• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright © 2010 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  */
23 
24 /**
25  * \file ir_constant_expression.cpp
26  * Evaluate and process constant valued expressions
27  *
28  * In GLSL, constant valued expressions are used in several places.  These
29  * must be processed and evaluated very early in the compilation process.
30  *
31  *    * Sizes of arrays
32  *    * Initializers for uniforms
33  *    * Initializers for \c const variables
34  */
35 
36 #include <math.h>
37 #include <cmath>
38 #include "main/core.h" /* for MAX2, MIN2, CLAMP */
39 #include "ir.h"
40 #include "ir_visitor.h"
41 #include "glsl_types.h"
42 
43 static float
dot(ir_constant * op0,ir_constant * op1)44 dot(ir_constant *op0, ir_constant *op1)
45 {
46    assert(op0->type->is_float() && op1->type->is_float());
47 
48    float result = 0;
49    for (unsigned c = 0; c < op0->type->components(); c++)
50       result += op0->value.f[c] * op1->value.f[c];
51 
52    return result;
53 }
54 
55 ir_constant *
constant_expression_value()56 ir_expression::constant_expression_value()
57 {
58    if (this->type->is_error())
59       return NULL;
60 
61    ir_constant *op[Elements(this->operands)] = { NULL, };
62    ir_constant_data data;
63 
64    memset(&data, 0, sizeof(data));
65 
66    for (unsigned operand = 0; operand < this->get_num_operands(); operand++) {
67       op[operand] = this->operands[operand]->constant_expression_value();
68       if (!op[operand])
69 	 return NULL;
70    }
71 
72    if (op[1] != NULL)
73       assert(op[0]->type->base_type == op[1]->type->base_type);
74 
75    bool op0_scalar = op[0]->type->is_scalar();
76    bool op1_scalar = op[1] != NULL && op[1]->type->is_scalar();
77 
78    /* When iterating over a vector or matrix's components, we want to increase
79     * the loop counter.  However, for scalars, we want to stay at 0.
80     */
81    unsigned c0_inc = op0_scalar ? 0 : 1;
82    unsigned c1_inc = op1_scalar ? 0 : 1;
83    unsigned components;
84    if (op1_scalar || !op[1]) {
85       components = op[0]->type->components();
86    } else {
87       components = op[1]->type->components();
88    }
89 
90    void *ctx = hieralloc_parent(this);
91 
92    /* Handle array operations here, rather than below. */
93    if (op[0]->type->is_array()) {
94       assert(op[1] != NULL && op[1]->type->is_array());
95       switch (this->operation) {
96       case ir_binop_all_equal:
97 	 return new(ctx) ir_constant(op[0]->has_value(op[1]));
98       case ir_binop_any_nequal:
99 	 return new(ctx) ir_constant(!op[0]->has_value(op[1]));
100       default:
101 	 break;
102       }
103       return NULL;
104    }
105 
106    switch (this->operation) {
107    case ir_unop_bit_not:
108        switch (op[0]->type->base_type) {
109        case GLSL_TYPE_INT:
110            for (unsigned c = 0; c < components; c++)
111                data.i[c] = ~ op[0]->value.i[c];
112            break;
113        case GLSL_TYPE_UINT:
114            for (unsigned c = 0; c < components; c++)
115                data.u[c] = ~ op[0]->value.u[c];
116            break;
117        default:
118            assert(0);
119        }
120        break;
121 
122    case ir_unop_logic_not:
123       assert(op[0]->type->base_type == GLSL_TYPE_BOOL);
124       for (unsigned c = 0; c < op[0]->type->components(); c++)
125 	 data.b[c] = !op[0]->value.b[c];
126       break;
127 
128    case ir_unop_f2i:
129       assert(op[0]->type->base_type == GLSL_TYPE_FLOAT);
130       for (unsigned c = 0; c < op[0]->type->components(); c++) {
131 	 data.i[c] = (int) op[0]->value.f[c];
132       }
133       break;
134    case ir_unop_i2f:
135       assert(op[0]->type->base_type == GLSL_TYPE_INT);
136       for (unsigned c = 0; c < op[0]->type->components(); c++) {
137 	 data.f[c] = (float) op[0]->value.i[c];
138       }
139       break;
140    case ir_unop_u2f:
141       assert(op[0]->type->base_type == GLSL_TYPE_UINT);
142       for (unsigned c = 0; c < op[0]->type->components(); c++) {
143 	 data.f[c] = (float) op[0]->value.u[c];
144       }
145       break;
146    case ir_unop_b2f:
147       assert(op[0]->type->base_type == GLSL_TYPE_BOOL);
148       for (unsigned c = 0; c < op[0]->type->components(); c++) {
149 	 data.f[c] = op[0]->value.b[c] ? 1.0F : 0.0F;
150       }
151       break;
152    case ir_unop_f2b:
153       assert(op[0]->type->base_type == GLSL_TYPE_FLOAT);
154       for (unsigned c = 0; c < op[0]->type->components(); c++) {
155 	 data.b[c] = op[0]->value.f[c] != 0.0F ? true : false;
156       }
157       break;
158    case ir_unop_b2i:
159       assert(op[0]->type->base_type == GLSL_TYPE_BOOL);
160       for (unsigned c = 0; c < op[0]->type->components(); c++) {
161 	 data.u[c] = op[0]->value.b[c] ? 1 : 0;
162       }
163       break;
164    case ir_unop_i2b:
165       assert(op[0]->type->is_integer());
166       for (unsigned c = 0; c < op[0]->type->components(); c++) {
167 	 data.b[c] = op[0]->value.u[c] ? true : false;
168       }
169       break;
170 
171    case ir_unop_any:
172       assert(op[0]->type->is_boolean());
173       data.b[0] = false;
174       for (unsigned c = 0; c < op[0]->type->components(); c++) {
175 	 if (op[0]->value.b[c])
176 	    data.b[0] = true;
177       }
178       break;
179 
180    case ir_unop_trunc:
181       assert(op[0]->type->base_type == GLSL_TYPE_FLOAT);
182       for (unsigned c = 0; c < op[0]->type->components(); c++) {
183 	 data.f[c] = truncf(op[0]->value.f[c]);
184       }
185       break;
186 
187    case ir_unop_ceil:
188       assert(op[0]->type->base_type == GLSL_TYPE_FLOAT);
