getDef()->isSubClassOf("RegisterClass") ||
2334 Val->getDef()->isSubClassOf("RegisterOperand") ||
2335 Val->getDef()->isSubClassOf("PointerLikeRegClass")) {
2336 if (Dest->getName().empty())
2337 I->error("set destination must have a name!");
2338 if (InstResults.count(Dest->getName()))
2339 I->error("cannot set '" + Dest->getName() +"' multiple times");
2340 InstResults[Dest->getName()] = Dest;
2341 } else if (Val->getDef()->isSubClassOf("Register")) {
2342 InstImpResults.push_back(Val->getDef());
2343 } else {
2344 I->error("set destination should be a register!");
2345 }
2346 }
2347
2348 // Verify and collect info from the computation.
2349 FindPatternInputsAndOutputs(I, Pat->getChild(NumDests),
2350 InstInputs, InstResults, InstImpResults);
2351 }
2352
2353 //===----------------------------------------------------------------------===//
2354 // Instruction Analysis
2355 //===----------------------------------------------------------------------===//
2356
2357 class InstAnalyzer {
2358 const CodeGenDAGPatterns &CDP;
2359 public:
2360 bool hasSideEffects;
2361 bool mayStore;
2362 bool mayLoad;
2363 bool isBitcast;
2364 bool isVariadic;
2365
InstAnalyzer(const CodeGenDAGPatterns & cdp)2366 InstAnalyzer(const CodeGenDAGPatterns &cdp)
2367 : CDP(cdp), hasSideEffects(false), mayStore(false), mayLoad(false),
2368 isBitcast(false), isVariadic(false) {}
2369
Analyze(const TreePattern * Pat)2370 void Analyze(const TreePattern *Pat) {
2371 // Assume only the first tree is the pattern. The others are clobber nodes.
2372 AnalyzeNode(Pat->getTree(0));
2373 }
2374
Analyze(const PatternToMatch * Pat)2375 void Analyze(const PatternToMatch *Pat) {
2376 AnalyzeNode(Pat->getSrcPattern());
2377 }
2378
2379 private:
IsNodeBitcast(const TreePatternNode * N) const2380 bool IsNodeBitcast(const TreePatternNode *N) const {
2381 if (hasSideEffects || mayLoad || mayStore || isVariadic)
2382 return false;
2383
2384 if (N->getNumChildren() != 2)
2385 return false;
2386
2387 const TreePatternNode *N0 = N->getChild(0);
2388 if (!N0->isLeaf() || !dynamic_cast<DefInit*>(N0->getLeafValue()))
2389 return false;
2390
2391 const TreePatternNode *N1 = N->getChild(1);
2392 if (N1->isLeaf())
2393 return false;
2394 if (N1->getNumChildren() != 1 || !N1->getChild(0)->isLeaf())
2395 return false;
2396
2397 const SDNodeInfo &OpInfo = CDP.getSDNodeInfo(N1->getOperator());
2398 if (OpInfo.getNumResults() != 1 || OpInfo.getNumOperands() != 1)
2399 return false;
2400 return OpInfo.getEnumName() == "ISD::BITCAST";
2401 }
2402
2403 public:
AnalyzeNode(const TreePatternNode * N)2404 void AnalyzeNode(const TreePatternNode *N) {
2405 if (N->isLeaf()) {
2406 if (DefInit *DI = dynamic_cast<DefInit*>(N->getLeafValue())) {
2407 Record *LeafRec = DI->getDef();
2408 // Handle ComplexPattern leaves.
2409 if (LeafRec->isSubClassOf("ComplexPattern")) {
2410 const ComplexPattern &CP = CDP.getComplexPattern(LeafRec);
2411 if (CP.hasProperty(SDNPMayStore)) mayStore = true;
2412 if (CP.hasProperty(SDNPMayLoad)) mayLoad = true;
2413 if (CP.hasProperty(SDNPSideEffect)) hasSideEffects = true;
2414 }
2415 }
2416 return;
2417 }
2418
2419 // Analyze children.
2420 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
2421 AnalyzeNode(N->getChild(i));
2422
2423 // Ignore set nodes, which are not SDNodes.
2424 if (N->getOperator()->getName() == "set") {
2425 isBitcast = IsNodeBitcast(N);
2426 return;
2427 }
2428
2429 // Get information about the SDNode for the operator.
2430 const SDNodeInfo &OpInfo = CDP.getSDNodeInfo(N->getOperator());
2431
2432 // Notice properties of the node.
2433 if (OpInfo.hasProperty(SDNPMayStore)) mayStore = true;
2434 if (OpInfo.hasProperty(SDNPMayLoad)) mayLoad = true;
2435 if (OpInfo.hasProperty(SDNPSideEffect)) hasSideEffects = true;
2436 if (OpInfo.hasProperty(SDNPVariadic)) isVariadic = true;
2437
2438 if (const CodeGenIntrinsic *IntInfo = N->getIntrinsicInfo(CDP)) {
2439 // If this is an intrinsic, analyze it.
2440 if (IntInfo->ModRef >= CodeGenIntrinsic::ReadArgMem)
2441 mayLoad = true;// These may load memory.
2442
2443 if (IntInfo->ModRef >= CodeGenIntrinsic::ReadWriteArgMem)
2444 mayStore = true;// Intrinsics that can write to memory are 'mayStore'.
2445
2446 if (IntInfo->ModRef >= CodeGenIntrinsic::ReadWriteMem)
2447 // WriteMem intrinsics can have other strange effects.
2448 hasSideEffects = true;
2449 }
2450 }
2451
2452 };
2453
InferFromPattern(CodeGenInstruction & InstInfo,const InstAnalyzer & PatInfo,Record * PatDef)2454 static bool InferFromPattern(CodeGenInstruction &InstInfo,
2455 const InstAnalyzer &PatInfo,
2456 Record *PatDef) {
2457 bool Error = false;
2458
2459 // Remember where InstInfo got its flags.
2460 if (InstInfo.hasUndefFlags())
2461 InstInfo.InferredFrom = PatDef;
2462
2463 // Check explicitly set flags for consistency.
2464 if (InstInfo.hasSideEffects != PatInfo.hasSideEffects &&
2465 !InstInfo.hasSideEffects_Unset) {
2466 // Allow explicitly setting hasSideEffects = 1 on instructions, even when
2467 // the pattern has no side effects. That could be useful for div/rem
2468 // instructions that may trap.
2469 if (!InstInfo.hasSideEffects) {
2470 Error = true;
2471 PrintError(PatDef->getLoc(), "Pattern doesn't match hasSideEffects = " +
2472 Twine(InstInfo.hasSideEffects));
2473 }
2474 }
2475
2476 if (InstInfo.mayStore != PatInfo.mayStore && !InstInfo.mayStore_Unset) {
2477 Error = true;
2478 PrintError(PatDef->getLoc(), "Pattern doesn't match mayStore = " +
2479 Twine(InstInfo.mayStore));
2480 }
2481
2482 if (InstInfo.mayLoad != PatInfo.mayLoad && !InstInfo.mayLoad_Unset) {
2483 // Allow explicitly setting mayLoad = 1, even when the pattern has no loads.
