1 /* $OpenBSD: umac.c,v 1.3 2008/05/12 20:52:20 pvalchev Exp $ */
2 /* -----------------------------------------------------------------------
3 *
4 * umac.c -- C Implementation UMAC Message Authentication
5 *
6 * Version 0.93b of rfc4418.txt -- 2006 July 18
7 *
8 * For a full description of UMAC message authentication see the UMAC
9 * world-wide-web page at http://www.cs.ucdavis.edu/~rogaway/umac
10 * Please report bugs and suggestions to the UMAC webpage.
11 *
12 * Copyright (c) 1999-2006 Ted Krovetz
13 *
14 * Permission to use, copy, modify, and distribute this software and
15 * its documentation for any purpose and with or without fee, is hereby
16 * granted provided that the above copyright notice appears in all copies
17 * and in supporting documentation, and that the name of the copyright
18 * holder not be used in advertising or publicity pertaining to
19 * distribution of the software without specific, written prior permission.
20 *
21 * Comments should be directed to Ted Krovetz (tdk@acm.org)
22 *
23 * ---------------------------------------------------------------------- */
24
25 /* ////////////////////// IMPORTANT NOTES /////////////////////////////////
26 *
27 * 1) This version does not work properly on messages larger than 16MB
28 *
29 * 2) If you set the switch to use SSE2, then all data must be 16-byte
30 * aligned
31 *
32 * 3) When calling the function umac(), it is assumed that msg is in
33 * a writable buffer of length divisible by 32 bytes. The message itself
34 * does not have to fill the entire buffer, but bytes beyond msg may be
35 * zeroed.
36 *
37 * 4) Three free AES implementations are supported by this implementation of
38 * UMAC. Paulo Barreto's version is in the public domain and can be found
39 * at http://www.esat.kuleuven.ac.be/~rijmen/rijndael/ (search for
40 * "Barreto"). The only two files needed are rijndael-alg-fst.c and
41 * rijndael-alg-fst.h. Brian Gladman's version is distributed with the GNU
42 * Public lisence at http://fp.gladman.plus.com/AES/index.htm. It
43 * includes a fast IA-32 assembly version. The OpenSSL crypo library is
44 * the third.
45 *
46 * 5) With FORCE_C_ONLY flags set to 0, incorrect results are sometimes
47 * produced under gcc with optimizations set -O3 or higher. Dunno why.
48 *
49 /////////////////////////////////////////////////////////////////////// */
50
51 /* ---------------------------------------------------------------------- */
52 /* --- User Switches ---------------------------------------------------- */
53 /* ---------------------------------------------------------------------- */
54
55 #define UMAC_OUTPUT_LEN 8 /* Alowable: 4, 8, 12, 16 */
56 /* #define FORCE_C_ONLY 1 ANSI C and 64-bit integers req'd */
57 /* #define AES_IMPLEMENTAION 1 1 = OpenSSL, 2 = Barreto, 3 = Gladman */
58 /* #define SSE2 0 Is SSE2 is available? */
59 /* #define RUN_TESTS 0 Run basic correctness/speed tests */
60 /* #define UMAC_AE_SUPPORT 0 Enable auhthenticated encrytion */
61
62 /* ---------------------------------------------------------------------- */
63 /* -- Global Includes --------------------------------------------------- */
64 /* ---------------------------------------------------------------------- */
65
66 #include "includes.h"
67 #include <sys/types.h>
68
69 #include "xmalloc.h"
70 #include "umac.h"
71 #include <string.h>
72 #include <stdlib.h>
73 #include <stddef.h>
74
75 /* ---------------------------------------------------------------------- */
76 /* --- Primitive Data Types --- */
77 /* ---------------------------------------------------------------------- */
78
79 /* The following assumptions may need change on your system */
80 typedef u_int8_t UINT8; /* 1 byte */
81 typedef u_int16_t UINT16; /* 2 byte */
82 typedef u_int32_t UINT32; /* 4 byte */
83 typedef u_int64_t UINT64; /* 8 bytes */
84 typedef unsigned int UWORD; /* Register */
85
86 /* ---------------------------------------------------------------------- */
87 /* --- Constants -------------------------------------------------------- */
88 /* ---------------------------------------------------------------------- */
89
90 #define UMAC_KEY_LEN 16 /* UMAC takes 16 bytes of external key */
91
92 /* Message "words" are read from memory in an endian-specific manner. */
93 /* For this implementation to behave correctly, __LITTLE_ENDIAN__ must */
94 /* be set true if the host computer is little-endian. */
95
96 #if BYTE_ORDER == LITTLE_ENDIAN
97 #define __LITTLE_ENDIAN__ 1
98 #else
99 #define __LITTLE_ENDIAN__ 0
100 #endif
101
102 /* ---------------------------------------------------------------------- */
103 /* ---------------------------------------------------------------------- */
104 /* ----- Architecture Specific ------------------------------------------ */
105 /* ---------------------------------------------------------------------- */
106 /* ---------------------------------------------------------------------- */
107
108
109 /* ---------------------------------------------------------------------- */
110 /* ---------------------------------------------------------------------- */
111 /* ----- Primitive Routines --------------------------------------------- */
112 /* ---------------------------------------------------------------------- */
113 /* ---------------------------------------------------------------------- */
114
115
116 /* ---------------------------------------------------------------------- */
117 /* --- 32-bit by 32-bit to 64-bit Multiplication ------------------------ */
118 /* ---------------------------------------------------------------------- */
119
120 #define MUL64(a,b) ((UINT64)((UINT64)(UINT32)(a) * (UINT64)(UINT32)(b)))
121
122 /* ---------------------------------------------------------------------- */
123 /* --- Endian Conversion --- Forcing assembly on some platforms */
124 /* ---------------------------------------------------------------------- */
125
126 #if HAVE_SWAP32
127 #define LOAD_UINT32_REVERSED(p) (swap32(*(UINT32 *)(p)))
128 #define STORE_UINT32_REVERSED(p,v) (*(UINT32 *)(p) = swap32(v))
129 #else /* HAVE_SWAP32 */
130
LOAD_UINT32_REVERSED(void * ptr)131 static UINT32 LOAD_UINT32_REVERSED(void *ptr)
132 {
133 UINT32 temp = *(UINT32 *)ptr;
134 temp = (temp >> 24) | ((temp & 0x00FF0000) >> 8 )
135 | ((temp & 0x0000FF00) << 8 ) | (temp << 24);
136 return (UINT32)temp;
137 }
138
139 # if (__LITTLE_ENDIAN__)
STORE_UINT32_REVERSED(void * ptr,UINT32 x)140 static void STORE_UINT32_REVERSED(void *ptr, UINT32 x)
141 {
142 UINT32 i = (UINT32)x;
143 *(UINT32 *)ptr = (i >> 24) | ((i & 0x00FF0000) >> 8 )
144 | ((i & 0x0000FF00) << 8 ) | (i << 24);
145 }
146 # endif /* __LITTLE_ENDIAN */
147 #endif /* HAVE_SWAP32 */
148
149 /* The following definitions use the above reversal-primitives to do the right
150 * thing on endian specific load and stores.