189       for (unsigned c = 0; c < op[0]->type->components(); c++) {
190 	 data.f[c] = ceilf(op[0]->value.f[c]);
191       }
192       break;
193 
194    case ir_unop_floor:
195       assert(op[0]->type->base_type == GLSL_TYPE_FLOAT);
196       for (unsigned c = 0; c < op[0]->type->components(); c++) {
197 	 data.f[c] = floorf(op[0]->value.f[c]);
198       }
199       break;
200 
201    case ir_unop_fract:
202       for (unsigned c = 0; c < op[0]->type->components(); c++) {
203 	 switch (this->type->base_type) {
204 	 case GLSL_TYPE_UINT:
205 	    data.u[c] = 0;
206 	    break;
207 	 case GLSL_TYPE_INT:
208 	    data.i[c] = 0;
209 	    break;
210 	 case GLSL_TYPE_FLOAT:
211 	    data.f[c] = op[0]->value.f[c] - floor(op[0]->value.f[c]);
212 	    break;
213 	 default:
214 	    assert(0);
215 	 }
216       }
217       break;
218 
219    case ir_unop_sin:
220    case ir_unop_sin_reduced:
221       assert(op[0]->type->base_type == GLSL_TYPE_FLOAT);
222       for (unsigned c = 0; c < op[0]->type->components(); c++) {
223 	 data.f[c] = sinf(op[0]->value.f[c]);
224       }
225       break;
226 
227    case ir_unop_cos:
228    case ir_unop_cos_reduced:
229       assert(op[0]->type->base_type == GLSL_TYPE_FLOAT);
230       for (unsigned c = 0; c < op[0]->type->components(); c++) {
231 	 data.f[c] = cosf(op[0]->value.f[c]);
232       }
233       break;
234 
235    case ir_unop_neg:
236       for (unsigned c = 0; c < op[0]->type->components(); c++) {
237 	 switch (this->type->base_type) {
238 	 case GLSL_TYPE_UINT:
239 	    data.u[c] = -((int) op[0]->value.u[c]);
240 	    break;
241 	 case GLSL_TYPE_INT:
242 	    data.i[c] = -op[0]->value.i[c];
243 	    break;
244 	 case GLSL_TYPE_FLOAT:
245 	    data.f[c] = -op[0]->value.f[c];
246 	    break;
247 	 default:
248 	    assert(0);
249 	 }
250       }
251       break;
252 
253    case ir_unop_abs:
254       for (unsigned c = 0; c < op[0]->type->components(); c++) {
255 	 switch (this->type->base_type) {
256 	 case GLSL_TYPE_UINT:
257 	    data.u[c] = op[0]->value.u[c];
258 	    break;
259 	 case GLSL_TYPE_INT:
260 	    data.i[c] = op[0]->value.i[c];
261 	    if (data.i[c] < 0)
262 	       data.i[c] = -data.i[c];
263 	    break;
264 	 case GLSL_TYPE_FLOAT:
265 	    data.f[c] = fabs(op[0]->value.f[c]);
266 	    break;
267 	 default:
268 	    assert(0);
269 	 }
270       }
271       break;
272 
273    case ir_unop_sign:
274       for (unsigned c = 0; c < op[0]->type->components(); c++) {
275 	 switch (this->type->base_type) {
276 	 case GLSL_TYPE_UINT:
277 	    data.u[c] = op[0]->value.i[c] > 0;
278 	    break;
279 	 case GLSL_TYPE_INT:
280 	    data.i[c] = (op[0]->value.i[c] > 0) - (op[0]->value.i[c] < 0);
281 	    break;
282 	 case GLSL_TYPE_FLOAT:
283 	    data.f[c] = float((op[0]->value.f[c] > 0)-(op[0]->value.f[c] < 0));
284 	    break;
285 	 default:
286 	    assert(0);
287 	 }
288       }
289       break;
290 
291    case ir_unop_rcp:
292       assert(op[0]->type->base_type == GLSL_TYPE_FLOAT);
293       for (unsigned c = 0; c < op[0]->type->components(); c++) {
294 	 switch (this->type->base_type) {
295 	 case GLSL_TYPE_UINT:
296 	    if (op[0]->value.u[c] != 0.0)
297 	       data.u[c] = 1 / op[0]->value.u[c];
298 	    break;
299 	 case GLSL_TYPE_INT:
300 	    if (op[0]->value.i[c] != 0.0)
301 	       data.i[c] = 1 / op[0]->value.i[c];
302 	    break;
303 	 case GLSL_TYPE_FLOAT:
304 	    if (op[0]->value.f[c] != 0.0)
305 	       data.f[c] = 1.0F / op[0]->value.f[c];
306 	    break;
307 	 default:
308 	    assert(0);
309 	 }
310       }
311       break;
312 
313    case ir_unop_rsq:
314       assert(op[0]->type->base_type == GLSL_TYPE_FLOAT);
315       for (unsigned c = 0; c < op[0]->type->components(); c++) {
316 	 data.f[c] = 1.0F / sqrtf(op[0]->value.f[c]);
317       }
318       break;
319 
320    case ir_unop_sqrt:
321       assert(op[0]->type->base_type == GLSL_TYPE_FLOAT);
322       for (unsigned c = 0; c < op[0]->type->components(); c++) {
323 	 data.f[c] = sqrtf(op[0]->value.f[c]);
324       }
325       break;
326 
327    case ir_unop_exp:
328       assert(op[0]->type->base_type == GLSL_TYPE_FLOAT);
329       for (unsigned c = 0; c < op[0]->type->components(); c++) {
330 	 data.f[c] = expf(op[0]->value.f[c]);
331       }
332       break;
333 
334    case ir_unop_exp2:
335       assert(op[0]->type->base_type == GLSL_TYPE_FLOAT);
336       for (unsigned c = 0; c < op[0]->type->components(); c++) {
337 	 data.f[c] = exp2f(op[0]->value.f[c]);
338       }
339       break;
340 
341    case ir_unop_log:
342       assert(op[0]->type->base_type == GLSL_TYPE_FLOAT);
343       for (unsigned c = 0; c < op[0]->type->components(); c++) {
344 	 data.f[c] = logf(op[0]->value.f[c]);
345       }
346       break;
347 
348    case ir_unop_log2:
349       assert(op[0]->type->base_type == GLSL_TYPE_FLOAT);
350       for (unsigned c = 0; c < op[0]->type->components(); c++) {
351 	 data.f[c] = log(op[0]->value.f[c]);
352       }
353       break;
354 
355    case ir_unop_dFdx:
356    case ir_unop_dFdy:
357       assert(op[0]->type->base_type == GLSL_TYPE_FLOAT);
358       for (unsigned c = 0; c < op[0]->type->components(); c++) {
359 	 data.f[c] = 0.0;
360       }
361       break;
362 
363    case ir_binop_pow:
364       assert(op[0]->type->base_type == GLSL_TYPE_FLOAT);
365       for (unsigned c = 0; c < op[0]->type->components(); c++) {
366 	 data.f[c] = powf(op[0]->value.f[c], op[1]->value.f[c]);
367       }
368       break;
369 
370    case ir_binop_dot:
371       data.f[0] = dot(op[0], op[1]);
372       break;
373 
374    case ir_binop_min:
