• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===- DFAPacketizerEmitter.cpp - Packetization DFA for a VLIW machine-----===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This class parses the Schedule.td file and produces an API that can be used
11 // to reason about whether an instruction can be added to a packet on a VLIW
12 // architecture. The class internally generates a deterministic finite
13 // automaton (DFA) that models all possible mappings of machine instructions
14 // to functional units as instructions are added to a packet.
15 //
16 //===----------------------------------------------------------------------===//
17 
18 #include "CodeGenTarget.h"
19 #include "llvm/ADT/DenseSet.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/TableGen/Record.h"
22 #include "llvm/TableGen/TableGenBackend.h"
23 #include <list>
24 #include <map>
25 #include <string>
26 using namespace llvm;
27 
28 //
29 // class DFAPacketizerEmitter: class that generates and prints out the DFA
30 // for resource tracking.
31 //
32 namespace {
33 class DFAPacketizerEmitter {
34 private:
35   std::string TargetName;
36   //
37   // allInsnClasses is the set of all possible resources consumed by an
38   // InstrStage.
39   //
40   DenseSet<unsigned> allInsnClasses;
41   RecordKeeper &Records;
42 
43 public:
44   DFAPacketizerEmitter(RecordKeeper &R);
45 
46   //
47   // collectAllInsnClasses: Populate allInsnClasses which is a set of units
48   // used in each stage.
49   //
50   void collectAllInsnClasses(const std::string &Name,
51                              Record *ItinData,
52                              unsigned &NStages,
53                              raw_ostream &OS);
54 
55   void run(raw_ostream &OS);
56 };
57 } // End anonymous namespace.
58 
59 //
60 //
61 // State represents the usage of machine resources if the packet contains
62 // a set of instruction classes.
63 //
64 // Specifically, currentState is a set of bit-masks.
65 // The nth bit in a bit-mask indicates whether the nth resource is being used
66 // by this state. The set of bit-masks in a state represent the different
67 // possible outcomes of transitioning to this state.
68 // For example: consider a two resource architecture: resource L and resource M
69 // with three instruction classes: L, M, and L_or_M.
70 // From the initial state (currentState = 0x00), if we add instruction class
71 // L_or_M we will transition to a state with currentState = [0x01, 0x10]. This
72 // represents the possible resource states that can result from adding a L_or_M
73 // instruction
74 //
75 // Another way of thinking about this transition is we are mapping a NDFA with
76 // two states [0x01] and [0x10] into a DFA with a single state [0x01, 0x10].
77 //
78 // A State instance also contains a collection of transitions from that state:
79 // a map from inputs to new states.
80 //
81 namespace {
82 class State {
83  public:
84   static int currentStateNum;
85   int stateNum;
86   bool isInitial;
87   std::set<unsigned> stateInfo;
88   typedef std::map<unsigned, State *> TransitionMap;
89   TransitionMap Transitions;
90 
91   State();
92   State(const State &S);
93 
operator <(const State & s) const94   bool operator<(const State &s) const {
95     return stateNum < s.stateNum;
96   }
97 
98   //
99   // canAddInsnClass - Returns true if an instruction of type InsnClass is a
100   // valid transition from this state, i.e., can an instruction of type InsnClass
101   // be added to the packet represented by this state.
102   //
103   // PossibleStates is the set of valid resource states that ensue from valid
104   // transitions.
105   //
106   bool canAddInsnClass(unsigned InsnClass) const;
107   //
108   // AddInsnClass - Return all combinations of resource reservation
109   // which are possible from this state (PossibleStates).
110   //
111   void AddInsnClass(unsigned InsnClass, std::set<unsigned> &PossibleStates);
112   //
113   // addTransition - Add a transition from this state given the input InsnClass
114   //
115   void addTransition(unsigned InsnClass, State *To);
116   //
117   // hasTransition - Returns true if there is a transition from this state
118   // given the input InsnClass
119   //
120   bool hasTransition(unsigned InsnClass);
121 };
122 } // End anonymous namespace.
123 
124 //
125 // class DFA: deterministic finite automaton for processor resource tracking.
126 //
127 namespace {
128 class DFA {
129 public:
130   DFA();
131   ~DFA();
132 
133   // Set of states. Need to keep this sorted to emit the transition table.
134   typedef std::set<State *, less_ptr<State> > StateSet;
135   StateSet states;
136 
137   State *currentState;
138 
139   //
140   // Modify the DFA.
141   //
142   void initialize();
143   void addState(State *);
144 
145   //
146   // writeTable: Print out a table representing the DFA.
147   //
148   void writeTableAndAPI(raw_ostream &OS, const std::string &ClassName);
149 };
150 } // End anonymous namespace.
