1 /*
2 * Copyright 2012 The Android Open Source Project
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8 #include <tmmintrin.h> // SSSE3
9 #include "SkBitmapProcState_opts_SSSE3.h"
10 #include "SkUtils.h"
11
12 // adding anonymous namespace seemed to force gcc to inline directly the
13 // instantiation, instead of creating the functions
14 // S32_generic_D32_filter_DX_SSSE3<true> and
15 // S32_generic_D32_filter_DX_SSSE3<false> which were then called by the
16 // external functions.
17 namespace {
18 // In this file, variations for alpha and non alpha versions are implemented
19 // with a template, as it makes the code more compact and a bit easier to
20 // maintain, while making the compiler generate the same exact code as with
21 // two functions that only differ by a few lines.
22
23
24 // Prepare all necessary constants for a round of processing for two pixel
25 // pairs.
26 // @param xy is the location where the xy parameters for four pixels should be
27 // read from. It is identical in concept with argument two of
28 // S32_{opaque}_D32_filter_DX methods.
29 // @param mask_3FFF vector of 32 bit constants containing 3FFF,
30 // suitable to mask the bottom 14 bits of a XY value.
31 // @param mask_000F vector of 32 bit constants containing 000F,
32 // suitable to mask the bottom 4 bits of a XY value.
33 // @param sixteen_8bit vector of 8 bit components containing the value 16.
34 // @param mask_dist_select vector of 8 bit components containing the shuffling
35 // parameters to reorder x[0-3] parameters.
36 // @param all_x_result vector of 8 bit components that will contain the
37 // (4x(x3), 4x(x2), 4x(x1), 4x(x0)) upon return.
38 // @param sixteen_minus_x vector of 8 bit components, containing
39 // (4x(16 - x3), 4x(16 - x2), 4x(16 - x1), 4x(16 - x0))
PrepareConstantsTwoPixelPairs(const uint32_t * xy,const __m128i & mask_3FFF,const __m128i & mask_000F,const __m128i & sixteen_8bit,const __m128i & mask_dist_select,__m128i * all_x_result,__m128i * sixteen_minus_x,int * x0,int * x1)40 inline void PrepareConstantsTwoPixelPairs(const uint32_t* xy,
41 const __m128i& mask_3FFF,
42 const __m128i& mask_000F,
43 const __m128i& sixteen_8bit,
44 const __m128i& mask_dist_select,
45 __m128i* all_x_result,
46 __m128i* sixteen_minus_x,
47 int* x0,
48 int* x1) {
49 const __m128i xx = _mm_loadu_si128(reinterpret_cast<const __m128i *>(xy));
50
51 // 4 delta X
52 // (x03, x02, x01, x00)
53 const __m128i x0_wide = _mm_srli_epi32(xx, 18);
54 // (x13, x12, x11, x10)
55 const __m128i x1_wide = _mm_and_si128(xx, mask_3FFF);
56
57 _mm_storeu_si128(reinterpret_cast<__m128i *>(x0), x0_wide);
58 _mm_storeu_si128(reinterpret_cast<__m128i *>(x1), x1_wide);
59
60 __m128i all_x = _mm_and_si128(_mm_srli_epi32(xx, 14), mask_000F);
61
62 // (4x(x3), 4x(x2), 4x(x1), 4x(x0))
63 all_x = _mm_shuffle_epi8(all_x, mask_dist_select);
64
65 *all_x_result = all_x;
66 // (4x(16-x3), 4x(16-x2), 4x(16-x1), 4x(16-x0))
67 *sixteen_minus_x = _mm_sub_epi8(sixteen_8bit, all_x);
68 }
69
70 // Helper function used when processing one pixel pair.
71 // @param pixel0..3 are the four input pixels
72 // @param scale_x vector of 8 bit components to multiply the pixel[0:3]. This
73 // will contain (4x(x1, 16-x1), 4x(x0, 16-x0))
74 // or (4x(x3, 16-x3), 4x(x2, 16-x2))
75 // @return a vector of 16 bit components containing:
76 // (Aa2 * (16 - x1) + Aa3 * x1, ... , Ra0 * (16 - x0) + Ra1 * x0)
ProcessPixelPairHelper(uint32_t pixel0,uint32_t pixel1,uint32_t pixel2,uint32_t pixel3,const __m128i & scale_x)77 inline __m128i ProcessPixelPairHelper(uint32_t pixel0,
78 uint32_t pixel1,
79 uint32_t pixel2,
80 uint32_t pixel3,
81 const __m128i& scale_x) {
82 __m128i a0, a1, a2, a3;
83 // Load 2 pairs of pixels
84 a0 = _mm_cvtsi32_si128(pixel0);
85 a1 = _mm_cvtsi32_si128(pixel1);
86
87 // Interleave pixels.
