1 // test-properties.h
2
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 // http://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 //
15 // Copyright 2005-2010 Google, Inc.
16 // Author: riley@google.com (Michael Riley)
17 //
18 // \file
19 // Functions to manipulate and test property bits
20
21 #ifndef FST_LIB_TEST_PROPERTIES_H__
22 #define FST_LIB_TEST_PROPERTIES_H__
23
24 #include <unordered_set>
25 using std::tr1::unordered_set;
26 using std::tr1::unordered_multiset;
27
28 #include <fst/dfs-visit.h>
29 #include <fst/connect.h>
30
31
32 DECLARE_bool(fst_verify_properties);
33
34 namespace fst {
35
36 // For a binary property, the bit is always returned set.
37 // For a trinary (i.e. two-bit) property, both bits are
38 // returned set iff either corresponding input bit is set.
KnownProperties(uint64 props)39 inline uint64 KnownProperties(uint64 props) {
40 return kBinaryProperties | (props & kTrinaryProperties) |
41 ((props & kPosTrinaryProperties) << 1) |
42 ((props & kNegTrinaryProperties) >> 1);
43 }
44
45 // Tests compatibility between two sets of properties
CompatProperties(uint64 props1,uint64 props2)46 inline bool CompatProperties(uint64 props1, uint64 props2) {
47 uint64 known_props1 = KnownProperties(props1);
48 uint64 known_props2 = KnownProperties(props2);
49 uint64 known_props = known_props1 & known_props2;
50 uint64 incompat_props = (props1 & known_props) ^ (props2 & known_props);
51 if (incompat_props) {
52 uint64 prop = 1;
53 for (int i = 0; i < 64; ++i, prop <<= 1)
54 if (prop & incompat_props)
55 LOG(ERROR) << "CompatProperties: mismatch: " << PropertyNames[i]
56 << ": props1 = " << (props1 & prop ? "true" : "false")
57 << ", props2 = " << (props2 & prop ? "true" : "false");
58 return false;
59 } else {
60 return true;
61 }
62 }
63
64 // Computes FST property values defined in properties.h. The value of
65 // each property indicated in the mask will be determined and returned
66 // (these will never be unknown here). In the course of determining
67 // the properties specifically requested in the mask, certain other
68 // properties may be determined (those with little additional expense)
69 // and their values will be returned as well. The complete set of
70 // known properties (whether true or false) determined by this
71 // operation will be assigned to the the value pointed to by KNOWN.
72 // If 'use_stored' is true, pre-computed FST properties may be used
73 // when possible. This routine is seldom called directly; instead it
74 // is used to implement fst.Properties(mask, true).
75 template<class Arc>
ComputeProperties(const Fst<Arc> & fst,uint64 mask,uint64 * known,bool use_stored)76 uint64 ComputeProperties(const Fst<Arc> &fst, uint64 mask, uint64 *known,
77 bool use_stored) {
78 typedef typename Arc::Label Label;
79 typedef typename Arc::Weight Weight;
80 typedef typename Arc::StateId StateId;
81
82 uint64 fst_props = fst.Properties(kFstProperties, false); // Fst-stored
83
84 // Check stored FST properties first if allowed.
85 if (use_stored) {
86 uint64 known_props = KnownProperties(fst_props);
87 // If FST contains required info, return it.
88 if ((known_props & mask) == mask) {
89 *known = known_props;
90 return fst_props;
91 }
92 }
93
94 // Compute (trinary) properties explicitly.
95
96 // Initialize with binary properties (already known).
97 uint64 comp_props = fst_props & kBinaryProperties;
98
99 // Compute these trinary properties with a DFS. We compute only those
100 // that need a DFS here, since we otherwise would like to avoid a DFS
101 // since its stack could grow large.