151 
152 
153 //
154 // Constructors and destructors for State and DFA
155 //
State()156 State::State() :
157   stateNum(currentStateNum++), isInitial(false) {}
158 
159 
State(const State & S)160 State::State(const State &S) :
161   stateNum(currentStateNum++), isInitial(S.isInitial),
162   stateInfo(S.stateInfo) {}
163 
DFA()164 DFA::DFA(): currentState(NULL) {}
165 
~DFA()166 DFA::~DFA() {
167   DeleteContainerPointers(states);
168 }
169 
170 //
171 // addTransition - Add a transition from this state given the input InsnClass
172 //
addTransition(unsigned InsnClass,State * To)173 void State::addTransition(unsigned InsnClass, State *To) {
174   assert(!Transitions.count(InsnClass) &&
175       "Cannot have multiple transitions for the same input");
176   Transitions[InsnClass] = To;
177 }
178 
179 //
180 // hasTransition - Returns true if there is a transition from this state
181 // given the input InsnClass
182 //
hasTransition(unsigned InsnClass)183 bool State::hasTransition(unsigned InsnClass) {
184   return Transitions.count(InsnClass) > 0;
185 }
186 
187 //
188 // AddInsnClass - Return all combinations of resource reservation
189 // which are possible from this state (PossibleStates).
190 //
AddInsnClass(unsigned InsnClass,std::set<unsigned> & PossibleStates)191 void State::AddInsnClass(unsigned InsnClass,
192                             std::set<unsigned> &PossibleStates) {
193   //
194   // Iterate over all resource states in currentState.
195   //
196 
197   for (std::set<unsigned>::iterator SI = stateInfo.begin();
198        SI != stateInfo.end(); ++SI) {
199     unsigned thisState = *SI;
200 
201     //
202     // Iterate over all possible resources used in InsnClass.
203     // For ex: for InsnClass = 0x11, all resources = {0x01, 0x10}.
204     //
205 
206     DenseSet<unsigned> VisitedResourceStates;
207     for (unsigned int j = 0; j < sizeof(InsnClass) * 8; ++j) {
208       if ((0x1 << j) & InsnClass) {
209         //
210         // For each possible resource used in InsnClass, generate the
211         // resource state if that resource was used.
212         //
213         unsigned ResultingResourceState = thisState | (0x1 << j);
214         //
215         // Check if the resulting resource state can be accommodated in this
216         // packet.
217         // We compute ResultingResourceState OR thisState.
218         // If the result of the OR is different than thisState, it implies
219         // that there is at least one resource that can be used to schedule
220         // InsnClass in the current packet.
221         // Insert ResultingResourceState into PossibleStates only if we haven't
222         // processed ResultingResourceState before.
223         //
224         if ((ResultingResourceState != thisState) &&
225             (VisitedResourceStates.count(ResultingResourceState) == 0)) {
226           VisitedResourceStates.insert(ResultingResourceState);
227           PossibleStates.insert(ResultingResourceState);
228         }
229       }
230     }
231   }
232 
233 }
234 
235 
236 //
237 // canAddInsnClass - Quickly verifies if an instruction of type InsnClass is a
238 // valid transition from this state i.e., can an instruction of type InsnClass
239 // be added to the packet represented by this state.
240 //
canAddInsnClass(unsigned InsnClass) const241 bool State::canAddInsnClass(unsigned InsnClass) const {
242   for (std::set<unsigned>::const_iterator SI = stateInfo.begin();
243        SI != stateInfo.end(); ++SI) {
244     if (~*SI & InsnClass)
245       return true;
246   }
247   return false;
248 }
249 
250 
initialize()251 void DFA::initialize() {
252   assert(currentState && "Missing current state");
253   currentState->isInitial = true;
254 }
255 
256 
addState(State * S)257 void DFA::addState(State *S) {
258   assert(!states.count(S) && "State already exists");
259   states.insert(S);
260 }
261 
262 
263 int State::currentStateNum = 0;
264 
DFAPacketizerEmitter(RecordKeeper & R)265 DFAPacketizerEmitter::DFAPacketizerEmitter(RecordKeeper &R):
266   TargetName(CodeGenTarget(R).getName()),
267   allInsnClasses(), Records(R) {}
268 
269 
270 //
271 // writeTableAndAPI - Print out a table representing the DFA and the
272 // associated API to create a DFA packetizer.
273 //
274 // Format:
275 // DFAStateInputTable[][2] = pairs of <Input, Transition> for all valid
276 //                           transitions.