2484 // Some targets translate imediates to loads.
2485 if (!InstInfo.mayLoad) {
2486 Error = true;
2487 PrintError(PatDef->getLoc(), "Pattern doesn't match mayLoad = " +
2488 Twine(InstInfo.mayLoad));
2489 }
2490 }
2491
2492 // Transfer inferred flags.
2493 InstInfo.hasSideEffects |= PatInfo.hasSideEffects;
2494 InstInfo.mayStore |= PatInfo.mayStore;
2495 InstInfo.mayLoad |= PatInfo.mayLoad;
2496
2497 // These flags are silently added without any verification.
2498 InstInfo.isBitcast |= PatInfo.isBitcast;
2499
2500 // Don't infer isVariadic. This flag means something different on SDNodes and
2501 // instructions. For example, a CALL SDNode is variadic because it has the
2502 // call arguments as operands, but a CALL instruction is not variadic - it
2503 // has argument registers as implicit, not explicit uses.
2504
2505 return Error;
2506 }
2507
2508 /// hasNullFragReference - Return true if the DAG has any reference to the
2509 /// null_frag operator.
hasNullFragReference(DagInit * DI)2510 static bool hasNullFragReference(DagInit *DI) {
2511 DefInit *OpDef = dynamic_cast<DefInit*>(DI->getOperator());
2512 if (!OpDef) return false;
2513 Record *Operator = OpDef->getDef();
2514
2515 // If this is the null fragment, return true.
2516 if (Operator->getName() == "null_frag") return true;
2517 // If any of the arguments reference the null fragment, return true.
2518 for (unsigned i = 0, e = DI->getNumArgs(); i != e; ++i) {
2519 DagInit *Arg = dynamic_cast<DagInit*>(DI->getArg(i));
2520 if (Arg && hasNullFragReference(Arg))
2521 return true;
2522 }
2523
2524 return false;
2525 }
2526
2527 /// hasNullFragReference - Return true if any DAG in the list references
2528 /// the null_frag operator.
hasNullFragReference(ListInit * LI)2529 static bool hasNullFragReference(ListInit *LI) {
2530 for (unsigned i = 0, e = LI->getSize(); i != e; ++i) {
2531 DagInit *DI = dynamic_cast<DagInit*>(LI->getElement(i));
2532 assert(DI && "non-dag in an instruction Pattern list?!");
2533 if (hasNullFragReference(DI))
2534 return true;
2535 }
2536 return false;
2537 }
2538
2539 /// Get all the instructions in a tree.
2540 static void
getInstructionsInTree(TreePatternNode * Tree,SmallVectorImpl<Record * > & Instrs)2541 getInstructionsInTree(TreePatternNode *Tree, SmallVectorImpl<Record*> &Instrs) {
2542 if (Tree->isLeaf())
2543 return;
2544 if (Tree->getOperator()->isSubClassOf("Instruction"))
2545 Instrs.push_back(Tree->getOperator());
2546 for (unsigned i = 0, e = Tree->getNumChildren(); i != e; ++i)
2547 getInstructionsInTree(Tree->getChild(i), Instrs);
2548 }
2549
2550 /// ParseInstructions - Parse all of the instructions, inlining and resolving
2551 /// any fragments involved. This populates the Instructions list with fully
2552 /// resolved instructions.
ParseInstructions()2553 void CodeGenDAGPatterns::ParseInstructions() {
2554 std::vector<Record*> Instrs = Records.getAllDerivedDefinitions("Instruction");
2555
2556 for (unsigned i = 0, e = Instrs.size(); i != e; ++i) {
2557 ListInit *LI = 0;
2558
2559 if (dynamic_cast<ListInit*>(Instrs[i]->getValueInit("Pattern")))
2560 LI = Instrs[i]->getValueAsListInit("Pattern");
2561
2562 // If there is no pattern, only collect minimal information about the
2563 // instruction for its operand list. We have to assume that there is one
2564 // result, as we have no detailed info. A pattern which references the
2565 // null_frag operator is as-if no pattern were specified. Normally this
2566 // is from a multiclass expansion w/ a SDPatternOperator passed in as
2567 // null_frag.
2568 if (!LI || LI->getSize() == 0 || hasNullFragReference(LI)) {
2569 std::vector<Record*> Results;
2570 std::vector<Record*> Operands;
2571
2572 CodeGenInstruction &InstInfo = Target.getInstruction(Instrs[i]);
2573
2574 if (InstInfo.Operands.size() != 0) {
2575 if (InstInfo.Operands.NumDefs == 0) {
2576 // These produce no results
2577 for (unsigned j = 0, e = InstInfo.Operands.size(); j < e; ++j)
2578 Operands.push_back(InstInfo.Operands[j].Rec);
2579 } else {
2580 // Assume the first operand is the result.
2581 Results.push_back(InstInfo.Operands[0].Rec);
2582
2583 // The rest are inputs.
2584 for (unsigned j = 1, e = InstInfo.Operands.size(); j < e; ++j)
2585 Operands.push_back(InstInfo.Operands[j].Rec);
2586 }
2587 }
2588
2589 // Create and insert the instruction.
2590 std::vector<Record*> ImpResults;
2591 Instructions.insert(std::make_pair(Instrs[i],
2592 DAGInstruction(0, Results, Operands, ImpResults)));
2593 continue; // no pattern.
2594 }
2595
2596 // Parse the instruction.
2597 TreePattern *I = new TreePattern(Instrs[i], LI, true, *this);
2598 // Inline pattern fragments into it.
2599 I->InlinePatternFragments();
2600
2601 // Infer as many types as possible. If we cannot infer all of them, we can
2602 // never do anything with this instruction pattern: report it to the user.
2603 if (!I->InferAllTypes())
2604 I->error("Could not infer all types in pattern!");
2605
2606 // InstInputs - Keep track of all of the inputs of the instruction, along
2607 // with the record they are declared as.
2608 std::map<std::string, TreePatternNode*> InstInputs;
2609
2610 // InstResults - Keep track of all the virtual registers that are 'set'
2611 // in the instruction, including what reg class they are.
2612 std::map<std::string, TreePatternNode*> InstResults;
2613
2614 std::vector<Record*> InstImpResults;
2615
2616 // Verify that the top-level forms in the instruction are of void type, and
2617 // fill in the InstResults map.
