1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Redistribution and use in source and binary forms, with or without
3 // modification, are permitted provided that the following conditions are
4 // met:
5 //
6 // * Redistributions of source code must retain the above copyright
7 // notice, this list of conditions and the following disclaimer.
8 // * Redistributions in binary form must reproduce the above
9 // copyright notice, this list of conditions and the following
10 // disclaimer in the documentation and/or other materials provided
11 // with the distribution.
12 // * Neither the name of Google Inc. nor the names of its
13 // contributors may be used to endorse or promote products derived
14 // from this software without specific prior written permission.
15 //
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28 #include "v8.h"
29
30 #include "accessors.h"
31 #include "api.h"
32 #include "arguments.h"
33 #include "codegen.h"
34 #include "execution.h"
35 #include "ic-inl.h"
36 #include "runtime.h"
37 #include "stub-cache.h"
38
39 namespace v8 {
40 namespace internal {
41
42 #ifdef DEBUG
TransitionMarkFromState(IC::State state)43 char IC::TransitionMarkFromState(IC::State state) {
44 switch (state) {
45 case UNINITIALIZED: return '0';
46 case PREMONOMORPHIC: return 'P';
47 case MONOMORPHIC: return '1';
48 case MONOMORPHIC_PROTOTYPE_FAILURE: return '^';
49 case MEGAMORPHIC: return IsGeneric() ? 'G' : 'N';
50
51 // We never see the debugger states here, because the state is
52 // computed from the original code - not the patched code. Let
53 // these cases fall through to the unreachable code below.
54 case DEBUG_BREAK: break;
55 case DEBUG_PREPARE_STEP_IN: break;
56 }
57 UNREACHABLE();
58 return 0;
59 }
60
TraceIC(const char * type,Handle<Object> name,State old_state,Code * new_target)61 void IC::TraceIC(const char* type,
62 Handle<Object> name,
63 State old_state,
64 Code* new_target) {
65 if (FLAG_trace_ic) {
66 State new_state = StateFrom(new_target,
67 HEAP->undefined_value(),
68 HEAP->undefined_value());
69 PrintF("[%s in ", type);
70 StackFrameIterator it;
71 while (it.frame()->fp() != this->fp()) it.Advance();
72 StackFrame* raw_frame = it.frame();
73 if (raw_frame->is_internal()) {
74 Isolate* isolate = new_target->GetIsolate();
75 Code* apply_builtin = isolate->builtins()->builtin(
76 Builtins::kFunctionApply);
77 if (raw_frame->unchecked_code() == apply_builtin) {
78 PrintF("apply from ");
79 it.Advance();
80 raw_frame = it.frame();
81 }
82 }
83 JavaScriptFrame::PrintTop(stdout, false, true);
84 bool new_can_grow =
85 Code::GetKeyedAccessGrowMode(new_target->extra_ic_state()) ==
86 ALLOW_JSARRAY_GROWTH;
87 PrintF(" (%c->%c%s)",
88 TransitionMarkFromState(old_state),
89 TransitionMarkFromState(new_state),
90 new_can_grow ? ".GROW" : "");
91 name->Print();
92 PrintF("]\n");
93 }
94 }
95
96 #define TRACE_GENERIC_IC(type, reason) \
97 do { \
98 if (FLAG_trace_ic) { \
99 PrintF("[%s patching generic stub in ", type); \
100 JavaScriptFrame::PrintTop(stdout, false, true); \
101 PrintF(" (%s)]\n", reason); \
102 } \
103 } while (false)
104
105 #else
106 #define TRACE_GENERIC_IC(type, reason)
107 #endif // DEBUG
108
109 #define TRACE_IC(type, name, old_state, new_target) \
110 ASSERT((TraceIC(type, name, old_state, new_target), true))
111
IC(FrameDepth depth,Isolate * isolate)112 IC::IC(FrameDepth depth, Isolate* isolate) : isolate_(isolate) {
113 ASSERT(isolate == Isolate::Current());
114 // To improve the performance of the (much used) IC code, we unfold
115 // a few levels of the stack frame iteration code. This yields a
116 // ~35% speedup when running DeltaBlue with the '--nouse-ic' flag.
117 const Address entry =
118 Isolate::c_entry_fp(isolate->thread_local_top());
119 Address* pc_address =
120 reinterpret_cast<Address*>(entry + ExitFrameConstants::kCallerPCOffset);
121 Address fp = Memory::Address_at(entry + ExitFrameConstants::kCallerFPOffset);
122 // If there's another JavaScript frame on the stack, we need to look
123 // one frame further down the stack to find the frame pointer and
124 // the return address stack slot.
125 if (depth == EXTRA_CALL_FRAME) {
126 const int kCallerPCOffset = StandardFrameConstants::kCallerPCOffset;
127 pc_address = reinterpret_cast<Address*>(fp + kCallerPCOffset);
128 fp = Memory::Address_at(fp + StandardFrameConstants::kCallerFPOffset);
129 }
130 #ifdef DEBUG
131 StackFrameIterator it;
132 for (int i = 0; i < depth + 1; i++) it.Advance();
133 StackFrame* frame = it.frame();
134 ASSERT(fp == frame->fp() && pc_address == frame->pc_address());
135 #endif
136 fp_ = fp;
137 pc_address_ = pc_address;
138 }
139
140
141 #ifdef ENABLE_DEBUGGER_SUPPORT
OriginalCodeAddress() const142 Address IC::OriginalCodeAddress() const {
143 HandleScope scope;
144 // Compute the JavaScript frame for the frame pointer of this IC
145 // structure. We need this to be able to find the function
146 // corresponding to the frame.
147 StackFrameIterator it;
148 while (it.frame()->fp() != this->fp()) it.Advance();
149 JavaScriptFrame* frame = JavaScriptFrame::cast(it.frame());
150 // Find the function on the stack and both the active code for the
151 // function and the original code.
