1 /* crypto/bn/bn_asm.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young's, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word 'cryptographic' can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */
58
59 #ifndef BN_DEBUG
60 # undef NDEBUG /* avoid conflicting definitions */
61 # define NDEBUG
62 #endif
63
64 #include <stdio.h>
65 #include <assert.h>
66 #include "cryptlib.h"
67 #include "bn_lcl.h"
68
69 #if defined(BN_LLONG) || defined(BN_UMULT_HIGH)
70
bn_mul_add_words(BN_ULONG * rp,const BN_ULONG * ap,int num,BN_ULONG w)71 BN_ULONG bn_mul_add_words(BN_ULONG *rp, const BN_ULONG *ap, int num, BN_ULONG w)
72 {
73 BN_ULONG c1=0;
74
75 assert(num >= 0);
76 if (num <= 0) return(c1);
77
78 #ifndef OPENSSL_SMALL_FOOTPRINT
79 while (num&~3)
80 {
81 mul_add(rp[0],ap[0],w,c1);
82 mul_add(rp[1],ap[1],w,c1);
83 mul_add(rp[2],ap[2],w,c1);
84 mul_add(rp[3],ap[3],w,c1);
85 ap+=4; rp+=4; num-=4;
86 }
87 #endif
88 while (num)
89 {
90 mul_add(rp[0],ap[0],w,c1);
91 ap++; rp++; num--;
92 }
93
94 return(c1);
95 }
96
bn_mul_words(BN_ULONG * rp,const BN_ULONG * ap,int num,BN_ULONG w)97 BN_ULONG bn_mul_words(BN_ULONG *rp, const BN_ULONG *ap, int num, BN_ULONG w)
98 {
99 BN_ULONG c1=0;
100
101 assert(num >= 0);
102 if (num <= 0) return(c1);
103
104 #ifndef OPENSSL_SMALL_FOOTPRINT
105 while (num&~3)
106 {
107 mul(rp[0],ap[0],w,c1);
108 mul(rp[1],ap[1],w,c1);
109 mul(rp[2],ap[2],w,c1);
110 mul(rp[3],ap[3],w,c1);
111 ap+=4; rp+=4; num-=4;
112 }
113 #endif
114 while (num)
115 {
116 mul(rp[0],ap[0],w,c1);
117 ap++; rp++; num--;
118 }
119 return(c1);
120 }
121
bn_sqr_words(BN_ULONG * r,const BN_ULONG * a,int n)122 void bn_sqr_words(BN_ULONG *r, const BN_ULONG *a, int n)
123 {
124 assert(n >= 0);
125 if (n <= 0) return;
126
127 #ifndef OPENSSL_SMALL_FOOTPRINT
128 while (n&~3)
129 {
130 sqr(r[0],r[1],a[0]);
131 sqr(r[2],r[3],a[1]);
132 sqr(r[4],r[5],a[2]);
133 sqr(r[6],r[7],a[3]);
134 a+=4; r+=8; n-=4;
135 }
136 #endif
137 while (n)
138 {
139 sqr(r[0],r[1],a[0]);
140 a++; r+=2; n--;
141 }
142 }
143
144 #else /* !(defined(BN_LLONG) || defined(BN_UMULT_HIGH)) */
145
bn_mul_add_words(BN_ULONG * rp,const BN_ULONG * ap,int num,BN_ULONG w)146 BN_ULONG bn_mul_add_words(BN_ULONG *rp, const BN_ULONG *ap, int num, BN_ULONG w)
147 {
148 BN_ULONG c=0;
149 BN_ULONG bl,bh;
150
151 assert(num >= 0);
152 if (num <= 0) return((BN_ULONG)0);
153
154 bl=LBITS(w);
155 bh=HBITS(w);
156
157 #ifndef OPENSSL_SMALL_FOOTPRINT
158 while (num&~3)
159 {
160 mul_add(rp[0],ap[0],bl,bh,c);
161 mul_add(rp[1],ap[1],bl,bh,c);
162 mul_add(rp[2],ap[2],bl,bh,c);
163 mul_add(rp[3],ap[3],bl,bh,c);
164 ap+=4; rp+=4; num-=4;
165 }
166 #endif
167 while (num)
168 {
169 mul_add(rp[0],ap[0],bl,bh,c);
170 ap++; rp++; num--;
171 }
172 return(c);
173 }
174
bn_mul_words(BN_ULONG * rp,const BN_ULONG * ap,int num,BN_ULONG w)175 BN_ULONG bn_mul_words(BN_ULONG *rp, const BN_ULONG *ap, int num, BN_ULONG w)
176 {
177 BN_ULONG carry=0;
178 BN_ULONG bl,bh;
179
180 assert(num >= 0);
181 if (num <= 0) return((BN_ULONG)0);
182
183 bl=LBITS(w);
184 bh=HBITS(w);
185
