• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* $OpenBSD: moduli.c,v 1.22 2010/11/10 01:33:07 djm Exp $ */
2 /*
3  * Copyright 1994 Phil Karn <karn@qualcomm.com>
4  * Copyright 1996-1998, 2003 William Allen Simpson <wsimpson@greendragon.com>
5  * Copyright 2000 Niels Provos <provos@citi.umich.edu>
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27  */
28 
29 /*
30  * Two-step process to generate safe primes for DHGEX
31  *
32  *  Sieve candidates for "safe" primes,
33  *  suitable for use as Diffie-Hellman moduli;
34  *  that is, where q = (p-1)/2 is also prime.
35  *
36  * First step: generate candidate primes (memory intensive)
37  * Second step: test primes' safety (processor intensive)
38  */
39 
40 #include "includes.h"
41 
42 #include <sys/types.h>
43 
44 #include <openssl/bn.h>
45 #include <openssl/dh.h>
46 
47 #include <stdio.h>
48 #include <stdlib.h>
49 #include <string.h>
50 #include <stdarg.h>
51 #include <time.h>
52 
53 #include "xmalloc.h"
54 #include "dh.h"
55 #include "log.h"
56 
57 #include "openbsd-compat/openssl-compat.h"
58 
59 /*
60  * File output defines
61  */
62 
63 /* need line long enough for largest moduli plus headers */
64 #define QLINESIZE		(100+8192)
65 
66 /*
67  * Size: decimal.
68  * Specifies the number of the most significant bit (0 to M).
69  * WARNING: internally, usually 1 to N.
70  */
71 #define QSIZE_MINIMUM		(511)
72 
73 /*
74  * Prime sieving defines
75  */
76 
77 /* Constant: assuming 8 bit bytes and 32 bit words */
78 #define SHIFT_BIT	(3)
79 #define SHIFT_BYTE	(2)
80 #define SHIFT_WORD	(SHIFT_BIT+SHIFT_BYTE)
81 #define SHIFT_MEGABYTE	(20)
82 #define SHIFT_MEGAWORD	(SHIFT_MEGABYTE-SHIFT_BYTE)
83 
84 /*
85  * Using virtual memory can cause thrashing.  This should be the largest
86  * number that is supported without a large amount of disk activity --
87  * that would increase the run time from hours to days or weeks!
88  */
89 #define LARGE_MINIMUM	(8UL)	/* megabytes */
90 
91 /*
92  * Do not increase this number beyond the unsigned integer bit size.
93  * Due to a multiple of 4, it must be LESS than 128 (yielding 2**30 bits).
94  */
95 #define LARGE_MAXIMUM	(127UL)	/* megabytes */
96 
97 /*
98  * Constant: when used with 32-bit integers, the largest sieve prime
99  * has to be less than 2**32.
100  */
101 #define SMALL_MAXIMUM	(0xffffffffUL)
102 
103 /* Constant: can sieve all primes less than 2**32, as 65537**2 > 2**32-1. */
104 #define TINY_NUMBER	(1UL<<16)
105 
106 /* Ensure enough bit space for testing 2*q. */
107 #define TEST_MAXIMUM	(1UL<<16)
108 #define TEST_MINIMUM	(QSIZE_MINIMUM + 1)
109 /* real TEST_MINIMUM	(1UL << (SHIFT_WORD - TEST_POWER)) */
110 #define TEST_POWER	(3)	/* 2**n, n < SHIFT_WORD */
111 
112 /* bit operations on 32-bit words */
113 #define BIT_CLEAR(a,n)	((a)[(n)>>SHIFT_WORD] &= ~(1L << ((n) & 31)))
114 #define BIT_SET(a,n)	((a)[(n)>>SHIFT_WORD] |= (1L << ((n) & 31)))
115 #define BIT_TEST(a,n)	((a)[(n)>>SHIFT_WORD] & (1L << ((n) & 31)))
116 
117 /*
118  * Prime testing defines
119  */
120 
121 /* Minimum number of primality tests to perform */