88 // (0, 0, 0, 0, 0, 0, 0, 0, Aa1, Aa0, Ba1, Ba0, Ga1, Ga0, Ra1, Ra0)
89 a0 = _mm_unpacklo_epi8(a0, a1);
90
91 a2 = _mm_cvtsi32_si128(pixel2);
92 a3 = _mm_cvtsi32_si128(pixel3);
93 // (0, 0, 0, 0, 0, 0, 0, 0, Aa3, Aa2, Ba3, Ba2, Ga3, Ga2, Ra3, Ra2)
94 a2 = _mm_unpacklo_epi8(a2, a3);
95
96 // two pairs of pixel pairs, interleaved.
97 // (Aa3, Aa2, Ba3, Ba2, Ga3, Ga2, Ra3, Ra2,
98 // Aa1, Aa0, Ba1, Ba0, Ga1, Ga0, Ra1, Ra0)
99 a0 = _mm_unpacklo_epi64(a0, a2);
100
101 // multiply and sum to 16 bit components.
102 // (Aa2 * (16 - x1) + Aa3 * x1, ... , Ra0 * (16 - x0) + Ra1 * x0)
103 // At that point, we use up a bit less than 12 bits for each 16 bit
104 // component:
105 // All components are less than 255. So,
106 // C0 * (16 - x) + C1 * x <= 255 * (16 - x) + 255 * x = 255 * 16.
107 return _mm_maddubs_epi16(a0, scale_x);
108 }
109
110 // Scale back the results after multiplications to the [0:255] range, and scale
111 // by alpha when has_alpha is true.
112 // Depending on whether one set or two sets of multiplications had been applied,
113 // the results have to be shifted by four places (dividing by 16), or shifted
114 // by eight places (dividing by 256), since each multiplication is by a quantity
115 // in the range [0:16].
116 template<bool has_alpha, int scale>
ScaleFourPixels(__m128i * pixels,const __m128i & alpha)117 inline __m128i ScaleFourPixels(__m128i* pixels,
118 const __m128i& alpha) {
119 // Divide each 16 bit component by 16 (or 256 depending on scale).
120 *pixels = _mm_srli_epi16(*pixels, scale);
121
122 if (has_alpha) {
123 // Multiply by alpha.
124 *pixels = _mm_mullo_epi16(*pixels, alpha);
125
126 // Divide each 16 bit component by 256.
127 *pixels = _mm_srli_epi16(*pixels, 8);
128 }
129 return *pixels;
130 }
131
132 // Wrapper to calculate two output pixels from four input pixels. The
133 // arguments are the same as ProcessPixelPairHelper. Technically, there are
134 // eight input pixels, but since sub_y == 0, the factors applied to half of the
135 // pixels is zero (sub_y), and are therefore omitted here to save on some
136 // processing.
137 // @param alpha when has_alpha is true, scale all resulting components by this
138 // value.
139 // @return a vector of 16 bit components containing:
140 // ((Aa2 * (16 - x1) + Aa3 * x1) * alpha, ...,
141 // (Ra0 * (16 - x0) + Ra1 * x0) * alpha) (when has_alpha is true)
142 // otherwise
143 // (Aa2 * (16 - x1) + Aa3 * x1, ... , Ra0 * (16 - x0) + Ra1 * x0)
144 // In both cases, the results are renormalized (divided by 16) to match the
145 // expected formats when storing back the results into memory.