186 #ifndef OPENSSL_SMALL_FOOTPRINT
187 while (num&~3)
188 {
189 mul(rp[0],ap[0],bl,bh,carry);
190 mul(rp[1],ap[1],bl,bh,carry);
191 mul(rp[2],ap[2],bl,bh,carry);
192 mul(rp[3],ap[3],bl,bh,carry);
193 ap+=4; rp+=4; num-=4;
194 }
195 #endif
196 while (num)
197 {
198 mul(rp[0],ap[0],bl,bh,carry);
199 ap++; rp++; num--;
200 }
201 return(carry);
202 }
203
bn_sqr_words(BN_ULONG * r,const BN_ULONG * a,int n)204 void bn_sqr_words(BN_ULONG *r, const BN_ULONG *a, int n)
205 {
206 assert(n >= 0);
207 if (n <= 0) return;
208
209 #ifndef OPENSSL_SMALL_FOOTPRINT
210 while (n&~3)
211 {
212 sqr64(r[0],r[1],a[0]);
213 sqr64(r[2],r[3],a[1]);
214 sqr64(r[4],r[5],a[2]);
215 sqr64(r[6],r[7],a[3]);
216 a+=4; r+=8; n-=4;
217 }
218 #endif
219 while (n)
220 {
221 sqr64(r[0],r[1],a[0]);
222 a++; r+=2; n--;
223 }
224 }
225
226 #endif /* !(defined(BN_LLONG) || defined(BN_UMULT_HIGH)) */
227
228 #if defined(BN_LLONG) && defined(BN_DIV2W)
229
bn_div_words(BN_ULONG h,BN_ULONG l,BN_ULONG d)230 BN_ULONG bn_div_words(BN_ULONG h, BN_ULONG l, BN_ULONG d)
231 {
232 return((BN_ULONG)(((((BN_ULLONG)h)<<BN_BITS2)|l)/(BN_ULLONG)d));
233 }
234
235 #else
236
237 /* Divide h,l by d and return the result. */
238 /* I need to test this some more :-( */
bn_div_words(BN_ULONG h,BN_ULONG l,BN_ULONG d)239 BN_ULONG bn_div_words(BN_ULONG h, BN_ULONG l, BN_ULONG d)
240 {
241 BN_ULONG dh,dl,q,ret=0,th,tl,t;
242 int i,count=2;
243
244 if (d == 0) return(BN_MASK2);
245
246 i=BN_num_bits_word(d);
247 assert((i == BN_BITS2) || (h <= (BN_ULONG)1<<i));
248
249 i=BN_BITS2-i;
250 if (h >= d) h-=d;
251
252 if (i)
253 {
254 d<<=i;
255 h=(h<<i)|(l>>(BN_BITS2-i));
256 l<<=i;
257 }
258 dh=(d&BN_MASK2h)>>BN_BITS4;
259 dl=(d&BN_MASK2l);
260 for (;;)
261 {
262 if ((h>>BN_BITS4) == dh)
263 q=BN_MASK2l;
264 else
265 q=h/dh;
266
267 th=q*dh;
268 tl=dl*q;
269 for (;;)
270 {
271 t=h-th;
272 if ((t&BN_MASK2h) ||
273 ((tl) <= (
274 (t<<BN_BITS4)|
275 ((l&BN_MASK2h)>>BN_BITS4))))
276 break;
277 q--;
278 th-=dh;
279 tl-=dl;
280 }
281 t=(tl>>BN_BITS4);
282 tl=(tl<<BN_BITS4)&BN_MASK2h;
283 th+=t;
284
285 if (l < tl) th++;
286 l-=tl;
287 if (h < th)
288 {
289 h+=d;
290 q--;
291 }
292 h-=th;
293
294 if (--count == 0) break;
295
296 ret=q<<BN_BITS4;
297 h=((h<<BN_BITS4)|(l>>BN_BITS4))&BN_MASK2;
298 l=(l&BN_MASK2l)<<BN_BITS4;
299 }
300 ret|=q;
301 return(ret);
302 }
303 #endif /* !defined(BN_LLONG) && defined(BN_DIV2W) */
304
305 #ifdef BN_LLONG
bn_add_words(BN_ULONG * r,const BN_ULONG * a,const BN_ULONG * b,int n)306 BN_ULONG bn_add_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b, int n)
307 {
308 BN_ULLONG ll=0;
309
310 assert(n >= 0);
311 if (n <= 0) return((BN_ULONG)0);
312
313 #ifndef OPENSSL_SMALL_FOOTPRINT
314 while (n&~3)
315 {
316 ll+=(BN_ULLONG)a[0]+b[0];
317 r[0]=(BN_ULONG)ll&BN_MASK2;
318 ll>>=BN_BITS2;
319 ll+=(BN_ULLONG)a[1]+b[1];
320 r[1]=(BN_ULONG)ll&BN_MASK2;
321 ll>>=BN_BITS2;
322 ll+=(BN_ULLONG)a[2]+b[2];
323 r[2]=(BN_ULONG)ll&BN_MASK2;
324 ll>>=BN_BITS2;
325 ll+=(BN_ULLONG)a[3]+b[3];
326 r[3]=(BN_ULONG)ll&BN_MASK2;
327 ll>>=BN_BITS2;
328 a+=4; b+=4; r+=4; n-=4;