151 */
152
153 #if (__LITTLE_ENDIAN__)
154 #define LOAD_UINT32_LITTLE(ptr) (*(UINT32 *)(ptr))
155 #define STORE_UINT32_BIG(ptr,x) STORE_UINT32_REVERSED(ptr,x)
156 #else
157 #define LOAD_UINT32_LITTLE(ptr) LOAD_UINT32_REVERSED(ptr)
158 #define STORE_UINT32_BIG(ptr,x) (*(UINT32 *)(ptr) = (UINT32)(x))
159 #endif
160
161 /* ---------------------------------------------------------------------- */
162 /* ---------------------------------------------------------------------- */
163 /* ----- Begin KDF & PDF Section ---------------------------------------- */
164 /* ---------------------------------------------------------------------- */
165 /* ---------------------------------------------------------------------- */
166
167 /* UMAC uses AES with 16 byte block and key lengths */
168 #define AES_BLOCK_LEN 16
169
170 /* OpenSSL's AES */
171 #include "openbsd-compat/openssl-compat.h"
172 #ifndef USE_BUILTIN_RIJNDAEL
173 # include <openssl/aes.h>
174 #endif
175 typedef AES_KEY aes_int_key[1];
176 #define aes_encryption(in,out,int_key) \
177 AES_encrypt((u_char *)(in),(u_char *)(out),(AES_KEY *)int_key)
178 #define aes_key_setup(key,int_key) \
179 AES_set_encrypt_key((u_char *)(key),UMAC_KEY_LEN*8,int_key)
180
181 /* The user-supplied UMAC key is stretched using AES in a counter
182 * mode to supply all random bits needed by UMAC. The kdf function takes
183 * an AES internal key representation 'key' and writes a stream of
184 * 'nbytes' bytes to the memory pointed at by 'bufp'. Each distinct
185 * 'ndx' causes a distinct byte stream.
186 */
kdf(void * bufp,aes_int_key key,UINT8 ndx,int nbytes)187 static void kdf(void *bufp, aes_int_key key, UINT8 ndx, int nbytes)
188 {
189 UINT8 in_buf[AES_BLOCK_LEN] = {0};
190 UINT8 out_buf[AES_BLOCK_LEN];
191 UINT8 *dst_buf = (UINT8 *)bufp;
192 int i;
193
194 /* Setup the initial value */
195 in_buf[AES_BLOCK_LEN-9] = ndx;
196 in_buf[AES_BLOCK_LEN-1] = i = 1;
197
198 while (nbytes >= AES_BLOCK_LEN) {
199 aes_encryption(in_buf, out_buf, key);
200 memcpy(dst_buf,out_buf,AES_BLOCK_LEN);
201 in_buf[AES_BLOCK_LEN-1] = ++i;
202 nbytes -= AES_BLOCK_LEN;
203 dst_buf += AES_BLOCK_LEN;
204 }
205 if (nbytes) {
206 aes_encryption(in_buf, out_buf, key);
207 memcpy(dst_buf,out_buf,nbytes);
208 }
209 }
210
211 /* The final UHASH result is XOR'd with the output of a pseudorandom
212 * function. Here, we use AES to generate random output and
213 * xor the appropriate bytes depending on the last bits of nonce.
214 * This scheme is optimized for sequential, increasing big-endian nonces.
215 */
216
217 typedef struct {
218 UINT8 cache[AES_BLOCK_LEN]; /* Previous AES output is saved */
219 UINT8 nonce[AES_BLOCK_LEN]; /* The AES input making above cache */
220 aes_int_key prf_key; /* Expanded AES key for PDF */
221 } pdf_ctx;
222
pdf_init(pdf_ctx * pc,aes_int_key prf_key)223 static void pdf_init(pdf_ctx *pc, aes_int_key prf_key)
224 {
225 UINT8 buf[UMAC_KEY_LEN];
226
227 kdf(buf, prf_key, 0, UMAC_KEY_LEN);
228 aes_key_setup(buf, pc->prf_key);
229
230 /* Initialize pdf and cache */
231 memset(pc->nonce, 0, sizeof(pc->nonce));
232 aes_encryption(pc->nonce, pc->cache, pc->prf_key);
233 }
234
pdf_gen_xor(pdf_ctx * pc,UINT8 nonce[8],UINT8 buf[8])235 static void pdf_gen_xor(pdf_ctx *pc, UINT8 nonce[8], UINT8 buf[8])
236 {
237 /* 'ndx' indicates that we'll be using the 0th or 1st eight bytes
238 * of the AES output. If last time around we returned the ndx-1st
239 * element, then we may have the result in the cache already.
240 */
241
242 #if (UMAC_OUTPUT_LEN == 4)
243 #define LOW_BIT_MASK 3
244 #elif (UMAC_OUTPUT_LEN == 8)
245 #define LOW_BIT_MASK 1
246 #elif (UMAC_OUTPUT_LEN > 8)
247 #define LOW_BIT_MASK 0
248 #endif
249
250 UINT8 tmp_nonce_lo[4];
251 #if LOW_BIT_MASK != 0
252 int ndx = nonce[7] & LOW_BIT_MASK;
253 #endif
254 *(UINT32 *)tmp_nonce_lo = ((UINT32 *)nonce)[1];
255 tmp_nonce_lo[3] &= ~LOW_BIT_MASK; /* zero last bit */
256
257 if ( (((UINT32 *)tmp_nonce_lo)[0] != ((UINT32 *)pc->nonce)[1]) ||
258 (((UINT32 *)nonce)[0] != ((UINT32 *)pc->nonce)[0]) )
259 {
260 ((UINT32 *)pc->nonce)[0] = ((UINT32 *)nonce)[0];
261 ((UINT32 *)pc->nonce)[1] = ((UINT32 *)tmp_nonce_lo)[0];
262 aes_encryption(pc->nonce, pc->cache, pc->prf_key);
263 }
264
265 #if (UMAC_OUTPUT_LEN == 4)
266 *((UINT32 *)buf) ^= ((UINT32 *)pc->cache)[ndx];
267 #elif (UMAC_OUTPUT_LEN == 8)
268 *((UINT64 *)buf) ^= ((UINT64 *)pc->cache)[ndx];
269 #elif (UMAC_OUTPUT_LEN == 12)
270 ((UINT64 *)buf)[0] ^= ((UINT64 *)pc->cache)[0];
271 ((UINT32 *)buf)[2] ^= ((UINT32 *)pc->cache)[2];
272 #elif (UMAC_OUTPUT_LEN == 16)
273 ((UINT64 *)buf)[0] ^= ((UINT64 *)pc->cache)[0];
274 ((UINT64 *)buf)[1] ^= ((UINT64 *)pc->cache)[1];
275 #endif
276 }
277
278 /* ---------------------------------------------------------------------- */
279 /* ---------------------------------------------------------------------- */
280 /* ----- Begin NH Hash Section ------------------------------------------ */
281 /* ---------------------------------------------------------------------- */
282 /* ---------------------------------------------------------------------- */
283
284 /* The NH-based hash functions used in UMAC are described in the UMAC paper
285 * and specification, both of which can be found at the UMAC website.
286 * The interface to this implementation has two
287 * versions, one expects the entire message being hashed to be passed
288 * in a single buffer and returns the hash result immediately. The second
289 * allows the message to be passed in a sequence of buffers. In the
290 * muliple-buffer interface, the client calls the routine nh_update() as
291 * many times as necessary. When there is no more data to be fed to the
292 * hash, the client calls nh_final() which calculates the hash output.
