1 /* $OpenBSD: moduli.c,v 1.22 2010/11/10 01:33:07 djm Exp $ */
2 /*
3 * Copyright 1994 Phil Karn <karn@qualcomm.com>
4 * Copyright 1996-1998, 2003 William Allen Simpson <wsimpson@greendragon.com>
5 * Copyright 2000 Niels Provos <provos@citi.umich.edu>
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29 /*
30 * Two-step process to generate safe primes for DHGEX
31 *
32 * Sieve candidates for "safe" primes,
33 * suitable for use as Diffie-Hellman moduli;
34 * that is, where q = (p-1)/2 is also prime.
35 *
36 * First step: generate candidate primes (memory intensive)
37 * Second step: test primes' safety (processor intensive)
38 */
39
40 #include "includes.h"
41
42 #include <sys/types.h>
43
44 #include <openssl/bn.h>
45 #include <openssl/dh.h>
46
47 #include <stdio.h>
48 #include <stdlib.h>
49 #include <string.h>
50 #include <stdarg.h>
51 #include <time.h>
52
53 #include "xmalloc.h"
54 #include "dh.h"
55 #include "log.h"
56
57 #include "openbsd-compat/openssl-compat.h"
58
59 /*
60 * File output defines
61 */
62
63 /* need line long enough for largest moduli plus headers */
64 #define QLINESIZE (100+8192)
65
66 /*
67 * Size: decimal.
68 * Specifies the number of the most significant bit (0 to M).
69 * WARNING: internally, usually 1 to N.
70 */
71 #define QSIZE_MINIMUM (511)
72
73 /*
74 * Prime sieving defines
75 */
76
77 /* Constant: assuming 8 bit bytes and 32 bit words */
78 #define SHIFT_BIT (3)
79 #define SHIFT_BYTE (2)
80 #define SHIFT_WORD (SHIFT_BIT+SHIFT_BYTE)
81 #define SHIFT_MEGABYTE (20)
82 #define SHIFT_MEGAWORD (SHIFT_MEGABYTE-SHIFT_BYTE)
83
84 /*
85 * Using virtual memory can cause thrashing. This should be the largest
86 * number that is supported without a large amount of disk activity --
87 * that would increase the run time from hours to days or weeks!
88 */
89 #define LARGE_MINIMUM (8UL) /* megabytes */
90
91 /*
92 * Do not increase this number beyond the unsigned integer bit size.
93 * Due to a multiple of 4, it must be LESS than 128 (yielding 2**30 bits).
94 */
95 #define LARGE_MAXIMUM (127UL) /* megabytes */
96
97 /*
98 * Constant: when used with 32-bit integers, the largest sieve prime
99 * has to be less than 2**32.
100 */
101 #define SMALL_MAXIMUM (0xffffffffUL)
102
103 /* Constant: can sieve all primes less than 2**32, as 65537**2 > 2**32-1. */
104 #define TINY_NUMBER (1UL<<16)
105
106 /* Ensure enough bit space for testing 2*q. */
107 #define TEST_MAXIMUM (1UL<<16)
108 #define TEST_MINIMUM (QSIZE_MINIMUM + 1)
109 /* real TEST_MINIMUM (1UL << (SHIFT_WORD - TEST_POWER)) */
110 #define TEST_POWER (3) /* 2**n, n < SHIFT_WORD */
111
112 /* bit operations on 32-bit words */
113 #define BIT_CLEAR(a,n) ((a)[(n)>>SHIFT_WORD] &= ~(1L << ((n) & 31)))
114 #define BIT_SET(a,n) ((a)[(n)>>SHIFT_WORD] |= (1L << ((n) & 31)))
115 #define BIT_TEST(a,n) ((a)[(n)>>SHIFT_WORD] & (1L << ((n) & 31)))
116
117 /*
118 * Prime testing defines
119 */
120
121 /* Minimum number of primality tests to perform */
122 #define TRIAL_MINIMUM (4)
123
124 /*
125 * Sieving data (XXX - move to struct)
126 */
127
128 /* sieve 2**16 */
129 static u_int32_t *TinySieve, tinybits;
130
131 /* sieve 2**30 in 2**16 parts */
132 static u_int32_t *SmallSieve, smallbits, smallbase;
133
134 /* sieve relative to the initial value */
135 static u_int32_t *LargeSieve, largewords, largetries, largenumbers;