2618 for (unsigned j = 0, e = I->getNumTrees(); j != e; ++j) {
2619 TreePatternNode *Pat = I->getTree(j);
2620 if (Pat->getNumTypes() != 0)
2621 I->error("Top-level forms in instruction pattern should have"
2622 " void types");
2623
2624 // Find inputs and outputs, and verify the structure of the uses/defs.
2625 FindPatternInputsAndOutputs(I, Pat, InstInputs, InstResults,
2626 InstImpResults);
2627 }
2628
2629 // Now that we have inputs and outputs of the pattern, inspect the operands
2630 // list for the instruction. This determines the order that operands are
2631 // added to the machine instruction the node corresponds to.
2632 unsigned NumResults = InstResults.size();
2633
2634 // Parse the operands list from the (ops) list, validating it.
2635 assert(I->getArgList().empty() && "Args list should still be empty here!");
2636 CodeGenInstruction &CGI = Target.getInstruction(Instrs[i]);
2637
2638 // Check that all of the results occur first in the list.
2639 std::vector<Record*> Results;
2640 TreePatternNode *Res0Node = 0;
2641 for (unsigned i = 0; i != NumResults; ++i) {
2642 if (i == CGI.Operands.size())
2643 I->error("'" + InstResults.begin()->first +
2644 "' set but does not appear in operand list!");
2645 const std::string &OpName = CGI.Operands[i].Name;
2646
2647 // Check that it exists in InstResults.
2648 TreePatternNode *RNode = InstResults[OpName];
2649 if (RNode == 0)
2650 I->error("Operand $" + OpName + " does not exist in operand list!");
2651
2652 if (i == 0)
2653 Res0Node = RNode;
2654 Record *R = dynamic_cast<DefInit*>(RNode->getLeafValue())->getDef();
2655 if (R == 0)
2656 I->error("Operand $" + OpName + " should be a set destination: all "
2657 "outputs must occur before inputs in operand list!");
2658
2659 if (CGI.Operands[i].Rec != R)
2660 I->error("Operand $" + OpName + " class mismatch!");
2661
2662 // Remember the return type.
2663 Results.push_back(CGI.Operands[i].Rec);
2664
2665 // Okay, this one checks out.
2666 InstResults.erase(OpName);
2667 }
2668
2669 // Loop over the inputs next. Make a copy of InstInputs so we can destroy
2670 // the copy while we're checking the inputs.
2671 std::map<std::string, TreePatternNode*> InstInputsCheck(InstInputs);
2672
2673 std::vector<TreePatternNode*> ResultNodeOperands;
2674 std::vector<Record*> Operands;
2675 for (unsigned i = NumResults, e = CGI.Operands.size(); i != e; ++i) {
2676 CGIOperandList::OperandInfo &Op = CGI.Operands[i];
2677 const std::string &OpName = Op.Name;
2678 if (OpName.empty())
2679 I->error("Operand #" + utostr(i) + " in operands list has no name!");
2680
2681 if (!InstInputsCheck.count(OpName)) {
2682 // If this is an operand with a DefaultOps set filled in, we can ignore
2683 // this. When we codegen it, we will do so as always executed.
2684 if (Op.Rec->isSubClassOf("OperandWithDefaultOps")) {
2685 // Does it have a non-empty DefaultOps field? If so, ignore this
2686 // operand.
2687 if (!getDefaultOperand(Op.Rec).DefaultOps.empty())
2688 continue;
2689 }
2690 I->error("Operand $" + OpName +
2691 " does not appear in the instruction pattern");
2692 }
2693 TreePatternNode *InVal = InstInputsCheck[OpName];
2694 InstInputsCheck.erase(OpName); // It occurred, remove from map.
2695
2696 if (InVal->isLeaf() &&
2697 dynamic_cast<DefInit*>(InVal->getLeafValue())) {
2698 Record *InRec = static_cast<DefInit*>(InVal->getLeafValue())->getDef();
2699 if (Op.Rec != InRec && !InRec->isSubClassOf("ComplexPattern"))
2700 I->error("Operand $" + OpName + "'s register class disagrees"
2701 " between the operand and pattern");
2702 }
2703 Operands.push_back(Op.Rec);
2704
2705 // Construct the result for the dest-pattern operand list.
2706 TreePatternNode *OpNode = InVal->clone();
2707
2708 // No predicate is useful on the result.
2709 OpNode->clearPredicateFns();
2710
2711 // Promote the xform function to be an explicit node if set.
2712 if (Record *Xform = OpNode->getTransformFn()) {
2713 OpNode->setTransformFn(0);
2714 std::vector<TreePatternNode*> Children;
2715 Children.push_back(OpNode);
2716 OpNode = new TreePatternNode(Xform, Children, OpNode->getNumTypes());
2717 }
2718
2719 ResultNodeOperands.push_back(OpNode);
2720 }
2721
2722 if (!InstInputsCheck.empty())
2723 I->error("Input operand $" + InstInputsCheck.begin()->first +
2724 " occurs in pattern but not in operands list!");
2725
2726 TreePatternNode *ResultPattern =
2727 new TreePatternNode(I->getRecord(), ResultNodeOperands,
2728 GetNumNodeResults(I->getRecord(), *this));
2729 // Copy fully inferred output node type to instruction result pattern.
2730 for (unsigned i = 0; i != NumResults; ++i)
2731 ResultPattern->setType(i, Res0Node->getExtType(i));
2732
2733 // Create and insert the instruction.
2734 // FIXME: InstImpResults should not be part of DAGInstruction.
2735 DAGInstruction TheInst(I, Results, Operands, InstImpResults);
2736 Instructions.insert(std::make_pair(I->getRecord(), TheInst));
2737
2738 // Use a temporary tree pattern to infer all types and make sure that the
2739 // constructed result is correct. This depends on the instruction already
2740 // being inserted into the Instructions map.
2741 TreePattern Temp(I->getRecord(), ResultPattern, false, *this);
2742 Temp.InferAllTypes(&I->getNamedNodesMap());
2743
2744 DAGInstruction &TheInsertedInst = Instructions.find(I->getRecord())->second;
2745 TheInsertedInst.setResultPattern(Temp.getOnlyTree());
2746
2747 DEBUG(I->dump());
2748 }
2749
2750 // If we can, convert the instructions to be patterns that are matched!
2751 for (std::map<Record*, DAGInstruction, RecordPtrCmp>::iterator II =
2752 Instructions.begin(),
2753 E = Instructions.end(); II != E; ++II) {
2754 DAGInstruction &TheInst = II->second;
2755 const TreePattern *I = TheInst.getPattern();
2756 if (I == 0) continue; // No pattern.
2757
2758 // FIXME: Assume only the first tree is the pattern. The others are clobber
2759 // nodes.
2760 TreePatternNode *Pattern = I->getTree(0);
2761 TreePatternNode *SrcPattern;
2762 if (Pattern->getOperator()->getName() == "set") {
2763 SrcPattern = Pattern->getChild(Pattern->getNumChildren()-1)->clone();
2764 } else{
2765 // Not a set (store or something?)