329 }
330 #endif
331 while (n)
332 {
333 ll+=(BN_ULLONG)a[0]+b[0];
334 r[0]=(BN_ULONG)ll&BN_MASK2;
335 ll>>=BN_BITS2;
336 a++; b++; r++; n--;
337 }
338 return((BN_ULONG)ll);
339 }
340 #else /* !BN_LLONG */
bn_add_words(BN_ULONG * r,const BN_ULONG * a,const BN_ULONG * b,int n)341 BN_ULONG bn_add_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b, int n)
342 {
343 BN_ULONG c,l,t;
344
345 assert(n >= 0);
346 if (n <= 0) return((BN_ULONG)0);
347
348 c=0;
349 #ifndef OPENSSL_SMALL_FOOTPRINT
350 while (n&~3)
351 {
352 t=a[0];
353 t=(t+c)&BN_MASK2;
354 c=(t < c);
355 l=(t+b[0])&BN_MASK2;
356 c+=(l < t);
357 r[0]=l;
358 t=a[1];
359 t=(t+c)&BN_MASK2;
360 c=(t < c);
361 l=(t+b[1])&BN_MASK2;
362 c+=(l < t);
363 r[1]=l;
364 t=a[2];
365 t=(t+c)&BN_MASK2;
366 c=(t < c);
367 l=(t+b[2])&BN_MASK2;
368 c+=(l < t);
369 r[2]=l;
370 t=a[3];
371 t=(t+c)&BN_MASK2;
372 c=(t < c);
373 l=(t+b[3])&BN_MASK2;
374 c+=(l < t);
375 r[3]=l;
376 a+=4; b+=4; r+=4; n-=4;
377 }
378 #endif
379 while(n)
380 {
381 t=a[0];
382 t=(t+c)&BN_MASK2;
383 c=(t < c);
384 l=(t+b[0])&BN_MASK2;
385 c+=(l < t);
386 r[0]=l;
387 a++; b++; r++; n--;
388 }
389 return((BN_ULONG)c);
390 }
391 #endif /* !BN_LLONG */
392
bn_sub_words(BN_ULONG * r,const BN_ULONG * a,const BN_ULONG * b,int n)393 BN_ULONG bn_sub_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b, int n)
394 {
395 BN_ULONG t1,t2;
396 int c=0;
397
398 assert(n >= 0);
399 if (n <= 0) return((BN_ULONG)0);
400
401 #ifndef OPENSSL_SMALL_FOOTPRINT
402 while (n&~3)
403 {
404 t1=a[0]; t2=b[0];
405 r[0]=(t1-t2-c)&BN_MASK2;
406 if (t1 != t2) c=(t1 < t2);
407 t1=a[1]; t2=b[1];
408 r[1]=(t1-t2-c)&BN_MASK2;
409 if (t1 != t2) c=(t1 < t2);
410 t1=a[2]; t2=b[2];
411 r[2]=(t1-t2-c)&BN_MASK2;
412 if (t1 != t2) c=(t1 < t2);
413 t1=a[3]; t2=b[3];
414 r[3]=(t1-t2-c)&BN_MASK2;
415 if (t1 != t2) c=(t1 < t2);
416 a+=4; b+=4; r+=4; n-=4;
417 }
418 #endif
419 while (n)
420 {
421 t1=a[0]; t2=b[0];
422 r[0]=(t1-t2-c)&BN_MASK2;
423 if (t1 != t2) c=(t1 < t2);
424 a++; b++; r++; n--;
425 }
426 return(c);
427 }
428
429 #if defined(BN_MUL_COMBA) && !defined(OPENSSL_SMALL_FOOTPRINT)
430
431 #undef bn_mul_comba8
432 #undef bn_mul_comba4
433 #undef bn_sqr_comba8
434 #undef bn_sqr_comba4
435
436 /* mul_add_c(a,b,c0,c1,c2) -- c+=a*b for three word number c=(c2,c1,c0) */
437 /* mul_add_c2(a,b,c0,c1,c2) -- c+=2*a*b for three word number c=(c2,c1,c0) */
438 /* sqr_add_c(a,i,c0,c1,c2) -- c+=a[i]^2 for three word number c=(c2,c1,c0) */
439 /* sqr_add_c2(a,i,c0,c1,c2) -- c+=2*a[i]*a[j] for three word number c=(c2,c1,c0) */
440
441 #ifdef BN_LLONG
442 #define mul_add_c(a,b,c0,c1,c2) \
443 t=(BN_ULLONG)a*b; \
444 t1=(BN_ULONG)Lw(t); \
445 t2=(BN_ULONG)Hw(t); \
446 c0=(c0+t1)&BN_MASK2; if ((c0) < t1) t2++; \
447 c1=(c1+t2)&BN_MASK2; if ((c1) < t2) c2++;
448
449 #define mul_add_c2(a,b,c0,c1,c2) \
450 t=(BN_ULLONG)a*b; \
451 tt=(t+t)&BN_MASK; \
452 if (tt < t) c2++; \
453 t1=(BN_ULONG)Lw(tt); \
454 t2=(BN_ULONG)Hw(tt); \
455 c0=(c0+t1)&BN_MASK2; \
456 if ((c0 < t1) && (((++t2)&BN_MASK2) == 0)) c2++; \
457 c1=(c1+t2)&BN_MASK2; if ((c1) < t2) c2++;