146 template<bool has_alpha>
ProcessPixelPairZeroSubY(uint32_t pixel0,uint32_t pixel1,uint32_t pixel2,uint32_t pixel3,const __m128i & scale_x,const __m128i & alpha)147 inline __m128i ProcessPixelPairZeroSubY(uint32_t pixel0,
148 uint32_t pixel1,
149 uint32_t pixel2,
150 uint32_t pixel3,
151 const __m128i& scale_x,
152 const __m128i& alpha) {
153 __m128i sum = ProcessPixelPairHelper(pixel0, pixel1, pixel2, pixel3,
154 scale_x);
155 return ScaleFourPixels<has_alpha, 4>(&sum, alpha);
156 }
157
158 // Same as ProcessPixelPairZeroSubY, expect processing one output pixel at a
159 // time instead of two. As in the above function, only two pixels are needed
160 // to generate a single pixel since sub_y == 0.
161 // @return same as ProcessPixelPairZeroSubY, except that only the bottom 4
162 // 16 bit components are set.
163 template<bool has_alpha>
ProcessOnePixelZeroSubY(uint32_t pixel0,uint32_t pixel1,__m128i scale_x,__m128i alpha)164 inline __m128i ProcessOnePixelZeroSubY(uint32_t pixel0,
165 uint32_t pixel1,
166 __m128i scale_x,
167 __m128i alpha) {
168 __m128i a0 = _mm_cvtsi32_si128(pixel0);
169 __m128i a1 = _mm_cvtsi32_si128(pixel1);
170
171 // Interleave
172 a0 = _mm_unpacklo_epi8(a0, a1);
173
174 // (a0 * (16-x) + a1 * x)
175 __m128i sum = _mm_maddubs_epi16(a0, scale_x);
176
177 return ScaleFourPixels<has_alpha, 4>(&sum, alpha);
178 }
179
180 // Methods when sub_y != 0
181
182
183 // Same as ProcessPixelPairHelper, except that the values are scaled by y.
184 // @param y vector of 16 bit components containing 'y' values. There are two
185 // cases in practice, where y will contain the sub_y constant, or will
186 // contain the 16 - sub_y constant.
187 // @return vector of 16 bit components containing:
188 // (y * (Aa2 * (16 - x1) + Aa3 * x1), ... , y * (Ra0 * (16 - x0) + Ra1 * x0))
ProcessPixelPair(uint32_t pixel0,uint32_t pixel1,uint32_t pixel2,uint32_t pixel3,const __m128i & scale_x,const __m128i & y)189 inline __m128i ProcessPixelPair(uint32_t pixel0,
190 uint32_t pixel1,
191 uint32_t pixel2,
192 uint32_t pixel3,
193 const __m128i& scale_x,
194 const __m128i& y) {
195 __m128i sum = ProcessPixelPairHelper(pixel0, pixel1, pixel2, pixel3,
196 scale_x);
197
198 // first row times 16-y or y depending on whether 'y' represents one or
199 // the other.
200 // Values will be up to 255 * 16 * 16 = 65280.
201 // (y * (Aa2 * (16 - x1) + Aa3 * x1), ... ,
202 // y * (Ra0 * (16 - x0) + Ra1 * x0))
203 sum = _mm_mullo_epi16(sum, y);
204
205 return sum;
206 }
207
208 // Process two pixel pairs out of eight input pixels.
209 // In other methods, the distinct pixels are passed one by one, but in this
210 // case, the rows, and index offsets to the pixels into the row are passed
211 // to generate the 8 pixels.
212 // @param row0..1 top and bottom row where to find input pixels.
213 // @param x0..1 offsets into the row for all eight input pixels.
214 // @param all_y vector of 16 bit components containing the constant sub_y
215 // @param neg_y vector of 16 bit components containing the constant 16 - sub_y
216 // @param alpha vector of 16 bit components containing the alpha value to scale
217 // the results by, when has_alpha is true.
218 // @return
219 // (alpha * ((16-y) * (Aa2 * (16-x1) + Aa3 * x1) +
220 // y * (Aa2' * (16-x1) + Aa3' * x1)),
221 // ...
222 // alpha * ((16-y) * (Ra0 * (16-x0) + Ra1 * x0) +
223 // y * (Ra0' * (16-x0) + Ra1' * x0))
224 // With the factor alpha removed when has_alpha is false.
225 // The values are scaled back to 16 bit components, but with only the bottom
226 // 8 bits being set.
