1 /*
2 * QEMU DMA emulation
3 *
4 * Copyright (c) 2003-2004 Vassili Karpov (malc)
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24 #include "hw.h"
25 #include "isa.h"
26
27 /* #define DEBUG_DMA */
28
29 #define dolog(...) fprintf (stderr, "dma: " __VA_ARGS__)
30 #ifdef DEBUG_DMA
31 #define linfo(...) fprintf (stderr, "dma: " __VA_ARGS__)
32 #define ldebug(...) fprintf (stderr, "dma: " __VA_ARGS__)
33 #else
34 #define linfo(...)
35 #define ldebug(...)
36 #endif
37
38 struct dma_regs {
39 int now[2];
40 uint16_t base[2];
41 uint8_t mode;
42 uint8_t page;
43 uint8_t pageh;
44 uint8_t dack;
45 uint8_t eop;
46 DMA_transfer_handler transfer_handler;
47 void *opaque;
48 };
49
50 #define ADDR 0
51 #define COUNT 1
52
53 static struct dma_cont {
54 uint8_t status;
55 uint8_t command;
56 uint8_t mask;
57 uint8_t flip_flop;
58 int dshift;
59 struct dma_regs regs[4];
60 } dma_controllers[2];
61
62 enum {
63 CMD_MEMORY_TO_MEMORY = 0x01,
64 CMD_FIXED_ADDRESS = 0x02,
65 CMD_BLOCK_CONTROLLER = 0x04,
66 CMD_COMPRESSED_TIME = 0x08,
67 CMD_CYCLIC_PRIORITY = 0x10,
68 CMD_EXTENDED_WRITE = 0x20,
69 CMD_LOW_DREQ = 0x40,
70 CMD_LOW_DACK = 0x80,
71 CMD_NOT_SUPPORTED = CMD_MEMORY_TO_MEMORY | CMD_FIXED_ADDRESS
72 | CMD_COMPRESSED_TIME | CMD_CYCLIC_PRIORITY | CMD_EXTENDED_WRITE
73 | CMD_LOW_DREQ | CMD_LOW_DACK
74
75 };
76
77 static void DMA_run (void);
78
79 static int channels[8] = {-1, 2, 3, 1, -1, -1, -1, 0};
80
write_page(void * opaque,uint32_t nport,uint32_t data)81 static void write_page (void *opaque, uint32_t nport, uint32_t data)
82 {
83 struct dma_cont *d = opaque;
84 int ichan;
85
86 ichan = channels[nport & 7];
87 if (-1 == ichan) {
88 dolog ("invalid channel %#x %#x\n", nport, data);
89 return;
90 }
91 d->regs[ichan].page = data;
92 }
93
write_pageh(void * opaque,uint32_t nport,uint32_t data)94 static void write_pageh (void *opaque, uint32_t nport, uint32_t data)
95 {
96 struct dma_cont *d = opaque;
97 int ichan;
98
99 ichan = channels[nport & 7];
100 if (-1 == ichan) {
101 dolog ("invalid channel %#x %#x\n", nport, data);
102 return;
103 }
104 d->regs[ichan].pageh = data;
105 }
106
read_page(void * opaque,uint32_t nport)107 static uint32_t read_page (void *opaque, uint32_t nport)
108 {
109 struct dma_cont *d = opaque;
110 int ichan;
111
112 ichan = channels[nport & 7];
113 if (-1 == ichan) {
114 dolog ("invalid channel read %#x\n", nport);
115 return 0;
116 }
117 return d->regs[ichan].page;
118 }
119
read_pageh(void * opaque,uint32_t nport)120 static uint32_t read_pageh (void *opaque, uint32_t nport)
121 {
122 struct dma_cont *d = opaque;
123 int ichan;
124
125 ichan = channels[nport & 7];
126 if (-1 == ichan) {
127 dolog ("invalid channel read %#x\n", nport);
128 return 0;
129 }
130 return d->regs[ichan].pageh;
131 }
132
init_chan(struct dma_cont * d,int ichan)133 static inline void init_chan (struct dma_cont *d, int ichan)
134 {