136 static u_int32_t largebits, largememory; /* megabytes */
137 static BIGNUM *largebase;
138
139 int gen_candidates(FILE *, u_int32_t, u_int32_t, BIGNUM *);
140 int prime_test(FILE *, FILE *, u_int32_t, u_int32_t);
141
142 /*
143 * print moduli out in consistent form,
144 */
145 static int
qfileout(FILE * ofile,u_int32_t otype,u_int32_t otests,u_int32_t otries,u_int32_t osize,u_int32_t ogenerator,BIGNUM * omodulus)146 qfileout(FILE * ofile, u_int32_t otype, u_int32_t otests, u_int32_t otries,
147 u_int32_t osize, u_int32_t ogenerator, BIGNUM * omodulus)
148 {
149 struct tm *gtm;
150 time_t time_now;
151 int res;
152
153 time(&time_now);
154 gtm = gmtime(&time_now);
155
156 res = fprintf(ofile, "%04d%02d%02d%02d%02d%02d %u %u %u %u %x ",
157 gtm->tm_year + 1900, gtm->tm_mon + 1, gtm->tm_mday,
158 gtm->tm_hour, gtm->tm_min, gtm->tm_sec,
159 otype, otests, otries, osize, ogenerator);
160
161 if (res < 0)
162 return (-1);
163
164 if (BN_print_fp(ofile, omodulus) < 1)
165 return (-1);
166
167 res = fprintf(ofile, "\n");
168 fflush(ofile);
169
170 return (res > 0 ? 0 : -1);
171 }
172
173
174 /*
175 ** Sieve p's and q's with small factors
176 */
177 static void
sieve_large(u_int32_t s)178 sieve_large(u_int32_t s)
179 {
180 u_int32_t r, u;
181
182 debug3("sieve_large %u", s);
183 largetries++;
184 /* r = largebase mod s */
185 r = BN_mod_word(largebase, s);
186 if (r == 0)
187 u = 0; /* s divides into largebase exactly */
188 else
189 u = s - r; /* largebase+u is first entry divisible by s */
190
191 if (u < largebits * 2) {
192 /*
193 * The sieve omits p's and q's divisible by 2, so ensure that
194 * largebase+u is odd. Then, step through the sieve in
195 * increments of 2*s
196 */
197 if (u & 0x1)
198 u += s; /* Make largebase+u odd, and u even */
199
200 /* Mark all multiples of 2*s */
201 for (u /= 2; u < largebits; u += s)
202 BIT_SET(LargeSieve, u);
203 }
204
205 /* r = p mod s */
206 r = (2 * r + 1) % s;
207 if (r == 0)
208 u = 0; /* s divides p exactly */
209 else
210 u = s - r; /* p+u is first entry divisible by s */
211
212 if (u < largebits * 4) {
213 /*
214 * The sieve omits p's divisible by 4, so ensure that
215 * largebase+u is not. Then, step through the sieve in
216 * increments of 4*s
217 */
218 while (u & 0x3) {
219 if (SMALL_MAXIMUM - u < s)
220 return;
221 u += s;
222 }
223
224 /* Mark all multiples of 4*s */
225 for (u /= 4; u < largebits; u += s)
226 BIT_SET(LargeSieve, u);
227 }
228 }
229
230 /*
231 * list candidates for Sophie-Germain primes (where q = (p-1)/2)
232 * to standard output.
233 * The list is checked against small known primes (less than 2**30).
234 */
235 int
gen_candidates(FILE * out,u_int32_t memory,u_int32_t power,BIGNUM * start)236 gen_candidates(FILE *out, u_int32_t memory, u_int32_t power, BIGNUM *start)
237 {
238 BIGNUM *q;
239 u_int32_t j, r, s, t;
240 u_int32_t smallwords = TINY_NUMBER >> 6;
241 u_int32_t tinywords = TINY_NUMBER >> 6;
242 time_t time_start, time_stop;
243 u_int32_t i;
244 int ret = 0;
245
246 largememory = memory;
247
248 if (memory != 0 &&
249 (memory < LARGE_MINIMUM || memory > LARGE_MAXIMUM)) {
250 error("Invalid memory amount (min %ld, max %ld)",
251 LARGE_MINIMUM, LARGE_MAXIMUM);
252 return (-1);
253 }
254
255 /*
256 * Set power to the length in bits of the prime to be generated.
257 * This is changed to 1 less than the desired safe prime moduli p.