458
459 #define sqr_add_c(a,i,c0,c1,c2) \
460 t=(BN_ULLONG)a[i]*a[i]; \
461 t1=(BN_ULONG)Lw(t); \
462 t2=(BN_ULONG)Hw(t); \
463 c0=(c0+t1)&BN_MASK2; if ((c0) < t1) t2++; \
464 c1=(c1+t2)&BN_MASK2; if ((c1) < t2) c2++;
465
466 #define sqr_add_c2(a,i,j,c0,c1,c2) \
467 mul_add_c2((a)[i],(a)[j],c0,c1,c2)
468
469 #elif defined(BN_UMULT_LOHI)
470
471 #define mul_add_c(a,b,c0,c1,c2) { \
472 BN_ULONG ta=(a),tb=(b); \
473 BN_UMULT_LOHI(t1,t2,ta,tb); \
474 c0 += t1; t2 += (c0<t1)?1:0; \
475 c1 += t2; c2 += (c1<t2)?1:0; \
476 }
477
478 #define mul_add_c2(a,b,c0,c1,c2) { \
479 BN_ULONG ta=(a),tb=(b),t0; \
480 BN_UMULT_LOHI(t0,t1,ta,tb); \
481 t2 = t1+t1; c2 += (t2<t1)?1:0; \
482 t1 = t0+t0; t2 += (t1<t0)?1:0; \
483 c0 += t1; t2 += (c0<t1)?1:0; \
484 c1 += t2; c2 += (c1<t2)?1:0; \
485 }
486
487 #define sqr_add_c(a,i,c0,c1,c2) { \
488 BN_ULONG ta=(a)[i]; \
489 BN_UMULT_LOHI(t1,t2,ta,ta); \
490 c0 += t1; t2 += (c0<t1)?1:0; \
491 c1 += t2; c2 += (c1<t2)?1:0; \
492 }
493
494 #define sqr_add_c2(a,i,j,c0,c1,c2) \
495 mul_add_c2((a)[i],(a)[j],c0,c1,c2)
496
497 #elif defined(BN_UMULT_HIGH)
498
499 #define mul_add_c(a,b,c0,c1,c2) { \
500 BN_ULONG ta=(a),tb=(b); \
501 t1 = ta * tb; \
502 t2 = BN_UMULT_HIGH(ta,tb); \
503 c0 += t1; t2 += (c0<t1)?1:0; \
504 c1 += t2; c2 += (c1<t2)?1:0; \
505 }
506
507 #define mul_add_c2(a,b,c0,c1,c2) { \
508 BN_ULONG ta=(a),tb=(b),t0; \
509 t1 = BN_UMULT_HIGH(ta,tb); \
510 t0 = ta * tb; \
511 t2 = t1+t1; c2 += (t2<t1)?1:0; \
512 t1 = t0+t0; t2 += (t1<t0)?1:0; \
513 c0 += t1; t2 += (c0<t1)?1:0; \
514 c1 += t2; c2 += (c1<t2)?1:0; \
515 }
516
517 #define sqr_add_c(a,i,c0,c1,c2) { \
518 BN_ULONG ta=(a)[i]; \
519 t1 = ta * ta; \
520 t2 = BN_UMULT_HIGH(ta,ta); \
521 c0 += t1; t2 += (c0<t1)?1:0; \
522 c1 += t2; c2 += (c1<t2)?1:0; \
523 }
524
525 #define sqr_add_c2(a,i,j,c0,c1,c2) \
526 mul_add_c2((a)[i],(a)[j],c0,c1,c2)
527
528 #else /* !BN_LLONG */
529 #define mul_add_c(a,b,c0,c1,c2) \
530 t1=LBITS(a); t2=HBITS(a); \
531 bl=LBITS(b); bh=HBITS(b); \
532 mul64(t1,t2,bl,bh); \
533 c0=(c0+t1)&BN_MASK2; if ((c0) < t1) t2++; \
534 c1=(c1+t2)&BN_MASK2; if ((c1) < t2) c2++;
535
536 #define mul_add_c2(a,b,c0,c1,c2) \
537 t1=LBITS(a); t2=HBITS(a); \
538 bl=LBITS(b); bh=HBITS(b); \
539 mul64(t1,t2,bl,bh); \
540 if (t2 & BN_TBIT) c2++; \
541 t2=(t2+t2)&BN_MASK2; \
542 if (t1 & BN_TBIT) t2++; \
543 t1=(t1+t1)&BN_MASK2; \
544 c0=(c0+t1)&BN_MASK2; \
545 if ((c0 < t1) && (((++t2)&BN_MASK2) == 0)) c2++; \
546 c1=(c1+t2)&BN_MASK2; if ((c1) < t2) c2++;
547
548 #define sqr_add_c(a,i,c0,c1,c2) \
549 sqr64(t1,t2,(a)[i]); \
550 c0=(c0+t1)&BN_MASK2; if ((c0) < t1) t2++; \
551 c1=(c1+t2)&BN_MASK2; if ((c1) < t2) c2++;
552
553 #define sqr_add_c2(a,i,j,c0,c1,c2) \
554 mul_add_c2((a)[i],(a)[j],c0,c1,c2)
555 #endif /* !BN_LLONG */
556
bn_mul_comba8(BN_ULONG * r,BN_ULONG * a,BN_ULONG * b)557 void bn_mul_comba8(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b)
558 {
559 #ifdef BN_LLONG
560 BN_ULLONG t;
561 #else
562 BN_ULONG bl,bh;
563 #endif
564 BN_ULONG t1,t2;
565 BN_ULONG c1,c2,c3;
566
567 c1=0;