375       assert(op[0]->type == op[1]->type || op0_scalar || op1_scalar);
376       for (unsigned c = 0, c0 = 0, c1 = 0;
377 	   c < components;
378 	   c0 += c0_inc, c1 += c1_inc, c++) {
379 
380 	 switch (op[0]->type->base_type) {
381 	 case GLSL_TYPE_UINT:
382 	    data.u[c] = MIN2(op[0]->value.u[c0], op[1]->value.u[c1]);
383 	    break;
384 	 case GLSL_TYPE_INT:
385 	    data.i[c] = MIN2(op[0]->value.i[c0], op[1]->value.i[c1]);
386 	    break;
387 	 case GLSL_TYPE_FLOAT:
388 	    data.f[c] = MIN2(op[0]->value.f[c0], op[1]->value.f[c1]);
389 	    break;
390 	 default:
391 	    assert(0);
392 	 }
393       }
394 
395       break;
396    case ir_binop_max:
397       assert(op[0]->type == op[1]->type || op0_scalar || op1_scalar);
398       for (unsigned c = 0, c0 = 0, c1 = 0;
399 	   c < components;
400 	   c0 += c0_inc, c1 += c1_inc, c++) {
401 
402 	 switch (op[0]->type->base_type) {
403 	 case GLSL_TYPE_UINT:
404 	    data.u[c] = MAX2(op[0]->value.u[c0], op[1]->value.u[c1]);
405 	    break;
406 	 case GLSL_TYPE_INT:
407 	    data.i[c] = MAX2(op[0]->value.i[c0], op[1]->value.i[c1]);
408 	    break;
409 	 case GLSL_TYPE_FLOAT:
410 	    data.f[c] = MAX2(op[0]->value.f[c0], op[1]->value.f[c1]);
411 	    break;
412 	 default:
413 	    assert(0);
414 	 }
415       }
416       break;
417 
418    case ir_binop_add:
419       assert(op[0]->type == op[1]->type || op0_scalar || op1_scalar);
420       for (unsigned c = 0, c0 = 0, c1 = 0;
421 	   c < components;
422 	   c0 += c0_inc, c1 += c1_inc, c++) {
423 
424 	 switch (op[0]->type->base_type) {
425 	 case GLSL_TYPE_UINT:
426 	    data.u[c] = op[0]->value.u[c0] + op[1]->value.u[c1];
427 	    break;
428 	 case GLSL_TYPE_INT:
429 	    data.i[c] = op[0]->value.i[c0] + op[1]->value.i[c1];
430 	    break;
431 	 case GLSL_TYPE_FLOAT:
432 	    data.f[c] = op[0]->value.f[c0] + op[1]->value.f[c1];
433 	    break;
434 	 default:
435 	    assert(0);
436 	 }
437       }
438 
439       break;
440    case ir_binop_sub:
441       assert(op[0]->type == op[1]->type || op0_scalar || op1_scalar);
442       for (unsigned c = 0, c0 = 0, c1 = 0;
443 	   c < components;
444 	   c0 += c0_inc, c1 += c1_inc, c++) {
445 
446 	 switch (op[0]->type->base_type) {
447 	 case GLSL_TYPE_UINT:
448 	    data.u[c] = op[0]->value.u[c0] - op[1]->value.u[c1];
449 	    break;
450 	 case GLSL_TYPE_INT:
451 	    data.i[c] = op[0]->value.i[c0] - op[1]->value.i[c1];
452 	    break;
453 	 case GLSL_TYPE_FLOAT:
454 	    data.f[c] = op[0]->value.f[c0] - op[1]->value.f[c1];
455 	    break;
456 	 default:
457 	    assert(0);
458 	 }
459       }
460 
461       break;
462    case ir_binop_mul:
463       /* Check for equal types, or unequal types involving scalars */
464       if ((op[0]->type == op[1]->type && !op[0]->type->is_matrix())
465 	  || op0_scalar || op1_scalar) {
466 	 for (unsigned c = 0, c0 = 0, c1 = 0;
467 	      c < components;
468 	      c0 += c0_inc, c1 += c1_inc, c++) {
469 
470 	    switch (op[0]->type->base_type) {
471 	    case GLSL_TYPE_UINT:
472 	       data.u[c] = op[0]->value.u[c0] * op[1]->value.u[c1];
473 	       break;
474 	    case GLSL_TYPE_INT:
475 	       data.i[c] = op[0]->value.i[c0] * op[1]->value.i[c1];
476 	       break;
477 	    case GLSL_TYPE_FLOAT:
478 	       data.f[c] = op[0]->value.f[c0] * op[1]->value.f[c1];
479 	       break;
480 	    default:
481 	       assert(0);
482 	    }
483 	 }
484       } else {
485 	 assert(op[0]->type->is_matrix() || op[1]->type->is_matrix());
486 
487 	 /* Multiply an N-by-M matrix with an M-by-P matrix.  Since either
488 	  * matrix can be a GLSL vector, either N or P can be 1.
489 	  *
490 	  * For vec*mat, the vector is treated as a row vector.  This
491 	  * means the vector is a 1-row x M-column matrix.
492 	  *
493 	  * For mat*vec, the vector is treated as a column vector.  Since
494 	  * matrix_columns is 1 for vectors, this just works.
495 	  */
496 	 const unsigned n = op[0]->type->is_vector()
497 	    ? 1 : op[0]->type->vector_elements;
498 	 const unsigned m = op[1]->type->vector_elements;
499 	 const unsigned p = op[1]->type->matrix_columns;
500 	 for (unsigned j = 0; j < p; j++) {
501 	    for (unsigned i = 0; i < n; i++) {
502 	       for (unsigned k = 0; k < m; k++) {
503 		  data.f[i+n*j] += op[0]->value.f[i+n*k]*op[1]->value.f[k+m*j];
504 	       }
505 	    }
506 	 }
507       }
508 
509       break;
510    case ir_binop_div:
511       assert(op[0]->type == op[1]->type || op0_scalar || op1_scalar);
512       for (unsigned c = 0, c0 = 0, c1 = 0;
513 	   c < components;
514 	   c0 += c0_inc, c1 += c1_inc, c++) {
515 
516 	 switch (op[0]->type->base_type) {
517 	 case GLSL_TYPE_UINT:
518 	    data.u[c] = op[0]->value.u[c0] / op[1]->value.u[c1];
519 	    break;
520 	 case GLSL_TYPE_INT:
521 	    data.i[c] = op[0]->value.i[c0] / op[1]->value.i[c1];
522 	    break;
523 	 case GLSL_TYPE_FLOAT:
524 	    data.f[c] = op[0]->value.f[c0] / op[1]->value.f[c1];
525 	    break;
526 	 default:
527 	    assert(0);
528 	 }
529       }
530 
531       break;
532    case ir_binop_mod:
533       assert(op[0]->type == op[1]->type || op0_scalar || op1_scalar);
534       for (unsigned c = 0, c0 = 0, c1 = 0;
535 	   c < components;
536 	   c0 += c0_inc, c1 += c1_inc, c++) {
537 
538 	 switch (op[0]->type->base_type) {
539 	 case GLSL_TYPE_UINT:
540 	    data.u[c] = op[0]->value.u[c0] % op[1]->value.u[c1];
541 	    break;
542 	 case GLSL_TYPE_INT:
543 	    data.i[c] = op[0]->value.i[c0] % op[1]->value.i[c1];
544 	    break;
545 	 case GLSL_TYPE_FLOAT:
546 	    /* We don't use fmod because it rounds toward zero; GLSL specifies
547 	     * the use of floor.