258 */
259 if (power > TEST_MAXIMUM) {
260 error("Too many bits: %u > %lu", power, TEST_MAXIMUM);
261 return (-1);
262 } else if (power < TEST_MINIMUM) {
263 error("Too few bits: %u < %u", power, TEST_MINIMUM);
264 return (-1);
265 }
266 power--; /* decrement before squaring */
267
268 /*
269 * The density of ordinary primes is on the order of 1/bits, so the
270 * density of safe primes should be about (1/bits)**2. Set test range
271 * to something well above bits**2 to be reasonably sure (but not
272 * guaranteed) of catching at least one safe prime.
273 */
274 largewords = ((power * power) >> (SHIFT_WORD - TEST_POWER));
275
276 /*
277 * Need idea of how much memory is available. We don't have to use all
278 * of it.
279 */
280 if (largememory > LARGE_MAXIMUM) {
281 logit("Limited memory: %u MB; limit %lu MB",
282 largememory, LARGE_MAXIMUM);
283 largememory = LARGE_MAXIMUM;
284 }
285
286 if (largewords <= (largememory << SHIFT_MEGAWORD)) {
287 logit("Increased memory: %u MB; need %u bytes",
288 largememory, (largewords << SHIFT_BYTE));
289 largewords = (largememory << SHIFT_MEGAWORD);
290 } else if (largememory > 0) {
291 logit("Decreased memory: %u MB; want %u bytes",
292 largememory, (largewords << SHIFT_BYTE));
293 largewords = (largememory << SHIFT_MEGAWORD);
294 }
295
296 TinySieve = xcalloc(tinywords, sizeof(u_int32_t));
297 tinybits = tinywords << SHIFT_WORD;
298
299 SmallSieve = xcalloc(smallwords, sizeof(u_int32_t));
300 smallbits = smallwords << SHIFT_WORD;
301
302 /*
303 * dynamically determine available memory
304 */
305 while ((LargeSieve = calloc(largewords, sizeof(u_int32_t))) == NULL)
306 largewords -= (1L << (SHIFT_MEGAWORD - 2)); /* 1/4 MB chunks */
307
308 largebits = largewords << SHIFT_WORD;
309 largenumbers = largebits * 2; /* even numbers excluded */
310
311 /* validation check: count the number of primes tried */
312 largetries = 0;
313 if ((q = BN_new()) == NULL)
314 fatal("BN_new failed");
315
316 /*
317 * Generate random starting point for subprime search, or use
318 * specified parameter.
319 */
320 if ((largebase = BN_new()) == NULL)
321 fatal("BN_new failed");
322 if (start == NULL) {
323 if (BN_rand(largebase, power, 1, 1) == 0)
324 fatal("BN_rand failed");
325 } else {
326 if (BN_copy(largebase, start) == NULL)
327 fatal("BN_copy: failed");
328 }
329
330 /* ensure odd */
331 if (BN_set_bit(largebase, 0) == 0)
332 fatal("BN_set_bit: failed");
333
334 time(&time_start);
335
336 logit("%.24s Sieve next %u plus %u-bit", ctime(&time_start),
337 largenumbers, power);
338 debug2("start point: 0x%s", BN_bn2hex(largebase));
339
340 /*
341 * TinySieve
342 */
343 for (i = 0; i < tinybits; i++) {
344 if (BIT_TEST(TinySieve, i))
345 continue; /* 2*i+3 is composite */
346
347 /* The next tiny prime */
348 t = 2 * i + 3;
349
350 /* Mark all multiples of t */
351 for (j = i + t; j < tinybits; j += t)
352 BIT_SET(TinySieve, j);
353
354 sieve_large(t);
355 }
356
357 /*
358 * Start the small block search at the next possible prime. To avoid
359 * fencepost errors, the last pass is skipped.