122 #define TRIAL_MINIMUM	(4)
123 
124 /*
125  * Sieving data (XXX - move to struct)
126  */
127 
128 /* sieve 2**16 */
129 static u_int32_t *TinySieve, tinybits;
130 
131 /* sieve 2**30 in 2**16 parts */
132 static u_int32_t *SmallSieve, smallbits, smallbase;
133 
134 /* sieve relative to the initial value */
135 static u_int32_t *LargeSieve, largewords, largetries, largenumbers;
136 static u_int32_t largebits, largememory;	/* megabytes */
137 static BIGNUM *largebase;
138 
139 int gen_candidates(FILE *, u_int32_t, u_int32_t, BIGNUM *);
140 int prime_test(FILE *, FILE *, u_int32_t, u_int32_t);
141 
142 /*
143  * print moduli out in consistent form,
144  */
145 static int
qfileout(FILE * ofile,u_int32_t otype,u_int32_t otests,u_int32_t otries,u_int32_t osize,u_int32_t ogenerator,BIGNUM * omodulus)146 qfileout(FILE * ofile, u_int32_t otype, u_int32_t otests, u_int32_t otries,
147     u_int32_t osize, u_int32_t ogenerator, BIGNUM * omodulus)
148 {
149 	struct tm *gtm;
150 	time_t time_now;
151 	int res;
152 
153 	time(&time_now);
154 	gtm = gmtime(&time_now);
155 
156 	res = fprintf(ofile, "%04d%02d%02d%02d%02d%02d %u %u %u %u %x ",
157 	    gtm->tm_year + 1900, gtm->tm_mon + 1, gtm->tm_mday,
158 	    gtm->tm_hour, gtm->tm_min, gtm->tm_sec,
159 	    otype, otests, otries, osize, ogenerator);
160 
161 	if (res < 0)
162 		return (-1);
163 
164 	if (BN_print_fp(ofile, omodulus) < 1)
165 		return (-1);
166 
167 	res = fprintf(ofile, "\n");
168 	fflush(ofile);
169 
170 	return (res > 0 ? 0 : -1);
171 }
172 
173 
174 /*
175  ** Sieve p's and q's with small factors
176  */
177 static void
sieve_large(u_int32_t s)178 sieve_large(u_int32_t s)
179 {
180 	u_int32_t r, u;
181 
182 	debug3("sieve_large %u", s);
183 	largetries++;
184 	/* r = largebase mod s */
185 	r = BN_mod_word(largebase, s);
186 	if (r == 0)
187 		u = 0; /* s divides into largebase exactly */
188 	else
189 		u = s - r; /* largebase+u is first entry divisible by s */
190 
191 	if (u < largebits * 2) {
192 		/*
193 		 * The sieve omits p's and q's divisible by 2, so ensure that
194 		 * largebase+u is odd. Then, step through the sieve in
195 		 * increments of 2*s
196 		 */
197 		if (u & 0x1)
198 			u += s; /* Make largebase+u odd, and u even */
199 
200 		/* Mark all multiples of 2*s */
201 		for (u /= 2; u < largebits; u += s)
202 			BIT_SET(LargeSieve, u);
203 	}
204 
205 	/* r = p mod s */
206 	r = (2 * r + 1) % s;
207 	if (r == 0)
208 		u = 0; /* s divides p exactly */
209 	else
210 		u = s - r; /* p+u is first entry divisible by s */
211 
212 	if (u < largebits * 4) {
213 		/*
214 		 * The sieve omits p's divisible by 4, so ensure that
215 		 * largebase+u is not. Then, step through the sieve in
216 		 * increments of 4*s
217 		 */
218 		while (u & 0x3) {
219 			if (SMALL_MAXIMUM - u < s)
220 				return;
221 			u += s;
222 		}
223 
224 		/* Mark all multiples of 4*s */
225 		for (u /= 4; u < largebits; u += s)
226 			BIT_SET(LargeSieve, u);
227 	}
228 }
229 
230 /*
231  * list candidates for Sophie-Germain primes (where q = (p-1)/2)
232  * to standard output.