135 struct dma_regs *r;
136
137 r = d->regs + ichan;
138 r->now[ADDR] = r->base[ADDR] << d->dshift;
139 r->now[COUNT] = 0;
140 }
141
getff(struct dma_cont * d)142 static inline int getff (struct dma_cont *d)
143 {
144 int ff;
145
146 ff = d->flip_flop;
147 d->flip_flop = !ff;
148 return ff;
149 }
150
read_chan(void * opaque,uint32_t nport)151 static uint32_t read_chan (void *opaque, uint32_t nport)
152 {
153 struct dma_cont *d = opaque;
154 int ichan, nreg, iport, ff, val, dir;
155 struct dma_regs *r;
156
157 iport = (nport >> d->dshift) & 0x0f;
158 ichan = iport >> 1;
159 nreg = iport & 1;
160 r = d->regs + ichan;
161
162 dir = ((r->mode >> 5) & 1) ? -1 : 1;
163 ff = getff (d);
164 if (nreg)
165 val = (r->base[COUNT] << d->dshift) - r->now[COUNT];
166 else
167 val = r->now[ADDR] + r->now[COUNT] * dir;
168
169 ldebug ("read_chan %#x -> %d\n", iport, val);
170 return (val >> (d->dshift + (ff << 3))) & 0xff;
171 }
172
write_chan(void * opaque,uint32_t nport,uint32_t data)173 static void write_chan (void *opaque, uint32_t nport, uint32_t data)
174 {
175 struct dma_cont *d = opaque;
176 int iport, ichan, nreg;
177 struct dma_regs *r;
178
179 iport = (nport >> d->dshift) & 0x0f;
180 ichan = iport >> 1;
181 nreg = iport & 1;
182 r = d->regs + ichan;
183 if (getff (d)) {
184 r->base[nreg] = (r->base[nreg] & 0xff) | ((data << 8) & 0xff00);
185 init_chan (d, ichan);
186 } else {
187 r->base[nreg] = (r->base[nreg] & 0xff00) | (data & 0xff);
188 }
189 }
190
write_cont(void * opaque,uint32_t nport,uint32_t data)191 static void write_cont (void *opaque, uint32_t nport, uint32_t data)
192 {
193 struct dma_cont *d = opaque;
194 int iport, ichan = 0;
195
196 iport = (nport >> d->dshift) & 0x0f;
197 switch (iport) {
198 case 0x08: /* command */
199 if ((data != 0) && (data & CMD_NOT_SUPPORTED)) {
200 dolog ("command %#x not supported\n", data);
201 return;
202 }
203 d->command = data;
204 break;
205
206 case 0x09:
207 ichan = data & 3;
208 if (data & 4) {
209 d->status |= 1 << (ichan + 4);
210 }
211 else {
212 d->status &= ~(1 << (ichan + 4));
213 }
214 d->status &= ~(1 << ichan);
215 DMA_run();
216 break;
217
218 case 0x0a: /* single mask */
219 if (data & 4)
220 d->mask |= 1 << (data & 3);
221 else
222 d->mask &= ~(1 << (data & 3));
223 DMA_run();
224 break;
225
226 case 0x0b: /* mode */
227 {
228 ichan = data & 3;
229 #ifdef DEBUG_DMA
230 {
231 int op, ai, dir, opmode;
232 op = (data >> 2) & 3;
233 ai = (data >> 4) & 1;
234 dir = (data >> 5) & 1;
235 opmode = (data >> 6) & 3;
236
237 linfo ("ichan %d, op %d, ai %d, dir %d, opmode %d\n",
238 ichan, op, ai, dir, opmode);
239 }
240 #endif
241 d->regs[ichan].mode = data;
242 break;
243 }
244
245 case 0x0c: /* clear flip flop */
246 d->flip_flop = 0;
247 break;
248
249 case 0x0d: /* reset */
250 d->flip_flop = 0;
251 d->mask = ~0;
252 d->status = 0;
253 d->command = 0;
254 break;
255