360 */
361 for (smallbase = TINY_NUMBER + 3;
362 smallbase < (SMALL_MAXIMUM - TINY_NUMBER);
363 smallbase += TINY_NUMBER) {
364 for (i = 0; i < tinybits; i++) {
365 if (BIT_TEST(TinySieve, i))
366 continue; /* 2*i+3 is composite */
367
368 /* The next tiny prime */
369 t = 2 * i + 3;
370 r = smallbase % t;
371
372 if (r == 0) {
373 s = 0; /* t divides into smallbase exactly */
374 } else {
375 /* smallbase+s is first entry divisible by t */
376 s = t - r;
377 }
378
379 /*
380 * The sieve omits even numbers, so ensure that
381 * smallbase+s is odd. Then, step through the sieve
382 * in increments of 2*t
383 */
384 if (s & 1)
385 s += t; /* Make smallbase+s odd, and s even */
386
387 /* Mark all multiples of 2*t */
388 for (s /= 2; s < smallbits; s += t)
389 BIT_SET(SmallSieve, s);
390 }
391
392 /*
393 * SmallSieve
394 */
395 for (i = 0; i < smallbits; i++) {
396 if (BIT_TEST(SmallSieve, i))
397 continue; /* 2*i+smallbase is composite */
398
399 /* The next small prime */
400 sieve_large((2 * i) + smallbase);
401 }
402
403 memset(SmallSieve, 0, smallwords << SHIFT_BYTE);
404 }
405
406 time(&time_stop);
407
408 logit("%.24s Sieved with %u small primes in %ld seconds",
409 ctime(&time_stop), largetries, (long) (time_stop - time_start));
410
411 for (j = r = 0; j < largebits; j++) {
412 if (BIT_TEST(LargeSieve, j))
413 continue; /* Definitely composite, skip */
414
415 debug2("test q = largebase+%u", 2 * j);
416 if (BN_set_word(q, 2 * j) == 0)
417 fatal("BN_set_word failed");
418 if (BN_add(q, q, largebase) == 0)
419 fatal("BN_add failed");
420 if (qfileout(out, MODULI_TYPE_SOPHIE_GERMAIN,
421 MODULI_TESTS_SIEVE, largetries,
422 (power - 1) /* MSB */, (0), q) == -1) {
423 ret = -1;
424 break;
425 }
426
427 r++; /* count q */
428 }
429
430 time(&time_stop);
431
432 xfree(LargeSieve);
433 xfree(SmallSieve);
434 xfree(TinySieve);
435
436 logit("%.24s Found %u candidates", ctime(&time_stop), r);
437
438 return (ret);
439 }
440
441 /*
442 * perform a Miller-Rabin primality test
443 * on the list of candidates
444 * (checking both q and p)
445 * The result is a list of so-call "safe" primes
446 */
447 int
prime_test(FILE * in,FILE * out,u_int32_t trials,u_int32_t generator_wanted)448 prime_test(FILE *in, FILE *out, u_int32_t trials, u_int32_t generator_wanted)
449 {
450 BIGNUM *q, *p, *a;
451 BN_CTX *ctx;
452 char *cp, *lp;
453 u_int32_t count_in = 0, count_out = 0, count_possible = 0;
454 u_int32_t generator_known, in_tests, in_tries, in_type, in_size;
455 time_t time_start, time_stop;
456 int res;
457
458 if (trials < TRIAL_MINIMUM) {
459 error("Minimum primality trials is %d", TRIAL_MINIMUM);
460 return (-1);
461 }
462
463 time(&time_start);
464
465 if ((p = BN_new()) == NULL)
466 fatal("BN_new failed");
467 if ((q = BN_new()) == NULL)
468 fatal("BN_new failed");
469 if ((ctx = BN_CTX_new()) == NULL)
470 fatal("BN_CTX_new failed");
471
472 debug2("%.24s Final %u Miller-Rabin trials (%x generator)",
473 ctime(&time_start), trials, generator_wanted);
474
475 res = 0;
476 lp = xmalloc(QLINESIZE + 1);
477 while (fgets(lp, QLINESIZE + 1, in) != NULL) {
478 count_in++;
479 if (strlen(lp) < 14 || *lp == '!' || *lp == '#') {
480 debug2("%10u: comment or short line", count_in);
481 continue;
482 }
483
484 /* XXX - fragile parser */
485 /* time */
486 cp = &lp[14]; /* (skip) */
487
488 /* type */
489 in_type = strtoul(cp, &cp, 10);
490
491 /* tests */
492 in_tests = strtoul(cp, &cp, 10);
493
494 if (in_tests & MODULI_TESTS_COMPOSITE) {
495 debug2("%10u: known composite", count_in);
496 continue;
497 }
498
499 /* tries */
500 in_tries = strtoul(cp, &cp, 10);
501
502 /* size (most significant bit) */
503 in_size = strtoul(cp, &cp, 10);
504
505 /* generator (hex) */
506 generator_known = strtoul(cp, &cp, 16);
507
508 /* Skip white space */
509 cp += strspn(cp, " ");
510
511 /* modulus (hex) */
512 switch (in_type) {
513 case MODULI_TYPE_SOPHIE_GERMAIN:
514 debug2("%10u: (%u) Sophie-Germain", count_in, in_type);
515 a = q;
516 if (BN_hex2bn(&a, cp) == 0)
517 fatal("BN_hex2bn failed");
518 /* p = 2*q + 1 */
519 if (BN_lshift(p, q, 1) == 0)
520 fatal("BN_lshift failed");
521 if (BN_add_word(p, 1) == 0)
522 fatal("BN_add_word failed");
523 in_size += 1;
524 generator_known = 0;
525 break;
526 case MODULI_TYPE_UNSTRUCTURED:
527 case MODULI_TYPE_SAFE:
528 case MODULI_TYPE_SCHNORR:
529 case MODULI_TYPE_STRONG:
530 case MODULI_TYPE_UNKNOWN:
531 debug2("%10u: (%u)", count_in, in_type);
532 a = p;
533 if (BN_hex2bn(&a, cp) == 0)
534 fatal("BN_hex2bn failed");
535 /* q = (p-1) / 2 */
536 if (BN_rshift(q, p, 1) == 0)
537 fatal("BN_rshift failed");
538 break;
539 default:
540 debug2("Unknown prime type");
541 break;
542 }
543
544 /*
545 * due to earlier inconsistencies in interpretation, check
546 * the proposed bit size.