233  * The list is checked against small known primes (less than 2**30).
234  */
235 int
gen_candidates(FILE * out,u_int32_t memory,u_int32_t power,BIGNUM * start)236 gen_candidates(FILE *out, u_int32_t memory, u_int32_t power, BIGNUM *start)
237 {
238 	BIGNUM *q;
239 	u_int32_t j, r, s, t;
240 	u_int32_t smallwords = TINY_NUMBER >> 6;
241 	u_int32_t tinywords = TINY_NUMBER >> 6;
242 	time_t time_start, time_stop;
243 	u_int32_t i;
244 	int ret = 0;
245 
246 	largememory = memory;
247 
248 	if (memory != 0 &&
249 	    (memory < LARGE_MINIMUM || memory > LARGE_MAXIMUM)) {
250 		error("Invalid memory amount (min %ld, max %ld)",
251 		    LARGE_MINIMUM, LARGE_MAXIMUM);
252 		return (-1);
253 	}
254 
255 	/*
256 	 * Set power to the length in bits of the prime to be generated.
257 	 * This is changed to 1 less than the desired safe prime moduli p.
258 	 */
259 	if (power > TEST_MAXIMUM) {
260 		error("Too many bits: %u > %lu", power, TEST_MAXIMUM);
261 		return (-1);
262 	} else if (power < TEST_MINIMUM) {
263 		error("Too few bits: %u < %u", power, TEST_MINIMUM);
264 		return (-1);
265 	}
266 	power--; /* decrement before squaring */
267 
268 	/*
269 	 * The density of ordinary primes is on the order of 1/bits, so the
270 	 * density of safe primes should be about (1/bits)**2. Set test range
271 	 * to something well above bits**2 to be reasonably sure (but not
272 	 * guaranteed) of catching at least one safe prime.
273 	 */
274 	largewords = ((power * power) >> (SHIFT_WORD - TEST_POWER));
275 
276 	/*
277 	 * Need idea of how much memory is available. We don't have to use all
278 	 * of it.
279 	 */
280 	if (largememory > LARGE_MAXIMUM) {
281 		logit("Limited memory: %u MB; limit %lu MB",
282 		    largememory, LARGE_MAXIMUM);
283 		largememory = LARGE_MAXIMUM;
284 	}
285 
286 	if (largewords <= (largememory << SHIFT_MEGAWORD)) {
287 		logit("Increased memory: %u MB; need %u bytes",
288 		    largememory, (largewords << SHIFT_BYTE));
289 		largewords = (largememory << SHIFT_MEGAWORD);
290 	} else if (largememory > 0) {
291 		logit("Decreased memory: %u MB; want %u bytes",
292 		    largememory, (largewords << SHIFT_BYTE));
293 		largewords = (largememory << SHIFT_MEGAWORD);
294 	}
295 
296 	TinySieve = xcalloc(tinywords, sizeof(u_int32_t));
297 	tinybits = tinywords << SHIFT_WORD;
298 
299 	SmallSieve = xcalloc(smallwords, sizeof(u_int32_t));
300 	smallbits = smallwords << SHIFT_WORD;
301 
302 	/*
303 	 * dynamically determine available memory
304 	 */
305 	while ((LargeSieve = calloc(largewords, sizeof(u_int32_t))) == NULL)
306 		largewords -= (1L << (SHIFT_MEGAWORD - 2)); /* 1/4 MB chunks */
307 
308 	largebits = largewords << SHIFT_WORD;
309 	largenumbers = largebits * 2;	/* even numbers excluded */
310 
311 	/* validation check: count the number of primes tried */
312 	largetries = 0;
313 	if ((q = BN_new()) == NULL)
314 		fatal("BN_new failed");
315 
316 	/*
317 	 * Generate random starting point for subprime search, or use
318 	 * specified parameter.
