• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* $OpenBSD: key.c,v 1.97 2011/05/17 07:13:31 djm Exp $ */
2 /*
3  * read_bignum():
4  * Copyright (c) 1995 Tatu Ylonen <ylo@cs.hut.fi>, Espoo, Finland
5  *
6  * As far as I am concerned, the code I have written for this software
7  * can be used freely for any purpose.  Any derived versions of this
8  * software must be clearly marked as such, and if the derived work is
9  * incompatible with the protocol description in the RFC file, it must be
10  * called by a name other than "ssh" or "Secure Shell".
11  *
12  *
13  * Copyright (c) 2000, 2001 Markus Friedl.  All rights reserved.
14  * Copyright (c) 2008 Alexander von Gernler.  All rights reserved.
15  *
16  * Redistribution and use in source and binary forms, with or without
17  * modification, are permitted provided that the following conditions
18  * are met:
19  * 1. Redistributions of source code must retain the above copyright
20  *    notice, this list of conditions and the following disclaimer.
21  * 2. Redistributions in binary form must reproduce the above copyright
22  *    notice, this list of conditions and the following disclaimer in the
23  *    documentation and/or other materials provided with the distribution.
24  *
25  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
26  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
27  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
28  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
29  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
30  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
31  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
32  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
33  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
34  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
35  */
36 
37 #include "includes.h"
38 
39 #include <sys/param.h>
40 #include <sys/types.h>
41 
42 #include <openssl/evp.h>
43 #include <openbsd-compat/openssl-compat.h>
44 
45 #include <stdarg.h>
46 #include <stdio.h>
47 #include <string.h>
48 
49 #include "xmalloc.h"
50 #include "key.h"
51 #include "rsa.h"
52 #include "uuencode.h"
53 #include "buffer.h"
54 #include "log.h"
55 #include "misc.h"
56 #include "ssh2.h"
57 
58 static struct KeyCert *
cert_new(void)59 cert_new(void)
60 {
61 	struct KeyCert *cert;
62 
63 	cert = xcalloc(1, sizeof(*cert));
64 	buffer_init(&cert->certblob);
65 	buffer_init(&cert->critical);
66 	buffer_init(&cert->extensions);
67 	cert->key_id = NULL;
68 	cert->principals = NULL;
69 	cert->signature_key = NULL;
70 	return cert;
71 }
72 
73 Key *
key_new(int type)74 key_new(int type)
75 {
76 	Key *k;
77 	RSA *rsa;
78 	DSA *dsa;
79 	k = xcalloc(1, sizeof(*k));
80 	k->type = type;
81 	k->ecdsa = NULL;
82 	k->ecdsa_nid = -1;
83 	k->dsa = NULL;
84 	k->rsa = NULL;
85 	k->cert = NULL;
86 	switch (k->type) {
87 	case KEY_RSA1:
88 	case KEY_RSA:
89 	case KEY_RSA_CERT_V00:
90 	case KEY_RSA_CERT:
91 		if ((rsa = RSA_new()) == NULL)
92 			fatal("key_new: RSA_new failed");
93 		if ((rsa->n = BN_new()) == NULL)
94 			fatal("key_new: BN_new failed");
95 		if ((rsa->e = BN_new()) == NULL)
96 			fatal("key_new: BN_new failed");
97 		k->rsa = rsa;
98 		break;
99 	case KEY_DSA:
100 	case KEY_DSA_CERT_V00:
101 	case KEY_DSA_CERT:
102 		if ((dsa = DSA_new()) == NULL)
103 			fatal("key_new: DSA_new failed");
104 		if ((dsa->p = BN_new()) == NULL)
105 			fatal("key_new: BN_new failed");
106 		if ((dsa->q = BN_new()) == NULL)
107 			fatal("key_new: BN_new failed");
108 		if ((dsa->g = BN_new()) == NULL)
109 			fatal("key_new: BN_new failed");
110 		if ((dsa->pub_key = BN_new()) == NULL)
111 			fatal("key_new: BN_new failed");
112 		k->dsa = dsa;
113 		break;
114 #ifdef OPENSSL_HAS_ECC
115 	case KEY_ECDSA:
116 	case KEY_ECDSA_CERT:
117 		/* Cannot do anything until we know the group */
118 		break;
119 #endif
120 	case KEY_UNSPEC:
121 		break;
122 	default:
123 		fatal("key_new: bad key type %d", k->type);
124 		break;
125 	}
126 
127 	if (key_is_cert(k))
128 		k->cert = cert_new();
129 
130 	return k;
131 }
132 
133 void
key_add_private(Key * k)134 key_add_private(Key *k)
135 {
136 	switch (k->type) {
137 	case KEY_RSA1:
138 	case KEY_RSA:
139 	case KEY_RSA_CERT_V00:
140 	case KEY_RSA_CERT:
141 		if ((k->rsa->d = BN_new()) == NULL)
142 			fatal("key_new_private: BN_new failed");
143 		if ((k->rsa->iqmp = BN_new()) == NULL)
144 			fatal("key_new_private: BN_new failed");
145 		if ((k->rsa->q = BN_new()) == NULL)
146 			fatal("key_new_private: BN_new failed");
147 		if ((k->rsa->p = BN_new()) == NULL)
148 			fatal("key_new_private: BN_new failed");
149 		if ((k->rsa->dmq1 = BN_new()) == NULL)
150 			fatal("key_new_private: BN_new failed");
151 		if ((k->rsa->dmp1 = BN_new()) == NULL)
152 			fatal("key_new_private: BN_new failed");
153 		break;
154 	case KEY_DSA:
155 	case KEY_DSA_CERT_V00:
156 	case KEY_DSA_CERT:
157 		if ((k->dsa->priv_key = BN_new()) == NULL)
158 			fatal("key_new_private: BN_new failed");
159 		break;
160 	case KEY_ECDSA:
161 	case KEY_ECDSA_CERT:
162 		/* Cannot do anything until we know the group */
163 		break;
164 	case KEY_UNSPEC:
165 		break;
166 	default:
167 		break;
168 	}
169 }
170 
171 Key *
key_new_private(int type)172 key_new_private(int type)
173 {
174 	Key *k = key_new(type);
175 
176 	key_add_private(k);
177 	return k;
178 }
179 
180 static void
cert_free(struct KeyCert * cert)181 cert_free(struct KeyCert *cert)
182 {
183 	u_int i;
184 
185 	buffer_free(&cert->certblob);
186 	buffer_free(&cert->critical);
187 	buffer_free(&cert->extensions);
188 	if (cert->key_id != NULL)
189 		xfree(cert->key_id);
190 	for (i = 0; i < cert->nprincipals; i++)
191 		xfree(cert->principals[i]);
192 	if (cert->principals != NULL)
193 		xfree(cert->principals);
194 	if (cert->signature_key != NULL)
195 		key_free(cert->signature_key);
196 }
197 
198 void
key_free(Key * k)199 key_free(Key *k)
200 {
201 	if (k == NULL)
202 		fatal("key_free: key is NULL");
203 	switch (k->type) {
204 	case KEY_RSA1:
205 	case KEY_RSA:
206 	case KEY_RSA_CERT_V00:
207 	case KEY_RSA_CERT:
208 		if (k->rsa != NULL)
209 			RSA_free(k->rsa);
210 		k->rsa = NULL;
211 		break;
212 	case KEY_DSA:
213 	case KEY_DSA_CERT_V00:
214 	case KEY_DSA_CERT:
215 		if (k->dsa != NULL)
216 			DSA_free(k->dsa);
217 		k->dsa = NULL;
218 		break;
219 #ifdef OPENSSL_HAS_ECC
220 	case KEY_ECDSA:
221 	case KEY_ECDSA_CERT:
222 		if (k->ecdsa != NULL)
223 			EC_KEY_free(k->ecdsa);
224 		k->ecdsa = NULL;
225 		break;
226 #endif
227 	case KEY_UNSPEC:
228 		break;
229 	default:
230 		fatal("key_free: bad key type %d", k->type);
231 		break;
232 	}
233 	if (key_is_cert(k)) {
234 		if (k->cert != NULL)
235 			cert_free(k->cert);
236 		k->cert = NULL;
237 	}
238 
239 	xfree(k);
240 }
241 
242 static int
cert_compare(struct KeyCert * a,struct KeyCert * b)243 cert_compare(struct KeyCert *a, struct KeyCert *b)
244 {
245 	if (a == NULL && b == NULL)
246 		return 1;
247 	if (a == NULL || b == NULL)
248 		return 0;
249 	if (buffer_len(&a->certblob) != buffer_len(&b->certblob))
250 		return 0;
251 	if (timingsafe_bcmp(buffer_ptr(&a->certblob), buffer_ptr(&b->certblob),
252 	    buffer_len(&a->certblob)) != 0)
253 		return 0;
254 	return 1;
255 }
256 
257 /*
258  * Compare public portions of key only, allowing comparisons between
259  * certificates and plain keys too.