277 // DFAStateEntryTable[i] = Index of the first entry in DFAStateInputTable for
278 //                         the ith state.
279 //
280 //
writeTableAndAPI(raw_ostream & OS,const std::string & TargetName)281 void DFA::writeTableAndAPI(raw_ostream &OS, const std::string &TargetName) {
282   DFA::StateSet::iterator SI = states.begin();
283   // This table provides a map to the beginning of the transitions for State s
284   // in DFAStateInputTable.
285   std::vector<int> StateEntry(states.size());
286 
287   OS << "namespace llvm {\n\n";
288   OS << "const int " << TargetName << "DFAStateInputTable[][2] = {\n";
289 
290   // Tracks the total valid transitions encountered so far. It is used
291   // to construct the StateEntry table.
292   int ValidTransitions = 0;
293   for (unsigned i = 0; i < states.size(); ++i, ++SI) {
294     assert (((*SI)->stateNum == (int) i) && "Mismatch in state numbers");
295     StateEntry[i] = ValidTransitions;
296     for (State::TransitionMap::iterator
297         II = (*SI)->Transitions.begin(), IE = (*SI)->Transitions.end();
298         II != IE; ++II) {
299       OS << "{" << II->first << ", "
300          << II->second->stateNum
301          << "},    ";
302     }
303     ValidTransitions += (*SI)->Transitions.size();
304 
305     // If there are no valid transitions from this stage, we need a sentinel
306     // transition.
307     if (ValidTransitions == StateEntry[i]) {
308       OS << "{-1, -1},";
309       ++ValidTransitions;
310     }
311 
312     OS << "\n";
313   }
314   OS << "};\n\n";
315   OS << "const unsigned int " << TargetName << "DFAStateEntryTable[] = {\n";
316 
317   // Multiply i by 2 since each entry in DFAStateInputTable is a set of
318   // two numbers.
319   for (unsigned i = 0; i < states.size(); ++i)
320     OS << StateEntry[i] << ", ";
321 
322   OS << "\n};\n";
323   OS << "} // namespace\n";
324 
325 
326   //
327   // Emit DFA Packetizer tables if the target is a VLIW machine.
328   //
329   std::string SubTargetClassName = TargetName + "GenSubtargetInfo";
330   OS << "\n" << "#include \"llvm/CodeGen/DFAPacketizer.h\"\n";
331   OS << "namespace llvm {\n";
332   OS << "DFAPacketizer *" << SubTargetClassName << "::"
333      << "createDFAPacketizer(const InstrItineraryData *IID) const {\n"
334      << "   return new DFAPacketizer(IID, " << TargetName
335      << "DFAStateInputTable, " << TargetName << "DFAStateEntryTable);\n}\n\n";
336   OS << "} // End llvm namespace \n";
337 }
338 
339 
340 //
341 // collectAllInsnClasses - Populate allInsnClasses which is a set of units
342 // used in each stage.
343 //
collectAllInsnClasses(const std::string & Name,Record * ItinData,unsigned & NStages,raw_ostream & OS)344 void DFAPacketizerEmitter::collectAllInsnClasses(const std::string &Name,
345                                   Record *ItinData,
346                                   unsigned &NStages,
347                                   raw_ostream &OS) {
348   // Collect processor itineraries.
349   std::vector<Record*> ProcItinList =
350     Records.getAllDerivedDefinitions("ProcessorItineraries");
351 
352   // If just no itinerary then don't bother.
353   if (ProcItinList.size() < 2)
354     return;
355   std::map<std::string, unsigned> NameToBitsMap;
356 
357   // Parse functional units for all the itineraries.
358   for (unsigned i = 0, N = ProcItinList.size(); i < N; ++i) {
359     Record *Proc = ProcItinList[i];
360     std::vector<Record*> FUs = Proc->getValueAsListOfDefs("FU");
361 
362     // Convert macros to bits for each stage.
363     for (unsigned i = 0, N = FUs.size(); i < N; ++i)
364       NameToBitsMap[FUs[i]->getName()] = (unsigned) (1U << i);
365   }
366 
367   const std::vector<Record*> &StageList =
368     ItinData->getValueAsListOfDefs("Stages");
369 
370   // The number of stages.
371   NStages = StageList.size();
372 
373   // For each unit.
374   unsigned UnitBitValue = 0;
375 
376   // Compute the bitwise or of each unit used in this stage.
377   for (unsigned i = 0; i < NStages; ++i) {
378     const Record *Stage = StageList[i];
379 
380     // Get unit list.
381     const std::vector<Record*> &UnitList =
382       Stage->getValueAsListOfDefs("Units");
383 
384     for (unsigned j = 0, M = UnitList.size(); j < M; ++j) {
385       // Conduct bitwise or.