152 JSFunction* function = JSFunction::cast(frame->function());
153 Handle<SharedFunctionInfo> shared(function->shared());
154 Code* code = shared->code();
155 ASSERT(Debug::HasDebugInfo(shared));
156 Code* original_code = Debug::GetDebugInfo(shared)->original_code();
157 ASSERT(original_code->IsCode());
158 // Get the address of the call site in the active code. This is the
159 // place where the call to DebugBreakXXX is and where the IC
160 // normally would be.
161 Address addr = pc() - Assembler::kCallTargetAddressOffset;
162 // Return the address in the original code. This is the place where
163 // the call which has been overwritten by the DebugBreakXXX resides
164 // and the place where the inline cache system should look.
165 intptr_t delta =
166 original_code->instruction_start() - code->instruction_start();
167 return addr + delta;
168 }
169 #endif
170
171
HasNormalObjectsInPrototypeChain(Isolate * isolate,LookupResult * lookup,Object * receiver)172 static bool HasNormalObjectsInPrototypeChain(Isolate* isolate,
173 LookupResult* lookup,
174 Object* receiver) {
175 Object* end = lookup->IsProperty()
176 ? lookup->holder() : Object::cast(isolate->heap()->null_value());
177 for (Object* current = receiver;
178 current != end;
179 current = current->GetPrototype()) {
180 if (current->IsJSObject() &&
181 !JSObject::cast(current)->HasFastProperties() &&
182 !current->IsJSGlobalProxy() &&
183 !current->IsJSGlobalObject()) {
184 return true;
185 }
186 }
187
188 return false;
189 }
190
191
TryRemoveInvalidPrototypeDependentStub(Code * target,Object * receiver,Object * name)192 static bool TryRemoveInvalidPrototypeDependentStub(Code* target,
193 Object* receiver,
194 Object* name) {
195 InlineCacheHolderFlag cache_holder =
196 Code::ExtractCacheHolderFromFlags(target->flags());
197
198 if (cache_holder == OWN_MAP && !receiver->IsJSObject()) {
199 // The stub was generated for JSObject but called for non-JSObject.
200 // IC::GetCodeCacheHolder is not applicable.
201 return false;
202 } else if (cache_holder == PROTOTYPE_MAP &&
203 receiver->GetPrototype()->IsNull()) {
204 // IC::GetCodeCacheHolder is not applicable.
205 return false;
206 }
207 Map* map = IC::GetCodeCacheHolder(receiver, cache_holder)->map();
208
209 // Decide whether the inline cache failed because of changes to the
210 // receiver itself or changes to one of its prototypes.
211 //
212 // If there are changes to the receiver itself, the map of the
213 // receiver will have changed and the current target will not be in
214 // the receiver map's code cache. Therefore, if the current target
215 // is in the receiver map's code cache, the inline cache failed due
216 // to prototype check failure.
217 int index = map->IndexInCodeCache(name, target);
218 if (index >= 0) {
219 map->RemoveFromCodeCache(String::cast(name), target, index);
220 return true;
221 }
222
223 return false;
224 }
225
226
StateFrom(Code * target,Object * receiver,Object * name)227 IC::State IC::StateFrom(Code* target, Object* receiver, Object* name) {
228 IC::State state = target->ic_state();
229
230 if (state != MONOMORPHIC || !name->IsString()) return state;
231 if (receiver->IsUndefined() || receiver->IsNull()) return state;
232
233 // For keyed load/store/call, the most likely cause of cache failure is
234 // that the key has changed. We do not distinguish between
235 // prototype and non-prototype failures for keyed access.
236 Code::Kind kind = target->kind();
237 if (kind == Code::KEYED_LOAD_IC ||
238 kind == Code::KEYED_STORE_IC ||
239 kind == Code::KEYED_CALL_IC) {
240 return MONOMORPHIC;
241 }
242
243 // Remove the target from the code cache if it became invalid
244 // because of changes in the prototype chain to avoid hitting it
245 // again.
246 // Call stubs handle this later to allow extra IC state
247 // transitions.
248 if (kind != Code::CALL_IC &&
249 TryRemoveInvalidPrototypeDependentStub(target, receiver, name)) {
250 return MONOMORPHIC_PROTOTYPE_FAILURE;
251 }
252
253 // The builtins object is special. It only changes when JavaScript
254 // builtins are loaded lazily. It is important to keep inline
255 // caches for the builtins object monomorphic. Therefore, if we get
256 // an inline cache miss for the builtins object after lazily loading
257 // JavaScript builtins, we return uninitialized as the state to
258 // force the inline cache back to monomorphic state.
259 if (receiver->IsJSBuiltinsObject()) {
260 return UNINITIALIZED;
261 }
262
263 return MONOMORPHIC;
264 }
265
266
ComputeMode()267 RelocInfo::Mode IC::ComputeMode() {
268 Address addr = address();
269 Code* code = Code::cast(isolate()->heap()->FindCodeObject(addr));
270 for (RelocIterator it(code, RelocInfo::kCodeTargetMask);
271 !it.done(); it.next()) {
272 RelocInfo* info = it.rinfo();
273 if (info->pc() == addr) return info->rmode();
274 }
275 UNREACHABLE();
276 return RelocInfo::NONE;
277 }
278
279
TypeError(const char * type,Handle<Object> object,Handle<Object> key)280 Failure* IC::TypeError(const char* type,
281 Handle<Object> object,
282 Handle<Object> key) {
283 HandleScope scope(isolate());
284 Handle<Object> args[2] = { key, object };
285 Handle<Object> error = isolate()->factory()->NewTypeError(
286 type, HandleVector(args, 2));
287 return isolate()->Throw(*error);
288 }
289
290
ReferenceError(const char * type,Handle<String> name)291 Failure* IC::ReferenceError(const char* type, Handle<String> name) {
292 HandleScope scope(isolate());
293 Handle<Object> error = isolate()->factory()->NewReferenceError(
294 type, HandleVector(&name, 1));
295 return isolate()->Throw(*error);
296 }
297
298
ComputeTypeInfoCountDelta(IC::State old_state,IC::State new_state)299 static int ComputeTypeInfoCountDelta(IC::State old_state, IC::State new_state) {
300 bool was_uninitialized =
301 old_state == UNINITIALIZED || old_state == PREMONOMORPHIC;
302 bool is_uninitialized =
303 new_state == UNINITIALIZED || new_state == PREMONOMORPHIC;
304 return (was_uninitialized && !is_uninitialized) ? 1 :
305 (!was_uninitialized && is_uninitialized) ? -1 : 0;
306 }
307
308
PostPatching(Address address,Code * target,Code * old_target)309 void IC::PostPatching(Address address, Code* target, Code* old_target) {
310 if (FLAG_type_info_threshold == 0 && !FLAG_watch_ic_patching) {
311 return;
312 }
313 Code* host = target->GetHeap()->isolate()->
314 inner_pointer_to_code_cache()->GetCacheEntry(address)->code;
315 if (host->kind() != Code::FUNCTION) return;
316
317 if (FLAG_type_info_threshold > 0 &&
318 old_target->is_inline_cache_stub() &&
319 target->is_inline_cache_stub()) {
320 int delta = ComputeTypeInfoCountDelta(old_target->ic_state(),
321 target->ic_state());
322 // Not all Code objects have TypeFeedbackInfo.