260  */
261 int
key_equal_public(const Key * a,const Key * b)262 key_equal_public(const Key *a, const Key *b)
263 {
264 #ifdef OPENSSL_HAS_ECC
265 	BN_CTX *bnctx;
266 #endif
267 
268 	if (a == NULL || b == NULL ||
269 	    key_type_plain(a->type) != key_type_plain(b->type))
270 		return 0;
271 
272 	switch (a->type) {
273 	case KEY_RSA1:
274 	case KEY_RSA_CERT_V00:
275 	case KEY_RSA_CERT:
276 	case KEY_RSA:
277 		return a->rsa != NULL && b->rsa != NULL &&
278 		    BN_cmp(a->rsa->e, b->rsa->e) == 0 &&
279 		    BN_cmp(a->rsa->n, b->rsa->n) == 0;
280 	case KEY_DSA_CERT_V00:
281 	case KEY_DSA_CERT:
282 	case KEY_DSA:
283 		return a->dsa != NULL && b->dsa != NULL &&
284 		    BN_cmp(a->dsa->p, b->dsa->p) == 0 &&
285 		    BN_cmp(a->dsa->q, b->dsa->q) == 0 &&
286 		    BN_cmp(a->dsa->g, b->dsa->g) == 0 &&
287 		    BN_cmp(a->dsa->pub_key, b->dsa->pub_key) == 0;
288 #ifdef OPENSSL_HAS_ECC
289 	case KEY_ECDSA_CERT:
290 	case KEY_ECDSA:
291 		if (a->ecdsa == NULL || b->ecdsa == NULL ||
292 		    EC_KEY_get0_public_key(a->ecdsa) == NULL ||
293 		    EC_KEY_get0_public_key(b->ecdsa) == NULL)
294 			return 0;
295 		if ((bnctx = BN_CTX_new()) == NULL)
296 			fatal("%s: BN_CTX_new failed", __func__);
297 		if (EC_GROUP_cmp(EC_KEY_get0_group(a->ecdsa),
298 		    EC_KEY_get0_group(b->ecdsa), bnctx) != 0 ||
299 		    EC_POINT_cmp(EC_KEY_get0_group(a->ecdsa),
300 		    EC_KEY_get0_public_key(a->ecdsa),
301 		    EC_KEY_get0_public_key(b->ecdsa), bnctx) != 0) {
302 			BN_CTX_free(bnctx);
303 			return 0;
304 		}
305 		BN_CTX_free(bnctx);
306 		return 1;
307 #endif /* OPENSSL_HAS_ECC */
308 	default:
309 		fatal("key_equal: bad key type %d", a->type);
310 	}
311 	/* NOTREACHED */
312 }
313 
314 int
key_equal(const Key * a,const Key * b)315 key_equal(const Key *a, const Key *b)
316 {
317 	if (a == NULL || b == NULL || a->type != b->type)
318 		return 0;
319 	if (key_is_cert(a)) {
320 		if (!cert_compare(a->cert, b->cert))
321 			return 0;
322 	}
323 	return key_equal_public(a, b);
324 }
325 
326 u_char*
key_fingerprint_raw(Key * k,enum fp_type dgst_type,u_int * dgst_raw_length)327 key_fingerprint_raw(Key *k, enum fp_type dgst_type, u_int *dgst_raw_length)
328 {
329 	const EVP_MD *md = NULL;
330 	EVP_MD_CTX ctx;
331 	u_char *blob = NULL;
332 	u_char *retval = NULL;
333 	u_int len = 0;
334 	int nlen, elen, otype;
335 
336 	*dgst_raw_length = 0;
337 
338 	switch (dgst_type) {
339 	case SSH_FP_MD5:
340 		md = EVP_md5();
341 		break;
342 	case SSH_FP_SHA1:
343 		md = EVP_sha1();
344 		break;
345 	default:
346 		fatal("key_fingerprint_raw: bad digest type %d",
347 		    dgst_type);
348 	}
349 	switch (k->type) {
350 	case KEY_RSA1:
351 		nlen = BN_num_bytes(k->rsa->n);
352 		elen = BN_num_bytes(k->rsa->e);
353 		len = nlen + elen;
354 		blob = xmalloc(len);
355 		BN_bn2bin(k->rsa->n, blob);
356 		BN_bn2bin(k->rsa->e, blob + nlen);
357 		break;
358 	case KEY_DSA:
359 	case KEY_ECDSA:
360 	case KEY_RSA:
361 		key_to_blob(k, &blob, &len);
362 		break;
363 	case KEY_DSA_CERT_V00:
364 	case KEY_RSA_CERT_V00:
365 	case KEY_DSA_CERT:
366 	case KEY_ECDSA_CERT:
367 	case KEY_RSA_CERT:
368 		/* We want a fingerprint of the _key_ not of the cert */
369 		otype = k->type;
370 		k->type = key_type_plain(k->type);
371 		key_to_blob(k, &blob, &len);
372 		k->type = otype;
373 		break;
374 	case KEY_UNSPEC:
375 		return retval;
376 	default:
377 		fatal("key_fingerprint_raw: bad key type %d", k->type);
378 		break;
379 	}
380 	if (blob != NULL) {
381 		retval = xmalloc(EVP_MAX_MD_SIZE);
382 		EVP_DigestInit(&ctx, md);
383 		EVP_DigestUpdate(&ctx, blob, len);
384 		EVP_DigestFinal(&ctx, retval, dgst_raw_length);
385 		memset(blob, 0, len);
386 		xfree(blob);
387 	} else {
388 		fatal("key_fingerprint_raw: blob is null");
389 	}
390 	return retval;
391 }
392 
393 static char *
key_fingerprint_hex(u_char * dgst_raw,u_int dgst_raw_len)394 key_fingerprint_hex(u_char *dgst_raw, u_int dgst_raw_len)
395 {
396 	char *retval;
397 	u_int i;
398 
399 	retval = xcalloc(1, dgst_raw_len * 3 + 1);
400 	for (i = 0; i < dgst_raw_len; i++) {
401 		char hex[4];
402 		snprintf(hex, sizeof(hex), "%02x:", dgst_raw[i]);
403 		strlcat(retval, hex, dgst_raw_len * 3 + 1);
404 	}
405 
406 	/* Remove the trailing ':' character */
407 	retval[(dgst_raw_len * 3) - 1] = '\0';
408 	return retval;
409 }
410 
411 static char *
key_fingerprint_bubblebabble(u_char * dgst_raw,u_int dgst_raw_len)412 key_fingerprint_bubblebabble(u_char *dgst_raw, u_int dgst_raw_len)
413 {
414 	char vowels[] = { 'a', 'e', 'i', 'o', 'u', 'y' };
415 	char consonants[] = { 'b', 'c', 'd', 'f', 'g', 'h', 'k', 'l', 'm',
416 	    'n', 'p', 'r', 's', 't', 'v', 'z', 'x' };
417 	u_int i, j = 0, rounds, seed = 1;
418 	char *retval;
419 
420 	rounds = (dgst_raw_len / 2) + 1;
421 	retval = xcalloc((rounds * 6), sizeof(char));
422 	retval[j++] = 'x';
423 	for (i = 0; i < rounds; i++) {
424 		u_int idx0, idx1, idx2, idx3, idx4;
425 		if ((i + 1 < rounds) || (dgst_raw_len % 2 != 0)) {
426 			idx0 = (((((u_int)(dgst_raw[2 * i])) >> 6) & 3) +
427 			    seed) % 6;
428 			idx1 = (((u_int)(dgst_raw[2 * i])) >> 2) & 15;
429 			idx2 = ((((u_int)(dgst_raw[2 * i])) & 3) +
430 			    (seed / 6)) % 6;
431 			retval[j++] = vowels[idx0];
432 			retval[j++] = consonants[idx1];
433 			retval[j++] = vowels[idx2];
434 			if ((i + 1) < rounds) {
435 				idx3 = (((u_int)(dgst_raw[(2 * i) + 1])) >> 4) & 15;
436 				idx4 = (((u_int)(dgst_raw[(2 * i) + 1]))) & 15;
437 				retval[j++] = consonants[idx3];
438 				retval[j++] = '-';
439 				retval[j++] = consonants[idx4];
440 				seed = ((seed * 5) +
441 				    ((((u_int)(dgst_raw[2 * i])) * 7) +
442 				    ((u_int)(dgst_raw[(2 * i) + 1])))) % 36;
443 			}
444 		} else {
445 			idx0 = seed % 6;
446 			idx1 = 16;
447 			idx2 = seed / 6;
448 			retval[j++] = vowels[idx0];
449 			retval[j++] = consonants[idx1];
450 			retval[j++] = vowels[idx2];
451 		}
452 	}
453 	retval[j++] = 'x';
454 	retval[j++] = '\0';
455 	return retval;
456 }
457 
458 /*
459  * Draw an ASCII-Art representing the fingerprint so human brain can
460  * profit from its built-in pattern recognition ability.
461  * This technique is called "random art" and can be found in some
462  * scientific publications like this original paper:
463  *
464  * "Hash Visualization: a New Technique to improve Real-World Security",
465  * Perrig A. and Song D., 1999, International Workshop on Cryptographic
466  * Techniques and E-Commerce (CrypTEC '99)
467  * sparrow.ece.cmu.edu/~adrian/projects/validation/validation.pdf
468  *
469  * The subject came up in a talk by Dan Kaminsky, too.
470  *
471  * If you see the picture is different, the key is different.
472  * If the picture looks the same, you still know nothing.
473  *
474  * The algorithm used here is a worm crawling over a discrete plane,
475  * leaving a trace (augmenting the field) everywhere it goes.
476  * Movement is taken from dgst_raw 2bit-wise.  Bumping into walls
477  * makes the respective movement vector be ignored for this turn.
478  * Graphs are not unambiguous, because circles in graphs can be
479  * walked in either direction.
480  */
481 
482 /*
483  * Field sizes for the random art.  Have to be odd, so the starting point
484  * can be in the exact middle of the picture, and FLDBASE should be >=8 .
485  * Else pictures would be too dense, and drawing the frame would
486  * fail, too, because the key type would not fit in anymore.
487  */
488 #define	FLDBASE		8
489 #define	FLDSIZE_Y	(FLDBASE + 1)
490 #define	FLDSIZE_X	(FLDBASE * 2 + 1)
491 static char *
key_fingerprint_randomart(u_char * dgst_raw,u_int dgst_raw_len,const Key * k)492 key_fingerprint_randomart(u_char *dgst_raw, u_int dgst_raw_len, const Key *k)
493 {
494 	/*
495 	 * Chars to be used after each other every time the worm
496 	 * intersects with itself.  Matter of taste.
497 	 */
498 	char	*augmentation_string = " .o+=*BOX@%&#/^SE";
499 	char	*retval, *p;
500 	u_char	 field[FLDSIZE_X][FLDSIZE_Y];
501 	u_int	 i, b;
502 	int	 x, y;
503 	size_t	 len = strlen(augmentation_string) - 1;
504 
505 	retval = xcalloc(1, (FLDSIZE_X + 3) * (FLDSIZE_Y + 2));
506 
507 	/* initialize field */
508 	memset(field, 0, FLDSIZE_X * FLDSIZE_Y * sizeof(char));
509 	x = FLDSIZE_X / 2;
510 	y = FLDSIZE_Y / 2;
511 
512 	/* process raw key */
513 	for (i = 0; i < dgst_raw_len; i++) {
514 		int input;
515 		/* each byte conveys four 2-bit move commands */
516 		input = dgst_raw[i];
517 		for (b = 0; b < 4; b++) {
518 			/* evaluate 2 bit, rest is shifted later */
519 			x += (input & 0x1) ? 1 : -1;
520 			y += (input & 0x2) ? 1 : -1;
521 
522 			/* assure we are still in bounds */
523 			x = MAX(x, 0);
524 			y = MAX(y, 0);
525 			x = MIN(x, FLDSIZE_X - 1);
526 			y = MIN(y, FLDSIZE_Y - 1);
527 
528 			/* augment the field */
529 			if (field[x][y] < len - 2)
530 				field[x][y]++;
531 			input = input >> 2;
532 		}
533 	}
534 
535 	/* mark starting point and end point*/
536 	field[FLDSIZE_X / 2][FLDSIZE_Y / 2] = len - 1;
537 	field[x][y] = len;
538 
539 	/* fill in retval */
540 	snprintf(retval, FLDSIZE_X, "+--[%4s %4u]", key_type(k), key_size(k));
541 	p = strchr(retval, '\0');
542 
543 	/* output upper border */
544 	for (i = p - retval - 1; i < FLDSIZE_X; i++)
545 		*p++ = '-';
546 	*p++ = '+';
547 	*p++ = '\n';
548 
549 	/* output content */
550 	for (y = 0; y < FLDSIZE_Y; y++) {
551 		*p++ = '|';
552 		for (x = 0; x < FLDSIZE_X; x++)
553 			*p++ = augmentation_string[MIN(field[x][y], len)];
554 		*p++ = '|';
555 		*p++ = '\n';
556 	}
557 
558 	/* output lower border */
559 	*p++ = '+';
560 	for (i = 0; i < FLDSIZE_X; i++)
561 		*p++ = '-';
562 	*p++ = '+';
563 
564 	return retval;
565 }
566 
567 char *
key_fingerprint(Key * k,enum fp_type dgst_type,enum fp_rep dgst_rep)568 key_fingerprint(Key *k, enum fp_type dgst_type, enum fp_rep dgst_rep)
569 {
570 	char *retval = NULL;
571 	u_char *dgst_raw;
572 	u_int dgst_raw_len;
573 
574 	dgst_raw = key_fingerprint_raw(k, dgst_type, &dgst_raw_len);
575 	if (!dgst_raw)
576 		fatal("key_fingerprint: null from key_fingerprint_raw()");
577 	switch (dgst_rep) {
578 	case SSH_FP_HEX:
579 		retval = key_fingerprint_hex(dgst_raw, dgst_raw_len);
580 		break;
581 	case SSH_FP_BUBBLEBABBLE:
582 		retval = key_fingerprint_bubblebabble(dgst_raw, dgst_raw_len);
583 		break;
584 	case SSH_FP_RANDOMART:
585 		retval = key_fingerprint_randomart(dgst_raw, dgst_raw_len, k);
586 		break;
587 	default:
588 		fatal("key_fingerprint: bad digest representation %d",
589 		    dgst_rep);
590 		break;
591 	}
592 	memset(dgst_raw, 0, dgst_raw_len);
593 	xfree(dgst_raw);
594 	return retval;
595 }
596 
597 /*
598  * Reads a multiple-precision integer in decimal from the buffer, and advances
599  * the pointer.  The integer must already be initialized.  This function is
600  * permitted to modify the buffer.  This leaves *cpp to point just beyond the
601  * last processed (and maybe modified) character.  Note that this may modify
602  * the buffer containing the number.