227 template<bool has_alpha>
ProcessTwoPixelPairs(const uint32_t * row0,const uint32_t * row1,const int * x0,const int * x1,const __m128i & scale_x,const __m128i & all_y,const __m128i & neg_y,const __m128i & alpha)228 inline __m128i ProcessTwoPixelPairs(const uint32_t* row0,
229 const uint32_t* row1,
230 const int* x0,
231 const int* x1,
232 const __m128i& scale_x,
233 const __m128i& all_y,
234 const __m128i& neg_y,
235 const __m128i& alpha) {
236 __m128i sum0 = ProcessPixelPair(
237 row0[x0[0]], row0[x1[0]], row0[x0[1]], row0[x1[1]],
238 scale_x, neg_y);
239 __m128i sum1 = ProcessPixelPair(
240 row1[x0[0]], row1[x1[0]], row1[x0[1]], row1[x1[1]],
241 scale_x, all_y);
242
243 // 2 samples fully summed.
244 // ((16-y) * (Aa2 * (16-x1) + Aa3 * x1) +
245 // y * (Aa2' * (16-x1) + Aa3' * x1),
246 // ...
247 // (16-y) * (Ra0 * (16 - x0) + Ra1 * x0)) +
248 // y * (Ra0' * (16-x0) + Ra1' * x0))
249 // Each component, again can be at most 256 * 255 = 65280, so no overflow.
250 sum0 = _mm_add_epi16(sum0, sum1);
251
252 return ScaleFourPixels<has_alpha, 8>(&sum0, alpha);
253 }
254
255
256 // Same as ProcessPixelPair, except that performing the math one output pixel
257 // at a time. This means that only the bottom four 16 bit components are set.
ProcessOnePixel(uint32_t pixel0,uint32_t pixel1,const __m128i & scale_x,const __m128i & y)258 inline __m128i ProcessOnePixel(uint32_t pixel0, uint32_t pixel1,
259 const __m128i& scale_x, const __m128i& y) {
260 __m128i a0 = _mm_cvtsi32_si128(pixel0);
261 __m128i a1 = _mm_cvtsi32_si128(pixel1);
262
263 // Interleave
264 // (0, 0, 0, 0, 0, 0, 0, 0, Aa1, Aa0, Ba1, Ba0, Ga1, Ga0, Ra1, Ra0)
265 a0 = _mm_unpacklo_epi8(a0, a1);
266
267 // (a0 * (16-x) + a1 * x)
268 a0 = _mm_maddubs_epi16(a0, scale_x);
269
270 // scale row by y
271 return _mm_mullo_epi16(a0, y);
272 }
273
274 // Notes about the various tricks that are used in this implementation:
275 // - specialization for sub_y == 0.
276 // Statistically, 1/16th of the samples will have sub_y == 0. When this
277 // happens, the math goes from:
278 // (16 - x)*(16 - y)*a00 + x*(16 - y)*a01 + (16 - x)*y*a10 + x*y*a11
279 // to:
280 // (16 - x)*a00 + 16*x*a01
281 // much simpler. The simplification makes for an easy boost in performance.
282 // - calculating 4 output pixels at a time.
283 // This allows loading the coefficients x0 and x1 and shuffling them to the
284 // optimum location only once per loop, instead of twice per loop.
285 // This also allows us to store the four pixels with a single store.
286 // - Use of 2 special SSSE3 instructions (comparatively to the SSE2 instruction
287 // version):
288 // _mm_shuffle_epi8 : this allows us to spread the coefficients x[0-3] loaded
289 // in 32 bit values to 8 bit values repeated four times.
290 // _mm_maddubs_epi16 : this allows us to perform multiplications and additions
291 // in one swoop of 8bit values storing the results in 16 bit values. This
292 // instruction is actually crucial for the speed of the implementation since
293 // as one can see in the SSE2 implementation, all inputs have to be used as
294 // 16 bits because the results are 16 bits. This basically allows us to process
295 // twice as many pixel components per iteration.
296 //
297 // As a result, this method behaves faster than the traditional SSE2. The actual
298 // boost varies greatly on the underlying architecture.