319 	 */
320 	if ((largebase = BN_new()) == NULL)
321 		fatal("BN_new failed");
322 	if (start == NULL) {
323 		if (BN_rand(largebase, power, 1, 1) == 0)
324 			fatal("BN_rand failed");
325 	} else {
326 		if (BN_copy(largebase, start) == NULL)
327 			fatal("BN_copy: failed");
328 	}
329 
330 	/* ensure odd */
331 	if (BN_set_bit(largebase, 0) == 0)
332 		fatal("BN_set_bit: failed");
333 
334 	time(&time_start);
335 
336 	logit("%.24s Sieve next %u plus %u-bit", ctime(&time_start),
337 	    largenumbers, power);
338 	debug2("start point: 0x%s", BN_bn2hex(largebase));
339 
340 	/*
341 	 * TinySieve
342 	 */
343 	for (i = 0; i < tinybits; i++) {
344 		if (BIT_TEST(TinySieve, i))
345 			continue; /* 2*i+3 is composite */
346 
347 		/* The next tiny prime */
348 		t = 2 * i + 3;
349 
350 		/* Mark all multiples of t */
351 		for (j = i + t; j < tinybits; j += t)
352 			BIT_SET(TinySieve, j);
353 
354 		sieve_large(t);
355 	}
356 
357 	/*
358 	 * Start the small block search at the next possible prime. To avoid
359 	 * fencepost errors, the last pass is skipped.
360 	 */
361 	for (smallbase = TINY_NUMBER + 3;
362 	    smallbase < (SMALL_MAXIMUM - TINY_NUMBER);
363 	    smallbase += TINY_NUMBER) {
364 		for (i = 0; i < tinybits; i++) {
365 			if (BIT_TEST(TinySieve, i))
366 				continue; /* 2*i+3 is composite */
367 
368 			/* The next tiny prime */
369 			t = 2 * i + 3;
370 			r = smallbase % t;
371 
372 			if (r == 0) {
373 				s = 0; /* t divides into smallbase exactly */
374 			} else {
375 				/* smallbase+s is first entry divisible by t */
376 				s = t - r;
377 			}
378 
379 			/*
380 			 * The sieve omits even numbers, so ensure that
381 			 * smallbase+s is odd. Then, step through the sieve
382 			 * in increments of 2*t
383 			 */
384 			if (s & 1)
385 				s += t; /* Make smallbase+s odd, and s even */
386 
387 			/* Mark all multiples of 2*t */
388 			for (s /= 2; s < smallbits; s += t)
389 				BIT_SET(SmallSieve, s);
390 		}
391 
392 		/*
393 		 * SmallSieve
394 		 */
395 		for (i = 0; i < smallbits; i++) {
396 			if (BIT_TEST(SmallSieve, i))
397 				continue; /* 2*i+smallbase is composite */
398 
399 			/* The next small prime */
400 			sieve_large((2 * i) + smallbase);
401 		}
402 
403 		memset(SmallSieve, 0, smallwords << SHIFT_BYTE);
404 	}
405 
406 	time(&time_stop);
407 
408 	logit("%.24s Sieved with %u small primes in %ld seconds",
409 	    ctime(&time_stop), largetries, (long) (time_stop - time_start));
410 
411 	for (j = r = 0; j < largebits; j++) {
412 		if (BIT_TEST(LargeSieve, j))
413 			continue; /* Definitely composite, skip */
414 
415 		debug2("test q = largebase+%u", 2 * j);
416 		if (BN_set_word(q, 2 * j) == 0)
417 			fatal("BN_set_word failed");
418 		if (BN_add(q, q, largebase) == 0)
419 			fatal("BN_add failed");
420 		if (qfileout(out, MODULI_TYPE_SOPHIE_GERMAIN,
421 		    MODULI_TESTS_SIEVE, largetries,
422 		    (power - 1) /* MSB */, (0), q) == -1) {
423 			ret = -1;
424 			break;
425 		}
426 
427 		r++; /* count q */
428 	}
429 
430 	time(&time_stop);
431 
432 	xfree(LargeSieve);
433 	xfree(SmallSieve);
434 	xfree(TinySieve);
435 