603  */
604 static int
read_bignum(char ** cpp,BIGNUM * value)605 read_bignum(char **cpp, BIGNUM * value)
606 {
607 	char *cp = *cpp;
608 	int old;
609 
610 	/* Skip any leading whitespace. */
611 	for (; *cp == ' ' || *cp == '\t'; cp++)
612 		;
613 
614 	/* Check that it begins with a decimal digit. */
615 	if (*cp < '0' || *cp > '9')
616 		return 0;
617 
618 	/* Save starting position. */
619 	*cpp = cp;
620 
621 	/* Move forward until all decimal digits skipped. */
622 	for (; *cp >= '0' && *cp <= '9'; cp++)
623 		;
624 
625 	/* Save the old terminating character, and replace it by \0. */
626 	old = *cp;
627 	*cp = 0;
628 
629 	/* Parse the number. */
630 	if (BN_dec2bn(&value, *cpp) == 0)
631 		return 0;
632 
633 	/* Restore old terminating character. */
634 	*cp = old;
635 
636 	/* Move beyond the number and return success. */
637 	*cpp = cp;
638 	return 1;
639 }
640 
641 static int
write_bignum(FILE * f,BIGNUM * num)642 write_bignum(FILE *f, BIGNUM *num)
643 {
644 	char *buf = BN_bn2dec(num);
645 	if (buf == NULL) {
646 		error("write_bignum: BN_bn2dec() failed");
647 		return 0;
648 	}
649 	fprintf(f, " %s", buf);
650 	OPENSSL_free(buf);
651 	return 1;
652 }
653 
654 /* returns 1 ok, -1 error */
655 int
key_read(Key * ret,char ** cpp)656 key_read(Key *ret, char **cpp)
657 {
658 	Key *k;
659 	int success = -1;
660 	char *cp, *space;
661 	int len, n, type;
662 	u_int bits;
663 	u_char *blob;
664 #ifdef OPENSSL_HAS_ECC
665 	int curve_nid = -1;
666 #endif
667 
668 	cp = *cpp;
669 
670 	switch (ret->type) {
671 	case KEY_RSA1:
672 		/* Get number of bits. */
673 		if (*cp < '0' || *cp > '9')
674 			return -1;	/* Bad bit count... */
675 		for (bits = 0; *cp >= '0' && *cp <= '9'; cp++)
676 			bits = 10 * bits + *cp - '0';
677 		if (bits == 0)
678 			return -1;
679 		*cpp = cp;
680 		/* Get public exponent, public modulus. */
681 		if (!read_bignum(cpp, ret->rsa->e))
682 			return -1;
683 		if (!read_bignum(cpp, ret->rsa->n))
684 			return -1;
685 		/* validate the claimed number of bits */
686 		if ((u_int)BN_num_bits(ret->rsa->n) != bits) {
687 			verbose("key_read: claimed key size %d does not match "
688 			   "actual %d", bits, BN_num_bits(ret->rsa->n));
689 			return -1;
690 		}
691 		success = 1;
692 		break;
693 	case KEY_UNSPEC:
694 	case KEY_RSA:
695 	case KEY_DSA:
696 	case KEY_ECDSA:
697 	case KEY_DSA_CERT_V00:
698 	case KEY_RSA_CERT_V00:
699 	case KEY_DSA_CERT:
700 	case KEY_ECDSA_CERT:
701 	case KEY_RSA_CERT:
702 		space = strchr(cp, ' ');
703 		if (space == NULL) {
704 			debug3("key_read: missing whitespace");
705 			return -1;
706 		}
707 		*space = '\0';
708 		type = key_type_from_name(cp);
709 #ifdef OPENSSL_HAS_ECC
710 		if (key_type_plain(type) == KEY_ECDSA &&
711 		    (curve_nid = key_ecdsa_nid_from_name(cp)) == -1) {
712 			debug("key_read: invalid curve");
713 			return -1;
714 		}
715 #endif
716 		*space = ' ';
717 		if (type == KEY_UNSPEC) {
718 			debug3("key_read: missing keytype");
719 			return -1;
720 		}
721 		cp = space+1;
722 		if (*cp == '\0') {
723 			debug3("key_read: short string");
724 			return -1;
725 		}
726 		if (ret->type == KEY_UNSPEC) {
727 			ret->type = type;
728 		} else if (ret->type != type) {
729 			/* is a key, but different type */
730 			debug3("key_read: type mismatch");
731 			return -1;
732 		}
733 		len = 2*strlen(cp);
734 		blob = xmalloc(len);
735 		n = uudecode(cp, blob, len);
736 		if (n < 0) {
737 			error("key_read: uudecode %s failed", cp);
738 			xfree(blob);
739 			return -1;
740 		}
741 		k = key_from_blob(blob, (u_int)n);
742 		xfree(blob);
743 		if (k == NULL) {
744 			error("key_read: key_from_blob %s failed", cp);
745 			return -1;
746 		}
747 		if (k->type != type) {
748 			error("key_read: type mismatch: encoding error");
749 			key_free(k);
750 			return -1;
751 		}
752 #ifdef OPENSSL_HAS_ECC
753 		if (key_type_plain(type) == KEY_ECDSA &&
754 		    curve_nid != k->ecdsa_nid) {
755 			error("key_read: type mismatch: EC curve mismatch");
756 			key_free(k);
757 			return -1;
758 		}
759 #endif
760 /*XXXX*/
761 		if (key_is_cert(ret)) {
762 			if (!key_is_cert(k)) {
763 				error("key_read: loaded key is not a cert");
764 				key_free(k);
765 				return -1;
766 			}
767 			if (ret->cert != NULL)
768 				cert_free(ret->cert);
769 			ret->cert = k->cert;
770 			k->cert = NULL;
771 		}
772 		if (key_type_plain(ret->type) == KEY_RSA) {
773 			if (ret->rsa != NULL)
774 				RSA_free(ret->rsa);
775 			ret->rsa = k->rsa;
776 			k->rsa = NULL;
777 #ifdef DEBUG_PK
778 			RSA_print_fp(stderr, ret->rsa, 8);
779 #endif
780 		}
781 		if (key_type_plain(ret->type) == KEY_DSA) {
782 			if (ret->dsa != NULL)
783 				DSA_free(ret->dsa);
784 			ret->dsa = k->dsa;
785 			k->dsa = NULL;
786 #ifdef DEBUG_PK
787 			DSA_print_fp(stderr, ret->dsa, 8);
788 #endif
789 		}
790 #ifdef OPENSSL_HAS_ECC
791 		if (key_type_plain(ret->type) == KEY_ECDSA) {
792 			if (ret->ecdsa != NULL)
793 				EC_KEY_free(ret->ecdsa);
794 			ret->ecdsa = k->ecdsa;
795 			ret->ecdsa_nid = k->ecdsa_nid;
796 			k->ecdsa = NULL;
797 			k->ecdsa_nid = -1;
798 #ifdef DEBUG_PK
799 			key_dump_ec_key(ret->ecdsa);
800 #endif
801 		}
802 #endif
803 		success = 1;
804 /*XXXX*/
805 		key_free(k);
806 		if (success != 1)
807 			break;
808 		/* advance cp: skip whitespace and data */
809 		while (*cp == ' ' || *cp == '\t')
810 			cp++;
811 		while (*cp != '\0' && *cp != ' ' && *cp != '\t')
812 			cp++;
813 		*cpp = cp;
814 		break;
815 	default:
816 		fatal("key_read: bad key type: %d", ret->type);
817 		break;
818 	}
819 	return success;
820 }
821 
822 int
key_write(const Key * key,FILE * f)823 key_write(const Key *key, FILE *f)
824 {
825 	int n, success = 0;
826 	u_int len, bits = 0;
827 	u_char *blob;
828 	char *uu;
829 
830 	if (key_is_cert(key)) {
831 		if (key->cert == NULL) {
832 			error("%s: no cert data", __func__);
833 			return 0;
834 		}
835 		if (buffer_len(&key->cert->certblob) == 0) {
836 			error("%s: no signed certificate blob", __func__);
837 			return 0;
838 		}
839 	}
840 
841 	switch (key->type) {
842 	case KEY_RSA1:
843 		if (key->rsa == NULL)
844 			return 0;
845 		/* size of modulus 'n' */
846 		bits = BN_num_bits(key->rsa->n);
847 		fprintf(f, "%u", bits);
848 		if (write_bignum(f, key->rsa->e) &&
849 		    write_bignum(f, key->rsa->n))
850 			return 1;
851 		error("key_write: failed for RSA key");
852 		return 0;
853 	case KEY_DSA:
854 	case KEY_DSA_CERT_V00:
855 	case KEY_DSA_CERT:
856 		if (key->dsa == NULL)
857 			return 0;
858 		break;
859 #ifdef OPENSSL_HAS_ECC
860 	case KEY_ECDSA:
861 	case KEY_ECDSA_CERT:
862 		if (key->ecdsa == NULL)
863 			return 0;
864 		break;
865 #endif
866 	case KEY_RSA:
867 	case KEY_RSA_CERT_V00:
868 	case KEY_RSA_CERT:
869 		if (key->rsa == NULL)
870 			return 0;
871 		break;
872 	default:
873 		return 0;
874 	}
875 
876 	key_to_blob(key, &blob, &len);
877 	uu = xmalloc(2*len);
878 	n = uuencode(blob, len, uu, 2*len);
879 	if (n > 0) {
880 		fprintf(f, "%s %s", key_ssh_name(key), uu);
881 		success = 1;
882 	}
883 	xfree(blob);
884 	xfree(uu);
885 
886 	return success;
887 }
888 
889 const char *
key_type(const Key * k)890 key_type(const Key *k)
891 {
892 	switch (k->type) {
893 	case KEY_RSA1:
894 		return "RSA1";
895 	case KEY_RSA:
896 		return "RSA";
897 	case KEY_DSA:
898 		return "DSA";
899 #ifdef OPENSSL_HAS_ECC
900 	case KEY_ECDSA:
901 		return "ECDSA";
902 #endif
903 	case KEY_RSA_CERT_V00:
904 		return "RSA-CERT-V00";
905 	case KEY_DSA_CERT_V00:
906 		return "DSA-CERT-V00";
907 	case KEY_RSA_CERT:
908 		return "RSA-CERT";
909 	case KEY_DSA_CERT:
910 		return "DSA-CERT";
911 #ifdef OPENSSL_HAS_ECC
912 	case KEY_ECDSA_CERT:
913 		return "ECDSA-CERT";
914 #endif
915 	}
916 	return "unknown";
917 }
918 
919 const char *