293 * Before beginning another hash calculation the nh_reset() routine
294 * must be called. The single-buffer routine, nh(), is equivalent to
295 * the sequence of calls nh_update() and nh_final(); however it is
296 * optimized and should be prefered whenever the multiple-buffer interface
297 * is not necessary. When using either interface, it is the client's
298 * responsability to pass no more than L1_KEY_LEN bytes per hash result.
299 *
300 * The routine nh_init() initializes the nh_ctx data structure and
301 * must be called once, before any other PDF routine.
302 */
303
304 /* The "nh_aux" routines do the actual NH hashing work. They
305 * expect buffers to be multiples of L1_PAD_BOUNDARY. These routines
306 * produce output for all STREAMS NH iterations in one call,
307 * allowing the parallel implementation of the streams.
308 */
309
310 #define STREAMS (UMAC_OUTPUT_LEN / 4) /* Number of times hash is applied */
311 #define L1_KEY_LEN 1024 /* Internal key bytes */
312 #define L1_KEY_SHIFT 16 /* Toeplitz key shift between streams */
313 #define L1_PAD_BOUNDARY 32 /* pad message to boundary multiple */
314 #define ALLOC_BOUNDARY 16 /* Keep buffers aligned to this */
315 #define HASH_BUF_BYTES 64 /* nh_aux_hb buffer multiple */
316
317 typedef struct {
318 UINT8 nh_key [L1_KEY_LEN + L1_KEY_SHIFT * (STREAMS - 1)]; /* NH Key */
319 UINT8 data [HASH_BUF_BYTES]; /* Incomming data buffer */
320 int next_data_empty; /* Bookeeping variable for data buffer. */
321 int bytes_hashed; /* Bytes (out of L1_KEY_LEN) incorperated. */
322 UINT64 state[STREAMS]; /* on-line state */
323 } nh_ctx;
324
325
326 #if (UMAC_OUTPUT_LEN == 4)
327
nh_aux(void * kp,void * dp,void * hp,UINT32 dlen)328 static void nh_aux(void *kp, void *dp, void *hp, UINT32 dlen)
329 /* NH hashing primitive. Previous (partial) hash result is loaded and
330 * then stored via hp pointer. The length of the data pointed at by "dp",
331 * "dlen", is guaranteed to be divisible by L1_PAD_BOUNDARY (32). Key
332 * is expected to be endian compensated in memory at key setup.
333 */
334 {
335 UINT64 h;
336 UWORD c = dlen / 32;
337 UINT32 *k = (UINT32 *)kp;
338 UINT32 *d = (UINT32 *)dp;
339 UINT32 d0,d1,d2,d3,d4,d5,d6,d7;
340 UINT32 k0,k1,k2,k3,k4,k5,k6,k7;
341
342 h = *((UINT64 *)hp);
343 do {
344 d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1);
345 d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3);
346 d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5);
347 d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7);
348 k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3);
349 k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7);
350 h += MUL64((k0 + d0), (k4 + d4));
351 h += MUL64((k1 + d1), (k5 + d5));
352 h += MUL64((k2 + d2), (k6 + d6));
353 h += MUL64((k3 + d3), (k7 + d7));
354
355 d += 8;
356 k += 8;
357 } while (--c);
358 *((UINT64 *)hp) = h;
359 }
360
361 #elif (UMAC_OUTPUT_LEN == 8)
362
nh_aux(void * kp,void * dp,void * hp,UINT32 dlen)363 static void nh_aux(void *kp, void *dp, void *hp, UINT32 dlen)
364 /* Same as previous nh_aux, but two streams are handled in one pass,
365 * reading and writing 16 bytes of hash-state per call.
366 */
367 {
368 UINT64 h1,h2;
369 UWORD c = dlen / 32;
370 UINT32 *k = (UINT32 *)kp;
371 UINT32 *d = (UINT32 *)dp;
372 UINT32 d0,d1,d2,d3,d4,d5,d6,d7;
373 UINT32 k0,k1,k2,k3,k4,k5,k6,k7,
374 k8,k9,k10,k11;
375
376 h1 = *((UINT64 *)hp);
377 h2 = *((UINT64 *)hp + 1);
378 k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3);
379 do {
380 d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1);
381 d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3);
382 d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5);
383 d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7);
384 k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7);
385 k8 = *(k+8); k9 = *(k+9); k10 = *(k+10); k11 = *(k+11);
386
387 h1 += MUL64((k0 + d0), (k4 + d4));
388 h2 += MUL64((k4 + d0), (k8 + d4));
389
390 h1 += MUL64((k1 + d1), (k5 + d5));
391 h2 += MUL64((k5 + d1), (k9 + d5));
392
393 h1 += MUL64((k2 + d2), (k6 + d6));
394 h2 += MUL64((k6 + d2), (k10 + d6));
395
396 h1 += MUL64((k3 + d3), (k7 + d7));
397 h2 += MUL64((k7 + d3), (k11 + d7));
398
399 k0 = k8; k1 = k9; k2 = k10; k3 = k11;
400
401 d += 8;
402 k += 8;
403 } while (--c);
404 ((UINT64 *)hp)[0] = h1;
405 ((UINT64 *)hp)[1] = h2;
406 }
407
408 #elif (UMAC_OUTPUT_LEN == 12)
409
nh_aux(void * kp,void * dp,void * hp,UINT32 dlen)410 static void nh_aux(void *kp, void *dp, void *hp, UINT32 dlen)
411 /* Same as previous nh_aux, but two streams are handled in one pass,
412 * reading and writing 24 bytes of hash-state per call.
413 */
414 {
415 UINT64 h1,h2,h3;
416 UWORD c = dlen / 32;
417 UINT32 *k = (UINT32 *)kp;
418 UINT32 *d = (UINT32 *)dp;
419 UINT32 d0,d1,d2,d3,d4,d5,d6,d7;
420 UINT32 k0,k1,k2,k3,k4,k5,k6,k7,
421 k8,k9,k10,k11,k12,k13,k14,k15;
422
423 h1 = *((UINT64 *)hp);
424 h2 = *((UINT64 *)hp + 1);
425 h3 = *((UINT64 *)hp + 2);
426 k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3);
427 k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7);
428 do {
429 d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1);
430 d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3);
431 d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5);
432 d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7);
433 k8 = *(k+8); k9 = *(k+9); k10 = *(k+10); k11 = *(k+11);
434 k12 = *(k+12); k13 = *(k+13); k14 = *(k+14); k15 = *(k+15);
435
436 h1 += MUL64((k0 + d0), (k4 + d4));
437 h2 += MUL64((k4 + d0), (k8 + d4));
438 h3 += MUL64((k8 + d0), (k12 + d4));
439
440 h1 += MUL64((k1 + d1), (k5 + d5));
441 h2 += MUL64((k5 + d1), (k9 + d5));
442 h3 += MUL64((k9 + d1), (k13 + d5));
443
444 h1 += MUL64((k2 + d2), (k6 + d6));
445 h2 += MUL64((k6 + d2), (k10 + d6));
446 h3 += MUL64((k10 + d2), (k14 + d6));
447
448 h1 += MUL64((k3 + d3), (k7 + d7));
449 h2 += MUL64((k7 + d3), (k11 + d7));
450 h3 += MUL64((k11 + d3), (k15 + d7));
451
452 k0 = k8; k1 = k9; k2 = k10; k3 = k11;
453 k4 = k12; k5 = k13; k6 = k14; k7 = k15;
454
455 d += 8;
456 k += 8;
457 } while (--c);
458 ((UINT64 *)hp)[0] = h1;
459 ((UINT64 *)hp)[1] = h2;
460 ((UINT64 *)hp)[2] = h3;
461 }
462
463 #elif (UMAC_OUTPUT_LEN == 16)
464
nh_aux(void * kp,void * dp,void * hp,UINT32 dlen)465 static void nh_aux(void *kp, void *dp, void *hp, UINT32 dlen)
466 /* Same as previous nh_aux, but two streams are handled in one pass,
467 * reading and writing 24 bytes of hash-state per call.