2766 SrcPattern = Pattern;
2767 }
2768
2769 Record *Instr = II->first;
2770 AddPatternToMatch(I,
2771 PatternToMatch(Instr,
2772 Instr->getValueAsListInit("Predicates"),
2773 SrcPattern,
2774 TheInst.getResultPattern(),
2775 TheInst.getImpResults(),
2776 Instr->getValueAsInt("AddedComplexity"),
2777 Instr->getID()));
2778 }
2779 }
2780
2781
2782 typedef std::pair<const TreePatternNode*, unsigned> NameRecord;
2783
FindNames(const TreePatternNode * P,std::map<std::string,NameRecord> & Names,const TreePattern * PatternTop)2784 static void FindNames(const TreePatternNode *P,
2785 std::map<std::string, NameRecord> &Names,
2786 const TreePattern *PatternTop) {
2787 if (!P->getName().empty()) {
2788 NameRecord &Rec = Names[P->getName()];
2789 // If this is the first instance of the name, remember the node.
2790 if (Rec.second++ == 0)
2791 Rec.first = P;
2792 else if (Rec.first->getExtTypes() != P->getExtTypes())
2793 PatternTop->error("repetition of value: $" + P->getName() +
2794 " where different uses have different types!");
2795 }
2796
2797 if (!P->isLeaf()) {
2798 for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i)
2799 FindNames(P->getChild(i), Names, PatternTop);
2800 }
2801 }
2802
AddPatternToMatch(const TreePattern * Pattern,const PatternToMatch & PTM)2803 void CodeGenDAGPatterns::AddPatternToMatch(const TreePattern *Pattern,
2804 const PatternToMatch &PTM) {
2805 // Do some sanity checking on the pattern we're about to match.
2806 std::string Reason;
2807 if (!PTM.getSrcPattern()->canPatternMatch(Reason, *this))
2808 Pattern->error("Pattern can never match: " + Reason);
2809
2810 // If the source pattern's root is a complex pattern, that complex pattern
2811 // must specify the nodes it can potentially match.
2812 if (const ComplexPattern *CP =
2813 PTM.getSrcPattern()->getComplexPatternInfo(*this))
2814 if (CP->getRootNodes().empty())
2815 Pattern->error("ComplexPattern at root must specify list of opcodes it"
2816 " could match");
2817
2818
2819 // Find all of the named values in the input and output, ensure they have the
2820 // same type.
2821 std::map<std::string, NameRecord> SrcNames, DstNames;
2822 FindNames(PTM.getSrcPattern(), SrcNames, Pattern);
2823 FindNames(PTM.getDstPattern(), DstNames, Pattern);
2824
2825 // Scan all of the named values in the destination pattern, rejecting them if
2826 // they don't exist in the input pattern.
2827 for (std::map<std::string, NameRecord>::iterator
2828 I = DstNames.begin(), E = DstNames.end(); I != E; ++I) {
2829 if (SrcNames[I->first].first == 0)
2830 Pattern->error("Pattern has input without matching name in output: $" +
2831 I->first);
2832 }
2833
2834 // Scan all of the named values in the source pattern, rejecting them if the
2835 // name isn't used in the dest, and isn't used to tie two values together.
2836 for (std::map<std::string, NameRecord>::iterator
2837 I = SrcNames.begin(), E = SrcNames.end(); I != E; ++I)
2838 if (DstNames[I->first].first == 0 && SrcNames[I->first].second == 1)
2839 Pattern->error("Pattern has dead named input: $" + I->first);
2840
2841 PatternsToMatch.push_back(PTM);
2842 }
2843
2844
2845
InferInstructionFlags()2846 void CodeGenDAGPatterns::InferInstructionFlags() {
2847 const std::vector<const CodeGenInstruction*> &Instructions =
2848 Target.getInstructionsByEnumValue();
2849
2850 // First try to infer flags from the primary instruction pattern, if any.
2851 SmallVector<CodeGenInstruction*, 8> Revisit;
2852 unsigned Errors = 0;
2853 for (unsigned i = 0, e = Instructions.size(); i != e; ++i) {
2854 CodeGenInstruction &InstInfo =
2855 const_cast<CodeGenInstruction &>(*Instructions[i]);
2856
2857 // Treat neverHasSideEffects = 1 as the equivalent of hasSideEffects = 0.
2858 // This flag is obsolete and will be removed.
2859 if (InstInfo.neverHasSideEffects) {
2860 assert(!InstInfo.hasSideEffects);
2861 InstInfo.hasSideEffects_Unset = false;
2862 }
2863
2864 // Get the primary instruction pattern.
2865 const TreePattern *Pattern = getInstruction(InstInfo.TheDef).getPattern();
2866 if (!Pattern) {
2867 if (InstInfo.hasUndefFlags())
2868 Revisit.push_back(&InstInfo);
2869 continue;
2870 }
2871 InstAnalyzer PatInfo(*this);
2872 PatInfo.Analyze(Pattern);
2873 Errors += InferFromPattern(InstInfo, PatInfo, InstInfo.TheDef);
2874 }
2875
2876 // Second, look for single-instruction patterns defined outside the
2877 // instruction.
2878 for (ptm_iterator I = ptm_begin(), E = ptm_end(); I != E; ++I) {
2879 const PatternToMatch &PTM = *I;
2880
2881 // We can only infer from single-instruction patterns, otherwise we won't
2882 // know which instruction should get the flags.
2883 SmallVector<Record*, 8> PatInstrs;
2884 getInstructionsInTree(PTM.getDstPattern(), PatInstrs);
2885 if (PatInstrs.size() != 1)
2886 continue;
2887
2888 // Get the single instruction.
2889 CodeGenInstruction &InstInfo = Target.getInstruction(PatInstrs.front());
2890
2891 // Only infer properties from the first pattern. We'll verify the others.
2892 if (InstInfo.InferredFrom)
2893 continue;
2894
2895 InstAnalyzer PatInfo(*this);
2896 PatInfo.Analyze(&PTM);
2897 Errors += InferFromPattern(InstInfo, PatInfo, PTM.getSrcRecord());
2898 }
2899
2900 if (Errors)
2901 throw "pattern conflicts";
2902
2903 // Revisit instructions with undefined flags and no pattern.
2904 if (Target.guessInstructionProperties()) {
2905 for (unsigned i = 0, e = Revisit.size(); i != e; ++i) {
2906 CodeGenInstruction &InstInfo = *Revisit[i];
2907 if (InstInfo.InferredFrom)
2908 continue;
2909 // The mayLoad and mayStore flags default to false.
2910 // Conservatively assume hasSideEffects if it wasn't explicit.