key_cert_type(const Key * k)920 key_cert_type(const Key *k)
921 {
922 	switch (k->cert->type) {
923 	case SSH2_CERT_TYPE_USER:
924 		return "user";
925 	case SSH2_CERT_TYPE_HOST:
926 		return "host";
927 	default:
928 		return "unknown";
929 	}
930 }
931 
932 static const char *
key_ssh_name_from_type_nid(int type,int nid)933 key_ssh_name_from_type_nid(int type, int nid)
934 {
935 	switch (type) {
936 	case KEY_RSA:
937 		return "ssh-rsa";
938 	case KEY_DSA:
939 		return "ssh-dss";
940 	case KEY_RSA_CERT_V00:
941 		return "ssh-rsa-cert-v00@openssh.com";
942 	case KEY_DSA_CERT_V00:
943 		return "ssh-dss-cert-v00@openssh.com";
944 	case KEY_RSA_CERT:
945 		return "ssh-rsa-cert-v01@openssh.com";
946 	case KEY_DSA_CERT:
947 		return "ssh-dss-cert-v01@openssh.com";
948 #ifdef OPENSSL_HAS_ECC
949 	case KEY_ECDSA:
950 		switch (nid) {
951 		case NID_X9_62_prime256v1:
952 			return "ecdsa-sha2-nistp256";
953 		case NID_secp384r1:
954 			return "ecdsa-sha2-nistp384";
955 		case NID_secp521r1:
956 			return "ecdsa-sha2-nistp521";
957 		default:
958 			break;
959 		}
960 		break;
961 	case KEY_ECDSA_CERT:
962 		switch (nid) {
963 		case NID_X9_62_prime256v1:
964 			return "ecdsa-sha2-nistp256-cert-v01@openssh.com";
965 		case NID_secp384r1:
966 			return "ecdsa-sha2-nistp384-cert-v01@openssh.com";
967 		case NID_secp521r1:
968 			return "ecdsa-sha2-nistp521-cert-v01@openssh.com";
969 		default:
970 			break;
971 		}
972 		break;
973 #endif /* OPENSSL_HAS_ECC */
974 	}
975 	return "ssh-unknown";
976 }
977 
978 const char *
key_ssh_name(const Key * k)979 key_ssh_name(const Key *k)
980 {
981 	return key_ssh_name_from_type_nid(k->type, k->ecdsa_nid);
982 }
983 
984 const char *
key_ssh_name_plain(const Key * k)985 key_ssh_name_plain(const Key *k)
986 {
987 	return key_ssh_name_from_type_nid(key_type_plain(k->type),
988 	    k->ecdsa_nid);
989 }
990 
991 u_int
key_size(const Key * k)992 key_size(const Key *k)
993 {
994 	switch (k->type) {
995 	case KEY_RSA1:
996 	case KEY_RSA:
997 	case KEY_RSA_CERT_V00:
998 	case KEY_RSA_CERT:
999 		return BN_num_bits(k->rsa->n);
1000 	case KEY_DSA:
1001 	case KEY_DSA_CERT_V00:
1002 	case KEY_DSA_CERT:
1003 		return BN_num_bits(k->dsa->p);
1004 #ifdef OPENSSL_HAS_ECC
1005 	case KEY_ECDSA:
1006 	case KEY_ECDSA_CERT:
1007 		return key_curve_nid_to_bits(k->ecdsa_nid);
1008 #endif
1009 	}
1010 	return 0;
1011 }
1012 
1013 static RSA *
rsa_generate_private_key(u_int bits)1014 rsa_generate_private_key(u_int bits)
1015 {
1016 	RSA *private = RSA_new();
1017 	BIGNUM *f4 = BN_new();
1018 
1019 	if (private == NULL)
1020 		fatal("%s: RSA_new failed", __func__);
1021 	if (f4 == NULL)
1022 		fatal("%s: BN_new failed", __func__);
1023 	if (!BN_set_word(f4, RSA_F4))
1024 		fatal("%s: BN_new failed", __func__);
1025 	if (!RSA_generate_key_ex(private, bits, f4, NULL))
1026 		fatal("%s: key generation failed.", __func__);
1027 	BN_free(f4);
1028 	return private;
1029 }
1030 
1031 static DSA*
dsa_generate_private_key(u_int bits)1032 dsa_generate_private_key(u_int bits)
1033 {
1034 	DSA *private = DSA_new();
1035 
1036 	if (private == NULL)
1037 		fatal("%s: DSA_new failed", __func__);
1038 	if (!DSA_generate_parameters_ex(private, bits, NULL, 0, NULL,
1039 	    NULL, NULL))
1040 		fatal("%s: DSA_generate_parameters failed", __func__);
1041 	if (!DSA_generate_key(private))
1042 		fatal("%s: DSA_generate_key failed.", __func__);
1043 	return private;
1044 }
1045 
1046 int
key_ecdsa_bits_to_nid(int bits)1047 key_ecdsa_bits_to_nid(int bits)
1048 {
1049 	switch (bits) {
1050 #ifdef OPENSSL_HAS_ECC
1051 	case 256:
1052 		return NID_X9_62_prime256v1;
1053 	case 384:
1054 		return NID_secp384r1;
1055 	case 521:
1056 		return NID_secp521r1;
1057 #endif
1058 	default:
1059 		return -1;
1060 	}
1061 }
1062 
1063 #ifdef OPENSSL_HAS_ECC
1064 int
key_ecdsa_key_to_nid(EC_KEY * k)1065 key_ecdsa_key_to_nid(EC_KEY *k)
1066 {
1067 	EC_GROUP *eg;
1068 	int nids[] = {
1069 		NID_X9_62_prime256v1,
1070 		NID_secp384r1,
1071 		NID_secp521r1,
1072 		-1
1073 	};
1074 	int nid;
1075 	u_int i;
1076 	BN_CTX *bnctx;
1077 	const EC_GROUP *g = EC_KEY_get0_group(k);
1078 
1079 	/*
1080 	 * The group may be stored in a ASN.1 encoded private key in one of two
1081 	 * ways: as a "named group", which is reconstituted by ASN.1 object ID
1082 	 * or explicit group parameters encoded into the key blob. Only the
1083 	 * "named group" case sets the group NID for us, but we can figure
1084 	 * it out for the other case by comparing against all the groups that
1085 	 * are supported.
1086 	 */
1087 	if ((nid = EC_GROUP_get_curve_name(g)) > 0)
1088 		return nid;
1089 	if ((bnctx = BN_CTX_new()) == NULL)
1090 		fatal("%s: BN_CTX_new() failed", __func__);
1091 	for (i = 0; nids[i] != -1; i++) {
1092 		if ((eg = EC_GROUP_new_by_curve_name(nids[i])) == NULL)
1093 			fatal("%s: EC_GROUP_new_by_curve_name failed",
1094 			    __func__);
1095 		if (EC_GROUP_cmp(g, eg, bnctx) == 0)
1096 			break;
1097 		EC_GROUP_free(eg);
1098 	}
1099 	BN_CTX_free(bnctx);
1100 	debug3("%s: nid = %d", __func__, nids[i]);
1101 	if (nids[i] != -1) {
1102 		/* Use the group with the NID attached */
1103 		EC_GROUP_set_asn1_flag(eg, OPENSSL_EC_NAMED_CURVE);
1104 		if (EC_KEY_set_group(k, eg) != 1)
1105 			fatal("%s: EC_KEY_set_group", __func__);
1106 	}
1107 	return nids[i];
1108 }
1109 
1110 static EC_KEY*
ecdsa_generate_private_key(u_int bits,int * nid)1111 ecdsa_generate_private_key(u_int bits, int *nid)
1112 {
1113 	EC_KEY *private;
1114 
1115 	if ((*nid = key_ecdsa_bits_to_nid(bits)) == -1)
1116 		fatal("%s: invalid key length", __func__);
1117 	if ((private = EC_KEY_new_by_curve_name(*nid)) == NULL)
1118 		fatal("%s: EC_KEY_new_by_curve_name failed", __func__);
1119 	if (EC_KEY_generate_key(private) != 1)
1120 		fatal("%s: EC_KEY_generate_key failed", __func__);
1121 	EC_KEY_set_asn1_flag(private, OPENSSL_EC_NAMED_CURVE);
1122 	return private;
1123 }
1124 #endif /* OPENSSL_HAS_ECC */
1125 
1126 Key *
key_generate(int type,u_int bits)1127 key_generate(int type, u_int bits)
1128 {
1129 	Key *k = key_new(KEY_UNSPEC);
1130 	switch (type) {
1131 	case KEY_DSA:
1132 		k->dsa = dsa_generate_private_key(bits);
1133 		break;
1134 #ifdef OPENSSL_HAS_ECC
1135 	case KEY_ECDSA:
1136 		k->ecdsa = ecdsa_generate_private_key(bits, &k->ecdsa_nid);
1137 		break;
1138 #endif
1139 	case KEY_RSA:
1140 	case KEY_RSA1:
1141 		k->rsa = rsa_generate_private_key(bits);
1142 		break;
1143 	case KEY_RSA_CERT_V00:
1144 	case KEY_DSA_CERT_V00:
1145 	case KEY_RSA_CERT:
1146 	case KEY_DSA_CERT:
1147 		fatal("key_generate: cert keys cannot be generated directly");
1148 	default:
1149 		fatal("key_generate: unknown type %d", type);
1150 	}
1151 	k->type = type;
1152 	return k;
1153 }
1154 
1155 void
key_cert_copy(const Key * from_key,struct Key * to_key)1156 key_cert_copy(const Key *from_key, struct Key *to_key)
1157 {
1158 	u_int i;
1159 	const struct KeyCert *from;
1160 	struct KeyCert *to;
1161 
1162 	if (to_key->cert != NULL) {
1163 		cert_free(to_key->cert);
1164 		to_key->cert = NULL;
1165 	}
1166 
1167 	if ((from = from_key->cert) == NULL)
1168 		return;
1169 
1170 	to = to_key->cert = cert_new();
1171 
1172 	buffer_append(&to->certblob, buffer_ptr(&from->certblob),
1173 	    buffer_len(&from->certblob));
1174 
1175 	buffer_append(&to->critical,
1176 	    buffer_ptr(&from->critical), buffer_len(&from->critical));
1177 	buffer_append(&to->extensions,
1178 	    buffer_ptr(&from->extensions), buffer_len(&from->extensions));
1179 
1180 	to->serial = from->serial;
1181 	to->type = from->type;
1182 	to->key_id = from->key_id == NULL ? NULL : xstrdup(from->key_id);
1183 	to->valid_after = from->valid_after;
1184 	to->valid_before = from->valid_before;
1185 	to->signature_key = from->signature_key == NULL ?