468 */
469 {
470 UINT64 h1,h2,h3,h4;
471 UWORD c = dlen / 32;
472 UINT32 *k = (UINT32 *)kp;
473 UINT32 *d = (UINT32 *)dp;
474 UINT32 d0,d1,d2,d3,d4,d5,d6,d7;
475 UINT32 k0,k1,k2,k3,k4,k5,k6,k7,
476 k8,k9,k10,k11,k12,k13,k14,k15,
477 k16,k17,k18,k19;
478
479 h1 = *((UINT64 *)hp);
480 h2 = *((UINT64 *)hp + 1);
481 h3 = *((UINT64 *)hp + 2);
482 h4 = *((UINT64 *)hp + 3);
483 k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3);
484 k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7);
485 do {
486 d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1);
487 d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3);
488 d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5);
489 d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7);
490 k8 = *(k+8); k9 = *(k+9); k10 = *(k+10); k11 = *(k+11);
491 k12 = *(k+12); k13 = *(k+13); k14 = *(k+14); k15 = *(k+15);
492 k16 = *(k+16); k17 = *(k+17); k18 = *(k+18); k19 = *(k+19);
493
494 h1 += MUL64((k0 + d0), (k4 + d4));
495 h2 += MUL64((k4 + d0), (k8 + d4));
496 h3 += MUL64((k8 + d0), (k12 + d4));
497 h4 += MUL64((k12 + d0), (k16 + d4));
498
499 h1 += MUL64((k1 + d1), (k5 + d5));
500 h2 += MUL64((k5 + d1), (k9 + d5));
501 h3 += MUL64((k9 + d1), (k13 + d5));
502 h4 += MUL64((k13 + d1), (k17 + d5));
503
504 h1 += MUL64((k2 + d2), (k6 + d6));
505 h2 += MUL64((k6 + d2), (k10 + d6));
506 h3 += MUL64((k10 + d2), (k14 + d6));
507 h4 += MUL64((k14 + d2), (k18 + d6));
508
509 h1 += MUL64((k3 + d3), (k7 + d7));
510 h2 += MUL64((k7 + d3), (k11 + d7));
511 h3 += MUL64((k11 + d3), (k15 + d7));
512 h4 += MUL64((k15 + d3), (k19 + d7));
513
514 k0 = k8; k1 = k9; k2 = k10; k3 = k11;
515 k4 = k12; k5 = k13; k6 = k14; k7 = k15;
516 k8 = k16; k9 = k17; k10 = k18; k11 = k19;
517
518 d += 8;
519 k += 8;
520 } while (--c);
521 ((UINT64 *)hp)[0] = h1;
522 ((UINT64 *)hp)[1] = h2;
523 ((UINT64 *)hp)[2] = h3;
524 ((UINT64 *)hp)[3] = h4;
525 }
526
527 /* ---------------------------------------------------------------------- */
528 #endif /* UMAC_OUTPUT_LENGTH */
529 /* ---------------------------------------------------------------------- */
530
531
532 /* ---------------------------------------------------------------------- */
533
nh_transform(nh_ctx * hc,UINT8 * buf,UINT32 nbytes)534 static void nh_transform(nh_ctx *hc, UINT8 *buf, UINT32 nbytes)
535 /* This function is a wrapper for the primitive NH hash functions. It takes
536 * as argument "hc" the current hash context and a buffer which must be a
537 * multiple of L1_PAD_BOUNDARY. The key passed to nh_aux is offset
538 * appropriately according to how much message has been hashed already.
539 */
540 {
541 UINT8 *key;
542
543 key = hc->nh_key + hc->bytes_hashed;
544 nh_aux(key, buf, hc->state, nbytes);
545 }
546
547 /* ---------------------------------------------------------------------- */
548
549 #if (__LITTLE_ENDIAN__)
endian_convert(void * buf,UWORD bpw,UINT32 num_bytes)550 static void endian_convert(void *buf, UWORD bpw, UINT32 num_bytes)
551 /* We endian convert the keys on little-endian computers to */
552 /* compensate for the lack of big-endian memory reads during hashing. */
553 {
554 UWORD iters = num_bytes / bpw;
555 if (bpw == 4) {
556 UINT32 *p = (UINT32 *)buf;
557 do {
558 *p = LOAD_UINT32_REVERSED(p);
559 p++;
560 } while (--iters);
561 } else if (bpw == 8) {
562 UINT32 *p = (UINT32 *)buf;
563 UINT32 t;
564 do {
565 t = LOAD_UINT32_REVERSED(p+1);
566 p[1] = LOAD_UINT32_REVERSED(p);
567 p[0] = t;
568 p += 2;
569 } while (--iters);
570 }
571 }
572 #define endian_convert_if_le(x,y,z) endian_convert((x),(y),(z))
573 #else
574 #define endian_convert_if_le(x,y,z) do{}while(0) /* Do nothing */
575 #endif
576
577 /* ---------------------------------------------------------------------- */
578
nh_reset(nh_ctx * hc)579 static void nh_reset(nh_ctx *hc)
580 /* Reset nh_ctx to ready for hashing of new data */
581 {
582 hc->bytes_hashed = 0;
583 hc->next_data_empty = 0;
584 hc->state[0] = 0;
585 #if (UMAC_OUTPUT_LEN >= 8)
586 hc->state[1] = 0;
587 #endif
588 #if (UMAC_OUTPUT_LEN >= 12)
589 hc->state[2] = 0;
590 #endif
591 #if (UMAC_OUTPUT_LEN == 16)
592 hc->state[3] = 0;
593 #endif
594
595 }
596
597 /* ---------------------------------------------------------------------- */
598
nh_init(nh_ctx * hc,aes_int_key prf_key)599 static void nh_init(nh_ctx *hc, aes_int_key prf_key)
600 /* Generate nh_key, endian convert and reset to be ready for hashing. */
601 {
602 kdf(hc->nh_key, prf_key, 1, sizeof(hc->nh_key));
603 endian_convert_if_le(hc->nh_key, 4, sizeof(hc->nh_key));
604 nh_reset(hc);
605 }
606
607 /* ---------------------------------------------------------------------- */
608
nh_update(nh_ctx * hc,UINT8 * buf,UINT32 nbytes)609 static void nh_update(nh_ctx *hc, UINT8 *buf, UINT32 nbytes)
610 /* Incorporate nbytes of data into a nh_ctx, buffer whatever is not an */
611 /* even multiple of HASH_BUF_BYTES. */
612 {
613 UINT32 i,j;
614
615 j = hc->next_data_empty;
616 if ((j + nbytes) >= HASH_BUF_BYTES) {
617 if (j) {
618 i = HASH_BUF_BYTES - j;
619 memcpy(hc->data+j, buf, i);
620 nh_transform(hc,hc->data,HASH_BUF_BYTES);
621 nbytes -= i;
622 buf += i;
623 hc->bytes_hashed += HASH_BUF_BYTES;
624 }
625 if (nbytes >= HASH_BUF_BYTES) {
626 i = nbytes & ~(HASH_BUF_BYTES - 1);
627 nh_transform(hc, buf, i);
628 nbytes -= i;
629 buf += i;
630 hc->bytes_hashed += i;
631 }
632 j = 0;
633 }
634 memcpy(hc->data + j, buf, nbytes);
635 hc->next_data_empty = j + nbytes;
636 }
637
638 /* ---------------------------------------------------------------------- */
639
zero_pad(UINT8 * p,int nbytes)640 static void zero_pad(UINT8 *p, int nbytes)
641 {
642 /* Write "nbytes" of zeroes, beginning at "p" */
643 if (nbytes >= (int)sizeof(UWORD)) {
644 while ((ptrdiff_t)p % sizeof(UWORD)) {
645 *p = 0;
646 nbytes--;
647 p++;
648 }
649 while (nbytes >= (int)sizeof(UWORD)) {
650 *(UWORD *)p = 0;
651 nbytes -= sizeof(UWORD);
652 p += sizeof(UWORD);
653 }
654 }
655 while (nbytes) {
656 *p = 0;
657 nbytes--;
658 p++;
659 }
660 }
661
662 /* ---------------------------------------------------------------------- */
663
nh_final(nh_ctx * hc,UINT8 * result)664 static void nh_final(nh_ctx *hc, UINT8 *result)
665 /* After passing some number of data buffers to nh_update() for integration
666 * into an NH context, nh_final is called to produce a hash result. If any
667 * bytes are in the buffer hc->data, incorporate them into the
668 * NH context. Finally, add into the NH accumulation "state" the total number
669 * of bits hashed. The resulting numbers are written to the buffer "result".