323 if (delta != 0 && host->type_feedback_info()->IsTypeFeedbackInfo()) {
324 TypeFeedbackInfo* info =
325 TypeFeedbackInfo::cast(host->type_feedback_info());
326 info->set_ic_with_type_info_count(
327 info->ic_with_type_info_count() + delta);
328 }
329 }
330 if (FLAG_watch_ic_patching) {
331 host->set_profiler_ticks(0);
332 Isolate::Current()->runtime_profiler()->NotifyICChanged();
333 }
334 // TODO(2029): When an optimized function is patched, it would
335 // be nice to propagate the corresponding type information to its
336 // unoptimized version for the benefit of later inlining.
337 }
338
339
Clear(Address address)340 void IC::Clear(Address address) {
341 Code* target = GetTargetAtAddress(address);
342
343 // Don't clear debug break inline cache as it will remove the break point.
344 if (target->ic_state() == DEBUG_BREAK) return;
345
346 switch (target->kind()) {
347 case Code::LOAD_IC: return LoadIC::Clear(address, target);
348 case Code::KEYED_LOAD_IC:
349 return KeyedLoadIC::Clear(address, target);
350 case Code::STORE_IC: return StoreIC::Clear(address, target);
351 case Code::KEYED_STORE_IC:
352 return KeyedStoreIC::Clear(address, target);
353 case Code::CALL_IC: return CallIC::Clear(address, target);
354 case Code::KEYED_CALL_IC: return KeyedCallIC::Clear(address, target);
355 case Code::UNARY_OP_IC:
356 case Code::BINARY_OP_IC:
357 case Code::COMPARE_IC:
358 case Code::TO_BOOLEAN_IC:
359 // Clearing these is tricky and does not
360 // make any performance difference.
361 return;
362 default: UNREACHABLE();
363 }
364 }
365
366
Clear(Address address,Code * target)367 void CallICBase::Clear(Address address, Code* target) {
368 bool contextual = CallICBase::Contextual::decode(target->extra_ic_state());
369 State state = target->ic_state();
370 if (state == UNINITIALIZED) return;
371 Code* code =
372 Isolate::Current()->stub_cache()->FindCallInitialize(
373 target->arguments_count(),
374 contextual ? RelocInfo::CODE_TARGET_CONTEXT : RelocInfo::CODE_TARGET,
375 target->kind());
376 SetTargetAtAddress(address, code);
377 }
378
379
Clear(Address address,Code * target)380 void KeyedLoadIC::Clear(Address address, Code* target) {
381 if (target->ic_state() == UNINITIALIZED) return;
382 // Make sure to also clear the map used in inline fast cases. If we
383 // do not clear these maps, cached code can keep objects alive
384 // through the embedded maps.
385 SetTargetAtAddress(address, initialize_stub());
386 }
387
388
Clear(Address address,Code * target)389 void LoadIC::Clear(Address address, Code* target) {
390 if (target->ic_state() == UNINITIALIZED) return;
391 SetTargetAtAddress(address, initialize_stub());
392 }
393
394
Clear(Address address,Code * target)395 void StoreIC::Clear(Address address, Code* target) {
396 if (target->ic_state() == UNINITIALIZED) return;
397 SetTargetAtAddress(address,
398 (Code::GetStrictMode(target->extra_ic_state()) == kStrictMode)
399 ? initialize_stub_strict()
400 : initialize_stub());
401 }
402
403
Clear(Address address,Code * target)404 void KeyedStoreIC::Clear(Address address, Code* target) {
405 if (target->ic_state() == UNINITIALIZED) return;
406 SetTargetAtAddress(address,
407 (Code::GetStrictMode(target->extra_ic_state()) == kStrictMode)
408 ? initialize_stub_strict()
409 : initialize_stub());
410 }
411
412
HasInterceptorGetter(JSObject * object)413 static bool HasInterceptorGetter(JSObject* object) {
414 return !object->GetNamedInterceptor()->getter()->IsUndefined();
415 }
416
417
LookupForRead(Handle<Object> object,Handle<String> name,LookupResult * lookup)418 static void LookupForRead(Handle<Object> object,
419 Handle<String> name,
420 LookupResult* lookup) {
421 // Skip all the objects with named interceptors, but
422 // without actual getter.
423 while (true) {
424 object->Lookup(*name, lookup);
425 // Besides normal conditions (property not found or it's not
426 // an interceptor), bail out if lookup is not cacheable: we won't
427 // be able to IC it anyway and regular lookup should work fine.