1186 	    NULL : key_from_private(from->signature_key);
1187 
1188 	to->nprincipals = from->nprincipals;
1189 	if (to->nprincipals > CERT_MAX_PRINCIPALS)
1190 		fatal("%s: nprincipals (%u) > CERT_MAX_PRINCIPALS (%u)",
1191 		    __func__, to->nprincipals, CERT_MAX_PRINCIPALS);
1192 	if (to->nprincipals > 0) {
1193 		to->principals = xcalloc(from->nprincipals,
1194 		    sizeof(*to->principals));
1195 		for (i = 0; i < to->nprincipals; i++)
1196 			to->principals[i] = xstrdup(from->principals[i]);
1197 	}
1198 }
1199 
1200 Key *
key_from_private(const Key * k)1201 key_from_private(const Key *k)
1202 {
1203 	Key *n = NULL;
1204 	switch (k->type) {
1205 	case KEY_DSA:
1206 	case KEY_DSA_CERT_V00:
1207 	case KEY_DSA_CERT:
1208 		n = key_new(k->type);
1209 		if ((BN_copy(n->dsa->p, k->dsa->p) == NULL) ||
1210 		    (BN_copy(n->dsa->q, k->dsa->q) == NULL) ||
1211 		    (BN_copy(n->dsa->g, k->dsa->g) == NULL) ||
1212 		    (BN_copy(n->dsa->pub_key, k->dsa->pub_key) == NULL))
1213 			fatal("key_from_private: BN_copy failed");
1214 		break;
1215 #ifdef OPENSSL_HAS_ECC
1216 	case KEY_ECDSA:
1217 	case KEY_ECDSA_CERT:
1218 		n = key_new(k->type);
1219 		n->ecdsa_nid = k->ecdsa_nid;
1220 		if ((n->ecdsa = EC_KEY_new_by_curve_name(k->ecdsa_nid)) == NULL)
1221 			fatal("%s: EC_KEY_new_by_curve_name failed", __func__);
1222 		if (EC_KEY_set_public_key(n->ecdsa,
1223 		    EC_KEY_get0_public_key(k->ecdsa)) != 1)
1224 			fatal("%s: EC_KEY_set_public_key failed", __func__);
1225 		break;
1226 #endif
1227 	case KEY_RSA:
1228 	case KEY_RSA1:
1229 	case KEY_RSA_CERT_V00:
1230 	case KEY_RSA_CERT:
1231 		n = key_new(k->type);
1232 		if ((BN_copy(n->rsa->n, k->rsa->n) == NULL) ||
1233 		    (BN_copy(n->rsa->e, k->rsa->e) == NULL))
1234 			fatal("key_from_private: BN_copy failed");
1235 		break;
1236 	default:
1237 		fatal("key_from_private: unknown type %d", k->type);
1238 		break;
1239 	}
1240 	if (key_is_cert(k))
1241 		key_cert_copy(k, n);
1242 	return n;
1243 }
1244 
1245 int
key_type_from_name(char * name)1246 key_type_from_name(char *name)
1247 {
1248 	if (strcmp(name, "rsa1") == 0) {
1249 		return KEY_RSA1;
1250 	} else if (strcmp(name, "rsa") == 0) {
1251 		return KEY_RSA;
1252 	} else if (strcmp(name, "dsa") == 0) {
1253 		return KEY_DSA;
1254 	} else if (strcmp(name, "ssh-rsa") == 0) {
1255 		return KEY_RSA;
1256 	} else if (strcmp(name, "ssh-dss") == 0) {
1257 		return KEY_DSA;
1258 #ifdef OPENSSL_HAS_ECC
1259 	} else if (strcmp(name, "ecdsa") == 0 ||
1260 	    strcmp(name, "ecdsa-sha2-nistp256") == 0 ||
1261 	    strcmp(name, "ecdsa-sha2-nistp384") == 0 ||
1262 	    strcmp(name, "ecdsa-sha2-nistp521") == 0) {
1263 		return KEY_ECDSA;
1264 #endif
1265 	} else if (strcmp(name, "ssh-rsa-cert-v00@openssh.com") == 0) {
1266 		return KEY_RSA_CERT_V00;
1267 	} else if (strcmp(name, "ssh-dss-cert-v00@openssh.com") == 0) {
1268 		return KEY_DSA_CERT_V00;
1269 	} else if (strcmp(name, "ssh-rsa-cert-v01@openssh.com") == 0) {
1270 		return KEY_RSA_CERT;
1271 	} else if (strcmp(name, "ssh-dss-cert-v01@openssh.com") == 0) {
1272 		return KEY_DSA_CERT;
1273 #ifdef OPENSSL_HAS_ECC
1274 	} else if (strcmp(name, "ecdsa-sha2-nistp256-cert-v01@openssh.com") == 0 ||
1275 	    strcmp(name, "ecdsa-sha2-nistp384-cert-v01@openssh.com") == 0 ||
1276 	    strcmp(name, "ecdsa-sha2-nistp521-cert-v01@openssh.com") == 0) {
1277 		return KEY_ECDSA_CERT;
1278 #endif
1279 	}
1280 
1281 	debug2("key_type_from_name: unknown key type '%s'", name);
1282 	return KEY_UNSPEC;
1283 }
1284 
1285 int
key_ecdsa_nid_from_name(const char * name)1286 key_ecdsa_nid_from_name(const char *name)
1287 {
1288 #ifdef OPENSSL_HAS_ECC
1289 	if (strcmp(name, "ecdsa-sha2-nistp256") == 0 ||
1290 	    strcmp(name, "ecdsa-sha2-nistp256-cert-v01@openssh.com") == 0)
1291 		return NID_X9_62_prime256v1;
1292 	if (strcmp(name, "ecdsa-sha2-nistp384") == 0 ||
1293 	    strcmp(name, "ecdsa-sha2-nistp384-cert-v01@openssh.com") == 0)
1294 		return NID_secp384r1;
1295 	if (strcmp(name, "ecdsa-sha2-nistp521") == 0 ||
1296 	    strcmp(name, "ecdsa-sha2-nistp521-cert-v01@openssh.com") == 0)
1297 		return NID_secp521r1;
1298 #endif /* OPENSSL_HAS_ECC */
1299 
1300 	debug2("%s: unknown/non-ECDSA key type '%s'", __func__, name);
1301 	return -1;
1302 }
1303 
1304 int
key_names_valid2(const char * names)1305 key_names_valid2(const char *names)
1306 {
1307 	char *s, *cp, *p;
1308 
1309 	if (names == NULL || strcmp(names, "") == 0)
1310 		return 0;
1311 	s = cp = xstrdup(names);
1312 	for ((p = strsep(&cp, ",")); p && *p != '\0';
1313 	    (p = strsep(&cp, ","))) {
1314 		switch (key_type_from_name(p)) {
1315 		case KEY_RSA1:
1316 		case KEY_UNSPEC:
1317 			xfree(s);
1318 			return 0;
1319 		}
1320 	}
1321 	debug3("key names ok: [%s]", names);
1322 	xfree(s);
1323 	return 1;
1324 }
1325 
1326 static int
cert_parse(Buffer * b,Key * key,const u_char * blob,u_int blen)1327 cert_parse(Buffer *b, Key *key, const u_char *blob, u_int blen)
1328 {
1329 	u_char *principals, *critical, *exts, *sig_key, *sig;
1330 	u_int signed_len, plen, clen, sklen, slen, kidlen, elen;
1331 	Buffer tmp;
1332 	char *principal;
1333 	int ret = -1;
1334 	int v00 = key->type == KEY_DSA_CERT_V00 ||
1335 	    key->type == KEY_RSA_CERT_V00;
1336 
1337 	buffer_init(&tmp);
1338 
1339 	/* Copy the entire key blob for verification and later serialisation */
1340 	buffer_append(&key->cert->certblob, blob, blen);
1341 
1342 	elen = 0; /* Not touched for v00 certs */
1343 	principals = exts = critical = sig_key = sig = NULL;
1344 	if ((!v00 && buffer_get_int64_ret(&key->cert->serial, b) != 0) ||
1345 	    buffer_get_int_ret(&key->cert->type, b) != 0 ||
1346 	    (key->cert->key_id = buffer_get_cstring_ret(b, &kidlen)) == NULL ||
1347 	    (principals = buffer_get_string_ret(b, &plen)) == NULL ||
1348 	    buffer_get_int64_ret(&key->cert->valid_after, b) != 0 ||
1349 	    buffer_get_int64_ret(&key->cert->valid_before, b) != 0 ||
1350 	    (critical = buffer_get_string_ret(b, &clen)) == NULL ||
1351 	    (!v00 && (exts = buffer_get_string_ret(b, &elen)) == NULL) ||
1352 	    (v00 && buffer_get_string_ptr_ret(b, NULL) == NULL) || /* nonce */
1353 	    buffer_get_string_ptr_ret(b, NULL) == NULL || /* reserved */
1354 	    (sig_key = buffer_get_string_ret(b, &sklen)) == NULL) {
1355 		error("%s: parse error", __func__);
1356 		goto out;
1357 	}
1358 
1359 	if (kidlen != strlen(key->cert->key_id)) {
1360 		error("%s: key ID contains \\0 character", __func__);
1361 		goto out;
1362 	}
1363 
1364 	/* Signature is left in the buffer so we can calculate this length */
1365 	signed_len = buffer_len(&key->cert->certblob) - buffer_len(b);
1366 
1367 	if ((sig = buffer_get_string_ret(b, &slen)) == NULL) {
1368 		error("%s: parse error", __func__);
1369 		goto out;
1370 	}
1371 
1372 	if (key->cert->type != SSH2_CERT_TYPE_USER &&
1373 	    key->cert->type != SSH2_CERT_TYPE_HOST) {
1374 		error("Unknown certificate type %u", key->cert->type);
1375 		goto out;
1376 	}
1377 
1378 	buffer_append(&tmp, principals, plen);
1379 	while (buffer_len(&tmp) > 0) {
1380 		if (key->cert->nprincipals >= CERT_MAX_PRINCIPALS) {
1381 			error("%s: Too many principals", __func__);
1382 			goto out;
1383 		}
1384 		if ((principal = buffer_get_cstring_ret(&tmp, &plen)) == NULL) {
1385 			error("%s: Principals data invalid", __func__);
1386 			goto out;
1387 		}
1388 		key->cert->principals = xrealloc(key->cert->principals,
1389 		    key->cert->nprincipals + 1, sizeof(*key->cert->principals));
1390 		key->cert->principals[key->cert->nprincipals++] = principal;
1391 	}
1392 
1393 	buffer_clear(&tmp);
1394 
1395 	buffer_append(&key->cert->critical, critical, clen);
1396 	buffer_append(&tmp, critical, clen);
1397 	/* validate structure */
1398 	while (buffer_len(&tmp) != 0) {
1399 		if (buffer_get_string_ptr_ret(&tmp, NULL) == NULL ||
1400 		    buffer_get_string_ptr_ret(&tmp, NULL) == NULL) {
1401 			error("%s: critical option data invalid", __func__);
1402 			goto out;
1403 		}
1404 	}
1405 	buffer_clear(&tmp);
1406 
1407 	buffer_append(&key->cert->extensions, exts, elen);
1408 	buffer_append(&tmp, exts, elen);
1409 	/* validate structure */
1410 	while (buffer_len(&tmp) != 0) {