568 c2=0;
569 c3=0;
570 mul_add_c(a[0],b[0],c1,c2,c3);
571 r[0]=c1;
572 c1=0;
573 mul_add_c(a[0],b[1],c2,c3,c1);
574 mul_add_c(a[1],b[0],c2,c3,c1);
575 r[1]=c2;
576 c2=0;
577 mul_add_c(a[2],b[0],c3,c1,c2);
578 mul_add_c(a[1],b[1],c3,c1,c2);
579 mul_add_c(a[0],b[2],c3,c1,c2);
580 r[2]=c3;
581 c3=0;
582 mul_add_c(a[0],b[3],c1,c2,c3);
583 mul_add_c(a[1],b[2],c1,c2,c3);
584 mul_add_c(a[2],b[1],c1,c2,c3);
585 mul_add_c(a[3],b[0],c1,c2,c3);
586 r[3]=c1;
587 c1=0;
588 mul_add_c(a[4],b[0],c2,c3,c1);
589 mul_add_c(a[3],b[1],c2,c3,c1);
590 mul_add_c(a[2],b[2],c2,c3,c1);
591 mul_add_c(a[1],b[3],c2,c3,c1);
592 mul_add_c(a[0],b[4],c2,c3,c1);
593 r[4]=c2;
594 c2=0;
595 mul_add_c(a[0],b[5],c3,c1,c2);
596 mul_add_c(a[1],b[4],c3,c1,c2);
597 mul_add_c(a[2],b[3],c3,c1,c2);
598 mul_add_c(a[3],b[2],c3,c1,c2);
599 mul_add_c(a[4],b[1],c3,c1,c2);
600 mul_add_c(a[5],b[0],c3,c1,c2);
601 r[5]=c3;
602 c3=0;
603 mul_add_c(a[6],b[0],c1,c2,c3);
604 mul_add_c(a[5],b[1],c1,c2,c3);
605 mul_add_c(a[4],b[2],c1,c2,c3);
606 mul_add_c(a[3],b[3],c1,c2,c3);
607 mul_add_c(a[2],b[4],c1,c2,c3);
608 mul_add_c(a[1],b[5],c1,c2,c3);
609 mul_add_c(a[0],b[6],c1,c2,c3);
610 r[6]=c1;
611 c1=0;
612 mul_add_c(a[0],b[7],c2,c3,c1);
613 mul_add_c(a[1],b[6],c2,c3,c1);
614 mul_add_c(a[2],b[5],c2,c3,c1);
615 mul_add_c(a[3],b[4],c2,c3,c1);
616 mul_add_c(a[4],b[3],c2,c3,c1);
617 mul_add_c(a[5],b[2],c2,c3,c1);
618 mul_add_c(a[6],b[1],c2,c3,c1);
619 mul_add_c(a[7],b[0],c2,c3,c1);
620 r[7]=c2;
621 c2=0;
622 mul_add_c(a[7],b[1],c3,c1,c2);
623 mul_add_c(a[6],b[2],c3,c1,c2);
624 mul_add_c(a[5],b[3],c3,c1,c2);
625 mul_add_c(a[4],b[4],c3,c1,c2);
626 mul_add_c(a[3],b[5],c3,c1,c2);
627 mul_add_c(a[2],b[6],c3,c1,c2);
628 mul_add_c(a[1],b[7],c3,c1,c2);
629 r[8]=c3;
630 c3=0;
631 mul_add_c(a[2],b[7],c1,c2,c3);
632 mul_add_c(a[3],b[6],c1,c2,c3);
633 mul_add_c(a[4],b[5],c1,c2,c3);
634 mul_add_c(a[5],b[4],c1,c2,c3);
635 mul_add_c(a[6],b[3],c1,c2,c3);
636 mul_add_c(a[7],b[2],c1,c2,c3);
637 r[9]=c1;
638 c1=0;
639 mul_add_c(a[7],b[3],c2,c3,c1);
640 mul_add_c(a[6],b[4],c2,c3,c1);
641 mul_add_c(a[5],b[5],c2,c3,c1);
642 mul_add_c(a[4],b[6],c2,c3,c1);
643 mul_add_c(a[3],b[7],c2,c3,c1);
644 r[10]=c2;
645 c2=0;
646 mul_add_c(a[4],b[7],c3,c1,c2);
647 mul_add_c(a[5],b[6],c3,c1,c2);
648 mul_add_c(a[6],b[5],c3,c1,c2);
649 mul_add_c(a[7],b[4],c3,c1,c2);
650 r[11]=c3;
651 c3=0;
652 mul_add_c(a[7],b[5],c1,c2,c3);
653 mul_add_c(a[6],b[6],c1,c2,c3);
654 mul_add_c(a[5],b[7],c1,c2,c3);
655 r[12]=c1;
656 c1=0;
657 mul_add_c(a[6],b[7],c2,c3,c1);
658 mul_add_c(a[7],b[6],c2,c3,c1);
659 r[13]=c2;
660 c2=0;
661 mul_add_c(a[7],b[7],c3,c1,c2);
662 r[14]=c3;
663 r[15]=c1;
664 }
665
bn_mul_comba4(BN_ULONG * r,BN_ULONG * a,BN_ULONG * b)666 void bn_mul_comba4(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b)
667 {
668 #ifdef BN_LLONG
669 BN_ULLONG t;
670 #else
671 BN_ULONG bl,bh;
672 #endif
673 BN_ULONG t1,t2;
674 BN_ULONG c1,c2,c3;
675
676 c1=0;
677 c2=0;
678 c3=0;
679 mul_add_c(a[0],b[0],c1,c2,c3);
680 r[0]=c1;
681 c1=0;
682 mul_add_c(a[0],b[1],c2,c3,c1);
683 mul_add_c(a[1],b[0],c2,c3,c1);
684 r[1]=c2;