2911 if (InstInfo.hasSideEffects_Unset)
2912 InstInfo.hasSideEffects = true;
2913 }
2914 return;
2915 }
2916
2917 // Complain about any flags that are still undefined.
2918 for (unsigned i = 0, e = Revisit.size(); i != e; ++i) {
2919 CodeGenInstruction &InstInfo = *Revisit[i];
2920 if (InstInfo.InferredFrom)
2921 continue;
2922 if (InstInfo.hasSideEffects_Unset)
2923 PrintError(InstInfo.TheDef->getLoc(),
2924 "Can't infer hasSideEffects from patterns");
2925 if (InstInfo.mayStore_Unset)
2926 PrintError(InstInfo.TheDef->getLoc(),
2927 "Can't infer mayStore from patterns");
2928 if (InstInfo.mayLoad_Unset)
2929 PrintError(InstInfo.TheDef->getLoc(),
2930 "Can't infer mayLoad from patterns");
2931 }
2932 }
2933
2934
2935 /// Verify instruction flags against pattern node properties.
VerifyInstructionFlags()2936 void CodeGenDAGPatterns::VerifyInstructionFlags() {
2937 unsigned Errors = 0;
2938 for (ptm_iterator I = ptm_begin(), E = ptm_end(); I != E; ++I) {
2939 const PatternToMatch &PTM = *I;
2940 SmallVector<Record*, 8> Instrs;
2941 getInstructionsInTree(PTM.getDstPattern(), Instrs);
2942 if (Instrs.empty())
2943 continue;
2944
2945 // Count the number of instructions with each flag set.
2946 unsigned NumSideEffects = 0;
2947 unsigned NumStores = 0;
2948 unsigned NumLoads = 0;
2949 for (unsigned i = 0, e = Instrs.size(); i != e; ++i) {
2950 const CodeGenInstruction &InstInfo = Target.getInstruction(Instrs[i]);
2951 NumSideEffects += InstInfo.hasSideEffects;
2952 NumStores += InstInfo.mayStore;
2953 NumLoads += InstInfo.mayLoad;
2954 }
2955
2956 // Analyze the source pattern.
2957 InstAnalyzer PatInfo(*this);
2958 PatInfo.Analyze(&PTM);
2959
2960 // Collect error messages.
2961 SmallVector<std::string, 4> Msgs;
2962
2963 // Check for missing flags in the output.
2964 // Permit extra flags for now at least.
2965 if (PatInfo.hasSideEffects && !NumSideEffects)
2966 Msgs.push_back("pattern has side effects, but hasSideEffects isn't set");
2967
2968 // Don't verify store flags on instructions with side effects. At least for
2969 // intrinsics, side effects implies mayStore.
2970 if (!PatInfo.hasSideEffects && PatInfo.mayStore && !NumStores)
2971 Msgs.push_back("pattern may store, but mayStore isn't set");
2972
2973 // Similarly, mayStore implies mayLoad on intrinsics.
2974 if (!PatInfo.mayStore && PatInfo.mayLoad && !NumLoads)
2975 Msgs.push_back("pattern may load, but mayLoad isn't set");
2976
2977 // Print error messages.
2978 if (Msgs.empty())
2979 continue;
2980 ++Errors;
2981
2982 for (unsigned i = 0, e = Msgs.size(); i != e; ++i)
2983 PrintError(PTM.getSrcRecord()->getLoc(), Twine(Msgs[i]) + " on the " +
2984 (Instrs.size() == 1 ?
2985 "instruction" : "output instructions"));
2986 // Provide the location of the relevant instruction definitions.
2987 for (unsigned i = 0, e = Instrs.size(); i != e; ++i) {
2988 if (Instrs[i] != PTM.getSrcRecord())
2989 PrintError(Instrs[i]->getLoc(), "defined here");
2990 const CodeGenInstruction &InstInfo = Target.getInstruction(Instrs[i]);
2991 if (InstInfo.InferredFrom &&
2992 InstInfo.InferredFrom != InstInfo.TheDef &&
2993 InstInfo.InferredFrom != PTM.getSrcRecord())
2994 PrintError(InstInfo.InferredFrom->getLoc(), "inferred from patttern");
2995 }
2996 }
2997 if (Errors)
2998 throw "Errors in DAG patterns";
2999 }
3000
3001 /// Given a pattern result with an unresolved type, see if we can find one
3002 /// instruction with an unresolved result type. Force this result type to an
3003 /// arbitrary element if it's possible types to converge results.
ForceArbitraryInstResultType(TreePatternNode * N,TreePattern & TP)3004 static bool ForceArbitraryInstResultType(TreePatternNode *N, TreePattern &TP) {
3005 if (N->isLeaf())
3006 return false;
3007
3008 // Analyze children.
3009 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
3010 if (ForceArbitraryInstResultType(N->getChild(i), TP))
3011 return true;
3012
3013 if (!N->getOperator()->isSubClassOf("Instruction"))
3014 return false;
3015
3016 // If this type is already concrete or completely unknown we can't do
3017 // anything.
3018 for (unsigned i = 0, e = N->getNumTypes(); i != e; ++i) {
3019 if (N->getExtType(i).isCompletelyUnknown() || N->getExtType(i).isConcrete())
3020 continue;
3021
3022 // Otherwise, force its type to the first possibility (an arbitrary choice).
3023 if (N->getExtType(i).MergeInTypeInfo(N->getExtType(i).getTypeList()[0], TP))
3024 return true;
3025 }
3026
3027 return false;
3028 }
3029
ParsePatterns()3030 void CodeGenDAGPatterns::ParsePatterns() {
3031 std::vector<Record*> Patterns = Records.getAllDerivedDefinitions("Pattern");
3032
3033 for (unsigned i = 0, e = Patterns.size(); i != e; ++i) {
3034 Record *CurPattern = Patterns[i];
3035 DagInit *Tree = CurPattern->getValueAsDag("PatternToMatch");
3036
3037 // If the pattern references the null_frag, there's nothing to do.
3038 if (hasNullFragReference(Tree))
3039 continue;
3040
3041 TreePattern *Pattern = new TreePattern(CurPattern, Tree, true, *this);
3042
3043 // Inline pattern fragments into it.
3044 Pattern->InlinePatternFragments();
3045
3046 ListInit *LI = CurPattern->getValueAsListInit("ResultInstrs");
3047 if (LI->getSize() == 0) continue; // no pattern.
3048
3049 // Parse the instruction.
3050 TreePattern *Result = new TreePattern(CurPattern, LI, false, *this);
3051
3052 // Inline pattern fragments into it.
3053 Result->InlinePatternFragments();
3054
3055 if (Result->getNumTrees() != 1)
3056 Result->error("Cannot handle instructions producing instructions "
3057 "with temporaries yet!");
3058
3059 bool IterateInference;
3060 bool InferredAllPatternTypes, InferredAllResultTypes;
3061 do {
3062 // Infer as many types as possible. If we cannot infer all of them, we
3063 // can never do anything with this pattern: report it to the user.