548 	     */
549 	    data.f[c] = op[0]->value.f[c0] - op[1]->value.f[c1]
550 	       * floorf(op[0]->value.f[c0] / op[1]->value.f[c1]);
551 	    break;
552 	 default:
553 	    assert(0);
554 	 }
555       }
556 
557       break;
558 
559    case ir_binop_logic_and:
560       assert(op[0]->type->base_type == GLSL_TYPE_BOOL);
561       for (unsigned c = 0; c < op[0]->type->components(); c++)
562 	 data.b[c] = op[0]->value.b[c] && op[1]->value.b[c];
563       break;
564    case ir_binop_logic_xor:
565       assert(op[0]->type->base_type == GLSL_TYPE_BOOL);
566       for (unsigned c = 0; c < op[0]->type->components(); c++)
567 	 data.b[c] = op[0]->value.b[c] ^ op[1]->value.b[c];
568       break;
569    case ir_binop_logic_or:
570       assert(op[0]->type->base_type == GLSL_TYPE_BOOL);
571       for (unsigned c = 0; c < op[0]->type->components(); c++)
572 	 data.b[c] = op[0]->value.b[c] || op[1]->value.b[c];
573       break;
574 
575    case ir_binop_less:
576       assert(op[0]->type == op[1]->type);
577       for (unsigned c = 0; c < op[0]->type->components(); c++) {
578 	 switch (op[0]->type->base_type) {
579 	 case GLSL_TYPE_UINT:
580 	    data.b[0] = op[0]->value.u[0] < op[1]->value.u[0];
581 	    break;
582 	 case GLSL_TYPE_INT:
583 	    data.b[0] = op[0]->value.i[0] < op[1]->value.i[0];
584 	    break;
585 	 case GLSL_TYPE_FLOAT:
586 	    data.b[0] = op[0]->value.f[0] < op[1]->value.f[0];
587 	    break;
588 	 default:
589 	    assert(0);
590 	 }
591       }
592       break;
593    case ir_binop_greater:
594       assert(op[0]->type == op[1]->type);
595       for (unsigned c = 0; c < op[0]->type->components(); c++) {
596 	 switch (op[0]->type->base_type) {
597 	 case GLSL_TYPE_UINT:
598 	    data.b[c] = op[0]->value.u[c] > op[1]->value.u[c];
599 	    break;
600 	 case GLSL_TYPE_INT:
601 	    data.b[c] = op[0]->value.i[c] > op[1]->value.i[c];
602 	    break;
603 	 case GLSL_TYPE_FLOAT:
604 	    data.b[c] = op[0]->value.f[c] > op[1]->value.f[c];
605 	    break;
606 	 default:
607 	    assert(0);
608 	 }
609       }
610       break;
611    case ir_binop_lequal:
612       assert(op[0]->type == op[1]->type);
613       for (unsigned c = 0; c < op[0]->type->components(); c++) {
614 	 switch (op[0]->type->base_type) {
615 	 case GLSL_TYPE_UINT:
616 	    data.b[0] = op[0]->value.u[0] <= op[1]->value.u[0];
617 	    break;
618 	 case GLSL_TYPE_INT:
619 	    data.b[0] = op[0]->value.i[0] <= op[1]->value.i[0];
620 	    break;
621 	 case GLSL_TYPE_FLOAT:
622 	    data.b[0] = op[0]->value.f[0] <= op[1]->value.f[0];
623 	    break;
624 	 default:
625 	    assert(0);
626 	 }
627       }
628       break;
629    case ir_binop_gequal:
630       assert(op[0]->type == op[1]->type);
631       for (unsigned c = 0; c < op[0]->type->components(); c++) {
632 	 switch (op[0]->type->base_type) {
633 	 case GLSL_TYPE_UINT:
634 	    data.b[0] = op[0]->value.u[0] >= op[1]->value.u[0];
635 	    break;
636 	 case GLSL_TYPE_INT:
637 	    data.b[0] = op[0]->value.i[0] >= op[1]->value.i[0];
638 	    break;
639 	 case GLSL_TYPE_FLOAT:
640 	    data.b[0] = op[0]->value.f[0] >= op[1]->value.f[0];
641 	    break;
642 	 default:
643 	    assert(0);
644 	 }
645       }
646       break;
647    case ir_binop_equal:
648       assert(op[0]->type == op[1]->type);
649       for (unsigned c = 0; c < components; c++) {
650 	 switch (op[0]->type->base_type) {
651 	 case GLSL_TYPE_UINT:
652 	    data.b[c] = op[0]->value.u[c] == op[1]->value.u[c];
653 	    break;
654 	 case GLSL_TYPE_INT:
655 	    data.b[c] = op[0]->value.i[c] == op[1]->value.i[c];
656 	    break;
657 	 case GLSL_TYPE_FLOAT:
658 	    data.b[c] = op[0]->value.f[c] == op[1]->value.f[c];
659 	    break;
660 	 default:
661 	    assert(0);
662 	 }
663       }
664       break;
665    case ir_binop_nequal:
666       assert(op[0]->type != op[1]->type);
667       for (unsigned c = 0; c < components; c++) {
668 	 switch (op[0]->type->base_type) {
669 	 case GLSL_TYPE_UINT:
670 	    data.b[c] = op[0]->value.u[c] != op[1]->value.u[c];
671 	    break;
672 	 case GLSL_TYPE_INT:
673 	    data.b[c] = op[0]->value.i[c] != op[1]->value.i[c];
674 	    break;
675 	 case GLSL_TYPE_FLOAT:
676 	    data.b[c] = op[0]->value.f[c] != op[1]->value.f[c];
677 	    break;
678 	 default:
679 	    assert(0);
680 	 }
681       }
682       break;
683    case ir_binop_all_equal:
684       data.b[0] = op[0]->has_value(op[1]);
685       break;
686    case ir_binop_any_nequal:
687       data.b[0] = !op[0]->has_value(op[1]);
688       break;
689 
690    case ir_binop_lshift:
691       for (unsigned c = 0, c0 = 0, c1 = 0;
692            c < components;
693            c0 += c0_inc, c1 += c1_inc, c++) {
694 
695           if (op[0]->type->base_type == GLSL_TYPE_INT &&
696               op[1]->type->base_type == GLSL_TYPE_INT) {
697               data.i[c] = op[0]->value.i[c0] << op[1]->value.i[c1];
698 
699           } else if (op[0]->type->base_type == GLSL_TYPE_INT &&
700                      op[1]->type->base_type == GLSL_TYPE_UINT) {
701               data.i[c] = op[0]->value.i[c0] << op[1]->value.u[c1];
702 
703           } else if (op[0]->type->base_type == GLSL_TYPE_UINT &&
704                      op[1]->type->base_type == GLSL_TYPE_INT) {
705               data.u[c] = op[0]->value.u[c0] << op[1]->value.i[c1];
706 
707           } else if (op[0]->type->base_type == GLSL_TYPE_UINT &&
708                      op[1]->type->base_type == GLSL_TYPE_UINT) {
709               data.u[c] = op[0]->value.u[c0] << op[1]->value.u[c1];
710           }
711       }
712       break;
713 
714    case ir_binop_rshift:
715        for (unsigned c = 0, c0 = 0, c1 = 0;
716             c < components;
717             c0 += c0_inc, c1 += c1_inc, c++) {
718 
719            if (op[0]->type->base_type == GLSL_TYPE_INT &&
720                op[1]->type->base_type == GLSL_TYPE_INT) {
721                data.i[c] = op[0]->value.i[c0] >> op[1]->value.i[c1];
722 
723            } else if (op[0]->type->base_type == GLSL_TYPE_INT &&
724                       op[1]->type->base_type == GLSL_TYPE_UINT) {
725                data.i[c] = op[0]->value.i[c0] >> op[1]->value.u[c1];
726 
727            } else if (op[0]->type->base_type == GLSL_TYPE_UINT &&
728                       op[1]->type->base_type == GLSL_TYPE_INT) {
729                data.u[c] = op[0]->value.u[c0] >> op[1]->value.i[c1];
730 
731            } else if (op[0]->type->base_type == GLSL_TYPE_UINT &&
732                       op[1]->type->base_type == GLSL_TYPE_UINT) {
733                data.u[c] = op[0]->value.u[c0] >> op[1]->value.u[c1];
734            }
735        }
736        break;
737 
738    case ir_binop_bit_and:
739       for (unsigned c = 0, c0 = 0, c1 = 0;