299 template<bool has_alpha>
S32_generic_D32_filter_DX_SSSE3(const SkBitmapProcState & s,const uint32_t * xy,int count,uint32_t * colors)300 void S32_generic_D32_filter_DX_SSSE3(const SkBitmapProcState& s,
301 const uint32_t* xy,
302 int count, uint32_t* colors) {
303 SkASSERT(count > 0 && colors != NULL);
304 SkASSERT(s.fDoFilter);
305 SkASSERT(s.fBitmap->config() == SkBitmap::kARGB_8888_Config);
306 if (has_alpha) {
307 SkASSERT(s.fAlphaScale < 256);
308 } else {
309 SkASSERT(s.fAlphaScale == 256);
310 }
311
312 const uint8_t* src_addr =
313 static_cast<const uint8_t*>(s.fBitmap->getPixels());
314 const unsigned rb = s.fBitmap->rowBytes();
315 const uint32_t XY = *xy++;
316 const unsigned y0 = XY >> 14;
317 const uint32_t* row0 =
318 reinterpret_cast<const uint32_t*>(src_addr + (y0 >> 4) * rb);
319 const uint32_t* row1 =
320 reinterpret_cast<const uint32_t*>(src_addr + (XY & 0x3FFF) * rb);
321 const unsigned sub_y = y0 & 0xF;
322
323 // vector constants
324 const __m128i mask_dist_select = _mm_set_epi8(12, 12, 12, 12,
325 8, 8, 8, 8,
326 4, 4, 4, 4,
327 0, 0, 0, 0);
328 const __m128i mask_3FFF = _mm_set1_epi32(0x3FFF);
329 const __m128i mask_000F = _mm_set1_epi32(0x000F);
330 const __m128i sixteen_8bit = _mm_set1_epi8(16);
331 // (0, 0, 0, 0, 0, 0, 0, 0)
332 const __m128i zero = _mm_setzero_si128();
333
334 __m128i alpha;
335 if (has_alpha)
336 // 8x(alpha)
337 alpha = _mm_set1_epi16(s.fAlphaScale);
338
339 if (sub_y == 0) {
340 // Unroll 4x, interleave bytes, use pmaddubsw (all_x is small)
341 while (count > 3) {
342 count -= 4;
343
344 int x0[4];
345 int x1[4];
346 __m128i all_x, sixteen_minus_x;
347 PrepareConstantsTwoPixelPairs(xy, mask_3FFF, mask_000F,
348 sixteen_8bit, mask_dist_select,
349 &all_x, &sixteen_minus_x, x0, x1);
350 xy += 4;
351
352 // First pair of pixel pairs.
353 // (4x(x1, 16-x1), 4x(x0, 16-x0))
354 __m128i scale_x;
355 scale_x = _mm_unpacklo_epi8(sixteen_minus_x, all_x);
356
357 __m128i sum0 = ProcessPixelPairZeroSubY<has_alpha>(
358 row0[x0[0]], row0[x1[0]], row0[x0[1]], row0[x1[1]],
359 scale_x, alpha);
360
361 // second pair of pixel pairs
362 // (4x (x3, 16-x3), 4x (16-x2, x2))
363 scale_x = _mm_unpackhi_epi8(sixteen_minus_x, all_x);
364
365 __m128i sum1 = ProcessPixelPairZeroSubY<has_alpha>(
366 row0[x0[2]], row0[x1[2]], row0[x0[3]], row0[x1[3]],
367 scale_x, alpha);
368
369 // Pack lower 4 16 bit values of sum into lower 4 bytes.
370 sum0 = _mm_packus_epi16(sum0, sum1);
371
372 // Extract low int and store.
373 _mm_storeu_si128(reinterpret_cast<__m128i *>(colors), sum0);
374
375 colors += 4;
376 }
377
378 // handle remainder
379 while (count-- > 0) {
380 uint32_t xx = *xy++; // x0:14 | 4 | x1:14
381 unsigned x0 = xx >> 18;
382 unsigned x1 = xx & 0x3FFF;
383
384 // 16x(x)
385 const __m128i all_x = _mm_set1_epi8((xx >> 14) & 0x0F);
386
387 // (16x(16-x))
388 __m128i scale_x = _mm_sub_epi8(sixteen_8bit, all_x);
389
390 scale_x = _mm_unpacklo_epi8(scale_x, all_x);
391
392 __m128i sum = ProcessOnePixelZeroSubY<has_alpha>(
393 row0[x0], row0[x1],
394 scale_x, alpha);
395
396 // Pack lower 4 16 bit values of sum into lower 4 bytes.
397 sum = _mm_packus_epi16(sum, zero);
398
399 // Extract low int and store.