428 if (!lookup->IsFound()
429 || (lookup->type() != INTERCEPTOR)
430 || !lookup->IsCacheable()) {
431 return;
432 }
433
434 Handle<JSObject> holder(lookup->holder());
435 if (HasInterceptorGetter(*holder)) {
436 return;
437 }
438
439 holder->LocalLookupRealNamedProperty(*name, lookup);
440 if (lookup->IsProperty()) {
441 ASSERT(lookup->type() != INTERCEPTOR);
442 return;
443 }
444
445 Handle<Object> proto(holder->GetPrototype());
446 if (proto->IsNull()) {
447 lookup->NotFound();
448 return;
449 }
450
451 object = proto;
452 }
453 }
454
455
TryCallAsFunction(Handle<Object> object)456 Handle<Object> CallICBase::TryCallAsFunction(Handle<Object> object) {
457 Handle<Object> delegate = Execution::GetFunctionDelegate(object);
458
459 if (delegate->IsJSFunction() && !object->IsJSFunctionProxy()) {
460 // Patch the receiver and use the delegate as the function to
461 // invoke. This is used for invoking objects as if they were functions.
462 const int argc = target()->arguments_count();
463 StackFrameLocator locator;
464 JavaScriptFrame* frame = locator.FindJavaScriptFrame(0);
465 int index = frame->ComputeExpressionsCount() - (argc + 1);
466 frame->SetExpression(index, *object);
467 }
468
469 return delegate;
470 }
471
472
ReceiverToObjectIfRequired(Handle<Object> callee,Handle<Object> object)473 void CallICBase::ReceiverToObjectIfRequired(Handle<Object> callee,
474 Handle<Object> object) {
475 while (callee->IsJSFunctionProxy()) {
476 callee = Handle<Object>(JSFunctionProxy::cast(*callee)->call_trap());
477 }
478
479 if (callee->IsJSFunction()) {
480 Handle<JSFunction> function = Handle<JSFunction>::cast(callee);
481 if (!function->shared()->is_classic_mode() || function->IsBuiltin()) {
482 // Do not wrap receiver for strict mode functions or for builtins.
483 return;
484 }
485 }
486
487 // And only wrap string, number or boolean.
488 if (object->IsString() || object->IsNumber() || object->IsBoolean()) {
489 // Change the receiver to the result of calling ToObject on it.
490 const int argc = this->target()->arguments_count();
491 StackFrameLocator locator;
492 JavaScriptFrame* frame = locator.FindJavaScriptFrame(0);
493 int index = frame->ComputeExpressionsCount() - (argc + 1);
494 frame->SetExpression(index, *isolate()->factory()->ToObject(object));
495 }
496 }
497
498
LoadFunction(State state,Code::ExtraICState extra_ic_state,Handle<Object> object,Handle<String> name)499 MaybeObject* CallICBase::LoadFunction(State state,
500 Code::ExtraICState extra_ic_state,
501 Handle<Object> object,
502 Handle<String> name) {
503 // If the object is undefined or null it's illegal to try to get any
504 // of its properties; throw a TypeError in that case.
505 if (object->IsUndefined() || object->IsNull()) {
506 return TypeError("non_object_property_call", object, name);
507 }
508
509 // Check if the name is trivially convertible to an index and get
510 // the element if so.
511 uint32_t index;
512 if (name->AsArrayIndex(&index)) {
513 Handle<Object> result = Object::GetElement(object, index);
514 RETURN_IF_EMPTY_HANDLE(isolate(), result);
515 if (result->IsJSFunction()) return *result;
516
517 // Try to find a suitable function delegate for the object at hand.
518 result = TryCallAsFunction(result);
519 if (result->IsJSFunction()) return *result;
520
521 // Otherwise, it will fail in the lookup step.
522 }
523
524 // Lookup the property in the object.
525 LookupResult lookup(isolate());
526 LookupForRead(object, name, &lookup);
527
528 if (!lookup.IsProperty()) {
529 // If the object does not have the requested property, check which
530 // exception we need to throw.
531 return IsContextual(object)
532 ? ReferenceError("not_defined", name)
533 : TypeError("undefined_method", object, name);
534 }
535
536 // Lookup is valid: Update inline cache and stub cache.
537 if (FLAG_use_ic) {
538 UpdateCaches(&lookup, state, extra_ic_state, object, name);
539 }
540
541 // Get the property.
542 PropertyAttributes attr;
543 Handle<Object> result =
544 Object::GetProperty(object, object, &lookup, name, &attr);
545 RETURN_IF_EMPTY_HANDLE(isolate(), result);
546
547 if (lookup.type() == INTERCEPTOR && attr == ABSENT) {
548 // If the object does not have the requested property, check which
549 // exception we need to throw.
550 return IsContextual(object)
551 ? ReferenceError("not_defined", name)
552 : TypeError("undefined_method", object, name);
553 }
554
555 ASSERT(!result->IsTheHole());
556
557 // Make receiver an object if the callee requires it. Strict mode or builtin
558 // functions do not wrap the receiver, non-strict functions and objects
559 // called as functions do.
560 ReceiverToObjectIfRequired(result, object);
561
562 if (result->IsJSFunction()) {
563 Handle<JSFunction> function = Handle<JSFunction>::cast(result);
564 #ifdef ENABLE_DEBUGGER_SUPPORT
565 // Handle stepping into a function if step into is active.
566 Debug* debug = isolate()->debug();
567 if (debug->StepInActive()) {
568 // Protect the result in a handle as the debugger can allocate and might
569 // cause GC.
570 debug->HandleStepIn(function, object, fp(), false);
571 }
572 #endif
573 return *function;
574 }
575
576 // Try to find a suitable function delegate for the object at hand.
577 result = TryCallAsFunction(result);
578 if (result->IsJSFunction()) return *result;
579
580 return TypeError("property_not_function", object, name);
581 }
582
583
TryUpdateExtraICState(LookupResult * lookup,Handle<Object> object,Code::ExtraICState * extra_ic_state)584 bool CallICBase::TryUpdateExtraICState(LookupResult* lookup,
585 Handle<Object> object,
586 Code::ExtraICState* extra_ic_state) {
587 ASSERT(kind_ == Code::CALL_IC);
588 if (lookup->type() != CONSTANT_FUNCTION) return false;
589 JSFunction* function = lookup->GetConstantFunction();
590 if (!function->shared()->HasBuiltinFunctionId()) return false;
591
592 // Fetch the arguments passed to the called function.