256 case 0x0e: /* clear mask for all channels */
257 d->mask = 0;
258 DMA_run();
259 break;
260
261 case 0x0f: /* write mask for all channels */
262 d->mask = data;
263 DMA_run();
264 break;
265
266 default:
267 dolog ("unknown iport %#x\n", iport);
268 break;
269 }
270
271 #ifdef DEBUG_DMA
272 if (0xc != iport) {
273 linfo ("write_cont: nport %#06x, ichan % 2d, val %#06x\n",
274 nport, ichan, data);
275 }
276 #endif
277 }
278
read_cont(void * opaque,uint32_t nport)279 static uint32_t read_cont (void *opaque, uint32_t nport)
280 {
281 struct dma_cont *d = opaque;
282 int iport, val;
283
284 iport = (nport >> d->dshift) & 0x0f;
285 switch (iport) {
286 case 0x08: /* status */
287 val = d->status;
288 d->status &= 0xf0;
289 break;
290 case 0x0f: /* mask */
291 val = d->mask;
292 break;
293 default:
294 val = 0;
295 break;
296 }
297
298 ldebug ("read_cont: nport %#06x, iport %#04x val %#x\n", nport, iport, val);
299 return val;
300 }
301
DMA_get_channel_mode(int nchan)302 int DMA_get_channel_mode (int nchan)
303 {
304 return dma_controllers[nchan > 3].regs[nchan & 3].mode;
305 }
306
DMA_hold_DREQ(int nchan)307 void DMA_hold_DREQ (int nchan)
308 {
309 int ncont, ichan;
310
311 ncont = nchan > 3;
312 ichan = nchan & 3;
313 linfo ("held cont=%d chan=%d\n", ncont, ichan);
314 dma_controllers[ncont].status |= 1 << (ichan + 4);
315 DMA_run();
316 }
317
DMA_release_DREQ(int nchan)318 void DMA_release_DREQ (int nchan)
319 {
320 int ncont, ichan;
321
322 ncont = nchan > 3;
323 ichan = nchan & 3;
324 linfo ("released cont=%d chan=%d\n", ncont, ichan);
325 dma_controllers[ncont].status &= ~(1 << (ichan + 4));
326 DMA_run();
327 }
328
channel_run(int ncont,int ichan)329 static void channel_run (int ncont, int ichan)
330 {
331 int n;
332 struct dma_regs *r = &dma_controllers[ncont].regs[ichan];
333 #ifdef DEBUG_DMA
334 int dir, opmode;
335
336 dir = (r->mode >> 5) & 1;
337 opmode = (r->mode >> 6) & 3;
338
339 if (dir) {
340 dolog ("DMA in address decrement mode\n");
341 }
342 if (opmode != 1) {
343 dolog ("DMA not in single mode select %#x\n", opmode);
344 }
345 #endif
346
347 r = dma_controllers[ncont].regs + ichan;
348 if (r->transfer_handler) {
349 n = r->transfer_handler (r->opaque, ichan + (ncont << 2),
350 r->now[COUNT], (r->base[COUNT] + 1) << ncont);
351 r->now[COUNT] = n;
352 }
353 ldebug ("dma_pos %d size %d\n", n, (r->base[COUNT] + 1) << ncont);
354 }
355
356 static QEMUBH *dma_bh;
357
DMA_run(void)358 static void DMA_run (void)
359 {
360 struct dma_cont *d;
361 int icont, ichan;
362 int rearm = 0;
363
364 d = dma_controllers;
365
366 for (icont = 0; icont < 2; icont++, d++) {
367 for (ichan = 0; ichan < 4; ichan++) {
368 int mask;
369
370 mask = 1 << ichan;
371
372 if ((0 == (d->mask & mask)) && (0 != (d->status & (mask << 4)))) {
373 channel_run (icont, ichan);
374 rearm = 1;
375 }
376 }
377 }
378
379 if (rearm)
380 qemu_bh_schedule_idle(dma_bh);