685 c2=0;
686 mul_add_c(a[2],b[0],c3,c1,c2);
687 mul_add_c(a[1],b[1],c3,c1,c2);
688 mul_add_c(a[0],b[2],c3,c1,c2);
689 r[2]=c3;
690 c3=0;
691 mul_add_c(a[0],b[3],c1,c2,c3);
692 mul_add_c(a[1],b[2],c1,c2,c3);
693 mul_add_c(a[2],b[1],c1,c2,c3);
694 mul_add_c(a[3],b[0],c1,c2,c3);
695 r[3]=c1;
696 c1=0;
697 mul_add_c(a[3],b[1],c2,c3,c1);
698 mul_add_c(a[2],b[2],c2,c3,c1);
699 mul_add_c(a[1],b[3],c2,c3,c1);
700 r[4]=c2;
701 c2=0;
702 mul_add_c(a[2],b[3],c3,c1,c2);
703 mul_add_c(a[3],b[2],c3,c1,c2);
704 r[5]=c3;
705 c3=0;
706 mul_add_c(a[3],b[3],c1,c2,c3);
707 r[6]=c1;
708 r[7]=c2;
709 }
710
bn_sqr_comba8(BN_ULONG * r,const BN_ULONG * a)711 void bn_sqr_comba8(BN_ULONG *r, const BN_ULONG *a)
712 {
713 #ifdef BN_LLONG
714 BN_ULLONG t,tt;
715 #else
716 BN_ULONG bl,bh;
717 #endif
718 BN_ULONG t1,t2;
719 BN_ULONG c1,c2,c3;
720
721 c1=0;
722 c2=0;
723 c3=0;
724 sqr_add_c(a,0,c1,c2,c3);
725 r[0]=c1;
726 c1=0;
727 sqr_add_c2(a,1,0,c2,c3,c1);
728 r[1]=c2;
729 c2=0;
730 sqr_add_c(a,1,c3,c1,c2);
731 sqr_add_c2(a,2,0,c3,c1,c2);
732 r[2]=c3;
733 c3=0;
734 sqr_add_c2(a,3,0,c1,c2,c3);
735 sqr_add_c2(a,2,1,c1,c2,c3);
736 r[3]=c1;
737 c1=0;
738 sqr_add_c(a,2,c2,c3,c1);
739 sqr_add_c2(a,3,1,c2,c3,c1);
740 sqr_add_c2(a,4,0,c2,c3,c1);
741 r[4]=c2;
742 c2=0;
743 sqr_add_c2(a,5,0,c3,c1,c2);
744 sqr_add_c2(a,4,1,c3,c1,c2);
745 sqr_add_c2(a,3,2,c3,c1,c2);
746 r[5]=c3;
747 c3=0;
748 sqr_add_c(a,3,c1,c2,c3);
749 sqr_add_c2(a,4,2,c1,c2,c3);
750 sqr_add_c2(a,5,1,c1,c2,c3);
751 sqr_add_c2(a,6,0,c1,c2,c3);
752 r[6]=c1;
753 c1=0;
754 sqr_add_c2(a,7,0,c2,c3,c1);
755 sqr_add_c2(a,6,1,c2,c3,c1);
756 sqr_add_c2(a,5,2,c2,c3,c1);
757 sqr_add_c2(a,4,3,c2,c3,c1);
758 r[7]=c2;
759 c2=0;
760 sqr_add_c(a,4,c3,c1,c2);
761 sqr_add_c2(a,5,3,c3,c1,c2);
762 sqr_add_c2(a,6,2,c3,c1,c2);
763 sqr_add_c2(a,7,1,c3,c1,c2);
764 r[8]=c3;
765 c3=0;
766 sqr_add_c2(a,7,2,c1,c2,c3);
767 sqr_add_c2(a,6,3,c1,c2,c3);
768 sqr_add_c2(a,5,4,c1,c2,c3);
769 r[9]=c1;
770 c1=0;
771 sqr_add_c(a,5,c2,c3,c1);
772 sqr_add_c2(a,6,4,c2,c3,c1);
773 sqr_add_c2(a,7,3,c2,c3,c1);
774 r[10]=c2;
775 c2=0;
776 sqr_add_c2(a,7,4,c3,c1,c2);
777 sqr_add_c2(a,6,5,c3,c1,c2);
778 r[11]=c3;
779 c3=0;
780 sqr_add_c(a,6,c1,c2,c3);
781 sqr_add_c2(a,7,5,c1,c2,c3);
782 r[12]=c1;
783 c1=0;
784 sqr_add_c2(a,7,6,c2,c3,c1);
785 r[13]=c2;
786 c2=0;
787 sqr_add_c(a,7,c3,c1,c2);
788 r[14]=c3;
789 r[15]=c1;
790 }
791
bn_sqr_comba4(BN_ULONG * r,const BN_ULONG * a)792 void bn_sqr_comba4(BN_ULONG *r, const BN_ULONG *a)
793 {
794 #ifdef BN_LLONG
795 BN_ULLONG t,tt;
796 #else
797 BN_ULONG bl,bh;
798 #endif
799 BN_ULONG t1,t2;
800 BN_ULONG c1,c2,c3;
801
802 c1=0;
803 c2=0;
804 c3=0;
805 sqr_add_c(a,0,c1,c2,c3);
806 r[0]=c1;
807 c1=0;
808 sqr_add_c2(a,1,0,c2,c3,c1);
809 r[1]=c2;
810 c2=0;
811 sqr_add_c(a,1,c3,c1,c2);
812 sqr_add_c2(a,2,0,c3,c1,c2);
813 r[2]=c3;
814 c3=0;
815 sqr_add_c2(a,3,0,c1,c2,c3);
816 sqr_add_c2(a,2,1,c1,c2,c3);
817 r[3]=c1;
818 c1=0;
819 sqr_add_c(a,2,c2,c3,c1);
820 sqr_add_c2(a,3,1,c2,c3,c1);
821 r[4]=c2;
822 c2=0;
823 sqr_add_c2(a,3,2,c3,c1,c2);
824 r[5]=c3;
825 c3=0;
826 sqr_add_c(a,3,c1,c2,c3);