593 const int argc = target()->arguments_count();
594 Address entry = isolate()->c_entry_fp(isolate()->thread_local_top());
595 Address fp = Memory::Address_at(entry + ExitFrameConstants::kCallerFPOffset);
596 Arguments args(argc + 1,
597 &Memory::Object_at(fp +
598 StandardFrameConstants::kCallerSPOffset +
599 argc * kPointerSize));
600 switch (function->shared()->builtin_function_id()) {
601 case kStringCharCodeAt:
602 case kStringCharAt:
603 if (object->IsString()) {
604 String* string = String::cast(*object);
605 // Check there's the right string value or wrapper in the receiver slot.
606 ASSERT(string == args[0] || string == JSValue::cast(args[0])->value());
607 // If we're in the default (fastest) state and the index is
608 // out of bounds, update the state to record this fact.
609 if (StringStubState::decode(*extra_ic_state) == DEFAULT_STRING_STUB &&
610 argc >= 1 && args[1]->IsNumber()) {
611 double index = DoubleToInteger(args.number_at(1));
612 if (index < 0 || index >= string->length()) {
613 *extra_ic_state =
614 StringStubState::update(*extra_ic_state,
615 STRING_INDEX_OUT_OF_BOUNDS);
616 return true;
617 }
618 }
619 }
620 break;
621 default:
622 return false;
623 }
624 return false;
625 }
626
627
ComputeMonomorphicStub(LookupResult * lookup,State state,Code::ExtraICState extra_state,Handle<Object> object,Handle<String> name)628 Handle<Code> CallICBase::ComputeMonomorphicStub(LookupResult* lookup,
629 State state,
630 Code::ExtraICState extra_state,
631 Handle<Object> object,
632 Handle<String> name) {
633 int argc = target()->arguments_count();
634 Handle<JSObject> holder(lookup->holder());
635 switch (lookup->type()) {
636 case FIELD: {
637 int index = lookup->GetFieldIndex();
638 return isolate()->stub_cache()->ComputeCallField(
639 argc, kind_, extra_state, name, object, holder, index);
640 }
641 case CONSTANT_FUNCTION: {
642 // Get the constant function and compute the code stub for this
643 // call; used for rewriting to monomorphic state and making sure
644 // that the code stub is in the stub cache.
645 Handle<JSFunction> function(lookup->GetConstantFunction());
646 return isolate()->stub_cache()->ComputeCallConstant(
647 argc, kind_, extra_state, name, object, holder, function);
648 }
649 case NORMAL: {
650 // If we return a null handle, the IC will not be patched.
651 if (!object->IsJSObject()) return Handle<Code>::null();
652 Handle<JSObject> receiver = Handle<JSObject>::cast(object);
653
654 if (holder->IsGlobalObject()) {
655 Handle<GlobalObject> global = Handle<GlobalObject>::cast(holder);
656 Handle<JSGlobalPropertyCell> cell(global->GetPropertyCell(lookup));
657 if (!cell->value()->IsJSFunction()) return Handle<Code>::null();
658 Handle<JSFunction> function(JSFunction::cast(cell->value()));
659 return isolate()->stub_cache()->ComputeCallGlobal(
660 argc, kind_, extra_state, name, receiver, global, cell, function);
661 } else {
662 // There is only one shared stub for calling normalized
663 // properties. It does not traverse the prototype chain, so the
664 // property must be found in the receiver for the stub to be
665 // applicable.
666 if (!holder.is_identical_to(receiver)) return Handle<Code>::null();
667 return isolate()->stub_cache()->ComputeCallNormal(
668 argc, kind_, extra_state);
669 }
670 break;
671 }
672 case INTERCEPTOR:
673 ASSERT(HasInterceptorGetter(*holder));
674 return isolate()->stub_cache()->ComputeCallInterceptor(
675 argc, kind_, extra_state, name, object, holder);
676 default:
677 return Handle<Code>::null();
678 }
679 }
680
681
UpdateCaches(LookupResult * lookup,State state,Code::ExtraICState extra_ic_state,Handle<Object> object,Handle<String> name)682 void CallICBase::UpdateCaches(LookupResult* lookup,
683 State state,
684 Code::ExtraICState extra_ic_state,
685 Handle<Object> object,
686 Handle<String> name) {
687 // Bail out if we didn't find a result.
688 if (!lookup->IsProperty() || !lookup->IsCacheable()) return;
689
690 if (lookup->holder() != *object &&
691 HasNormalObjectsInPrototypeChain(
692 isolate(), lookup, object->GetPrototype())) {
693 // Suppress optimization for prototype chains with slow properties objects
694 // in the middle.
695 return;
696 }
697
698 // Compute the number of arguments.
699 int argc = target()->arguments_count();
700 bool had_proto_failure = false;
701 Handle<Code> code;
702 if (state == UNINITIALIZED) {
703 // This is the first time we execute this inline cache.
704 // Set the target to the pre monomorphic stub to delay
705 // setting the monomorphic state.
706 code = isolate()->stub_cache()->ComputeCallPreMonomorphic(
707 argc, kind_, extra_ic_state);
708 } else if (state == MONOMORPHIC) {
709 if (kind_ == Code::CALL_IC &&
710 TryUpdateExtraICState(lookup, object, &extra_ic_state)) {
711 code = ComputeMonomorphicStub(lookup, state, extra_ic_state,
712 object, name);
713 } else if (kind_ == Code::CALL_IC &&
714 TryRemoveInvalidPrototypeDependentStub(target(),
715 *object,
716 *name)) {
717 had_proto_failure = true;
718 code = ComputeMonomorphicStub(lookup, state, extra_ic_state,
719 object, name);
720 } else {
721 code = isolate()->stub_cache()->ComputeCallMegamorphic(
722 argc, kind_, extra_ic_state);
723 }
724 } else {
725 code = ComputeMonomorphicStub(lookup, state, extra_ic_state,
726 object, name);
727 }
728
729 // If there's no appropriate stub we simply avoid updating the caches.
730 if (code.is_null()) return;
731
732 // Patch the call site depending on the state of the cache.