381 }
382
DMA_run_bh(void * unused)383 static void DMA_run_bh(void *unused)
384 {
385 DMA_run();
386 }
387
DMA_register_channel(int nchan,DMA_transfer_handler transfer_handler,void * opaque)388 void DMA_register_channel (int nchan,
389 DMA_transfer_handler transfer_handler,
390 void *opaque)
391 {
392 struct dma_regs *r;
393 int ichan, ncont;
394
395 ncont = nchan > 3;
396 ichan = nchan & 3;
397
398 r = dma_controllers[ncont].regs + ichan;
399 r->transfer_handler = transfer_handler;
400 r->opaque = opaque;
401 }
402
DMA_read_memory(int nchan,void * buf,int pos,int len)403 int DMA_read_memory (int nchan, void *buf, int pos, int len)
404 {
405 struct dma_regs *r = &dma_controllers[nchan > 3].regs[nchan & 3];
406 target_phys_addr_t addr = ((r->pageh & 0x7f) << 24) | (r->page << 16) | r->now[ADDR];
407
408 if (r->mode & 0x20) {
409 int i;
410 uint8_t *p = buf;
411
412 cpu_physical_memory_read (addr - pos - len, buf, len);
413 /* What about 16bit transfers? */
414 for (i = 0; i < len >> 1; i++) {
415 uint8_t b = p[len - i - 1];
416 p[i] = b;
417 }
418 }
419 else
420 cpu_physical_memory_read (addr + pos, buf, len);
421
422 return len;
423 }
424
DMA_write_memory(int nchan,void * buf,int pos,int len)425 int DMA_write_memory (int nchan, void *buf, int pos, int len)
426 {
427 struct dma_regs *r = &dma_controllers[nchan > 3].regs[nchan & 3];
428 target_phys_addr_t addr = ((r->pageh & 0x7f) << 24) | (r->page << 16) | r->now[ADDR];
429
430 if (r->mode & 0x20) {
431 int i;
432 uint8_t *p = buf;
433
434 cpu_physical_memory_write (addr - pos - len, buf, len);
435 /* What about 16bit transfers? */
436 for (i = 0; i < len; i++) {
437 uint8_t b = p[len - i - 1];
438 p[i] = b;
439 }
440 }
441 else
442 cpu_physical_memory_write (addr + pos, buf, len);
443
444 return len;
445 }
446
447 /* request the emulator to transfer a new DMA memory block ASAP */
DMA_schedule(int nchan)448 void DMA_schedule(int nchan)
449 {
450 CPUState *env = cpu_single_env;
451 if (env)
452 cpu_exit(env);
453 }
454
dma_reset(void * opaque)455 static void dma_reset(void *opaque)
456 {
457 struct dma_cont *d = opaque;
458 write_cont (d, (0x0d << d->dshift), 0);
459 }
460
dma_phony_handler(void * opaque,int nchan,int dma_pos,int dma_len)461 static int dma_phony_handler (void *opaque, int nchan, int dma_pos, int dma_len)
462 {
463 dolog ("unregistered DMA channel used nchan=%d dma_pos=%d dma_len=%d\n",
464 nchan, dma_pos, dma_len);
465 return dma_pos;
466 }
467
468 /* dshift = 0: 8 bit DMA, 1 = 16 bit DMA */
dma_init2(struct dma_cont * d,int base,int dshift,int page_base,int pageh_base)469 static void dma_init2(struct dma_cont *d, int base, int dshift,
470 int page_base, int pageh_base)
471 {
472 static const int page_port_list[] = { 0x1, 0x2, 0x3, 0x7 };
473 int i;
474
475 d->dshift = dshift;
476 for (i = 0; i < 8; i++) {
477 register_ioport_write (base + (i << dshift), 1, 1, write_chan, d);