827 r[6]=c1;
828 r[7]=c2;
829 }
830
831 #ifdef OPENSSL_NO_ASM
832 #ifdef OPENSSL_BN_ASM_MONT
833 #include <alloca.h>
834 /*
835 * This is essentially reference implementation, which may or may not
836 * result in performance improvement. E.g. on IA-32 this routine was
837 * observed to give 40% faster rsa1024 private key operations and 10%
838 * faster rsa4096 ones, while on AMD64 it improves rsa1024 sign only
839 * by 10% and *worsens* rsa4096 sign by 15%. Once again, it's a
840 * reference implementation, one to be used as starting point for
841 * platform-specific assembler. Mentioned numbers apply to compiler
842 * generated code compiled with and without -DOPENSSL_BN_ASM_MONT and
843 * can vary not only from platform to platform, but even for compiler
844 * versions. Assembler vs. assembler improvement coefficients can
845 * [and are known to] differ and are to be documented elsewhere.
846 */
bn_mul_mont(BN_ULONG * rp,const BN_ULONG * ap,const BN_ULONG * bp,const BN_ULONG * np,const BN_ULONG * n0p,int num)847 int bn_mul_mont(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp, const BN_ULONG *np,const BN_ULONG *n0p, int num)
848 {
849 BN_ULONG c0,c1,ml,*tp,n0;
850 #ifdef mul64
851 BN_ULONG mh;
852 #endif
853 volatile BN_ULONG *vp;
854 int i=0,j;
855
856 #if 0 /* template for platform-specific implementation */
857 if (ap==bp) return bn_sqr_mont(rp,ap,np,n0p,num);
858 #endif
859 vp = tp = alloca((num+2)*sizeof(BN_ULONG));
860
861 n0 = *n0p;
862
863 c0 = 0;
864 ml = bp[0];
865 #ifdef mul64
866 mh = HBITS(ml);
867 ml = LBITS(ml);
868 for (j=0;j<num;++j)
869 mul(tp[j],ap[j],ml,mh,c0);
870 #else
871 for (j=0;j<num;++j)
872 mul(tp[j],ap[j],ml,c0);
873 #endif
874
875 tp[num] = c0;
876 tp[num+1] = 0;
877 goto enter;
878
879 for(i=0;i<num;i++)
880 {
881 c0 = 0;
882 ml = bp[i];
883 #ifdef mul64
884 mh = HBITS(ml);
885 ml = LBITS(ml);
886 for (j=0;j<num;++j)
887 mul_add(tp[j],ap[j],ml,mh,c0);
888 #else
889 for (j=0;j<num;++j)
890 mul_add(tp[j],ap[j],ml,c0);
891 #endif
892 c1 = (tp[num] + c0)&BN_MASK2;
893 tp[num] = c1;
894 tp[num+1] = (c1<c0?1:0);
895 enter:
896 c1 = tp[0];
897 ml = (c1*n0)&BN_MASK2;
898 c0 = 0;
899 #ifdef mul64
900 mh = HBITS(ml);
901 ml = LBITS(ml);
902 mul_add(c1,np[0],ml,mh,c0);
903 #else
904 mul_add(c1,ml,np[0],c0);
905 #endif
906 for(j=1;j<num;j++)
907 {
908 c1 = tp[j];
909 #ifdef mul64
910 mul_add(c1,np[j],ml,mh,c0);
911 #else
912 mul_add(c1,ml,np[j],c0);
913 #endif
914 tp[j-1] = c1&BN_MASK2;
915 }
916 c1 = (tp[num] + c0)&BN_MASK2;
917 tp[num-1] = c1;
918 tp[num] = tp[num+1] + (c1<c0?1:0);
919 }
920
921 if (tp[num]!=0 || tp[num-1]>=np[num-1])
922 {
923 c0 = bn_sub_words(rp,tp,np,num);
924 if (tp[num]!=0 || c0==0)
925 {
926 for(i=0;i<num+2;i++) vp[i] = 0;
927 return 1;
928 }
929 }
930 for(i=0;i<num;i++) rp[i] = tp[i], vp[i] = 0;
931 vp[num] = 0;
932 vp[num+1] = 0;
933 return 1;
934 }
935 #else
936 /*
937 * Return value of 0 indicates that multiplication/convolution was not
938 * performed to signal the caller to fall down to alternative/original
939 * code-path.