733 if (state == UNINITIALIZED ||
734 state == PREMONOMORPHIC ||
735 state == MONOMORPHIC ||
736 state == MONOMORPHIC_PROTOTYPE_FAILURE) {
737 set_target(*code);
738 } else if (state == MEGAMORPHIC) {
739 // Cache code holding map should be consistent with
740 // GenerateMonomorphicCacheProbe. It is not the map which holds the stub.
741 Handle<JSObject> cache_object = object->IsJSObject()
742 ? Handle<JSObject>::cast(object)
743 : Handle<JSObject>(JSObject::cast(object->GetPrototype()));
744 // Update the stub cache.
745 isolate()->stub_cache()->Set(*name, cache_object->map(), *code);
746 }
747
748 if (had_proto_failure) state = MONOMORPHIC_PROTOTYPE_FAILURE;
749 TRACE_IC(kind_ == Code::CALL_IC ? "CallIC" : "KeyedCallIC",
750 name, state, target());
751 }
752
753
LoadFunction(State state,Handle<Object> object,Handle<Object> key)754 MaybeObject* KeyedCallIC::LoadFunction(State state,
755 Handle<Object> object,
756 Handle<Object> key) {
757 if (key->IsSymbol()) {
758 return CallICBase::LoadFunction(state,
759 Code::kNoExtraICState,
760 object,
761 Handle<String>::cast(key));
762 }
763
764 if (object->IsUndefined() || object->IsNull()) {
765 return TypeError("non_object_property_call", object, key);
766 }
767
768 if (FLAG_use_ic && state != MEGAMORPHIC && object->IsHeapObject()) {
769 int argc = target()->arguments_count();
770 Handle<Map> map =
771 isolate()->factory()->non_strict_arguments_elements_map();
772 if (object->IsJSObject() &&
773 Handle<JSObject>::cast(object)->elements()->map() == *map) {
774 Handle<Code> code = isolate()->stub_cache()->ComputeCallArguments(
775 argc, Code::KEYED_CALL_IC);
776 set_target(*code);
777 TRACE_IC("KeyedCallIC", key, state, target());
778 } else if (!object->IsAccessCheckNeeded()) {
779 Handle<Code> code = isolate()->stub_cache()->ComputeCallMegamorphic(
780 argc, Code::KEYED_CALL_IC, Code::kNoExtraICState);
781 set_target(*code);
782 TRACE_IC("KeyedCallIC", key, state, target());
783 }
784 }
785
786 Handle<Object> result = GetProperty(object, key);
787 RETURN_IF_EMPTY_HANDLE(isolate(), result);
788
789 // Make receiver an object if the callee requires it. Strict mode or builtin
790 // functions do not wrap the receiver, non-strict functions and objects
791 // called as functions do.
792 ReceiverToObjectIfRequired(result, object);
793 if (result->IsJSFunction()) return *result;
794
795 result = TryCallAsFunction(result);
796 if (result->IsJSFunction()) return *result;
797
798 return TypeError("property_not_function", object, key);
799 }
800
801
Load(State state,Handle<Object> object,Handle<String> name)802 MaybeObject* LoadIC::Load(State state,
803 Handle<Object> object,
804 Handle<String> name) {
805 // If the object is undefined or null it's illegal to try to get any
806 // of its properties; throw a TypeError in that case.
807 if (object->IsUndefined() || object->IsNull()) {
808 return TypeError("non_object_property_load", object, name);
809 }
810
811 if (FLAG_use_ic) {
812 // Use specialized code for getting the length of strings and
813 // string wrapper objects. The length property of string wrapper
814 // objects is read-only and therefore always returns the length of
815 // the underlying string value. See ECMA-262 15.5.5.1.
816 if ((object->IsString() || object->IsStringWrapper()) &&
817 name->Equals(isolate()->heap()->length_symbol())) {
818 Handle<Code> stub;
819 if (state == UNINITIALIZED) {
820 stub = pre_monomorphic_stub();
821 } else if (state == PREMONOMORPHIC) {
822 stub = object->IsString()
823 ? isolate()->builtins()->LoadIC_StringLength()
824 : isolate()->builtins()->LoadIC_StringWrapperLength();
825 } else if (state == MONOMORPHIC && object->IsStringWrapper()) {
826 stub = isolate()->builtins()->LoadIC_StringWrapperLength();
827 } else if (state != MEGAMORPHIC) {
828 stub = megamorphic_stub();
829 }
830 if (!stub.is_null()) {
831 set_target(*stub);
832 #ifdef DEBUG
833 if (FLAG_trace_ic) PrintF("[LoadIC : +#length /string]\n");
834 #endif
835 }
836 // Get the string if we have a string wrapper object.
837 Handle<Object> string = object->IsJSValue()
838 ? Handle<Object>(Handle<JSValue>::cast(object)->value())
839 : object;
840 return Smi::FromInt(String::cast(*string)->length());
841 }
842
843 // Use specialized code for getting the length of arrays.
844 if (object->IsJSArray() &&
845 name->Equals(isolate()->heap()->length_symbol())) {
846 Handle<Code> stub;
847 if (state == UNINITIALIZED) {
848 stub = pre_monomorphic_stub();
849 } else if (state == PREMONOMORPHIC) {
850 stub = isolate()->builtins()->LoadIC_ArrayLength();
851 } else if (state != MEGAMORPHIC) {
852 stub = megamorphic_stub();
853 }
854 if (!stub.is_null()) {
855 set_target(*stub);
856 #ifdef DEBUG
857 if (FLAG_trace_ic) PrintF("[LoadIC : +#length /array]\n");
858 #endif
859 }
860 return JSArray::cast(*object)->length();
861 }
862
863 // Use specialized code for getting prototype of functions.
864 if (object->IsJSFunction() &&
865 name->Equals(isolate()->heap()->prototype_symbol()) &&
866 Handle<JSFunction>::cast(object)->should_have_prototype()) {
867 Handle<Code> stub;
868 if (state == UNINITIALIZED) {
869 stub = pre_monomorphic_stub();
870 } else if (state == PREMONOMORPHIC) {
871 stub = isolate()->builtins()->LoadIC_FunctionPrototype();
872 } else if (state != MEGAMORPHIC) {
873 stub = megamorphic_stub();
874 }
875 if (!stub.is_null()) {
876 set_target(*stub);
877 #ifdef DEBUG
878 if (FLAG_trace_ic) PrintF("[LoadIC : +#prototype /function]\n");
879 #endif
880 }
881 return Accessors::FunctionGetPrototype(*object, 0);
882 }
883 }
884
885 // Check if the name is trivially convertible to an index and get
886 // the element if so.