740            c < components;
741            c0 += c0_inc, c1 += c1_inc, c++) {
742 
743           switch (op[0]->type->base_type) {
744           case GLSL_TYPE_INT:
745               data.i[c] = op[0]->value.i[c0] & op[1]->value.i[c1];
746               break;
747           case GLSL_TYPE_UINT:
748               data.u[c] = op[0]->value.u[c0] & op[1]->value.u[c1];
749               break;
750           default:
751               assert(0);
752           }
753       }
754       break;
755 
756    case ir_binop_bit_or:
757       for (unsigned c = 0, c0 = 0, c1 = 0;
758            c < components;
759            c0 += c0_inc, c1 += c1_inc, c++) {
760 
761           switch (op[0]->type->base_type) {
762           case GLSL_TYPE_INT:
763               data.i[c] = op[0]->value.i[c0] | op[1]->value.i[c1];
764               break;
765           case GLSL_TYPE_UINT:
766               data.u[c] = op[0]->value.u[c0] | op[1]->value.u[c1];
767               break;
768           default:
769               assert(0);
770           }
771       }
772       break;
773 
774    case ir_binop_bit_xor:
775       for (unsigned c = 0, c0 = 0, c1 = 0;
776            c < components;
777            c0 += c0_inc, c1 += c1_inc, c++) {
778 
779           switch (op[0]->type->base_type) {
780           case GLSL_TYPE_INT:
781               data.i[c] = op[0]->value.i[c0] ^ op[1]->value.i[c1];
782               break;
783           case GLSL_TYPE_UINT:
784               data.u[c] = op[0]->value.u[c0] ^ op[1]->value.u[c1];
785               break;
786           default:
787               assert(0);
788           }
789       }
790       break;
791 
792    case ir_quadop_vector:
793       for (unsigned c = 0; c < this->type->vector_elements; c++) {
794 	 switch (this->type->base_type) {
795 	 case GLSL_TYPE_INT:
796 	    data.i[c] = op[c]->value.i[0];
797 	    break;
798 	 case GLSL_TYPE_UINT:
799 	    data.u[c] = op[c]->value.u[0];
800 	    break;
801 	 case GLSL_TYPE_FLOAT:
802 	    data.f[c] = op[c]->value.f[0];
803 	    break;
804 	 default:
805 	    assert(0);
806 	 }
807       }
808       break;
809 
810    default:
811       /* FINISHME: Should handle all expression types. */
812       return NULL;
813    }
814 
815    return new(ctx) ir_constant(this->type, &data);
816 }
817 
818 
819 ir_constant *
constant_expression_value()820 ir_texture::constant_expression_value()
821 {
822    /* texture lookups aren't constant expressions */
823    return NULL;
824 }
825 
826 
827 ir_constant *
constant_expression_value()828 ir_swizzle::constant_expression_value()
829 {
830    ir_constant *v = this->val->constant_expression_value();
831 
832    if (v != NULL) {
833       ir_constant_data data = { { 0 } };
834 
835       const unsigned swiz_idx[4] = {
836 	 this->mask.x, this->mask.y, this->mask.z, this->mask.w
837       };
838 
839       for (unsigned i = 0; i < this->mask.num_components; i++) {
840 	 switch (v->type->base_type) {
841 	 case GLSL_TYPE_UINT:
842 	 case GLSL_TYPE_INT:   data.u[i] = v->value.u[swiz_idx[i]]; break;
843 	 case GLSL_TYPE_FLOAT: data.f[i] = v->value.f[swiz_idx[i]]; break;
844 	 case GLSL_TYPE_BOOL:  data.b[i] = v->value.b[swiz_idx[i]]; break;
845 	 default:              assert(!"Should not get here."); break;
846 	 }
847       }
848 
849       void *ctx = hieralloc_parent(this);
850       return new(ctx) ir_constant(this->type, &data);
851    }
852    return NULL;
853 }
854 
855 
856 ir_constant *
constant_expression_value()857 ir_dereference_variable::constant_expression_value()
858 {
859    /* This may occur during compile and var->type is glsl_type::error_type */
860    if (!var)
861       return NULL;
862 
863    /* The constant_value of a uniform variable is its initializer,
864     * not the lifetime constant value of the uniform.
865     */
866    if (var->mode == ir_var_uniform)
867       return NULL;
868 
869    if (!var->constant_value)
870       return NULL;
871 
872    return var->constant_value->clone(hieralloc_parent(var), NULL);
873 }
874 
875 
876 ir_constant *
constant_expression_value()877 ir_dereference_array::constant_expression_value()
878 {
879    ir_constant *array = this->array->constant_expression_value();
880    ir_constant *idx = this->array_index->constant_expression_value();
881 
882    if ((array != NULL) && (idx != NULL)) {
883       void *ctx = hieralloc_parent(this);
884       if (array->type->is_matrix()) {
885 	 /* Array access of a matrix results in a vector.
886 	  */
887 	 const unsigned column = idx->value.u[0];
888 
889 	 const glsl_type *const column_type = array->type->column_type();
890 
891 	 /* Offset in the constant matrix to the first element of the column
892 	  * to be extracted.
893 	  */
894 	 const unsigned mat_idx = column * column_type->vector_elements;
895 
896 	 ir_constant_data data = { { 0 } };
897 
898 	 switch (column_type->base_type) {
899 	 case GLSL_TYPE_UINT:
900 	 case GLSL_TYPE_INT:
901 	    for (unsigned i = 0; i < column_type->vector_elements; i++)
902 	       data.u[i] = array->value.u[mat_idx + i];
903 
904 	    break;
905 
906 	 case GLSL_TYPE_FLOAT:
907 	    for (unsigned i = 0; i < column_type->vector_elements; i++)
908 	       data.f[i] = array->value.f[mat_idx + i];
909 
910 	    break;
911 
912 	 default:
913 	    assert(!"Should not get here.");
914 	    break;
915 	 }
916 
917 	 return new(ctx) ir_constant(column_type, &data);
918       } else if (array->type->is_vector()) {
919 	 const unsigned component = idx->value.u[0];
920 
921 	 return new(ctx) ir_constant(array, component);
922       } else {
923 	 const unsigned index = idx->value.u[0];
924 	 return array->get_array_element(index)->clone(ctx, NULL);
925       }
926    }
927    return NULL;
928 }
929 
930 
931 ir_constant *
constant_expression_value()932 ir_dereference_record::constant_expression_value()
933 {
934    ir_constant *v = this->record->constant_expression_value();
935 
936    return (v != NULL) ? v->get_record_field(this->field) : NULL;
937 }
938 
939 
940 ir_constant *
constant_expression_value()941 ir_assignment::constant_expression_value()
942 {
943    /* FINISHME: Handle CEs involving assignment (return RHS) */
944    return NULL;
945 }
946 
947 
948 ir_constant *
constant_expression_value()949 ir_constant::constant_expression_value()
950 {
951    return this;
952 }
953 
954 
955 ir_constant *
constant_expression_value()956 ir_call::constant_expression_value()
957 {
958    if (this->type == glsl_type::error_type)
959       return NULL;
960 
961    /* From the GLSL 1.20 spec, page 23:
962     * "Function calls to user-defined functions (non-built-in functions)
963     *  cannot be used to form constant expressions."