670 * If nh_update was never called, L1_PAD_BOUNDARY zeroes are incorporated.
671 */
672 {
673 int nh_len, nbits;
674
675 if (hc->next_data_empty != 0) {
676 nh_len = ((hc->next_data_empty + (L1_PAD_BOUNDARY - 1)) &
677 ~(L1_PAD_BOUNDARY - 1));
678 zero_pad(hc->data + hc->next_data_empty,
679 nh_len - hc->next_data_empty);
680 nh_transform(hc, hc->data, nh_len);
681 hc->bytes_hashed += hc->next_data_empty;
682 } else if (hc->bytes_hashed == 0) {
683 nh_len = L1_PAD_BOUNDARY;
684 zero_pad(hc->data, L1_PAD_BOUNDARY);
685 nh_transform(hc, hc->data, nh_len);
686 }
687
688 nbits = (hc->bytes_hashed << 3);
689 ((UINT64 *)result)[0] = ((UINT64 *)hc->state)[0] + nbits;
690 #if (UMAC_OUTPUT_LEN >= 8)
691 ((UINT64 *)result)[1] = ((UINT64 *)hc->state)[1] + nbits;
692 #endif
693 #if (UMAC_OUTPUT_LEN >= 12)
694 ((UINT64 *)result)[2] = ((UINT64 *)hc->state)[2] + nbits;
695 #endif
696 #if (UMAC_OUTPUT_LEN == 16)
697 ((UINT64 *)result)[3] = ((UINT64 *)hc->state)[3] + nbits;
698 #endif
699 nh_reset(hc);
700 }
701
702 /* ---------------------------------------------------------------------- */
703
nh(nh_ctx * hc,UINT8 * buf,UINT32 padded_len,UINT32 unpadded_len,UINT8 * result)704 static void nh(nh_ctx *hc, UINT8 *buf, UINT32 padded_len,
705 UINT32 unpadded_len, UINT8 *result)
706 /* All-in-one nh_update() and nh_final() equivalent.
707 * Assumes that padded_len is divisible by L1_PAD_BOUNDARY and result is
708 * well aligned
709 */
710 {
711 UINT32 nbits;
712
713 /* Initialize the hash state */
714 nbits = (unpadded_len << 3);
715
716 ((UINT64 *)result)[0] = nbits;
717 #if (UMAC_OUTPUT_LEN >= 8)
718 ((UINT64 *)result)[1] = nbits;
719 #endif
720 #if (UMAC_OUTPUT_LEN >= 12)
721 ((UINT64 *)result)[2] = nbits;
722 #endif
723 #if (UMAC_OUTPUT_LEN == 16)
724 ((UINT64 *)result)[3] = nbits;
725 #endif
726
727 nh_aux(hc->nh_key, buf, result, padded_len);
728 }
729
730 /* ---------------------------------------------------------------------- */
731 /* ---------------------------------------------------------------------- */
732 /* ----- Begin UHASH Section -------------------------------------------- */
733 /* ---------------------------------------------------------------------- */
734 /* ---------------------------------------------------------------------- */
735
736 /* UHASH is a multi-layered algorithm. Data presented to UHASH is first
737 * hashed by NH. The NH output is then hashed by a polynomial-hash layer
738 * unless the initial data to be hashed is short. After the polynomial-
739 * layer, an inner-product hash is used to produce the final UHASH output.
740 *
741 * UHASH provides two interfaces, one all-at-once and another where data
742 * buffers are presented sequentially. In the sequential interface, the
743 * UHASH client calls the routine uhash_update() as many times as necessary.
744 * When there is no more data to be fed to UHASH, the client calls
745 * uhash_final() which
746 * calculates the UHASH output. Before beginning another UHASH calculation
747 * the uhash_reset() routine must be called. The all-at-once UHASH routine,
748 * uhash(), is equivalent to the sequence of calls uhash_update() and
749 * uhash_final(); however it is optimized and should be
750 * used whenever the sequential interface is not necessary.
751 *
752 * The routine uhash_init() initializes the uhash_ctx data structure and
753 * must be called once, before any other UHASH routine.
754 */
755
756 /* ---------------------------------------------------------------------- */
757 /* ----- Constants and uhash_ctx ---------------------------------------- */
758 /* ---------------------------------------------------------------------- */
759
760 /* ---------------------------------------------------------------------- */
761 /* ----- Poly hash and Inner-Product hash Constants --------------------- */
762 /* ---------------------------------------------------------------------- */
763
764 /* Primes and masks */
765 #define p36 ((UINT64)0x0000000FFFFFFFFBull) /* 2^36 - 5 */
766 #define p64 ((UINT64)0xFFFFFFFFFFFFFFC5ull) /* 2^64 - 59 */
767 #define m36 ((UINT64)0x0000000FFFFFFFFFull) /* The low 36 of 64 bits */
768
769
770 /* ---------------------------------------------------------------------- */
771
772 typedef struct uhash_ctx {
773 nh_ctx hash; /* Hash context for L1 NH hash */
774 UINT64 poly_key_8[STREAMS]; /* p64 poly keys */
775 UINT64 poly_accum[STREAMS]; /* poly hash result */
776 UINT64 ip_keys[STREAMS*4]; /* Inner-product keys */
777 UINT32 ip_trans[STREAMS]; /* Inner-product translation */
778 UINT32 msg_len; /* Total length of data passed */
779 /* to uhash */
780 } uhash_ctx;
781 typedef struct uhash_ctx *uhash_ctx_t;
782
783 /* ---------------------------------------------------------------------- */
784
785
786 /* The polynomial hashes use Horner's rule to evaluate a polynomial one
787 * word at a time. As described in the specification, poly32 and poly64
788 * require keys from special domains. The following implementations exploit
789 * the special domains to avoid overflow. The results are not guaranteed to
790 * be within Z_p32 and Z_p64, but the Inner-Product hash implementation
791 * patches any errant values.