887 uint32_t index;
888 if (name->AsArrayIndex(&index)) return object->GetElement(index);
889
890 // Named lookup in the object.
891 LookupResult lookup(isolate());
892 LookupForRead(object, name, &lookup);
893
894 // If we did not find a property, check if we need to throw an exception.
895 if (!lookup.IsProperty()) {
896 if (IsContextual(object)) {
897 return ReferenceError("not_defined", name);
898 }
899 LOG(isolate(), SuspectReadEvent(*name, *object));
900 }
901
902 // Update inline cache and stub cache.
903 if (FLAG_use_ic) {
904 UpdateCaches(&lookup, state, object, name);
905 }
906
907 PropertyAttributes attr;
908 if (lookup.IsFound() &&
909 (lookup.type() == INTERCEPTOR || lookup.type() == HANDLER)) {
910 // Get the property.
911 Handle<Object> result =
912 Object::GetProperty(object, object, &lookup, name, &attr);
913 RETURN_IF_EMPTY_HANDLE(isolate(), result);
914 // If the property is not present, check if we need to throw an
915 // exception.
916 if (attr == ABSENT && IsContextual(object)) {
917 return ReferenceError("not_defined", name);
918 }
919 return *result;
920 }
921
922 // Get the property.
923 return object->GetProperty(*object, &lookup, *name, &attr);
924 }
925
926
UpdateCaches(LookupResult * lookup,State state,Handle<Object> object,Handle<String> name)927 void LoadIC::UpdateCaches(LookupResult* lookup,
928 State state,
929 Handle<Object> object,
930 Handle<String> name) {
931 // Bail out if the result is not cacheable.
932 if (!lookup->IsCacheable()) return;
933
934 // Loading properties from values is not common, so don't try to
935 // deal with non-JS objects here.
936 if (!object->IsJSObject()) return;
937 Handle<JSObject> receiver = Handle<JSObject>::cast(object);
938
939 if (HasNormalObjectsInPrototypeChain(isolate(), lookup, *object)) return;
940
941 // Compute the code stub for this load.
942 Handle<Code> code;
943 if (state == UNINITIALIZED) {
944 // This is the first time we execute this inline cache.
945 // Set the target to the pre monomorphic stub to delay
946 // setting the monomorphic state.
947 code = pre_monomorphic_stub();
948 } else if (!lookup->IsProperty()) {
949 // Nonexistent property. The result is undefined.
950 code = isolate()->stub_cache()->ComputeLoadNonexistent(name, receiver);
951 } else {
952 // Compute monomorphic stub.
953 Handle<JSObject> holder(lookup->holder());
954 switch (lookup->type()) {
955 case FIELD:
956 code = isolate()->stub_cache()->ComputeLoadField(
957 name, receiver, holder, lookup->GetFieldIndex());
958 break;
959 case CONSTANT_FUNCTION: {
960 Handle<JSFunction> constant(lookup->GetConstantFunction());
961 code = isolate()->stub_cache()->ComputeLoadConstant(
962 name, receiver, holder, constant);
963 break;
964 }
965 case NORMAL:
966 if (holder->IsGlobalObject()) {
967 Handle<GlobalObject> global = Handle<GlobalObject>::cast(holder);
968 Handle<JSGlobalPropertyCell> cell(global->GetPropertyCell(lookup));
969 code = isolate()->stub_cache()->ComputeLoadGlobal(
970 name, receiver, global, cell, lookup->IsDontDelete());
971 } else {
972 // There is only one shared stub for loading normalized
973 // properties. It does not traverse the prototype chain, so the
974 // property must be found in the receiver for the stub to be
975 // applicable.
976 if (!holder.is_identical_to(receiver)) return;
977 code = isolate()->stub_cache()->ComputeLoadNormal();
978 }
979 break;
980 case CALLBACKS: {
981 Handle<Object> callback_object(lookup->GetCallbackObject());
982 if (!callback_object->IsAccessorInfo()) return;
983 Handle<AccessorInfo> callback =
984 Handle<AccessorInfo>::cast(callback_object);
985 if (v8::ToCData<Address>(callback->getter()) == 0) return;
986 code = isolate()->stub_cache()->ComputeLoadCallback(
987 name, receiver, holder, callback);
988 break;
989 }
990 case INTERCEPTOR:
991 ASSERT(HasInterceptorGetter(*holder));
992 code = isolate()->stub_cache()->ComputeLoadInterceptor(
993 name, receiver, holder);
994 break;
995 default:
996 return;
997 }
998 }
999
1000 // Patch the call site depending on the state of the cache.
1001 if (state == UNINITIALIZED ||
1002 state == PREMONOMORPHIC ||
1003 state == MONOMORPHIC_PROTOTYPE_FAILURE) {
1004 set_target(*code);
1005 } else if (state == MONOMORPHIC) {
1006 // We are transitioning from monomorphic to megamorphic case.
1007 // Place the current monomorphic stub and stub compiled for
1008 // the receiver into stub cache.
1009 Map* map = target()->FindFirstMap();
1010 if (map != NULL) {
1011 isolate()->stub_cache()->Set(*name, map, target());
1012 }
1013 isolate()->stub_cache()->Set(*name, receiver->map(), *code);
1014
1015 set_target(*megamorphic_stub());
1016 } else if (state == MEGAMORPHIC) {
1017 // Cache code holding map should be consistent with
1018 // GenerateMonomorphicCacheProbe.