547 */
548 if ((u_int32_t)BN_num_bits(p) != (in_size + 1)) {
549 debug2("%10u: bit size %u mismatch", count_in, in_size);
550 continue;
551 }
552 if (in_size < QSIZE_MINIMUM) {
553 debug2("%10u: bit size %u too short", count_in, in_size);
554 continue;
555 }
556
557 if (in_tests & MODULI_TESTS_MILLER_RABIN)
558 in_tries += trials;
559 else
560 in_tries = trials;
561
562 /*
563 * guess unknown generator
564 */
565 if (generator_known == 0) {
566 if (BN_mod_word(p, 24) == 11)
567 generator_known = 2;
568 else if (BN_mod_word(p, 12) == 5)
569 generator_known = 3;
570 else {
571 u_int32_t r = BN_mod_word(p, 10);
572
573 if (r == 3 || r == 7)
574 generator_known = 5;
575 }
576 }
577 /*
578 * skip tests when desired generator doesn't match
579 */
580 if (generator_wanted > 0 &&
581 generator_wanted != generator_known) {
582 debug2("%10u: generator %d != %d",
583 count_in, generator_known, generator_wanted);
584 continue;
585 }
586
587 /*
588 * Primes with no known generator are useless for DH, so
589 * skip those.
590 */
591 if (generator_known == 0) {
592 debug2("%10u: no known generator", count_in);
593 continue;
594 }
595
596 count_possible++;
597
598 /*
599 * The (1/4)^N performance bound on Miller-Rabin is
600 * extremely pessimistic, so don't spend a lot of time
601 * really verifying that q is prime until after we know
602 * that p is also prime. A single pass will weed out the
603 * vast majority of composite q's.
604 */
605 if (BN_is_prime_ex(q, 1, ctx, NULL) <= 0) {
606 debug("%10u: q failed first possible prime test",
607 count_in);
608 continue;
609 }
610
611 /*
612 * q is possibly prime, so go ahead and really make sure
613 * that p is prime. If it is, then we can go back and do
614 * the same for q. If p is composite, chances are that
615 * will show up on the first Rabin-Miller iteration so it
616 * doesn't hurt to specify a high iteration count.
617 */
618 if (!BN_is_prime_ex(p, trials, ctx, NULL)) {
619 debug("%10u: p is not prime", count_in);
620 continue;
621 }
622 debug("%10u: p is almost certainly prime", count_in);
623
624 /* recheck q more rigorously */
625 if (!BN_is_prime_ex(q, trials - 1, ctx, NULL)) {
626 debug("%10u: q is not prime", count_in);
627 continue;
628 }
629 debug("%10u: q is almost certainly prime", count_in);
630
631 if (qfileout(out, MODULI_TYPE_SAFE,
632 in_tests | MODULI_TESTS_MILLER_RABIN,
633 in_tries, in_size, generator_known, p)) {
634 res = -1;
635 break;
636 }
637
638 count_out++;
639 }
640
641 time(&time_stop);
642 xfree(lp);
643 BN_free(p);
644 BN_free(q);
645 BN_CTX_free(ctx);
646
647 logit("%.24s Found %u safe primes of %u candidates in %ld seconds",
648 ctime(&time_stop), count_out, count_possible,
649 (long) (time_stop - time_start));
650
651 return (res);
652 }
653