3064 InferredAllPatternTypes =
3065 Pattern->InferAllTypes(&Pattern->getNamedNodesMap());
3066
3067 // Infer as many types as possible. If we cannot infer all of them, we
3068 // can never do anything with this pattern: report it to the user.
3069 InferredAllResultTypes =
3070 Result->InferAllTypes(&Pattern->getNamedNodesMap());
3071
3072 IterateInference = false;
3073
3074 // Apply the type of the result to the source pattern. This helps us
3075 // resolve cases where the input type is known to be a pointer type (which
3076 // is considered resolved), but the result knows it needs to be 32- or
3077 // 64-bits. Infer the other way for good measure.
3078 for (unsigned i = 0, e = std::min(Result->getTree(0)->getNumTypes(),
3079 Pattern->getTree(0)->getNumTypes());
3080 i != e; ++i) {
3081 IterateInference = Pattern->getTree(0)->
3082 UpdateNodeType(i, Result->getTree(0)->getExtType(i), *Result);
3083 IterateInference |= Result->getTree(0)->
3084 UpdateNodeType(i, Pattern->getTree(0)->getExtType(i), *Result);
3085 }
3086
3087 // If our iteration has converged and the input pattern's types are fully
3088 // resolved but the result pattern is not fully resolved, we may have a
3089 // situation where we have two instructions in the result pattern and
3090 // the instructions require a common register class, but don't care about
3091 // what actual MVT is used. This is actually a bug in our modelling:
3092 // output patterns should have register classes, not MVTs.
3093 //
3094 // In any case, to handle this, we just go through and disambiguate some
3095 // arbitrary types to the result pattern's nodes.
3096 if (!IterateInference && InferredAllPatternTypes &&
3097 !InferredAllResultTypes)
3098 IterateInference = ForceArbitraryInstResultType(Result->getTree(0),
3099 *Result);
3100 } while (IterateInference);
3101
3102 // Verify that we inferred enough types that we can do something with the
3103 // pattern and result. If these fire the user has to add type casts.
3104 if (!InferredAllPatternTypes)
3105 Pattern->error("Could not infer all types in pattern!");
3106 if (!InferredAllResultTypes) {
3107 Pattern->dump();
3108 Result->error("Could not infer all types in pattern result!");
3109 }
3110
3111 // Validate that the input pattern is correct.
3112 std::map<std::string, TreePatternNode*> InstInputs;
3113 std::map<std::string, TreePatternNode*> InstResults;
3114 std::vector<Record*> InstImpResults;
3115 for (unsigned j = 0, ee = Pattern->getNumTrees(); j != ee; ++j)
3116 FindPatternInputsAndOutputs(Pattern, Pattern->getTree(j),
3117 InstInputs, InstResults,
3118 InstImpResults);
3119
3120 // Promote the xform function to be an explicit node if set.
3121 TreePatternNode *DstPattern = Result->getOnlyTree();
3122 std::vector<TreePatternNode*> ResultNodeOperands;
3123 for (unsigned ii = 0, ee = DstPattern->getNumChildren(); ii != ee; ++ii) {
3124 TreePatternNode *OpNode = DstPattern->getChild(ii);
3125 if (Record *Xform = OpNode->getTransformFn()) {
3126 OpNode->setTransformFn(0);
3127 std::vector<TreePatternNode*> Children;
3128 Children.push_back(OpNode);
3129 OpNode = new TreePatternNode(Xform, Children, OpNode->getNumTypes());
3130 }
3131 ResultNodeOperands.push_back(OpNode);
3132 }
3133 DstPattern = Result->getOnlyTree();
3134 if (!DstPattern->isLeaf())
3135 DstPattern = new TreePatternNode(DstPattern->getOperator(),
3136 ResultNodeOperands,
3137 DstPattern->getNumTypes());
3138
3139 for (unsigned i = 0, e = Result->getOnlyTree()->getNumTypes(); i != e; ++i)
3140 DstPattern->setType(i, Result->getOnlyTree()->getExtType(i));
3141
3142 TreePattern Temp(Result->getRecord(), DstPattern, false, *this);
3143 Temp.InferAllTypes();
3144
3145
3146 AddPatternToMatch(Pattern,
3147 PatternToMatch(CurPattern,
3148 CurPattern->getValueAsListInit("Predicates"),
3149 Pattern->getTree(0),
3150 Temp.getOnlyTree(), InstImpResults,
3151 CurPattern->getValueAsInt("AddedComplexity"),
3152 CurPattern->getID()));
3153 }
3154 }
3155
3156 /// CombineChildVariants - Given a bunch of permutations of each child of the
3157 /// 'operator' node, put them together in all possible ways.
CombineChildVariants(TreePatternNode * Orig,const std::vector<std::vector<TreePatternNode * >> & ChildVariants,std::vector<TreePatternNode * > & OutVariants,CodeGenDAGPatterns & CDP,const MultipleUseVarSet & DepVars)3158 static void CombineChildVariants(TreePatternNode *Orig,
3159 const std::vector<std::vector<TreePatternNode*> > &ChildVariants,
3160 std::vector<TreePatternNode*> &OutVariants,
3161 CodeGenDAGPatterns &CDP,
3162 const MultipleUseVarSet &DepVars) {
3163 // Make sure that each operand has at least one variant to choose from.
3164 for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i)
3165 if (ChildVariants[i].empty())
3166 return;
3167
3168 // The end result is an all-pairs construction of the resultant pattern.
3169 std::vector<unsigned> Idxs;
3170 Idxs.resize(ChildVariants.size());
3171 bool NotDone;
3172 do {
3173 #ifndef NDEBUG
3174 DEBUG(if (!Idxs.empty()) {
3175 errs() << Orig->getOperator()->getName() << ": Idxs = [ ";
3176 for (unsigned i = 0; i < Idxs.size(); ++i) {
3177 errs() << Idxs[i] << " ";
3178 }
3179 errs() << "]\n";
3180 });
3181 #endif
3182 // Create the variant and add it to the output list.
3183 std::vector<TreePatternNode*> NewChildren;
3184 for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i)
3185 NewChildren.push_back(ChildVariants[i][Idxs[i]]);
3186 TreePatternNode *R = new TreePatternNode(Orig->getOperator(), NewChildren,
3187 Orig->getNumTypes());
3188
3189 // Copy over properties.
3190 R->setName(Orig->getName());
3191 R->setPredicateFns(Orig->getPredicateFns());
3192 R->setTransformFn(Orig->getTransformFn());
3193 for (unsigned i = 0, e = Orig->getNumTypes(); i != e; ++i)
3194 R->setType(i, Orig->getExtType(i));
3195
3196 // If this pattern cannot match, do not include it as a variant.