792 */
793
poly64(UINT64 cur,UINT64 key,UINT64 data)794 static UINT64 poly64(UINT64 cur, UINT64 key, UINT64 data)
795 {
796 UINT32 key_hi = (UINT32)(key >> 32),
797 key_lo = (UINT32)key,
798 cur_hi = (UINT32)(cur >> 32),
799 cur_lo = (UINT32)cur,
800 x_lo,
801 x_hi;
802 UINT64 X,T,res;
803
804 X = MUL64(key_hi, cur_lo) + MUL64(cur_hi, key_lo);
805 x_lo = (UINT32)X;
806 x_hi = (UINT32)(X >> 32);
807
808 res = (MUL64(key_hi, cur_hi) + x_hi) * 59 + MUL64(key_lo, cur_lo);
809
810 T = ((UINT64)x_lo << 32);
811 res += T;
812 if (res < T)
813 res += 59;
814
815 res += data;
816 if (res < data)
817 res += 59;
818
819 return res;
820 }
821
822
823 /* Although UMAC is specified to use a ramped polynomial hash scheme, this
824 * implementation does not handle all ramp levels. Because we don't handle
825 * the ramp up to p128 modulus in this implementation, we are limited to
826 * 2^14 poly_hash() invocations per stream (for a total capacity of 2^24
827 * bytes input to UMAC per tag, ie. 16MB).
828 */
poly_hash(uhash_ctx_t hc,UINT32 data_in[])829 static void poly_hash(uhash_ctx_t hc, UINT32 data_in[])
830 {
831 int i;
832 UINT64 *data=(UINT64*)data_in;
833
834 for (i = 0; i < STREAMS; i++) {
835 if ((UINT32)(data[i] >> 32) == 0xfffffffful) {
836 hc->poly_accum[i] = poly64(hc->poly_accum[i],
837 hc->poly_key_8[i], p64 - 1);
838 hc->poly_accum[i] = poly64(hc->poly_accum[i],
839 hc->poly_key_8[i], (data[i] - 59));
840 } else {
841 hc->poly_accum[i] = poly64(hc->poly_accum[i],
842 hc->poly_key_8[i], data[i]);
843 }
844 }
845 }
846
847
848 /* ---------------------------------------------------------------------- */
849
850
851 /* The final step in UHASH is an inner-product hash. The poly hash
852 * produces a result not neccesarily WORD_LEN bytes long. The inner-
853 * product hash breaks the polyhash output into 16-bit chunks and
854 * multiplies each with a 36 bit key.
855 */
856
ip_aux(UINT64 t,UINT64 * ipkp,UINT64 data)857 static UINT64 ip_aux(UINT64 t, UINT64 *ipkp, UINT64 data)
858 {
859 t = t + ipkp[0] * (UINT64)(UINT16)(data >> 48);
860 t = t + ipkp[1] * (UINT64)(UINT16)(data >> 32);
861 t = t + ipkp[2] * (UINT64)(UINT16)(data >> 16);
862 t = t + ipkp[3] * (UINT64)(UINT16)(data);
863
864 return t;
865 }
866
ip_reduce_p36(UINT64 t)867 static UINT32 ip_reduce_p36(UINT64 t)
868 {
869 /* Divisionless modular reduction */
870 UINT64 ret;
871
872 ret = (t & m36) + 5 * (t >> 36);
873 if (ret >= p36)
874 ret -= p36;
875
876 /* return least significant 32 bits */
877 return (UINT32)(ret);
878 }
879
880
881 /* If the data being hashed by UHASH is no longer than L1_KEY_LEN, then
882 * the polyhash stage is skipped and ip_short is applied directly to the
883 * NH output.
884 */
ip_short(uhash_ctx_t ahc,UINT8 * nh_res,u_char * res)885 static void ip_short(uhash_ctx_t ahc, UINT8 *nh_res, u_char *res)
886 {
887 UINT64 t;
888 UINT64 *nhp = (UINT64 *)nh_res;
889
890 t = ip_aux(0,ahc->ip_keys, nhp[0]);
891 STORE_UINT32_BIG((UINT32 *)res+0, ip_reduce_p36(t) ^ ahc->ip_trans[0]);
892 #if (UMAC_OUTPUT_LEN >= 8)
893 t = ip_aux(0,ahc->ip_keys+4, nhp[1]);
894 STORE_UINT32_BIG((UINT32 *)res+1, ip_reduce_p36(t) ^ ahc->ip_trans[1]);
895 #endif
896 #if (UMAC_OUTPUT_LEN >= 12)
897 t = ip_aux(0,ahc->ip_keys+8, nhp[2]);
898 STORE_UINT32_BIG((UINT32 *)res+2, ip_reduce_p36(t) ^ ahc->ip_trans[2]);
899 #endif
900 #if (UMAC_OUTPUT_LEN == 16)
901 t = ip_aux(0,ahc->ip_keys+12, nhp[3]);
902 STORE_UINT32_BIG((UINT32 *)res+3, ip_reduce_p36(t) ^ ahc->ip_trans[3]);
903 #endif
904 }
905
906 /* If the data being hashed by UHASH is longer than L1_KEY_LEN, then
907 * the polyhash stage is not skipped and ip_long is applied to the
908 * polyhash output.
909 */
ip_long(uhash_ctx_t ahc,u_char * res)910 static void ip_long(uhash_ctx_t ahc, u_char *res)
911 {
912 int i;
913 UINT64 t;
914
915 for (i = 0; i < STREAMS; i++) {
916 /* fix polyhash output not in Z_p64 */
917 if (ahc->poly_accum[i] >= p64)
918 ahc->poly_accum[i] -= p64;
919 t = ip_aux(0,ahc->ip_keys+(i*4), ahc->poly_accum[i]);
920 STORE_UINT32_BIG((UINT32 *)res+i,
921 ip_reduce_p36(t) ^ ahc->ip_trans[i]);
922 }
923 }
924
925
926 /* ---------------------------------------------------------------------- */
927
928 /* ---------------------------------------------------------------------- */
929
930 /* Reset uhash context for next hash session */
uhash_reset(uhash_ctx_t pc)931 static int uhash_reset(uhash_ctx_t pc)
932 {
933 nh_reset(&pc->hash);
934 pc->msg_len = 0;
935 pc->poly_accum[0] = 1;
936 #if (UMAC_OUTPUT_LEN >= 8)
937 pc->poly_accum[1] = 1;
938 #endif
939 #if (UMAC_OUTPUT_LEN >= 12)
940 pc->poly_accum[2] = 1;
941 #endif
942 #if (UMAC_OUTPUT_LEN == 16)
943 pc->poly_accum[3] = 1;
944 #endif
945 return 1;
946 }
947
948 /* ---------------------------------------------------------------------- */
949
950 /* Given a pointer to the internal key needed by kdf() and a uhash context,
951 * initialize the NH context and generate keys needed for poly and inner-
952 * product hashing. All keys are endian adjusted in memory so that native
953 * loads cause correct keys to be in registers during calculation.