400 *colors++ = _mm_cvtsi128_si32(sum);
401 }
402 } else { // more general case, y != 0
403 // 8x(16)
404 const __m128i sixteen_16bit = _mm_set1_epi16(16);
405
406 // 8x (y)
407 const __m128i all_y = _mm_set1_epi16(sub_y);
408
409 // 8x (16-y)
410 const __m128i neg_y = _mm_sub_epi16(sixteen_16bit, all_y);
411
412 // Unroll 4x, interleave bytes, use pmaddubsw (all_x is small)
413 while (count > 3) {
414 count -= 4;
415
416 int x0[4];
417 int x1[4];
418 __m128i all_x, sixteen_minus_x;
419 PrepareConstantsTwoPixelPairs(xy, mask_3FFF, mask_000F,
420 sixteen_8bit, mask_dist_select,
421 &all_x, &sixteen_minus_x, x0, x1);
422 xy += 4;
423
424 // First pair of pixel pairs
425 // (4x(x1, 16-x1), 4x(x0, 16-x0))
426 __m128i scale_x;
427 scale_x = _mm_unpacklo_epi8(sixteen_minus_x, all_x);
428
429 __m128i sum0 = ProcessTwoPixelPairs<has_alpha>(
430 row0, row1, x0, x1,
431 scale_x, all_y, neg_y, alpha);
432
433 // second pair of pixel pairs
434 // (4x (x3, 16-x3), 4x (16-x2, x2))
435 scale_x = _mm_unpackhi_epi8(sixteen_minus_x, all_x);
436
437 __m128i sum1 = ProcessTwoPixelPairs<has_alpha>(
438 row0, row1, x0 + 2, x1 + 2,
439 scale_x, all_y, neg_y, alpha);
440
441 // Do the final packing of the two results
442
443 // Pack lower 4 16 bit values of sum into lower 4 bytes.
444 sum0 = _mm_packus_epi16(sum0, sum1);
445
446 // Extract low int and store.
447 _mm_storeu_si128(reinterpret_cast<__m128i *>(colors), sum0);
448
449 colors += 4;
450 }
451
452 // Left over.
453 while (count-- > 0) {
454 const uint32_t xx = *xy++; // x0:14 | 4 | x1:14
455 const unsigned x0 = xx >> 18;
456 const unsigned x1 = xx & 0x3FFF;
457
458 // 16x(x)
459 const __m128i all_x = _mm_set1_epi8((xx >> 14) & 0x0F);
460
461 // 16x (16-x)
462 __m128i scale_x = _mm_sub_epi8(sixteen_8bit, all_x);
463
464 // (8x (x, 16-x))
465 scale_x = _mm_unpacklo_epi8(scale_x, all_x);
466
467 // first row.
468 __m128i sum0 = ProcessOnePixel(row0[x0], row0[x1], scale_x, neg_y);
469 // second row.
470 __m128i sum1 = ProcessOnePixel(row1[x0], row1[x1], scale_x, all_y);
471
472 // Add both rows for full sample
473 sum0 = _mm_add_epi16(sum0, sum1);
474
475 sum0 = ScaleFourPixels<has_alpha, 8>(&sum0, alpha);
476
477 // Pack lower 4 16 bit values of sum into lower 4 bytes.
478 sum0 = _mm_packus_epi16(sum0, zero);
479
480 // Extract low int and store.
481 *colors++ = _mm_cvtsi128_si32(sum0);
482 }
483 }
484 }
485 } // namepace
486
S32_opaque_D32_filter_DX_SSSE3(const SkBitmapProcState & s,const uint32_t * xy,int count,uint32_t * colors)487 void S32_opaque_D32_filter_DX_SSSE3(const SkBitmapProcState& s,
488 const uint32_t* xy,
489 int count, uint32_t* colors) {
490 S32_generic_D32_filter_DX_SSSE3<false>(s, xy, count, colors);
491 }
492
S32_alpha_D32_filter_DX_SSSE3(const SkBitmapProcState & s,const uint32_t * xy,int count,uint32_t * colors)493 void S32_alpha_D32_filter_DX_SSSE3(const SkBitmapProcState& s,
494 const uint32_t* xy,
495 int count, uint32_t* colors) {
496 S32_generic_D32_filter_DX_SSSE3<true>(s, xy, count, colors);
497 }
498