964     */
965    if (!this->callee->is_builtin)
966       return NULL;
967 
968    unsigned num_parameters = 0;
969 
970    /* Check if all parameters are constant */
971    ir_constant *op[3];
972    foreach_list(n, &this->actual_parameters) {
973       ir_constant *constant = ((ir_rvalue *) n)->constant_expression_value();
974       if (constant == NULL)
975 	 return NULL;
976 
977       op[num_parameters] = constant;
978 
979       assert(num_parameters < 3);
980       num_parameters++;
981    }
982 
983    /* Individual cases below can either:
984     * - Assign "expr" a new ir_expression to evaluate (for basic opcodes)
985     * - Fill "data" with appopriate constant data
986     * - Return an ir_constant directly.
987     */
988    void *mem_ctx = hieralloc_parent(this);
989    ir_expression *expr = NULL;
990 
991    ir_constant_data data;
992    memset(&data, 0, sizeof(data));
993 
994    const char *callee = this->callee_name();
995    if (strcmp(callee, "abs") == 0) {
996       expr = new(mem_ctx) ir_expression(ir_unop_abs, type, op[0], NULL);
997    } else if (strcmp(callee, "all") == 0) {
998       assert(op[0]->type->is_boolean());
999       for (unsigned c = 0; c < op[0]->type->components(); c++) {
1000 	 if (!op[0]->value.b[c])
1001 	    return new(mem_ctx) ir_constant(false);
1002       }
1003       return new(mem_ctx) ir_constant(true);
1004    } else if (strcmp(callee, "any") == 0) {
1005       assert(op[0]->type->is_boolean());
1006       for (unsigned c = 0; c < op[0]->type->components(); c++) {
1007 	 if (op[0]->value.b[c])
1008 	    return new(mem_ctx) ir_constant(true);
1009       }
1010       return new(mem_ctx) ir_constant(false);
1011    } else if (strcmp(callee, "acos") == 0) {
1012       assert(op[0]->type->is_float());
1013       for (unsigned c = 0; c < op[0]->type->components(); c++)
1014 	 data.f[c] = acosf(op[0]->value.f[c]);
1015    } else if (strcmp(callee, "acosh") == 0) {
1016       assert(op[0]->type->is_float());
1017       for (unsigned c = 0; c < op[0]->type->components(); c++)
1018 	 data.f[c] = acoshf(op[0]->value.f[c]);
1019    } else if (strcmp(callee, "asin") == 0) {
1020       assert(op[0]->type->is_float());
1021       for (unsigned c = 0; c < op[0]->type->components(); c++)
1022 	 data.f[c] = asinf(op[0]->value.f[c]);
1023    } else if (strcmp(callee, "asinh") == 0) {
1024       assert(op[0]->type->is_float());
1025       for (unsigned c = 0; c < op[0]->type->components(); c++)
1026 	 data.f[c] = asinhf(op[0]->value.f[c]);
1027    } else if (strcmp(callee, "atan") == 0) {
1028       assert(op[0]->type->is_float());
1029       if (num_parameters == 2) {
1030 	 assert(op[1]->type->is_float());
1031 	 for (unsigned c = 0; c < op[0]->type->components(); c++)
1032 	    data.f[c] = atan2f(op[0]->value.f[c], op[1]->value.f[c]);
1033       } else {
1034 	 for (unsigned c = 0; c < op[0]->type->components(); c++)
1035 	    data.f[c] = atanf(op[0]->value.f[c]);
1036       }
1037    } else if (strcmp(callee, "atanh") == 0) {
1038       assert(op[0]->type->is_float());
1039       for (unsigned c = 0; c < op[0]->type->components(); c++)
1040 	 data.f[c] = atanhf(op[0]->value.f[c]);
1041    } else if (strcmp(callee, "dFdx") == 0 || strcmp(callee, "dFdy") == 0) {
1042       return ir_constant::zero(mem_ctx, this->type);
1043    } else if (strcmp(callee, "ceil") == 0) {
1044       expr = new(mem_ctx) ir_expression(ir_unop_ceil, type, op[0], NULL);
1045    } else if (strcmp(callee, "clamp") == 0) {
1046       assert(num_parameters == 3);
1047       unsigned c1_inc = op[1]->type->is_scalar() ? 0 : 1;
1048       unsigned c2_inc = op[2]->type->is_scalar() ? 0 : 1;
1049       for (unsigned c = 0, c1 = 0, c2 = 0;
1050 	   c < op[0]->type->components();
1051 	   c1 += c1_inc, c2 += c2_inc, c++) {
1052 
1053 	 switch (op[0]->type->base_type) {
1054 	 case GLSL_TYPE_UINT:
1055 	    data.u[c] = CLAMP(op[0]->value.u[c], op[1]->value.u[c1],
1056 			      op[2]->value.u[c2]);
1057 	    break;
1058 	 case GLSL_TYPE_INT:
1059 	    data.i[c] = CLAMP(op[0]->value.i[c], op[1]->value.i[c1],
1060 			      op[2]->value.i[c2]);
1061 	    break;
1062 	 case GLSL_TYPE_FLOAT:
1063 	    data.f[c] = CLAMP(op[0]->value.f[c], op[1]->value.f[c1],
1064 			      op[2]->value.f[c2]);
1065 	    break;
1066 	 default:
1067 	    assert(!"Should not get here.");
1068 	 }
1069       }
1070    } else if (strcmp(callee, "cos") == 0) {
1071       expr = new(mem_ctx) ir_expression(ir_unop_cos, type, op[0], NULL);
1072    } else if (strcmp(callee, "cosh") == 0) {
1073       assert(op[0]->type->is_float());
1074       for (unsigned c = 0; c < op[0]->type->components(); c++)
1075 	 data.f[c] = coshf(op[0]->value.f[c]);
1076    } else if (strcmp(callee, "cross") == 0) {
1077       assert(op[0]->type == glsl_type::vec3_type);
1078       assert(op[1]->type == glsl_type::vec3_type);
1079       data.f[0] = (op[0]->value.f[1] * op[1]->value.f[2] -
1080 		   op[1]->value.f[1] * op[0]->value.f[2]);
1081       data.f[1] = (op[0]->value.f[2] * op[1]->value.f[0] -
1082 		   op[1]->value.f[2] * op[0]->value.f[0]);
1083       data.f[2] = (op[0]->value.f[0] * op[1]->value.f[1] -
1084 		   op[1]->value.f[0] * op[0]->value.f[1]);
1085    } else if (strcmp(callee, "degrees") == 0) {
1086       assert(op[0]->type->is_float());
1087       for (unsigned c = 0; c < op[0]->type->components(); c++)
1088 	 data.f[c] = 180.0F / M_PI * op[0]->value.f[c];
1089    } else if (strcmp(callee, "distance") == 0) {
1090       assert(op[0]->type->is_float() && op[1]->type->is_float());
1091       float length_squared = 0.0;
1092       for (unsigned c = 0; c < op[0]->type->components(); c++) {
1093 	 float t = op[0]->value.f[c] - op[1]->value.f[c];
1094 	 length_squared += t * t;
1095       }
1096       return new(mem_ctx) ir_constant(sqrtf(length_squared));
1097    } else if (strcmp(callee, "dot") == 0) {