436 	logit("%.24s Found %u candidates", ctime(&time_stop), r);
437 
438 	return (ret);
439 }
440 
441 /*
442  * perform a Miller-Rabin primality test
443  * on the list of candidates
444  * (checking both q and p)
445  * The result is a list of so-call "safe" primes
446  */
447 int
prime_test(FILE * in,FILE * out,u_int32_t trials,u_int32_t generator_wanted)448 prime_test(FILE *in, FILE *out, u_int32_t trials, u_int32_t generator_wanted)
449 {
450 	BIGNUM *q, *p, *a;
451 	BN_CTX *ctx;
452 	char *cp, *lp;
453 	u_int32_t count_in = 0, count_out = 0, count_possible = 0;
454 	u_int32_t generator_known, in_tests, in_tries, in_type, in_size;
455 	time_t time_start, time_stop;
456 	int res;
457 
458 	if (trials < TRIAL_MINIMUM) {
459 		error("Minimum primality trials is %d", TRIAL_MINIMUM);
460 		return (-1);
461 	}
462 
463 	time(&time_start);
464 
465 	if ((p = BN_new()) == NULL)
466 		fatal("BN_new failed");
467 	if ((q = BN_new()) == NULL)
468 		fatal("BN_new failed");
469 	if ((ctx = BN_CTX_new()) == NULL)
470 		fatal("BN_CTX_new failed");
471 
472 	debug2("%.24s Final %u Miller-Rabin trials (%x generator)",
473 	    ctime(&time_start), trials, generator_wanted);
474 
475 	res = 0;
476 	lp = xmalloc(QLINESIZE + 1);
477 	while (fgets(lp, QLINESIZE + 1, in) != NULL) {
478 		count_in++;
479 		if (strlen(lp) < 14 || *lp == '!' || *lp == '#') {
480 			debug2("%10u: comment or short line", count_in);
481 			continue;
482 		}
483 
484 		/* XXX - fragile parser */
485 		/* time */
486 		cp = &lp[14];	/* (skip) */
487 
488 		/* type */
489 		in_type = strtoul(cp, &cp, 10);
490 
491 		/* tests */
492 		in_tests = strtoul(cp, &cp, 10);
493 
494 		if (in_tests & MODULI_TESTS_COMPOSITE) {
495 			debug2("%10u: known composite", count_in);
496 			continue;
497 		}
498 
499 		/* tries */
500 		in_tries = strtoul(cp, &cp, 10);
501 
502 		/* size (most significant bit) */
503 		in_size = strtoul(cp, &cp, 10);
504 
505 		/* generator (hex) */
506 		generator_known = strtoul(cp, &cp, 16);
507 
508 		/* Skip white space */
509 		cp += strspn(cp, " ");
510 
511 		/* modulus (hex) */
512 		switch (in_type) {
513 		case MODULI_TYPE_SOPHIE_GERMAIN:
514 			debug2("%10u: (%u) Sophie-Germain", count_in, in_type);
515 			a = q;
516 			if (BN_hex2bn(&a, cp) == 0)
517 				fatal("BN_hex2bn failed");
518 			/* p = 2*q + 1 */
519 			if (BN_lshift(p, q, 1) == 0)
520 				fatal("BN_lshift failed");
521 			if (BN_add_word(p, 1) == 0)
522 				fatal("BN_add_word failed");
523 			in_size += 1;
524 			generator_known = 0;
525 			break;
526 		case MODULI_TYPE_UNSTRUCTURED:
527 		case MODULI_TYPE_SAFE:
528 		case MODULI_TYPE_SCHNORR:
529 		case MODULI_TYPE_STRONG:
530 		case MODULI_TYPE_UNKNOWN:
531 			debug2("%10u: (%u)", count_in, in_type);
532 			a = p;
533 			if (BN_hex2bn(&a, cp) == 0)
534 				fatal("BN_hex2bn failed");
535 			/* q = (p-1) / 2 */
536 			if (BN_rshift(q, p, 1) == 0)
537 				fatal("BN_rshift failed");
538 			break;
539 		default:
540 			debug2("Unknown prime type");
541 			break;
542 		}
543 
544 		/*
545 		 * due to earlier inconsistencies in interpretation, check
546 		 * the proposed bit size.