386       std::string UnitName = UnitList[j]->getName();
387       assert(NameToBitsMap.count(UnitName));
388       UnitBitValue |= NameToBitsMap[UnitName];
389     }
390 
391     if (UnitBitValue != 0)
392       allInsnClasses.insert(UnitBitValue);
393   }
394 }
395 
396 
397 //
398 // Run the worklist algorithm to generate the DFA.
399 //
run(raw_ostream & OS)400 void DFAPacketizerEmitter::run(raw_ostream &OS) {
401 
402   // Collect processor iteraries.
403   std::vector<Record*> ProcItinList =
404     Records.getAllDerivedDefinitions("ProcessorItineraries");
405 
406   //
407   // Collect the instruction classes.
408   //
409   for (unsigned i = 0, N = ProcItinList.size(); i < N; i++) {
410     Record *Proc = ProcItinList[i];
411 
412     // Get processor itinerary name.
413     const std::string &Name = Proc->getName();
414 
415     // Skip default.
416     if (Name == "NoItineraries")
417       continue;
418 
419     // Sanity check for at least one instruction itinerary class.
420     unsigned NItinClasses =
421       Records.getAllDerivedDefinitions("InstrItinClass").size();
422     if (NItinClasses == 0)
423       return;
424 
425     // Get itinerary data list.
426     std::vector<Record*> ItinDataList = Proc->getValueAsListOfDefs("IID");
427 
428     // Collect instruction classes for all itinerary data.
429     for (unsigned j = 0, M = ItinDataList.size(); j < M; j++) {
430       Record *ItinData = ItinDataList[j];
431       unsigned NStages;
432       collectAllInsnClasses(Name, ItinData, NStages, OS);
433     }
434   }
435 
436 
437   //
438   // Run a worklist algorithm to generate the DFA.
439   //
440   DFA D;
441   State *Initial = new State;
442   Initial->isInitial = true;
443   Initial->stateInfo.insert(0x0);
444   D.addState(Initial);
445   SmallVector<State*, 32> WorkList;
446   std::map<std::set<unsigned>, State*> Visited;
447 
448   WorkList.push_back(Initial);
449 
450   //
451   // Worklist algorithm to create a DFA for processor resource tracking.
452   // C = {set of InsnClasses}
453   // Begin with initial node in worklist. Initial node does not have
454   // any consumed resources,
455   //     ResourceState = 0x0
456   // Visited = {}
457   // While worklist != empty
458   //    S = first element of worklist
459   //    For every instruction class C
460   //      if we can accommodate C in S:
461   //          S' = state with resource states = {S Union C}
462   //          Add a new transition: S x C -> S'
463   //          If S' is not in Visited:
464   //             Add S' to worklist
465   //             Add S' to Visited
466   //
467   while (!WorkList.empty()) {
468     State *current = WorkList.pop_back_val();
469     for (DenseSet<unsigned>::iterator CI = allInsnClasses.begin(),
470            CE = allInsnClasses.end(); CI != CE; ++CI) {
471       unsigned InsnClass = *CI;
472 
473       std::set<unsigned> NewStateResources;
474       //
475       // If we haven't already created a transition for this input
476       // and the state can accommodate this InsnClass, create a transition.
477       //
478       if (!current->hasTransition(InsnClass) &&
479           current->canAddInsnClass(InsnClass)) {
480         State *NewState = NULL;
481         current->AddInsnClass(InsnClass, NewStateResources);
482         assert(NewStateResources.size() && "New states must be generated");
483 
484         //
485         // If we have seen this state before, then do not create a new state.
486         //
487         //
488         std::map<std::set<unsigned>, State*>::iterator VI;
489         if ((VI = Visited.find(NewStateResources)) != Visited.end())
490           NewState = VI->second;
491         else {
492           NewState = new State;
493           NewState->stateInfo = NewStateResources;
494           D.addState(NewState);
495           Visited[NewStateResources] = NewState;
496           WorkList.push_back(NewState);
497         }
498 
499         current->addTransition(InsnClass, NewState);
500       }
501     }
502   }
503 
504   // Print out the table.
505   D.writeTableAndAPI(OS, TargetName);
506 }
507 
508 namespace llvm {
509 
EmitDFAPacketizer(RecordKeeper & RK,raw_ostream & OS)510 void EmitDFAPacketizer(RecordKeeper &RK, raw_ostream &OS) {
511   emitSourceFileHeader("Target DFA Packetizer Tables", OS);
512   DFAPacketizerEmitter(RK).run(OS);
513 }
514 
515 } // End llvm namespace
516