1098       return new(mem_ctx) ir_constant(dot(op[0], op[1]));
1099    } else if (strcmp(callee, "equal") == 0) {
1100       assert(op[0]->type->is_vector() && op[1] && op[1]->type->is_vector());
1101       for (unsigned c = 0; c < op[0]->type->components(); c++) {
1102 	 switch (op[0]->type->base_type) {
1103 	 case GLSL_TYPE_UINT:
1104 	    data.b[c] = op[0]->value.u[c] == op[1]->value.u[c];
1105 	    break;
1106 	 case GLSL_TYPE_INT:
1107 	    data.b[c] = op[0]->value.i[c] == op[1]->value.i[c];
1108 	    break;
1109 	 case GLSL_TYPE_FLOAT:
1110 	    data.b[c] = op[0]->value.f[c] == op[1]->value.f[c];
1111 	    break;
1112 	 case GLSL_TYPE_BOOL:
1113 	    data.b[c] = op[0]->value.b[c] == op[1]->value.b[c];
1114 	    break;
1115 	 default:
1116 	    assert(!"Should not get here.");
1117 	 }
1118       }
1119    } else if (strcmp(callee, "exp") == 0) {
1120       expr = new(mem_ctx) ir_expression(ir_unop_exp, type, op[0], NULL);
1121    } else if (strcmp(callee, "exp2") == 0) {
1122       expr = new(mem_ctx) ir_expression(ir_unop_exp2, type, op[0], NULL);
1123    } else if (strcmp(callee, "faceforward") == 0) {
1124       if (dot(op[2], op[1]) < 0)
1125 	 return op[0];
1126       for (unsigned c = 0; c < op[0]->type->components(); c++)
1127 	 data.f[c] = -op[0]->value.f[c];
1128    } else if (strcmp(callee, "floor") == 0) {
1129       expr = new(mem_ctx) ir_expression(ir_unop_floor, type, op[0], NULL);
1130    } else if (strcmp(callee, "fract") == 0) {
1131       expr = new(mem_ctx) ir_expression(ir_unop_fract, type, op[0], NULL);
1132    } else if (strcmp(callee, "fwidth") == 0) {
1133       return ir_constant::zero(mem_ctx, this->type);
1134    } else if (strcmp(callee, "greaterThan") == 0) {
1135       assert(op[0]->type->is_vector() && op[1] && op[1]->type->is_vector());
1136       for (unsigned c = 0; c < op[0]->type->components(); c++) {
1137 	 switch (op[0]->type->base_type) {
1138 	 case GLSL_TYPE_UINT:
1139 	    data.b[c] = op[0]->value.u[c] > op[1]->value.u[c];
1140 	    break;
1141 	 case GLSL_TYPE_INT:
1142 	    data.b[c] = op[0]->value.i[c] > op[1]->value.i[c];
1143 	    break;
1144 	 case GLSL_TYPE_FLOAT:
1145 	    data.b[c] = op[0]->value.f[c] > op[1]->value.f[c];
1146 	    break;
1147 	 default:
1148 	    assert(!"Should not get here.");
1149 	 }
1150       }
1151    } else if (strcmp(callee, "greaterThanEqual") == 0) {
1152       assert(op[0]->type->is_vector() && op[1] && op[1]->type->is_vector());
1153       for (unsigned c = 0; c < op[0]->type->components(); c++) {
1154 	 switch (op[0]->type->base_type) {
1155 	 case GLSL_TYPE_UINT:
1156 	    data.b[c] = op[0]->value.u[c] >= op[1]->value.u[c];
1157 	    break;
1158 	 case GLSL_TYPE_INT:
1159 	    data.b[c] = op[0]->value.i[c] >= op[1]->value.i[c];
1160 	    break;
1161 	 case GLSL_TYPE_FLOAT:
1162 	    data.b[c] = op[0]->value.f[c] >= op[1]->value.f[c];
1163 	    break;
1164 	 default:
1165 	    assert(!"Should not get here.");
1166 	 }
1167       }
1168    } else if (strcmp(callee, "inversesqrt") == 0) {
1169       expr = new(mem_ctx) ir_expression(ir_unop_rsq, type, op[0], NULL);
1170    } else if (strcmp(callee, "length") == 0) {
1171       return new(mem_ctx) ir_constant(sqrtf(dot(op[0], op[0])));
1172    } else if (strcmp(callee, "lessThan") == 0) {
1173       assert(op[0]->type->is_vector() && op[1] && op[1]->type->is_vector());
1174       for (unsigned c = 0; c < op[0]->type->components(); c++) {
1175 	 switch (op[0]->type->base_type) {
1176 	 case GLSL_TYPE_UINT:
1177 	    data.b[c] = op[0]->value.u[c] < op[1]->value.u[c];
1178 	    break;
1179 	 case GLSL_TYPE_INT:
1180 	    data.b[c] = op[0]->value.i[c] < op[1]->value.i[c];
1181 	    break;
1182 	 case GLSL_TYPE_FLOAT:
1183 	    data.b[c] = op[0]->value.f[c] < op[1]->value.f[c];
1184 	    break;
1185 	 default:
1186 	    assert(!"Should not get here.");
1187 	 }
1188       }
1189    } else if (strcmp(callee, "lessThanEqual") == 0) {
1190       assert(op[0]->type->is_vector() && op[1] && op[1]->type->is_vector());
1191       for (unsigned c = 0; c < op[0]->type->components(); c++) {
1192 	 switch (op[0]->type->base_type) {
1193 	 case GLSL_TYPE_UINT:
1194 	    data.b[c] = op[0]->value.u[c] <= op[1]->value.u[c];
1195 	    break;
1196 	 case GLSL_TYPE_INT:
1197 	    data.b[c] = op[0]->value.i[c] <= op[1]->value.i[c];
1198 	    break;
1199 	 case GLSL_TYPE_FLOAT:
1200 	    data.b[c] = op[0]->value.f[c] <= op[1]->value.f[c];
1201 	    break;
1202 	 default:
1203 	    assert(!"Should not get here.");
1204 	 }
1205       }
1206    } else if (strcmp(callee, "log") == 0) {
1207       expr = new(mem_ctx) ir_expression(ir_unop_log, type, op[0], NULL);
1208    } else if (strcmp(callee, "log2") == 0) {
1209       expr = new(mem_ctx) ir_expression(ir_unop_log2, type, op[0], NULL);
1210    } else if (strcmp(callee, "matrixCompMult") == 0) {
1211       assert(op[0]->type->is_float() && op[1]->type->is_float());
1212       for (unsigned c = 0; c < op[0]->type->components(); c++)
1213 	 data.f[c] = op[0]->value.f[c] * op[1]->value.f[c];
1214    } else if (strcmp(callee, "max") == 0) {
1215       expr = new(mem_ctx) ir_expression(ir_binop_max, type, op[0], op[1]);
1216    } else if (strcmp(callee, "min") == 0) {
1217       expr = new(mem_ctx) ir_expression(ir_binop_min, type, op[0], op[1]);
1218    } else if (strcmp(callee, "mix") == 0) {
1219       assert(op[0]->type->is_float() && op[1]->type->is_float());
1220       if (op[2]->type->is_float()) {
1221 	 unsigned c2_inc = op[2]->type->is_scalar() ? 0 : 1;
1222 	 unsigned components = op[0]->type->components();
1223 	 for (unsigned c = 0, c2 = 0; c < components; c2 += c2_inc, c++) {
1224 	    data.f[c] = op[0]->value.f[c] * (1 - op[2]->value.f[c2]) +
1225 			op[1]->value.f[c] * op[2]->value.f[c2];
1226 	 }
1227       } else {
1228 	 assert(op[2]->type->is_boolean());
1229 	 for (unsigned c = 0; c < op[0]->type->components(); c++)