940 */
bn_mul_mont(BN_ULONG * rp,const BN_ULONG * ap,const BN_ULONG * bp,const BN_ULONG * np,const BN_ULONG * n0,int num)941 int bn_mul_mont(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp, const BN_ULONG *np,const BN_ULONG *n0, int num)
942 { return 0; }
943 #endif /* OPENSSL_BN_ASM_MONT */
944 #endif
945
946 #else /* !BN_MUL_COMBA */
947
948 /* hmm... is it faster just to do a multiply? */
949 #undef bn_sqr_comba4
bn_sqr_comba4(BN_ULONG * r,const BN_ULONG * a)950 void bn_sqr_comba4(BN_ULONG *r, const BN_ULONG *a)
951 {
952 BN_ULONG t[8];
953 bn_sqr_normal(r,a,4,t);
954 }
955
956 #undef bn_sqr_comba8
bn_sqr_comba8(BN_ULONG * r,const BN_ULONG * a)957 void bn_sqr_comba8(BN_ULONG *r, const BN_ULONG *a)
958 {
959 BN_ULONG t[16];
960 bn_sqr_normal(r,a,8,t);
961 }
962
bn_mul_comba4(BN_ULONG * r,BN_ULONG * a,BN_ULONG * b)963 void bn_mul_comba4(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b)
964 {
965 r[4]=bn_mul_words( &(r[0]),a,4,b[0]);
966 r[5]=bn_mul_add_words(&(r[1]),a,4,b[1]);
967 r[6]=bn_mul_add_words(&(r[2]),a,4,b[2]);
968 r[7]=bn_mul_add_words(&(r[3]),a,4,b[3]);
969 }
970
bn_mul_comba8(BN_ULONG * r,BN_ULONG * a,BN_ULONG * b)971 void bn_mul_comba8(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b)
972 {
973 r[ 8]=bn_mul_words( &(r[0]),a,8,b[0]);
974 r[ 9]=bn_mul_add_words(&(r[1]),a,8,b[1]);
975 r[10]=bn_mul_add_words(&(r[2]),a,8,b[2]);
976 r[11]=bn_mul_add_words(&(r[3]),a,8,b[3]);
977 r[12]=bn_mul_add_words(&(r[4]),a,8,b[4]);
978 r[13]=bn_mul_add_words(&(r[5]),a,8,b[5]);
979 r[14]=bn_mul_add_words(&(r[6]),a,8,b[6]);
980 r[15]=bn_mul_add_words(&(r[7]),a,8,b[7]);
981 }
982
983 #ifdef OPENSSL_NO_ASM
984 #ifdef OPENSSL_BN_ASM_MONT
985 #include <alloca.h>
bn_mul_mont(BN_ULONG * rp,const BN_ULONG * ap,const BN_ULONG * bp,const BN_ULONG * np,const BN_ULONG * n0p,int num)986 int bn_mul_mont(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp, const BN_ULONG *np,const BN_ULONG *n0p, int num)
987 {
988 BN_ULONG c0,c1,*tp,n0=*n0p;
989 volatile BN_ULONG *vp;
990 int i=0,j;
991
992 vp = tp = alloca((num+2)*sizeof(BN_ULONG));
993
994 for(i=0;i<=num;i++) tp[i]=0;
995
996 for(i=0;i<num;i++)
997 {
998 c0 = bn_mul_add_words(tp,ap,num,bp[i]);
999 c1 = (tp[num] + c0)&BN_MASK2;
1000 tp[num] = c1;
1001 tp[num+1] = (c1<c0?1:0);
1002
1003 c0 = bn_mul_add_words(tp,np,num,tp[0]*n0);
1004 c1 = (tp[num] + c0)&BN_MASK2;
1005 tp[num] = c1;
1006 tp[num+1] += (c1<c0?1:0);
1007 for(j=0;j<=num;j++) tp[j]=tp[j+1];
1008 }
1009
1010 if (tp[num]!=0 || tp[num-1]>=np[num-1])
1011 {
1012 c0 = bn_sub_words(rp,tp,np,num);
1013 if (tp[num]!=0 || c0==0)
1014 {
1015 for(i=0;i<num+2;i++) vp[i] = 0;
1016 return 1;
1017 }
1018 }
1019 for(i=0;i<num;i++) rp[i] = tp[i], vp[i] = 0;
1020 vp[num] = 0;
1021 vp[num+1] = 0;
1022 return 1;
1023 }
1024 #else
bn_mul_mont(BN_ULONG * rp,const BN_ULONG * ap,const BN_ULONG * bp,const BN_ULONG * np,const BN_ULONG * n0,int num)1025 int bn_mul_mont(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp, const BN_ULONG *np,const BN_ULONG *n0, int num)
1026 { return 0; }
1027 #endif /* OPENSSL_BN_ASM_MONT */
1028 #endif
1029
1030 #endif /* !BN_MUL_COMBA */
1031