547 		 */
548 		if ((u_int32_t)BN_num_bits(p) != (in_size + 1)) {
549 			debug2("%10u: bit size %u mismatch", count_in, in_size);
550 			continue;
551 		}
552 		if (in_size < QSIZE_MINIMUM) {
553 			debug2("%10u: bit size %u too short", count_in, in_size);
554 			continue;
555 		}
556 
557 		if (in_tests & MODULI_TESTS_MILLER_RABIN)
558 			in_tries += trials;
559 		else
560 			in_tries = trials;
561 
562 		/*
563 		 * guess unknown generator
564 		 */
565 		if (generator_known == 0) {
566 			if (BN_mod_word(p, 24) == 11)
567 				generator_known = 2;
568 			else if (BN_mod_word(p, 12) == 5)
569 				generator_known = 3;
570 			else {
571 				u_int32_t r = BN_mod_word(p, 10);
572 
573 				if (r == 3 || r == 7)
574 					generator_known = 5;
575 			}
576 		}
577 		/*
578 		 * skip tests when desired generator doesn't match
579 		 */
580 		if (generator_wanted > 0 &&
581 		    generator_wanted != generator_known) {
582 			debug2("%10u: generator %d != %d",
583 			    count_in, generator_known, generator_wanted);
584 			continue;
585 		}
586 
587 		/*
588 		 * Primes with no known generator are useless for DH, so
589 		 * skip those.
590 		 */
591 		if (generator_known == 0) {
592 			debug2("%10u: no known generator", count_in);
593 			continue;
594 		}
595 
596 		count_possible++;
597 
598 		/*
599 		 * The (1/4)^N performance bound on Miller-Rabin is
600 		 * extremely pessimistic, so don't spend a lot of time
601 		 * really verifying that q is prime until after we know
602 		 * that p is also prime. A single pass will weed out the
603 		 * vast majority of composite q's.
604 		 */
605 		if (BN_is_prime_ex(q, 1, ctx, NULL) <= 0) {
606 			debug("%10u: q failed first possible prime test",
607 			    count_in);
608 			continue;
609 		}
610 
611 		/*
612 		 * q is possibly prime, so go ahead and really make sure
613 		 * that p is prime. If it is, then we can go back and do
614 		 * the same for q. If p is composite, chances are that
615 		 * will show up on the first Rabin-Miller iteration so it
616 		 * doesn't hurt to specify a high iteration count.
617 		 */
618 		if (!BN_is_prime_ex(p, trials, ctx, NULL)) {
619 			debug("%10u: p is not prime", count_in);
620 			continue;
621 		}
622 		debug("%10u: p is almost certainly prime", count_in);
623 
624 		/* recheck q more rigorously */
625 		if (!BN_is_prime_ex(q, trials - 1, ctx, NULL)) {
626 			debug("%10u: q is not prime", count_in);
627 			continue;
628 		}
629 		debug("%10u: q is almost certainly prime", count_in);
630 
631 		if (qfileout(out, MODULI_TYPE_SAFE,
632 		    in_tests | MODULI_TESTS_MILLER_RABIN,
633 		    in_tries, in_size, generator_known, p)) {
634 			res = -1;
635 			break;
636 		}
637 
638 		count_out++;
639 	}
640 
641 	time(&time_stop);
642 	xfree(lp);
643 	BN_free(p);
644 	BN_free(q);
645 	BN_CTX_free(ctx);
646 
647 	logit("%.24s Found %u safe primes of %u candidates in %ld seconds",
648 	    ctime(&time_stop), count_out, count_possible,
649 	    (long) (time_stop - time_start));
650 
651 	return (res);
652 }
653