954 */
uhash_init(uhash_ctx_t ahc,aes_int_key prf_key)955 static void uhash_init(uhash_ctx_t ahc, aes_int_key prf_key)
956 {
957 int i;
958 UINT8 buf[(8*STREAMS+4)*sizeof(UINT64)];
959
960 /* Zero the entire uhash context */
961 memset(ahc, 0, sizeof(uhash_ctx));
962
963 /* Initialize the L1 hash */
964 nh_init(&ahc->hash, prf_key);
965
966 /* Setup L2 hash variables */
967 kdf(buf, prf_key, 2, sizeof(buf)); /* Fill buffer with index 1 key */
968 for (i = 0; i < STREAMS; i++) {
969 /* Fill keys from the buffer, skipping bytes in the buffer not
970 * used by this implementation. Endian reverse the keys if on a
971 * little-endian computer.
972 */
973 memcpy(ahc->poly_key_8+i, buf+24*i, 8);
974 endian_convert_if_le(ahc->poly_key_8+i, 8, 8);
975 /* Mask the 64-bit keys to their special domain */
976 ahc->poly_key_8[i] &= ((UINT64)0x01ffffffu << 32) + 0x01ffffffu;
977 ahc->poly_accum[i] = 1; /* Our polyhash prepends a non-zero word */
978 }
979
980 /* Setup L3-1 hash variables */
981 kdf(buf, prf_key, 3, sizeof(buf)); /* Fill buffer with index 2 key */
982 for (i = 0; i < STREAMS; i++)
983 memcpy(ahc->ip_keys+4*i, buf+(8*i+4)*sizeof(UINT64),
984 4*sizeof(UINT64));
985 endian_convert_if_le(ahc->ip_keys, sizeof(UINT64),
986 sizeof(ahc->ip_keys));
987 for (i = 0; i < STREAMS*4; i++)
988 ahc->ip_keys[i] %= p36; /* Bring into Z_p36 */
989
990 /* Setup L3-2 hash variables */
991 /* Fill buffer with index 4 key */
992 kdf(ahc->ip_trans, prf_key, 4, STREAMS * sizeof(UINT32));
993 endian_convert_if_le(ahc->ip_trans, sizeof(UINT32),
994 STREAMS * sizeof(UINT32));
995 }
996
997 /* ---------------------------------------------------------------------- */
998
999 #if 0
1000 static uhash_ctx_t uhash_alloc(u_char key[])
1001 {
1002 /* Allocate memory and force to a 16-byte boundary. */
1003 uhash_ctx_t ctx;
1004 u_char bytes_to_add;
1005 aes_int_key prf_key;
1006
1007 ctx = (uhash_ctx_t)malloc(sizeof(uhash_ctx)+ALLOC_BOUNDARY);
1008 if (ctx) {
1009 if (ALLOC_BOUNDARY) {
1010 bytes_to_add = ALLOC_BOUNDARY -
1011 ((ptrdiff_t)ctx & (ALLOC_BOUNDARY -1));
1012 ctx = (uhash_ctx_t)((u_char *)ctx + bytes_to_add);
1013 *((u_char *)ctx - 1) = bytes_to_add;
1014 }
1015 aes_key_setup(key,prf_key);
1016 uhash_init(ctx, prf_key);
1017 }
1018 return (ctx);
1019 }
1020 #endif
1021
1022 /* ---------------------------------------------------------------------- */
1023
1024 #if 0
1025 static int uhash_free(uhash_ctx_t ctx)
1026 {
1027 /* Free memory allocated by uhash_alloc */
1028 u_char bytes_to_sub;
1029
1030 if (ctx) {
1031 if (ALLOC_BOUNDARY) {
1032 bytes_to_sub = *((u_char *)ctx - 1);
1033 ctx = (uhash_ctx_t)((u_char *)ctx - bytes_to_sub);
1034 }
1035 free(ctx);
1036 }
1037 return (1);
1038 }
1039 #endif
1040 /* ---------------------------------------------------------------------- */
1041
uhash_update(uhash_ctx_t ctx,u_char * input,long len)1042 static int uhash_update(uhash_ctx_t ctx, u_char *input, long len)
1043 /* Given len bytes of data, we parse it into L1_KEY_LEN chunks and
1044 * hash each one with NH, calling the polyhash on each NH output.
1045 */
1046 {
1047 UWORD bytes_hashed, bytes_remaining;
1048 UINT64 result_buf[STREAMS];
1049 UINT8 *nh_result = (UINT8 *)&result_buf;
1050
1051 if (ctx->msg_len + len <= L1_KEY_LEN) {
1052 nh_update(&ctx->hash, (UINT8 *)input, len);
1053 ctx->msg_len += len;
1054 } else {
1055
1056 bytes_hashed = ctx->msg_len % L1_KEY_LEN;
1057 if (ctx->msg_len == L1_KEY_LEN)
1058 bytes_hashed = L1_KEY_LEN;
1059
1060 if (bytes_hashed + len >= L1_KEY_LEN) {
1061
1062 /* If some bytes have been passed to the hash function */
1063 /* then we want to pass at most (L1_KEY_LEN - bytes_hashed) */
1064 /* bytes to complete the current nh_block. */
1065 if (bytes_hashed) {
1066 bytes_remaining = (L1_KEY_LEN - bytes_hashed);
1067 nh_update(&ctx->hash, (UINT8 *)input, bytes_remaining);
1068 nh_final(&ctx->hash, nh_result);
1069 ctx->msg_len += bytes_remaining;
1070 poly_hash(ctx,(UINT32 *)nh_result);
1071 len -= bytes_remaining;
1072 input += bytes_remaining;
1073 }
1074
1075 /* Hash directly from input stream if enough bytes */
1076 while (len >= L1_KEY_LEN) {
1077 nh(&ctx->hash, (UINT8 *)input, L1_KEY_LEN,
1078 L1_KEY_LEN, nh_result);
1079 ctx->msg_len += L1_KEY_LEN;
1080 len -= L1_KEY_LEN;
1081 input += L1_KEY_LEN;
1082 poly_hash(ctx,(UINT32 *)nh_result);
1083 }
1084 }
1085
1086 /* pass remaining < L1_KEY_LEN bytes of input data to NH */
1087 if (len) {
1088 nh_update(&ctx->hash, (UINT8 *)input, len);
1089 ctx->msg_len += len;
1090 }
1091 }
1092
1093 return (1);
1094 }
1095
1096 /* ---------------------------------------------------------------------- */
1097
uhash_final(uhash_ctx_t ctx,u_char * res)1098 static int uhash_final(uhash_ctx_t ctx, u_char *res)
1099 /* Incorporate any pending data, pad, and generate tag */
1100 {
1101 UINT64 result_buf[STREAMS];
1102 UINT8 *nh_result = (UINT8 *)&result_buf;
1103
1104 if (ctx->msg_len > L1_KEY_LEN) {
1105 if (ctx->msg_len % L1_KEY_LEN) {
1106 nh_final(&ctx->hash, nh_result);
1107 poly_hash(ctx,(UINT32 *)nh_result);
1108 }
1109 ip_long(ctx, res);
1110 } else {
1111 nh_final(&ctx->hash, nh_result);
1112 ip_short(ctx,nh_result, res);
1113 }
1114 uhash_reset(ctx);
1115 return (1);
1116 }
1117
1118 /* ---------------------------------------------------------------------- */
1119
1120 #if 0
1121 static int uhash(uhash_ctx_t ahc, u_char *msg, long len, u_char *res)
1122 /* assumes that msg is in a writable buffer of length divisible by */
1123 /* L1_PAD_BOUNDARY. Bytes beyond msg[len] may be zeroed. */
1124 {
1125 UINT8 nh_result[STREAMS*sizeof(UINT64)];
1126 UINT32 nh_len;
1127 int extra_zeroes_needed;
1128
1129 /* If the message to be hashed is no longer than L1_HASH_LEN, we skip
1130 * the polyhash.