1411 		if (buffer_get_string_ptr_ret(&tmp, NULL) == NULL ||
1412 		    buffer_get_string_ptr_ret(&tmp, NULL) == NULL) {
1413 			error("%s: extension data invalid", __func__);
1414 			goto out;
1415 		}
1416 	}
1417 	buffer_clear(&tmp);
1418 
1419 	if ((key->cert->signature_key = key_from_blob(sig_key,
1420 	    sklen)) == NULL) {
1421 		error("%s: Signature key invalid", __func__);
1422 		goto out;
1423 	}
1424 	if (key->cert->signature_key->type != KEY_RSA &&
1425 	    key->cert->signature_key->type != KEY_DSA &&
1426 	    key->cert->signature_key->type != KEY_ECDSA) {
1427 		error("%s: Invalid signature key type %s (%d)", __func__,
1428 		    key_type(key->cert->signature_key),
1429 		    key->cert->signature_key->type);
1430 		goto out;
1431 	}
1432 
1433 	switch (key_verify(key->cert->signature_key, sig, slen,
1434 	    buffer_ptr(&key->cert->certblob), signed_len)) {
1435 	case 1:
1436 		ret = 0;
1437 		break; /* Good signature */
1438 	case 0:
1439 		error("%s: Invalid signature on certificate", __func__);
1440 		goto out;
1441 	case -1:
1442 		error("%s: Certificate signature verification failed",
1443 		    __func__);
1444 		goto out;
1445 	}
1446 
1447  out:
1448 	buffer_free(&tmp);
1449 	if (principals != NULL)
1450 		xfree(principals);
1451 	if (critical != NULL)
1452 		xfree(critical);
1453 	if (exts != NULL)
1454 		xfree(exts);
1455 	if (sig_key != NULL)
1456 		xfree(sig_key);
1457 	if (sig != NULL)
1458 		xfree(sig);
1459 	return ret;
1460 }
1461 
1462 Key *
key_from_blob(const u_char * blob,u_int blen)1463 key_from_blob(const u_char *blob, u_int blen)
1464 {
1465 	Buffer b;
1466 	int rlen, type;
1467 	char *ktype = NULL, *curve = NULL;
1468 	Key *key = NULL;
1469 #ifdef OPENSSL_HAS_ECC
1470 	EC_POINT *q = NULL;
1471 	int nid = -1;
1472 #endif
1473 
1474 #ifdef DEBUG_PK
1475 	dump_base64(stderr, blob, blen);
1476 #endif
1477 	buffer_init(&b);
1478 	buffer_append(&b, blob, blen);
1479 	if ((ktype = buffer_get_cstring_ret(&b, NULL)) == NULL) {
1480 		error("key_from_blob: can't read key type");
1481 		goto out;
1482 	}
1483 
1484 	type = key_type_from_name(ktype);
1485 #ifdef OPENSSL_HAS_ECC
1486 	if (key_type_plain(type) == KEY_ECDSA)
1487 		nid = key_ecdsa_nid_from_name(ktype);
1488 #endif
1489 
1490 	switch (type) {
1491 	case KEY_RSA_CERT:
1492 		(void)buffer_get_string_ptr_ret(&b, NULL); /* Skip nonce */
1493 		/* FALLTHROUGH */
1494 	case KEY_RSA:
1495 	case KEY_RSA_CERT_V00:
1496 		key = key_new(type);
1497 		if (buffer_get_bignum2_ret(&b, key->rsa->e) == -1 ||
1498 		    buffer_get_bignum2_ret(&b, key->rsa->n) == -1) {
1499 			error("key_from_blob: can't read rsa key");
1500  badkey:
1501 			key_free(key);
1502 			key = NULL;
1503 			goto out;
1504 		}
1505 #ifdef DEBUG_PK
1506 		RSA_print_fp(stderr, key->rsa, 8);
1507 #endif
1508 		break;
1509 	case KEY_DSA_CERT:
1510 		(void)buffer_get_string_ptr_ret(&b, NULL); /* Skip nonce */
1511 		/* FALLTHROUGH */
1512 	case KEY_DSA:
1513 	case KEY_DSA_CERT_V00:
1514 		key = key_new(type);
1515 		if (buffer_get_bignum2_ret(&b, key->dsa->p) == -1 ||
1516 		    buffer_get_bignum2_ret(&b, key->dsa->q) == -1 ||
1517 		    buffer_get_bignum2_ret(&b, key->dsa->g) == -1 ||
1518 		    buffer_get_bignum2_ret(&b, key->dsa->pub_key) == -1) {
1519 			error("key_from_blob: can't read dsa key");
1520 			goto badkey;
1521 		}
1522 #ifdef DEBUG_PK
1523 		DSA_print_fp(stderr, key->dsa, 8);
1524 #endif
1525 		break;
1526 #ifdef OPENSSL_HAS_ECC
1527 	case KEY_ECDSA_CERT:
1528 		(void)buffer_get_string_ptr_ret(&b, NULL); /* Skip nonce */
1529 		/* FALLTHROUGH */
1530 	case KEY_ECDSA:
1531 		key = key_new(type);
1532 		key->ecdsa_nid = nid;
1533 		if ((curve = buffer_get_string_ret(&b, NULL)) == NULL) {
1534 			error("key_from_blob: can't read ecdsa curve");
1535 			goto badkey;
1536 		}
1537 		if (key->ecdsa_nid != key_curve_name_to_nid(curve)) {
1538 			error("key_from_blob: ecdsa curve doesn't match type");
1539 			goto badkey;
1540 		}
1541 		if (key->ecdsa != NULL)
1542 			EC_KEY_free(key->ecdsa);
1543 		if ((key->ecdsa = EC_KEY_new_by_curve_name(key->ecdsa_nid))
1544 		    == NULL)
1545 			fatal("key_from_blob: EC_KEY_new_by_curve_name failed");
1546 		if ((q = EC_POINT_new(EC_KEY_get0_group(key->ecdsa))) == NULL)
1547 			fatal("key_from_blob: EC_POINT_new failed");
1548 		if (buffer_get_ecpoint_ret(&b, EC_KEY_get0_group(key->ecdsa),
1549 		    q) == -1) {
1550 			error("key_from_blob: can't read ecdsa key point");
1551 			goto badkey;
1552 		}
1553 		if (key_ec_validate_public(EC_KEY_get0_group(key->ecdsa),
1554 		    q) != 0)
1555 			goto badkey;
1556 		if (EC_KEY_set_public_key(key->ecdsa, q) != 1)
1557 			fatal("key_from_blob: EC_KEY_set_public_key failed");
1558 #ifdef DEBUG_PK
1559 		key_dump_ec_point(EC_KEY_get0_group(key->ecdsa), q);
1560 #endif
1561 		break;
1562 #endif /* OPENSSL_HAS_ECC */
1563 	case KEY_UNSPEC:
1564 		key = key_new(type);
1565 		break;
1566 	default:
1567 		error("key_from_blob: cannot handle type %s", ktype);
1568 		goto out;
1569 	}
1570 	if (key_is_cert(key) && cert_parse(&b, key, blob, blen) == -1) {
1571 		error("key_from_blob: can't parse cert data");
1572 		goto badkey;
1573 	}
1574 	rlen = buffer_len(&b);
1575 	if (key != NULL && rlen != 0)
1576 		error("key_from_blob: remaining bytes in key blob %d", rlen);
1577  out:
1578 	if (ktype != NULL)
1579 		xfree(ktype);
1580 	if (curve != NULL)
1581 		xfree(curve);
1582 #ifdef OPENSSL_HAS_ECC
1583 	if (q != NULL)
1584 		EC_POINT_free(q);
1585 #endif
1586 	buffer_free(&b);
1587 	return key;
1588 }
1589 
1590 int
key_to_blob(const Key * key,u_char ** blobp,u_int * lenp)1591 key_to_blob(const Key *key, u_char **blobp, u_int *lenp)
1592 {
1593 	Buffer b;
1594 	int len;
1595 
1596 	if (key == NULL) {
1597 		error("key_to_blob: key == NULL");
1598 		return 0;
1599 	}
1600 	buffer_init(&b);
1601 	switch (key->type) {
1602 	case KEY_DSA_CERT_V00:
1603 	case KEY_RSA_CERT_V00:
1604 	case KEY_DSA_CERT:
1605 	case KEY_ECDSA_CERT:
1606 	case KEY_RSA_CERT:
1607 		/* Use the existing blob */
1608 		buffer_append(&b, buffer_ptr(&key->cert->certblob),
1609 		    buffer_len(&key->cert->certblob));
1610 		break;
1611 	case KEY_DSA:
1612 		buffer_put_cstring(&b, key_ssh_name(key));
1613 		buffer_put_bignum2(&b, key->dsa->p);
1614 		buffer_put_bignum2(&b, key->dsa->q);
1615 		buffer_put_bignum2(&b, key->dsa->g);
1616 		buffer_put_bignum2(&b, key->dsa->pub_key);
1617 		break;
1618 #ifdef OPENSSL_HAS_ECC
1619 	case KEY_ECDSA:
1620 		buffer_put_cstring(&b, key_ssh_name(key));
1621 		buffer_put_cstring(&b, key_curve_nid_to_name(key->ecdsa_nid));
1622 		buffer_put_ecpoint(&b, EC_KEY_get0_group(key->ecdsa),
1623 		    EC_KEY_get0_public_key(key->ecdsa));
1624 		break;
1625 #endif
1626 	case KEY_RSA:
1627 		buffer_put_cstring(&b, key_ssh_name(key));
1628 		buffer_put_bignum2(&b, key->rsa->e);
1629 		buffer_put_bignum2(&b, key->rsa->n);
1630 		break;
1631 	default:
1632 		error("key_to_blob: unsupported key type %d", key->type);
1633 		buffer_free(&b);
1634 		return 0;
1635 	}
1636 	len = buffer_len(&b);
1637 	if (lenp != NULL)
1638 		*lenp = len;
1639 	if (blobp != NULL) {
1640 		*blobp = xmalloc(len);
1641 		memcpy(*blobp, buffer_ptr(&b), len);
1642 	}
1643 	memset(buffer_ptr(&b), 0, len);
1644 	buffer_free(&b);
1645 	return len;
1646 }
1647 
1648 int
key_sign(const Key * key,u_char ** sigp,u_int * lenp,const u_char * data,u_int datalen)1649 key_sign(
1650     const Key *key,
1651     u_char **sigp, u_int *lenp,
1652     const u_char *data, u_int datalen)
1653 {
1654 	switch (key->type) {
1655 	case KEY_DSA_CERT_V00:
1656 	case KEY_DSA_CERT:
1657 	case KEY_DSA:
1658 		return ssh_dss_sign(key, sigp, lenp, data, datalen);
1659 #ifdef OPENSSL_HAS_ECC
1660 	case KEY_ECDSA_CERT:
1661 	case KEY_ECDSA:
1662 		return ssh_ecdsa_sign(key, sigp, lenp, data, datalen);
1663 #endif
1664 	case KEY_RSA_CERT_V00:
1665 	case KEY_RSA_CERT:
1666 	case KEY_RSA:
1667 		return ssh_rsa_sign(key, sigp, lenp, data, datalen);
1668 	default:
1669 		error("key_sign: invalid key type %d", key->type);
1670 		return -1;
1671 	}
1672 }
1673 
1674 /*
1675  * key_verify returns 1 for a correct signature, 0 for an incorrect signature
1676  * and -1 on error.