3197 std::string ErrString;
3198 if (!R->canPatternMatch(ErrString, CDP)) {
3199 delete R;
3200 } else {
3201 bool AlreadyExists = false;
3202
3203 // Scan to see if this pattern has already been emitted. We can get
3204 // duplication due to things like commuting:
3205 // (and GPRC:$a, GPRC:$b) -> (and GPRC:$b, GPRC:$a)
3206 // which are the same pattern. Ignore the dups.
3207 for (unsigned i = 0, e = OutVariants.size(); i != e; ++i)
3208 if (R->isIsomorphicTo(OutVariants[i], DepVars)) {
3209 AlreadyExists = true;
3210 break;
3211 }
3212
3213 if (AlreadyExists)
3214 delete R;
3215 else
3216 OutVariants.push_back(R);
3217 }
3218
3219 // Increment indices to the next permutation by incrementing the
3220 // indicies from last index backward, e.g., generate the sequence
3221 // [0, 0], [0, 1], [1, 0], [1, 1].
3222 int IdxsIdx;
3223 for (IdxsIdx = Idxs.size() - 1; IdxsIdx >= 0; --IdxsIdx) {
3224 if (++Idxs[IdxsIdx] == ChildVariants[IdxsIdx].size())
3225 Idxs[IdxsIdx] = 0;
3226 else
3227 break;
3228 }
3229 NotDone = (IdxsIdx >= 0);
3230 } while (NotDone);
3231 }
3232
3233 /// CombineChildVariants - A helper function for binary operators.
3234 ///
CombineChildVariants(TreePatternNode * Orig,const std::vector<TreePatternNode * > & LHS,const std::vector<TreePatternNode * > & RHS,std::vector<TreePatternNode * > & OutVariants,CodeGenDAGPatterns & CDP,const MultipleUseVarSet & DepVars)3235 static void CombineChildVariants(TreePatternNode *Orig,
3236 const std::vector<TreePatternNode*> &LHS,
3237 const std::vector<TreePatternNode*> &RHS,
3238 std::vector<TreePatternNode*> &OutVariants,
3239 CodeGenDAGPatterns &CDP,
3240 const MultipleUseVarSet &DepVars) {
3241 std::vector<std::vector<TreePatternNode*> > ChildVariants;
3242 ChildVariants.push_back(LHS);
3243 ChildVariants.push_back(RHS);
3244 CombineChildVariants(Orig, ChildVariants, OutVariants, CDP, DepVars);
3245 }
3246
3247
GatherChildrenOfAssociativeOpcode(TreePatternNode * N,std::vector<TreePatternNode * > & Children)3248 static void GatherChildrenOfAssociativeOpcode(TreePatternNode *N,
3249 std::vector<TreePatternNode *> &Children) {
3250 assert(N->getNumChildren()==2 &&"Associative but doesn't have 2 children!");
3251 Record *Operator = N->getOperator();
3252
3253 // Only permit raw nodes.
3254 if (!N->getName().empty() || !N->getPredicateFns().empty() ||
3255 N->getTransformFn()) {
3256 Children.push_back(N);
3257 return;
3258 }
3259
3260 if (N->getChild(0)->isLeaf() || N->getChild(0)->getOperator() != Operator)
3261 Children.push_back(N->getChild(0));
3262 else
3263 GatherChildrenOfAssociativeOpcode(N->getChild(0), Children);
3264
3265 if (N->getChild(1)->isLeaf() || N->getChild(1)->getOperator() != Operator)
3266 Children.push_back(N->getChild(1));
3267 else
3268 GatherChildrenOfAssociativeOpcode(N->getChild(1), Children);
3269 }
3270
3271 /// GenerateVariantsOf - Given a pattern N, generate all permutations we can of
3272 /// the (potentially recursive) pattern by using algebraic laws.
3273 ///
GenerateVariantsOf(TreePatternNode * N,std::vector<TreePatternNode * > & OutVariants,CodeGenDAGPatterns & CDP,const MultipleUseVarSet & DepVars)3274 static void GenerateVariantsOf(TreePatternNode *N,
3275 std::vector<TreePatternNode*> &OutVariants,
3276 CodeGenDAGPatterns &CDP,
3277 const MultipleUseVarSet &DepVars) {
3278 // We cannot permute leaves.
3279 if (N->isLeaf()) {
3280 OutVariants.push_back(N);
3281 return;
3282 }
3283
3284 // Look up interesting info about the node.
3285 const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(N->getOperator());
3286
3287 // If this node is associative, re-associate.
3288 if (NodeInfo.hasProperty(SDNPAssociative)) {
3289 // Re-associate by pulling together all of the linked operators
3290 std::vector<TreePatternNode*> MaximalChildren;
3291 GatherChildrenOfAssociativeOpcode(N, MaximalChildren);
3292
3293 // Only handle child sizes of 3. Otherwise we'll end up trying too many
3294 // permutations.
3295 if (MaximalChildren.size() == 3) {
3296 // Find the variants of all of our maximal children.
3297 std::vector<TreePatternNode*> AVariants, BVariants, CVariants;
3298 GenerateVariantsOf(MaximalChildren[0], AVariants, CDP, DepVars);
3299 GenerateVariantsOf(MaximalChildren[1], BVariants, CDP, DepVars);
3300 GenerateVariantsOf(MaximalChildren[2], CVariants, CDP, DepVars);
3301
3302 // There are only two ways we can permute the tree:
3303 // (A op B) op C and A op (B op C)
3304 // Within these forms, we can also permute A/B/C.
3305
3306 // Generate legal pair permutations of A/B/C.