1230 	    data.f[c] = op[op[2]->value.b[c] ? 1 : 0]->value.f[c];
1231       }
1232    } else if (strcmp(callee, "mod") == 0) {
1233       expr = new(mem_ctx) ir_expression(ir_binop_mod, type, op[0], op[1]);
1234    } else if (strcmp(callee, "normalize") == 0) {
1235       assert(op[0]->type->is_float());
1236       float length = sqrtf(dot(op[0], op[0]));
1237 
1238       if (length == 0)
1239 	 return ir_constant::zero(mem_ctx, this->type);
1240 
1241       for (unsigned c = 0; c < op[0]->type->components(); c++)
1242 	 data.f[c] = op[0]->value.f[c] / length;
1243    } else if (strcmp(callee, "not") == 0) {
1244       expr = new(mem_ctx) ir_expression(ir_unop_logic_not, type, op[0], NULL);
1245    } else if (strcmp(callee, "notEqual") == 0) {
1246       assert(op[0]->type->is_vector() && op[1] && op[1]->type->is_vector());
1247       for (unsigned c = 0; c < op[0]->type->components(); c++) {
1248 	 switch (op[0]->type->base_type) {
1249 	 case GLSL_TYPE_UINT:
1250 	    data.b[c] = op[0]->value.u[c] != op[1]->value.u[c];
1251 	    break;
1252 	 case GLSL_TYPE_INT:
1253 	    data.b[c] = op[0]->value.i[c] != op[1]->value.i[c];
1254 	    break;
1255 	 case GLSL_TYPE_FLOAT:
1256 	    data.b[c] = op[0]->value.f[c] != op[1]->value.f[c];
1257 	    break;
1258 	 case GLSL_TYPE_BOOL:
1259 	    data.b[c] = op[0]->value.b[c] != op[1]->value.b[c];
1260 	    break;
1261 	 default:
1262 	    assert(!"Should not get here.");
1263 	 }
1264       }
1265    } else if (strcmp(callee, "outerProduct") == 0) {
1266       assert(op[0]->type->is_vector() && op[1]->type->is_vector());
1267       const unsigned m = op[0]->type->vector_elements;
1268       const unsigned n = op[1]->type->vector_elements;
1269       for (unsigned j = 0; j < n; j++) {
1270 	 for (unsigned i = 0; i < m; i++) {
1271 	    data.f[i+m*j] = op[0]->value.f[i] * op[1]->value.f[j];
1272 	 }
1273       }
1274    } else if (strcmp(callee, "pow") == 0) {
1275       expr = new(mem_ctx) ir_expression(ir_binop_pow, type, op[0], op[1]);
1276    } else if (strcmp(callee, "radians") == 0) {
1277       assert(op[0]->type->is_float());
1278       for (unsigned c = 0; c < op[0]->type->components(); c++)
1279 	 data.f[c] = M_PI / 180.0F * op[0]->value.f[c];
1280    } else if (strcmp(callee, "reflect") == 0) {
1281       assert(op[0]->type->is_float());
1282       float dot_NI = dot(op[1], op[0]);
1283       for (unsigned c = 0; c < op[0]->type->components(); c++)
1284 	 data.f[c] = op[0]->value.f[c] - 2 * dot_NI * op[1]->value.f[c];
1285    } else if (strcmp(callee, "refract") == 0) {
1286       const float eta = op[2]->value.f[0];
1287       const float dot_NI = dot(op[1], op[0]);
1288       const float k = 1.0F - eta * eta * (1.0F - dot_NI * dot_NI);
1289       if (k < 0.0) {
1290 	 return ir_constant::zero(mem_ctx, this->type);
1291       } else {
1292 	 for (unsigned c = 0; c < type->components(); c++) {
1293 	    data.f[c] = eta * op[0]->value.f[c] - (eta * dot_NI + sqrtf(k))
1294 			    * op[1]->value.f[c];
1295 	 }
1296       }
1297    } else if (strcmp(callee, "sign") == 0) {
1298       expr = new(mem_ctx) ir_expression(ir_unop_sign, type, op[0], NULL);
1299    } else if (strcmp(callee, "sin") == 0) {
1300       expr = new(mem_ctx) ir_expression(ir_unop_sin, type, op[0], NULL);
1301    } else if (strcmp(callee, "sinh") == 0) {
1302       assert(op[0]->type->is_float());
1303       for (unsigned c = 0; c < op[0]->type->components(); c++)
1304 	 data.f[c] = sinhf(op[0]->value.f[c]);
1305    } else if (strcmp(callee, "smoothstep") == 0) {
1306       assert(num_parameters == 3);
1307       assert(op[1]->type == op[0]->type);
1308       unsigned edge_inc = op[0]->type->is_scalar() ? 0 : 1;
1309       for (unsigned c = 0, e = 0; c < type->components(); e += edge_inc, c++) {
1310 	 const float edge0 = op[0]->value.f[e];
1311 	 const float edge1 = op[1]->value.f[e];
1312 	 if (edge0 == edge1) {
1313 	    data.f[c] = 0.0; /* Avoid a crash - results are undefined anyway */
1314 	 } else {
1315 	    const float numerator = op[2]->value.f[c] - edge0;
1316 	    const float denominator = edge1 - edge0;
1317 	    const float t = CLAMP(numerator/denominator, 0, 1);
1318 	    data.f[c] = t * t * (3 - 2 * t);
1319 	 }
1320       }
1321    } else if (strcmp(callee, "sqrt") == 0) {
1322       expr = new(mem_ctx) ir_expression(ir_unop_sqrt, type, op[0], NULL);
1323    } else if (strcmp(callee, "step") == 0) {
1324       assert(op[0]->type->is_float() && op[1]->type->is_float());
1325       /* op[0] (edge) may be either a scalar or a vector */
1326       const unsigned c0_inc = op[0]->type->is_scalar() ? 0 : 1;
1327       for (unsigned c = 0, c0 = 0; c < type->components(); c0 += c0_inc, c++)
1328 	 data.f[c] = (op[1]->value.f[c] < op[0]->value.f[c0]) ? 0.0F : 1.0F;
1329    } else if (strcmp(callee, "tan") == 0) {
1330       assert(op[0]->type->is_float());
1331       for (unsigned c = 0; c < op[0]->type->components(); c++)
1332 	 data.f[c] = tanf(op[0]->value.f[c]);
1333    } else if (strcmp(callee, "tanh") == 0) {
1334       assert(op[0]->type->is_float());
1335       for (unsigned c = 0; c < op[0]->type->components(); c++)
1336 	 data.f[c] = tanhf(op[0]->value.f[c]);
1337    } else if (strcmp(callee, "transpose") == 0) {
1338       assert(op[0]->type->is_matrix());
1339       const unsigned n = op[0]->type->vector_elements;
1340       const unsigned m = op[0]->type->matrix_columns;
1341       for (unsigned j = 0; j < m; j++) {
1342 	 for (unsigned i = 0; i < n; i++) {
1343 	    data.f[m*i+j] += op[0]->value.f[i+n*j];
1344 	 }
1345       }
1346    } else {
1347       /* Unsupported builtin - some are not allowed in constant expressions. */
1348       return NULL;
1349    }
1350 
1351    if (expr != NULL)
1352       return expr->constant_expression_value();
1353 
1354    return new(mem_ctx) ir_constant(this->type, &data);
1355 }
1356