1677  */
1678 int
key_verify(const Key * key,const u_char * signature,u_int signaturelen,const u_char * data,u_int datalen)1679 key_verify(
1680     const Key *key,
1681     const u_char *signature, u_int signaturelen,
1682     const u_char *data, u_int datalen)
1683 {
1684 	if (signaturelen == 0)
1685 		return -1;
1686 
1687 	switch (key->type) {
1688 	case KEY_DSA_CERT_V00:
1689 	case KEY_DSA_CERT:
1690 	case KEY_DSA:
1691 		return ssh_dss_verify(key, signature, signaturelen, data, datalen);
1692 #ifdef OPENSSL_HAS_ECC
1693 	case KEY_ECDSA_CERT:
1694 	case KEY_ECDSA:
1695 		return ssh_ecdsa_verify(key, signature, signaturelen, data, datalen);
1696 #endif
1697 	case KEY_RSA_CERT_V00:
1698 	case KEY_RSA_CERT:
1699 	case KEY_RSA:
1700 		return ssh_rsa_verify(key, signature, signaturelen, data, datalen);
1701 	default:
1702 		error("key_verify: invalid key type %d", key->type);
1703 		return -1;
1704 	}
1705 }
1706 
1707 /* Converts a private to a public key */
1708 Key *
key_demote(const Key * k)1709 key_demote(const Key *k)
1710 {
1711 	Key *pk;
1712 
1713 	pk = xcalloc(1, sizeof(*pk));
1714 	pk->type = k->type;
1715 	pk->flags = k->flags;
1716 	pk->ecdsa_nid = k->ecdsa_nid;
1717 	pk->dsa = NULL;
1718 	pk->ecdsa = NULL;
1719 	pk->rsa = NULL;
1720 
1721 	switch (k->type) {
1722 	case KEY_RSA_CERT_V00:
1723 	case KEY_RSA_CERT:
1724 		key_cert_copy(k, pk);
1725 		/* FALLTHROUGH */
1726 	case KEY_RSA1:
1727 	case KEY_RSA:
1728 		if ((pk->rsa = RSA_new()) == NULL)
1729 			fatal("key_demote: RSA_new failed");
1730 		if ((pk->rsa->e = BN_dup(k->rsa->e)) == NULL)
1731 			fatal("key_demote: BN_dup failed");
1732 		if ((pk->rsa->n = BN_dup(k->rsa->n)) == NULL)
1733 			fatal("key_demote: BN_dup failed");
1734 		break;
1735 	case KEY_DSA_CERT_V00:
1736 	case KEY_DSA_CERT:
1737 		key_cert_copy(k, pk);
1738 		/* FALLTHROUGH */
1739 	case KEY_DSA:
1740 		if ((pk->dsa = DSA_new()) == NULL)
1741 			fatal("key_demote: DSA_new failed");
1742 		if ((pk->dsa->p = BN_dup(k->dsa->p)) == NULL)
1743 			fatal("key_demote: BN_dup failed");
1744 		if ((pk->dsa->q = BN_dup(k->dsa->q)) == NULL)
1745 			fatal("key_demote: BN_dup failed");
1746 		if ((pk->dsa->g = BN_dup(k->dsa->g)) == NULL)
1747 			fatal("key_demote: BN_dup failed");
1748 		if ((pk->dsa->pub_key = BN_dup(k->dsa->pub_key)) == NULL)
1749 			fatal("key_demote: BN_dup failed");
1750 		break;
1751 #ifdef OPENSSL_HAS_ECC
1752 	case KEY_ECDSA_CERT:
1753 		key_cert_copy(k, pk);
1754 		/* FALLTHROUGH */
1755 	case KEY_ECDSA:
1756 		if ((pk->ecdsa = EC_KEY_new_by_curve_name(pk->ecdsa_nid)) == NULL)
1757 			fatal("key_demote: EC_KEY_new_by_curve_name failed");
1758 		if (EC_KEY_set_public_key(pk->ecdsa,
1759 		    EC_KEY_get0_public_key(k->ecdsa)) != 1)
1760 			fatal("key_demote: EC_KEY_set_public_key failed");
1761 		break;
1762 #endif
1763 	default:
1764 		fatal("key_free: bad key type %d", k->type);
1765 		break;
1766 	}
1767 
1768 	return (pk);
1769 }
1770 
1771 int
key_is_cert(const Key * k)1772 key_is_cert(const Key *k)
1773 {
1774 	if (k == NULL)
1775 		return 0;
1776 	switch (k->type) {
1777 	case KEY_RSA_CERT_V00:
1778 	case KEY_DSA_CERT_V00:
1779 	case KEY_RSA_CERT:
1780 	case KEY_DSA_CERT:
1781 	case KEY_ECDSA_CERT:
1782 		return 1;
1783 	default:
1784 		return 0;
1785 	}
1786 }
1787 
1788 /* Return the cert-less equivalent to a certified key type */
1789 int
key_type_plain(int type)1790 key_type_plain(int type)
1791 {
1792 	switch (type) {
1793 	case KEY_RSA_CERT_V00:
1794 	case KEY_RSA_CERT:
1795 		return KEY_RSA;
1796 	case KEY_DSA_CERT_V00:
1797 	case KEY_DSA_CERT:
1798 		return KEY_DSA;
1799 	case KEY_ECDSA_CERT:
1800 		return KEY_ECDSA;
1801 	default:
1802 		return type;
1803 	}
1804 }
1805 
1806 /* Convert a KEY_RSA or KEY_DSA to their _CERT equivalent */
1807 int
key_to_certified(Key * k,int legacy)1808 key_to_certified(Key *k, int legacy)
1809 {
1810 	switch (k->type) {
1811 	case KEY_RSA:
1812 		k->cert = cert_new();
1813 		k->type = legacy ? KEY_RSA_CERT_V00 : KEY_RSA_CERT;
1814 		return 0;
1815 	case KEY_DSA:
1816 		k->cert = cert_new();
1817 		k->type = legacy ? KEY_DSA_CERT_V00 : KEY_DSA_CERT;
1818 		return 0;
1819 	case KEY_ECDSA:
1820 		if (legacy)
1821 			fatal("%s: legacy ECDSA certificates are not supported",
1822 			    __func__);
1823 		k->cert = cert_new();
1824 		k->type = KEY_ECDSA_CERT;
1825 		return 0;
1826 	default:
1827 		error("%s: key has incorrect type %s", __func__, key_type(k));
1828 		return -1;
1829 	}
1830 }
1831 
1832 /* Convert a KEY_RSA_CERT or KEY_DSA_CERT to their raw key equivalent */
1833 int
key_drop_cert(Key * k)1834 key_drop_cert(Key *k)
1835 {
1836 	switch (k->type) {
1837 	case KEY_RSA_CERT_V00:
1838 	case KEY_RSA_CERT:
1839 		cert_free(k->cert);
1840 		k->type = KEY_RSA;
1841 		return 0;
1842 	case KEY_DSA_CERT_V00:
1843 	case KEY_DSA_CERT:
1844 		cert_free(k->cert);
1845 		k->type = KEY_DSA;
1846 		return 0;
1847 	case KEY_ECDSA_CERT:
1848 		cert_free(k->cert);
1849 		k->type = KEY_ECDSA;
1850 		return 0;
1851 	default:
1852 		error("%s: key has incorrect type %s", __func__, key_type(k));
1853 		return -1;
1854 	}
1855 }
1856 
1857 /*
1858  * Sign a KEY_RSA_CERT, KEY_DSA_CERT or KEY_ECDSA_CERT, (re-)generating
1859  * the signed certblob
1860  */
1861 int
key_certify(Key * k,Key * ca)1862 key_certify(Key *k, Key *ca)
1863 {
1864 	Buffer principals;
1865 	u_char *ca_blob, *sig_blob, nonce[32];
1866 	u_int i, ca_len, sig_len;
1867 
1868 	if (k->cert == NULL) {
1869 		error("%s: key lacks cert info", __func__);
1870 		return -1;
1871 	}
1872 
1873 	if (!key_is_cert(k)) {
1874 		error("%s: certificate has unknown type %d", __func__,
1875 		    k->cert->type);
1876 		return -1;
1877 	}
1878 
1879 	if (ca->type != KEY_RSA && ca->type != KEY_DSA &&
1880 	    ca->type != KEY_ECDSA) {
1881 		error("%s: CA key has unsupported type %s", __func__,
1882 		    key_type(ca));
1883 		return -1;
1884 	}
1885 
1886 	key_to_blob(ca, &ca_blob, &ca_len);
1887 
1888 	buffer_clear(&k->cert->certblob);
1889 	buffer_put_cstring(&k->cert->certblob, key_ssh_name(k));
1890 
1891 	/* -v01 certs put nonce first */
1892 	arc4random_buf(&nonce, sizeof(nonce));
1893 	if (!key_cert_is_legacy(k))
1894 		buffer_put_string(&k->cert->certblob, nonce, sizeof(nonce));
1895 
1896 	switch (k->type) {
1897 	case KEY_DSA_CERT_V00:
1898 	case KEY_DSA_CERT:
1899 		buffer_put_bignum2(&k->cert->certblob, k->dsa->p);
1900 		buffer_put_bignum2(&k->cert->certblob, k->dsa->q);
1901 		buffer_put_bignum2(&k->cert->certblob, k->dsa->g);
1902 		buffer_put_bignum2(&k->cert->certblob, k->dsa->pub_key);
1903 		break;
1904 #ifdef OPENSSL_HAS_ECC
1905 	case KEY_ECDSA_CERT:
1906 		buffer_put_cstring(&k->cert->certblob,
1907 		    key_curve_nid_to_name(k->ecdsa_nid));
1908 		buffer_put_ecpoint(&k->cert->certblob,
1909 		    EC_KEY_get0_group(k->ecdsa),
1910 		    EC_KEY_get0_public_key(k->ecdsa));
1911 		break;
1912 #endif
1913 	case KEY_RSA_CERT_V00:
1914 	case KEY_RSA_CERT:
1915 		buffer_put_bignum2(&k->cert->certblob, k->rsa->e);
1916 		buffer_put_bignum2(&k->cert->certblob, k->rsa->n);
1917 		break;
1918 	default:
1919 		error("%s: key has incorrect type %s", __func__, key_type(k));
1920 		buffer_clear(&k->cert->certblob);
1921 		xfree(ca_blob);
1922 		return -1;
1923 	}
1924 
1925 	/* -v01 certs have a serial number next */
1926 	if (!key_cert_is_legacy(k))
1927 		buffer_put_int64(&k->cert->certblob, k->cert->serial);
1928 
1929 	buffer_put_int(&k->cert->certblob, k->cert->type);
1930 	buffer_put_cstring(&k->cert->certblob, k->cert->key_id);
1931 
1932 	buffer_init(&principals);
1933 	for (i = 0; i < k->cert->nprincipals; i++)
1934 		buffer_put_cstring(&principals, k->cert->principals[i]);
1935 	buffer_put_string(&k->cert->certblob, buffer_ptr(&principals),
1936 	    buffer_len(&principals));
1937 	buffer_free(&principals);
1938 
1939 	buffer_put_int64(&k->cert->certblob, k->cert->valid_after);
1940 	buffer_put_int64(&k->cert->certblob, k->cert->valid_before);
1941 	buffer_put_string(&k->cert->certblob,
1942 	    buffer_ptr(&k->cert->critical), buffer_len(&k->cert->critical));
1943 
1944 	/* -v01 certs have non-critical options here */
1945 	if (!key_cert_is_legacy(k)) {
1946 		buffer_put_string(&k->cert->certblob,
1947 		    buffer_ptr(&k->cert->extensions),
1948 		    buffer_len(&k->cert->extensions));
1949 	}
1950 
1951 	/* -v00 certs put the nonce at the end */
1952 	if (key_cert_is_legacy(k))
1953 		buffer_put_string(&k->cert->certblob, nonce, sizeof(nonce));
1954 
1955 	buffer_put_string(&k->cert->certblob, NULL, 0); /* reserved */
1956 	buffer_put_string(&k->cert->certblob, ca_blob, ca_len);
1957 	xfree(ca_blob);
1958 
1959 	/* Sign the whole mess */
1960 	if (key_sign(ca, &sig_blob, &sig_len, buffer_ptr(&k->cert->certblob),
1961 	    buffer_len(&k->cert->certblob)) != 0) {
1962 		error("%s: signature operation failed", __func__);
1963 		buffer_clear(&k->cert->certblob);
1964 		return -1;
1965 	}
1966 	/* Append signature and we are done */
1967 	buffer_put_string(&k->cert->certblob, sig_blob, sig_len);
1968 	xfree(sig_blob);
1969 
1970 	return 0;
1971 }
1972 
1973 int
key_cert_check_authority(const Key * k,int want_host,int require_principal,const char * name,const char ** reason)1974 key_cert_check_authority(const Key *k, int want_host, int require_principal,
1975     const char *name, const char **reason)