3307 std::vector<TreePatternNode*> ABVariants;
3308 std::vector<TreePatternNode*> BAVariants;
3309 std::vector<TreePatternNode*> ACVariants;
3310 std::vector<TreePatternNode*> CAVariants;
3311 std::vector<TreePatternNode*> BCVariants;
3312 std::vector<TreePatternNode*> CBVariants;
3313 CombineChildVariants(N, AVariants, BVariants, ABVariants, CDP, DepVars);
3314 CombineChildVariants(N, BVariants, AVariants, BAVariants, CDP, DepVars);
3315 CombineChildVariants(N, AVariants, CVariants, ACVariants, CDP, DepVars);
3316 CombineChildVariants(N, CVariants, AVariants, CAVariants, CDP, DepVars);
3317 CombineChildVariants(N, BVariants, CVariants, BCVariants, CDP, DepVars);
3318 CombineChildVariants(N, CVariants, BVariants, CBVariants, CDP, DepVars);
3319
3320 // Combine those into the result: (x op x) op x
3321 CombineChildVariants(N, ABVariants, CVariants, OutVariants, CDP, DepVars);
3322 CombineChildVariants(N, BAVariants, CVariants, OutVariants, CDP, DepVars);
3323 CombineChildVariants(N, ACVariants, BVariants, OutVariants, CDP, DepVars);
3324 CombineChildVariants(N, CAVariants, BVariants, OutVariants, CDP, DepVars);
3325 CombineChildVariants(N, BCVariants, AVariants, OutVariants, CDP, DepVars);
3326 CombineChildVariants(N, CBVariants, AVariants, OutVariants, CDP, DepVars);
3327
3328 // Combine those into the result: x op (x op x)
3329 CombineChildVariants(N, CVariants, ABVariants, OutVariants, CDP, DepVars);
3330 CombineChildVariants(N, CVariants, BAVariants, OutVariants, CDP, DepVars);
3331 CombineChildVariants(N, BVariants, ACVariants, OutVariants, CDP, DepVars);
3332 CombineChildVariants(N, BVariants, CAVariants, OutVariants, CDP, DepVars);
3333 CombineChildVariants(N, AVariants, BCVariants, OutVariants, CDP, DepVars);
3334 CombineChildVariants(N, AVariants, CBVariants, OutVariants, CDP, DepVars);
3335 return;
3336 }
3337 }
3338
3339 // Compute permutations of all children.
3340 std::vector<std::vector<TreePatternNode*> > ChildVariants;
3341 ChildVariants.resize(N->getNumChildren());
3342 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
3343 GenerateVariantsOf(N->getChild(i), ChildVariants[i], CDP, DepVars);
3344
3345 // Build all permutations based on how the children were formed.
3346 CombineChildVariants(N, ChildVariants, OutVariants, CDP, DepVars);
3347
3348 // If this node is commutative, consider the commuted order.
3349 bool isCommIntrinsic = N->isCommutativeIntrinsic(CDP);
3350 if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) {
3351 assert((N->getNumChildren()==2 || isCommIntrinsic) &&
3352 "Commutative but doesn't have 2 children!");
3353 // Don't count children which are actually register references.
3354 unsigned NC = 0;
3355 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
3356 TreePatternNode *Child = N->getChild(i);
3357 if (Child->isLeaf())
3358 if (DefInit *DI = dynamic_cast<DefInit*>(Child->getLeafValue())) {
3359 Record *RR = DI->getDef();
3360 if (RR->isSubClassOf("Register"))
3361 continue;
3362 }
3363 NC++;
3364 }
3365 // Consider the commuted order.
3366 if (isCommIntrinsic) {
3367 // Commutative intrinsic. First operand is the intrinsic id, 2nd and 3rd
3368 // operands are the commutative operands, and there might be more operands
3369 // after those.
3370 assert(NC >= 3 &&
3371 "Commutative intrinsic should have at least 3 childrean!");
3372 std::vector<std::vector<TreePatternNode*> > Variants;
3373 Variants.push_back(ChildVariants[0]); // Intrinsic id.
3374 Variants.push_back(ChildVariants[2]);
3375 Variants.push_back(ChildVariants[1]);
3376 for (unsigned i = 3; i != NC; ++i)
3377 Variants.push_back(ChildVariants[i]);
3378 CombineChildVariants(N, Variants, OutVariants, CDP, DepVars);
3379 } else if (NC == 2)
3380 CombineChildVariants(N, ChildVariants[1], ChildVariants[0],
3381 OutVariants, CDP, DepVars);
3382 }
3383 }
3384
3385
3386 // GenerateVariants - Generate variants. For example, commutative patterns can
3387 // match multiple ways. Add them to PatternsToMatch as well.
GenerateVariants()3388 void CodeGenDAGPatterns::GenerateVariants() {
3389 DEBUG(errs() << "Generating instruction variants.\n");
3390
3391 // Loop over all of the patterns we've collected, checking to see if we can
3392 // generate variants of the instruction, through the exploitation of
3393 // identities. This permits the target to provide aggressive matching without
3394 // the .td file having to contain tons of variants of instructions.
3395 //
3396 // Note that this loop adds new patterns to the PatternsToMatch list, but we
3397 // intentionally do not reconsider these. Any variants of added patterns have
3398 // already been added.
3399 //
3400 for (unsigned i = 0, e = PatternsToMatch.size(); i != e; ++i) {
3401 MultipleUseVarSet DepVars;
3402 std::vector<TreePatternNode*> Variants;
3403 FindDepVars(PatternsToMatch[i].getSrcPattern(), DepVars);
3404 DEBUG(errs() << "Dependent/multiply used variables: ");
3405 DEBUG(DumpDepVars(DepVars));
3406 DEBUG(errs() << "\n");
3407 GenerateVariantsOf(PatternsToMatch[i].getSrcPattern(), Variants, *this,
3408 DepVars);
3409
3410 assert(!Variants.empty() && "Must create at least original variant!");
3411 Variants.erase(Variants.begin()); // Remove the original pattern.
3412
3413 if (Variants.empty()) // No variants for this pattern.
3414 continue;
3415
3416 DEBUG(errs() << "FOUND VARIANTS OF: ";
3417 PatternsToMatch[i].getSrcPattern()->dump();
3418 errs() << "\n");
3419
3420 for (unsigned v = 0, e = Variants.size(); v != e; ++v) {
3421 TreePatternNode *Variant = Variants[v];
3422
3423 DEBUG(errs() << " VAR#" << v << ": ";
3424 Variant->dump();
3425 errs() << "\n");
3426
3427 // Scan to see if an instruction or explicit pattern already matches this.
3428 bool AlreadyExists = false;
3429 for (unsigned p = 0, e = PatternsToMatch.size(); p != e; ++p) {
3430 // Skip if the top level predicates do not match.
3431 if (PatternsToMatch[i].getPredicates() !=
3432 PatternsToMatch[p].getPredicates())
3433 continue;
3434 // Check to see if this variant already exists.
3435 if (Variant->isIsomorphicTo(PatternsToMatch[p].getSrcPattern(),
3436 DepVars)) {
3437 DEBUG(errs() << " *** ALREADY EXISTS, ignoring variant.\n");
3438 AlreadyExists = true;
3439 break;
3440 }
3441 }
3442 // If we already have it, ignore the variant.
3443 if (AlreadyExists) continue;
3444
3445 // Otherwise, add it to the list of patterns we have.
3446 PatternsToMatch.
3447 push_back(PatternToMatch(PatternsToMatch[i].getSrcRecord(),
3448 PatternsToMatch[i].getPredicates(),
3449 Variant, PatternsToMatch[i].getDstPattern(),
3450 PatternsToMatch[i].getDstRegs(),
3451 PatternsToMatch[i].getAddedComplexity(),
3452 Record::getNewUID()));
3453 }
3454
3455 DEBUG(errs() << "\n");
3456 }
3457 }
3458