1131 */
1132 if (len <= L1_KEY_LEN) {
1133 if (len == 0) /* If zero length messages will not */
1134 nh_len = L1_PAD_BOUNDARY; /* be seen, comment out this case */
1135 else
1136 nh_len = ((len + (L1_PAD_BOUNDARY - 1)) & ~(L1_PAD_BOUNDARY - 1));
1137 extra_zeroes_needed = nh_len - len;
1138 zero_pad((UINT8 *)msg + len, extra_zeroes_needed);
1139 nh(&ahc->hash, (UINT8 *)msg, nh_len, len, nh_result);
1140 ip_short(ahc,nh_result, res);
1141 } else {
1142 /* Otherwise, we hash each L1_KEY_LEN chunk with NH, passing the NH
1143 * output to poly_hash().
1144 */
1145 do {
1146 nh(&ahc->hash, (UINT8 *)msg, L1_KEY_LEN, L1_KEY_LEN, nh_result);
1147 poly_hash(ahc,(UINT32 *)nh_result);
1148 len -= L1_KEY_LEN;
1149 msg += L1_KEY_LEN;
1150 } while (len >= L1_KEY_LEN);
1151 if (len) {
1152 nh_len = ((len + (L1_PAD_BOUNDARY - 1)) & ~(L1_PAD_BOUNDARY - 1));
1153 extra_zeroes_needed = nh_len - len;
1154 zero_pad((UINT8 *)msg + len, extra_zeroes_needed);
1155 nh(&ahc->hash, (UINT8 *)msg, nh_len, len, nh_result);
1156 poly_hash(ahc,(UINT32 *)nh_result);
1157 }
1158
1159 ip_long(ahc, res);
1160 }
1161
1162 uhash_reset(ahc);
1163 return 1;
1164 }
1165 #endif
1166
1167 /* ---------------------------------------------------------------------- */
1168 /* ---------------------------------------------------------------------- */
1169 /* ----- Begin UMAC Section --------------------------------------------- */
1170 /* ---------------------------------------------------------------------- */
1171 /* ---------------------------------------------------------------------- */
1172
1173 /* The UMAC interface has two interfaces, an all-at-once interface where
1174 * the entire message to be authenticated is passed to UMAC in one buffer,
1175 * and a sequential interface where the message is presented a little at a
1176 * time. The all-at-once is more optimaized than the sequential version and
1177 * should be preferred when the sequential interface is not required.
1178 */
1179 struct umac_ctx {
1180 uhash_ctx hash; /* Hash function for message compression */
1181 pdf_ctx pdf; /* PDF for hashed output */
1182 void *free_ptr; /* Address to free this struct via */
1183 } umac_ctx;
1184
1185 /* ---------------------------------------------------------------------- */
1186
1187 #if 0
1188 int umac_reset(struct umac_ctx *ctx)
1189 /* Reset the hash function to begin a new authentication. */
1190 {
1191 uhash_reset(&ctx->hash);
1192 return (1);
1193 }
1194 #endif
1195
1196 /* ---------------------------------------------------------------------- */
1197
umac_delete(struct umac_ctx * ctx)1198 int umac_delete(struct umac_ctx *ctx)
1199 /* Deallocate the ctx structure */
1200 {
1201 if (ctx) {
1202 if (ALLOC_BOUNDARY)
1203 ctx = (struct umac_ctx *)ctx->free_ptr;
1204 xfree(ctx);
1205 }
1206 return (1);
1207 }
1208
1209 /* ---------------------------------------------------------------------- */
1210
umac_new(u_char key[])1211 struct umac_ctx *umac_new(u_char key[])
1212 /* Dynamically allocate a umac_ctx struct, initialize variables,
1213 * generate subkeys from key. Align to 16-byte boundary.
1214 */
1215 {
1216 struct umac_ctx *ctx, *octx;
1217 size_t bytes_to_add;
1218 aes_int_key prf_key;
1219
1220 octx = ctx = xmalloc(sizeof(*ctx) + ALLOC_BOUNDARY);
1221 if (ctx) {
1222 if (ALLOC_BOUNDARY) {
1223 bytes_to_add = ALLOC_BOUNDARY -
1224 ((ptrdiff_t)ctx & (ALLOC_BOUNDARY - 1));
1225 ctx = (struct umac_ctx *)((u_char *)ctx + bytes_to_add);
1226 }
1227 ctx->free_ptr = octx;
1228 aes_key_setup(key,prf_key);
1229 pdf_init(&ctx->pdf, prf_key);
1230 uhash_init(&ctx->hash, prf_key);
1231 }
1232
1233 return (ctx);
1234 }
1235
1236 /* ---------------------------------------------------------------------- */
1237
umac_final(struct umac_ctx * ctx,u_char tag[],u_char nonce[8])1238 int umac_final(struct umac_ctx *ctx, u_char tag[], u_char nonce[8])
1239 /* Incorporate any pending data, pad, and generate tag */
1240 {
1241 uhash_final(&ctx->hash, (u_char *)tag);
1242 pdf_gen_xor(&ctx->pdf, (UINT8 *)nonce, (UINT8 *)tag);
1243
1244 return (1);
1245 }
1246
1247 /* ---------------------------------------------------------------------- */
1248
umac_update(struct umac_ctx * ctx,u_char * input,long len)1249 int umac_update(struct umac_ctx *ctx, u_char *input, long len)
1250 /* Given len bytes of data, we parse it into L1_KEY_LEN chunks and */
1251 /* hash each one, calling the PDF on the hashed output whenever the hash- */
1252 /* output buffer is full. */
1253 {
1254 uhash_update(&ctx->hash, input, len);
1255 return (1);
1256 }
1257
1258 /* ---------------------------------------------------------------------- */
1259
1260 #if 0
1261 int umac(struct umac_ctx *ctx, u_char *input,
1262 long len, u_char tag[],
1263 u_char nonce[8])
1264 /* All-in-one version simply calls umac_update() and umac_final(). */
1265 {
1266 uhash(&ctx->hash, input, len, (u_char *)tag);
1267 pdf_gen_xor(&ctx->pdf, (UINT8 *)nonce, (UINT8 *)tag);
1268
1269 return (1);
1270 }
1271 #endif
1272
1273 /* ---------------------------------------------------------------------- */
1274 /* ---------------------------------------------------------------------- */
1275 /* ----- End UMAC Section ----------------------------------------------- */
1276 /* ---------------------------------------------------------------------- */
1277 /* ---------------------------------------------------------------------- */
1278