102 uint64 dfs_props = kCyclic | kAcyclic | kInitialCyclic | kInitialAcyclic |
103 kAccessible | kNotAccessible |
104 kCoAccessible | kNotCoAccessible;
105 if (mask & dfs_props) {
106 SccVisitor<Arc> scc_visitor(&comp_props);
107 DfsVisit(fst, &scc_visitor);
108 }
109
110 // Compute any remaining trinary properties via a state and arcs iterations
111 if (mask & ~(kBinaryProperties | dfs_props)) {
112 comp_props |= kAcceptor | kNoEpsilons | kNoIEpsilons | kNoOEpsilons |
113 kILabelSorted | kOLabelSorted | kUnweighted | kTopSorted | kString;
114 if (mask & (kIDeterministic | kNonIDeterministic))
115 comp_props |= kIDeterministic;
116 if (mask & (kODeterministic | kNonODeterministic))
117 comp_props |= kODeterministic;
118
119 unordered_set<Label> *ilabels = 0;
120 unordered_set<Label> *olabels = 0;
121
122 StateId nfinal = 0;
123 for (StateIterator< Fst<Arc> > siter(fst);
124 !siter.Done();
125 siter.Next()) {
126 StateId s = siter.Value();
127
128 Arc prev_arc(kNoLabel, kNoLabel, Weight::One(), 0);
129 // Create these only if we need to
130 if (mask & (kIDeterministic | kNonIDeterministic))
131 ilabels = new unordered_set<Label>;
132 if (mask & (kODeterministic | kNonODeterministic))
133 olabels = new unordered_set<Label>;
134
135 for (ArcIterator< Fst<Arc> > aiter(fst, s);
136 !aiter.Done();
137 aiter.Next()) {
138 const Arc &arc =aiter.Value();
139
140 if (ilabels && ilabels->find(arc.ilabel) != ilabels->end()) {
141 comp_props |= kNonIDeterministic;
142 comp_props &= ~kIDeterministic;
143 }
144 if (olabels && olabels->find(arc.olabel) != olabels->end()) {
145 comp_props |= kNonODeterministic;
146 comp_props &= ~kODeterministic;
147 }
148 if (arc.ilabel != arc.olabel) {
149 comp_props |= kNotAcceptor;
150 comp_props &= ~kAcceptor;
151 }
152 if (arc.ilabel == 0 && arc.olabel == 0) {
153 comp_props |= kEpsilons;
154 comp_props &= ~kNoEpsilons;
155 }
156 if (arc.ilabel == 0) {
157 comp_props |= kIEpsilons;
158 comp_props &= ~kNoIEpsilons;
159 }
160 if (arc.olabel == 0) {
161 comp_props |= kOEpsilons;
162 comp_props &= ~kNoOEpsilons;
163 }
164 if (prev_arc.ilabel != kNoLabel && arc.ilabel < prev_arc.ilabel) {
165 comp_props |= kNotILabelSorted;
166 comp_props &= ~kILabelSorted;
167 }
168 if (prev_arc.olabel != kNoLabel && arc.olabel < prev_arc.olabel) {
169 comp_props |= kNotOLabelSorted;
170 comp_props &= ~kOLabelSorted;
171 }
172 if (arc.weight != Weight::One() && arc.weight != Weight::Zero()) {
173 comp_props |= kWeighted;
174 comp_props &= ~kUnweighted;
175 }
176 if (arc.nextstate <= s) {
177 comp_props |= kNotTopSorted;
178 comp_props &= ~kTopSorted;
179 }
180 if (arc.nextstate != s + 1) {
181 comp_props |= kNotString;
182 comp_props &= ~kString;
183 }
184 prev_arc = arc;
185 if (ilabels)
186 ilabels->insert(arc.ilabel);
187 if (olabels)
188 olabels->insert(arc.olabel);
189 }
190
191 if (nfinal > 0) { // final state not last
192 comp_props |= kNotString;
193 comp_props &= ~kString;
194 }
195
196 Weight final = fst.Final(s);
197
198 if (final != Weight::Zero()) { // final state
199 if (final != Weight::One()) {
200 comp_props |= kWeighted;
201 comp_props &= ~kUnweighted;
202 }
203 ++nfinal;
204 } else { // non-final state
205 if (fst.NumArcs(s) != 1) {
206 comp_props |= kNotString;
207 comp_props &= ~kString;
208 }
209 }
210
211 delete ilabels;
212 delete olabels;
213 }
214
215 if (fst.Start() != kNoStateId && fst.Start() != 0) {
216 comp_props |= kNotString;
217 comp_props &= ~kString;
218 }
219 }
220
221 *known = KnownProperties(comp_props);
222 return comp_props;
223 }
224
225 // This is a wrapper around ComputeProperties that will cause a fatal
226 // error if the stored properties and the computed properties are
227 // incompatible when 'FLAGS_fst_verify_properties' is true. This
228 // routine is seldom called directly; instead it is used to implement
229 // fst.Properties(mask, true).
230 template<class Arc>
TestProperties(const Fst<Arc> & fst,uint64 mask,uint64 * known)231 uint64 TestProperties(const Fst<Arc> &fst, uint64 mask, uint64 *known) {
232 if (FLAGS_fst_verify_properties) {
233 uint64 stored_props = fst.Properties(kFstProperties, false);
234 uint64 computed_props = ComputeProperties(fst, mask, known, false);
235 if (!CompatProperties(stored_props, computed_props))
236 LOG(FATAL) << "TestProperties: stored Fst properties incorrect"
237 << " (stored: props1, computed: props2)";
238 return computed_props;
239 } else {
240 return ComputeProperties(fst, mask, known, true);
241 }
242 }
243
244 } // namespace fst
245
246 #endif // FST_LIB_TEST_PROPERTIES_H__
247