1976 {
1977 	u_int i, principal_matches;
1978 	time_t now = time(NULL);
1979 
1980 	if (want_host) {
1981 		if (k->cert->type != SSH2_CERT_TYPE_HOST) {
1982 			*reason = "Certificate invalid: not a host certificate";
1983 			return -1;
1984 		}
1985 	} else {
1986 		if (k->cert->type != SSH2_CERT_TYPE_USER) {
1987 			*reason = "Certificate invalid: not a user certificate";
1988 			return -1;
1989 		}
1990 	}
1991 	if (now < 0) {
1992 		error("%s: system clock lies before epoch", __func__);
1993 		*reason = "Certificate invalid: not yet valid";
1994 		return -1;
1995 	}
1996 	if ((u_int64_t)now < k->cert->valid_after) {
1997 		*reason = "Certificate invalid: not yet valid";
1998 		return -1;
1999 	}
2000 	if ((u_int64_t)now >= k->cert->valid_before) {
2001 		*reason = "Certificate invalid: expired";
2002 		return -1;
2003 	}
2004 	if (k->cert->nprincipals == 0) {
2005 		if (require_principal) {
2006 			*reason = "Certificate lacks principal list";
2007 			return -1;
2008 		}
2009 	} else if (name != NULL) {
2010 		principal_matches = 0;
2011 		for (i = 0; i < k->cert->nprincipals; i++) {
2012 			if (strcmp(name, k->cert->principals[i]) == 0) {
2013 				principal_matches = 1;
2014 				break;
2015 			}
2016 		}
2017 		if (!principal_matches) {
2018 			*reason = "Certificate invalid: name is not a listed "
2019 			    "principal";
2020 			return -1;
2021 		}
2022 	}
2023 	return 0;
2024 }
2025 
2026 int
key_cert_is_legacy(Key * k)2027 key_cert_is_legacy(Key *k)
2028 {
2029 	switch (k->type) {
2030 	case KEY_DSA_CERT_V00:
2031 	case KEY_RSA_CERT_V00:
2032 		return 1;
2033 	default:
2034 		return 0;
2035 	}
2036 }
2037 
2038 /* XXX: these are really begging for a table-driven approach */
2039 int
key_curve_name_to_nid(const char * name)2040 key_curve_name_to_nid(const char *name)
2041 {
2042 #ifdef OPENSSL_HAS_ECC
2043 	if (strcmp(name, "nistp256") == 0)
2044 		return NID_X9_62_prime256v1;
2045 	else if (strcmp(name, "nistp384") == 0)
2046 		return NID_secp384r1;
2047 	else if (strcmp(name, "nistp521") == 0)
2048 		return NID_secp521r1;
2049 #endif
2050 
2051 	debug("%s: unsupported EC curve name \"%.100s\"", __func__, name);
2052 	return -1;
2053 }
2054 
2055 u_int
key_curve_nid_to_bits(int nid)2056 key_curve_nid_to_bits(int nid)
2057 {
2058 	switch (nid) {
2059 #ifdef OPENSSL_HAS_ECC
2060 	case NID_X9_62_prime256v1:
2061 		return 256;
2062 	case NID_secp384r1:
2063 		return 384;
2064 	case NID_secp521r1:
2065 		return 521;
2066 #endif
2067 	default:
2068 		error("%s: unsupported EC curve nid %d", __func__, nid);
2069 		return 0;
2070 	}
2071 }
2072 
2073 const char *
key_curve_nid_to_name(int nid)2074 key_curve_nid_to_name(int nid)
2075 {
2076 #ifdef OPENSSL_HAS_ECC
2077 	if (nid == NID_X9_62_prime256v1)
2078 		return "nistp256";
2079 	else if (nid == NID_secp384r1)
2080 		return "nistp384";
2081 	else if (nid == NID_secp521r1)
2082 		return "nistp521";
2083 #endif
2084 	error("%s: unsupported EC curve nid %d", __func__, nid);
2085 	return NULL;
2086 }
2087 
2088 #ifdef OPENSSL_HAS_ECC
2089 const EVP_MD *
key_ec_nid_to_evpmd(int nid)2090 key_ec_nid_to_evpmd(int nid)
2091 {
2092 	int kbits = key_curve_nid_to_bits(nid);
2093 
2094 	if (kbits == 0)
2095 		fatal("%s: invalid nid %d", __func__, nid);
2096 	/* RFC5656 section 6.2.1 */
2097 	if (kbits <= 256)
2098 		return EVP_sha256();
2099 	else if (kbits <= 384)
2100 		return EVP_sha384();
2101 	else
2102 		return EVP_sha512();
2103 }
2104 
2105 int
key_ec_validate_public(const EC_GROUP * group,const EC_POINT * public)2106 key_ec_validate_public(const EC_GROUP *group, const EC_POINT *public)
2107 {
2108 	BN_CTX *bnctx;
2109 	EC_POINT *nq = NULL;
2110 	BIGNUM *order, *x, *y, *tmp;
2111 	int ret = -1;
2112 
2113 	if ((bnctx = BN_CTX_new()) == NULL)
2114 		fatal("%s: BN_CTX_new failed", __func__);
2115 	BN_CTX_start(bnctx);
2116 
2117 	/*
2118 	 * We shouldn't ever hit this case because bignum_get_ecpoint()
2119 	 * refuses to load GF2m points.
2120 	 */
2121 	if (EC_METHOD_get_field_type(EC_GROUP_method_of(group)) !=
2122 	    NID_X9_62_prime_field) {
2123 		error("%s: group is not a prime field", __func__);
2124 		goto out;
2125 	}
2126 
2127 	/* Q != infinity */
2128 	if (EC_POINT_is_at_infinity(group, public)) {
2129 		error("%s: received degenerate public key (infinity)",
2130 		    __func__);
2131 		goto out;
2132 	}
2133 
2134 	if ((x = BN_CTX_get(bnctx)) == NULL ||
2135 	    (y = BN_CTX_get(bnctx)) == NULL ||
2136 	    (order = BN_CTX_get(bnctx)) == NULL ||
2137 	    (tmp = BN_CTX_get(bnctx)) == NULL)
2138 		fatal("%s: BN_CTX_get failed", __func__);
2139 
2140 	/* log2(x) > log2(order)/2, log2(y) > log2(order)/2 */
2141 	if (EC_GROUP_get_order(group, order, bnctx) != 1)
2142 		fatal("%s: EC_GROUP_get_order failed", __func__);
2143 	if (EC_POINT_get_affine_coordinates_GFp(group, public,
2144 	    x, y, bnctx) != 1)
2145 		fatal("%s: EC_POINT_get_affine_coordinates_GFp", __func__);
2146 	if (BN_num_bits(x) <= BN_num_bits(order) / 2) {
2147 		error("%s: public key x coordinate too small: "
2148 		    "bits(x) = %d, bits(order)/2 = %d", __func__,
2149 		    BN_num_bits(x), BN_num_bits(order) / 2);
2150 		goto out;
2151 	}
2152 	if (BN_num_bits(y) <= BN_num_bits(order) / 2) {
2153 		error("%s: public key y coordinate too small: "
2154 		    "bits(y) = %d, bits(order)/2 = %d", __func__,
2155 		    BN_num_bits(x), BN_num_bits(order) / 2);
2156 		goto out;
2157 	}
2158 
2159 	/* nQ == infinity (n == order of subgroup) */
2160 	if ((nq = EC_POINT_new(group)) == NULL)
2161 		fatal("%s: BN_CTX_tmp failed", __func__);
2162 	if (EC_POINT_mul(group, nq, NULL, public, order, bnctx) != 1)
2163 		fatal("%s: EC_GROUP_mul failed", __func__);
2164 	if (EC_POINT_is_at_infinity(group, nq) != 1) {
2165 		error("%s: received degenerate public key (nQ != infinity)",
2166 		    __func__);
2167 		goto out;
2168 	}
2169 
2170 	/* x < order - 1, y < order - 1 */
2171 	if (!BN_sub(tmp, order, BN_value_one()))
2172 		fatal("%s: BN_sub failed", __func__);
2173 	if (BN_cmp(x, tmp) >= 0) {
2174 		error("%s: public key x coordinate >= group order - 1",
2175 		    __func__);
2176 		goto out;
2177 	}
2178 	if (BN_cmp(y, tmp) >= 0) {
2179 		error("%s: public key y coordinate >= group order - 1",
2180 		    __func__);
2181 		goto out;
2182 	}
2183 	ret = 0;
2184  out:
2185 	BN_CTX_free(bnctx);
2186 	EC_POINT_free(nq);
2187 	return ret;
2188 }
2189 
2190 int
key_ec_validate_private(const EC_KEY * key)2191 key_ec_validate_private(const EC_KEY *key)
2192 {
2193 	BN_CTX *bnctx;
2194 	BIGNUM *order, *tmp;
2195 	int ret = -1;
2196 
2197 	if ((bnctx = BN_CTX_new()) == NULL)
2198 		fatal("%s: BN_CTX_new failed", __func__);
2199 	BN_CTX_start(bnctx);
2200 
2201 	if ((order = BN_CTX_get(bnctx)) == NULL ||
2202 	    (tmp = BN_CTX_get(bnctx)) == NULL)
2203 		fatal("%s: BN_CTX_get failed", __func__);
2204 
2205 	/* log2(private) > log2(order)/2 */
2206 	if (EC_GROUP_get_order(EC_KEY_get0_group(key), order, bnctx) != 1)
2207 		fatal("%s: EC_GROUP_get_order failed", __func__);
2208 	if (BN_num_bits(EC_KEY_get0_private_key(key)) <=
2209 	    BN_num_bits(order) / 2) {
2210 		error("%s: private key too small: "
2211 		    "bits(y) = %d, bits(order)/2 = %d", __func__,
2212 		    BN_num_bits(EC_KEY_get0_private_key(key)),
2213 		    BN_num_bits(order) / 2);
2214 		goto out;
2215 	}
2216 
2217 	/* private < order - 1 */
2218 	if (!BN_sub(tmp, order, BN_value_one()))
2219 		fatal("%s: BN_sub failed", __func__);
2220 	if (BN_cmp(EC_KEY_get0_private_key(key), tmp) >= 0) {
2221 		error("%s: private key >= group order - 1", __func__);
2222 		goto out;
2223 	}
2224 	ret = 0;
2225  out:
2226 	BN_CTX_free(bnctx);
2227 	return ret;
2228 }
2229 
2230 #if defined(DEBUG_KEXECDH) || defined(DEBUG_PK)
2231 void
key_dump_ec_point(const EC_GROUP * group,const EC_POINT * point)2232 key_dump_ec_point(const EC_GROUP *group, const EC_POINT *point)
2233 {
2234 	BIGNUM *x, *y;
2235 	BN_CTX *bnctx;
2236 
2237 	if (point == NULL) {
2238 		fputs("point=(NULL)\n", stderr);
2239 		return;
2240 	}
2241 	if ((bnctx = BN_CTX_new()) == NULL)
2242 		fatal("%s: BN_CTX_new failed", __func__);
2243 	BN_CTX_start(bnctx);
2244 	if ((x = BN_CTX_get(bnctx)) == NULL || (y = BN_CTX_get(bnctx)) == NULL)
2245 		fatal("%s: BN_CTX_get failed", __func__);
2246 	if (EC_METHOD_get_field_type(EC_GROUP_method_of(group)) !=
2247 	    NID_X9_62_prime_field)
2248 		fatal("%s: group is not a prime field", __func__);
2249 	if (EC_POINT_get_affine_coordinates_GFp(group, point, x, y, bnctx) != 1)
2250 		fatal("%s: EC_POINT_get_affine_coordinates_GFp", __func__);
2251 	fputs("x=", stderr);
2252 	BN_print_fp(stderr, x);
2253 	fputs("\ny=", stderr);
2254 	BN_print_fp(stderr, y);
2255 	fputs("\n", stderr);
2256 	BN_CTX_free(bnctx);
2257 }
2258 
2259 void
key_dump_ec_key(const EC_KEY * key)2260 key_dump_ec_key(const EC_KEY *key)
2261 {
2262 	const BIGNUM *exponent;
2263 
2264 	key_dump_ec_point(EC_KEY_get0_group(key), EC_KEY_get0_public_key(key));
2265 	fputs("exponent=", stderr);
2266 	if ((exponent = EC_KEY_get0_private_key(key)) == NULL)
2267 		fputs("(NULL)", stderr);
2268 	else
2269 		BN_print_fp(stderr, EC_KEY_get0_private_key(key));
2270 	fputs("\n", stderr);
2271 }
2272 #endif /* defined(DEBUG_KEXECDH) || defined(DEBUG_PK) */
2273 #endif /* OPENSSL_HAS_ECC */
2274