478 register_ioport_read (base + (i << dshift), 1, 1, read_chan, d);
479 }
480 for (i = 0; i < ARRAY_SIZE (page_port_list); i++) {
481 register_ioport_write (page_base + page_port_list[i], 1, 1,
482 write_page, d);
483 register_ioport_read (page_base + page_port_list[i], 1, 1,
484 read_page, d);
485 if (pageh_base >= 0) {
486 register_ioport_write (pageh_base + page_port_list[i], 1, 1,
487 write_pageh, d);
488 register_ioport_read (pageh_base + page_port_list[i], 1, 1,
489 read_pageh, d);
490 }
491 }
492 for (i = 0; i < 8; i++) {
493 register_ioport_write (base + ((i + 8) << dshift), 1, 1,
494 write_cont, d);
495 register_ioport_read (base + ((i + 8) << dshift), 1, 1,
496 read_cont, d);
497 }
498 qemu_register_reset(dma_reset, 0, d);
499 dma_reset(d);
500 for (i = 0; i < ARRAY_SIZE (d->regs); ++i) {
501 d->regs[i].transfer_handler = dma_phony_handler;
502 }
503 }
504
dma_save(QEMUFile * f,void * opaque)505 static void dma_save (QEMUFile *f, void *opaque)
506 {
507 struct dma_cont *d = opaque;
508 int i;
509
510 /* qemu_put_8s (f, &d->status); */
511 qemu_put_8s (f, &d->command);
512 qemu_put_8s (f, &d->mask);
513 qemu_put_8s (f, &d->flip_flop);
514 qemu_put_be32 (f, d->dshift);
515
516 for (i = 0; i < 4; ++i) {
517 struct dma_regs *r = &d->regs[i];
518 qemu_put_be32 (f, r->now[0]);
519 qemu_put_be32 (f, r->now[1]);
520 qemu_put_be16s (f, &r->base[0]);
521 qemu_put_be16s (f, &r->base[1]);
522 qemu_put_8s (f, &r->mode);
523 qemu_put_8s (f, &r->page);
524 qemu_put_8s (f, &r->pageh);
525 qemu_put_8s (f, &r->dack);
526 qemu_put_8s (f, &r->eop);
527 }
528 }
529
dma_load(QEMUFile * f,void * opaque,int version_id)530 static int dma_load (QEMUFile *f, void *opaque, int version_id)
531 {
532 struct dma_cont *d = opaque;
533 int i;
534
535 if (version_id != 1)
536 return -EINVAL;
537
538 /* qemu_get_8s (f, &d->status); */
539 qemu_get_8s (f, &d->command);
540 qemu_get_8s (f, &d->mask);
541 qemu_get_8s (f, &d->flip_flop);
542 d->dshift=qemu_get_be32 (f);
543
544 for (i = 0; i < 4; ++i) {
545 struct dma_regs *r = &d->regs[i];
546 r->now[0]=qemu_get_be32 (f);
547 r->now[1]=qemu_get_be32 (f);
548 qemu_get_be16s (f, &r->base[0]);
549 qemu_get_be16s (f, &r->base[1]);
550 qemu_get_8s (f, &r->mode);
551 qemu_get_8s (f, &r->page);
552 qemu_get_8s (f, &r->pageh);
553 qemu_get_8s (f, &r->dack);
554 qemu_get_8s (f, &r->eop);
555 }
556
557 DMA_run();
558
559 return 0;
560 }
561
DMA_init(int high_page_enable)562 void DMA_init (int high_page_enable)
563 {
564 dma_init2(&dma_controllers[0], 0x00, 0, 0x80,
565 high_page_enable ? 0x480 : -1);
566 dma_init2(&dma_controllers[1], 0xc0, 1, 0x88,
567 high_page_enable ? 0x488 : -1);
568 register_savevm ("dma", 0, 1, dma_save, dma_load, &dma_controllers[0]);
569 register_savevm ("dma", 1, 1, dma_save, dma_load, &dma_controllers[1]);
570
571 dma_bh = qemu_bh_new(DMA_run_bh, NULL);
572 }
573