1019 isolate()->stub_cache()->Set(*name, receiver->map(), *code);
1020 }
1021
1022 TRACE_IC("LoadIC", name, state, target());
1023 }
1024
1025
GetElementStubWithoutMapCheck(bool is_js_array,ElementsKind elements_kind,KeyedAccessGrowMode grow_mode)1026 Handle<Code> KeyedLoadIC::GetElementStubWithoutMapCheck(
1027 bool is_js_array,
1028 ElementsKind elements_kind,
1029 KeyedAccessGrowMode grow_mode) {
1030 ASSERT(grow_mode == DO_NOT_ALLOW_JSARRAY_GROWTH);
1031 return KeyedLoadElementStub(elements_kind).GetCode();
1032 }
1033
1034
ComputePolymorphicStub(MapHandleList * receiver_maps,StrictModeFlag strict_mode,KeyedAccessGrowMode growth_mode)1035 Handle<Code> KeyedLoadIC::ComputePolymorphicStub(
1036 MapHandleList* receiver_maps,
1037 StrictModeFlag strict_mode,
1038 KeyedAccessGrowMode growth_mode) {
1039 CodeHandleList handler_ics(receiver_maps->length());
1040 for (int i = 0; i < receiver_maps->length(); ++i) {
1041 Handle<Map> receiver_map = receiver_maps->at(i);
1042 Handle<Code> cached_stub = ComputeMonomorphicStubWithoutMapCheck(
1043 receiver_map, strict_mode, growth_mode);
1044 handler_ics.Add(cached_stub);
1045 }
1046 KeyedLoadStubCompiler compiler(isolate());
1047 Handle<Code> code = compiler.CompileLoadPolymorphic(
1048 receiver_maps, &handler_ics);
1049 isolate()->counters()->keyed_load_polymorphic_stubs()->Increment();
1050 PROFILE(isolate(),
1051 CodeCreateEvent(Logger::KEYED_LOAD_MEGAMORPHIC_IC_TAG, *code, 0));
1052 return code;
1053 }
1054
1055
Load(State state,Handle<Object> object,Handle<Object> key,bool force_generic_stub)1056 MaybeObject* KeyedLoadIC::Load(State state,
1057 Handle<Object> object,
1058 Handle<Object> key,
1059 bool force_generic_stub) {
1060 // Check for values that can be converted into a symbol.
1061 // TODO(1295): Remove this code.
1062 if (key->IsHeapNumber() &&
1063 isnan(Handle<HeapNumber>::cast(key)->value())) {
1064 key = isolate()->factory()->nan_symbol();
1065 } else if (key->IsUndefined()) {
1066 key = isolate()->factory()->undefined_symbol();
1067 }
1068
1069 if (key->IsSymbol()) {
1070 Handle<String> name = Handle<String>::cast(key);
1071
1072 // If the object is undefined or null it's illegal to try to get any
1073 // of its properties; throw a TypeError in that case.
1074 if (object->IsUndefined() || object->IsNull()) {
1075 return TypeError("non_object_property_load", object, name);
1076 }
1077
1078 if (FLAG_use_ic) {
1079 // TODO(1073): don't ignore the current stub state.
1080
1081 // Use specialized code for getting the length of strings.
1082 if (object->IsString() &&
1083 name->Equals(isolate()->heap()->length_symbol())) {
1084 Handle<String> string = Handle<String>::cast(object);
1085 Handle<Code> code =
1086 isolate()->stub_cache()->ComputeKeyedLoadStringLength(name, string);
1087 ASSERT(!code.is_null());
1088 set_target(*code);
1089 TRACE_IC("KeyedLoadIC", name, state, target());
1090 return Smi::FromInt(string->length());
1091 }
1092
1093 // Use specialized code for getting the length of arrays.
1094 if (object->IsJSArray() &&
1095 name->Equals(isolate()->heap()->length_symbol())) {
1096 Handle<JSArray> array = Handle<JSArray>::cast(object);
1097 Handle<Code> code =
1098 isolate()->stub_cache()->ComputeKeyedLoadArrayLength(name, array);
1099 ASSERT(!code.is_null());
1100 set_target(*code);
1101 TRACE_IC("KeyedLoadIC", name, state, target());
1102 return array->length();
1103 }
1104
1105 // Use specialized code for getting prototype of functions.
1106 if (object->IsJSFunction() &&
1107 name->Equals(isolate()->heap()->prototype_symbol()) &&
1108 Handle<JSFunction>::cast(object)->should_have_prototype()) {
1109 Handle<JSFunction> function = Handle<JSFunction>::cast(object);
1110 Handle<Code> code =
1111 isolate()->stub_cache()->ComputeKeyedLoadFunctionPrototype(
1112 name, function);
1113 ASSERT(!code.is_null());
1114 set_target(*code);
1115 TRACE_IC("KeyedLoadIC", name, state, target());
1116 return Accessors::FunctionGetPrototype(*object, 0);
1117 }
1118 }
1119
1120 // Check if the name is trivially convertible to an index and get
1121 // the element or char if so.
1122 uint32_t index = 0;
1123 if (name->AsArrayIndex(&index)) {
1124 // Rewrite to the generic keyed load stub.
1125 if (FLAG_use_ic) set_target(*generic_stub());
1126 return Runtime::GetElementOrCharAt(isolate(), object, index);
1127 }
1128
1129 // Named lookup.
1130 LookupResult lookup(isolate());
1131 LookupForRead(object, name, &lookup);
1132
1133 // If we did not find a property, check if we need to throw an exception.
1134 if (!lookup.IsProperty() && IsContextual(object)) {
1135 return ReferenceError("not_defined", name);
1136 }
1137
1138 if (FLAG_use_ic) {
1139 UpdateCaches(&lookup, state, object, name);
1140 }
1141
1142 PropertyAttributes attr;
1143 if (lookup.IsFound() && lookup.type() == INTERCEPTOR) {
1144 // Get the property.
1145 Handle<Object> result =
1146 Object::GetProperty(object, object, &lookup, name, &attr);
1147 RETURN_IF_EMPTY_HANDLE(isolate(), result);
1148 // If the property is not present, check if we need to throw an
1149 // exception.
1150 if (attr == ABSENT && IsContextual(object)) {
1151 return ReferenceError("not_defined", name);
1152 }
1153 return *result;
1154 }
1155
1156 return object->GetProperty(*object, &lookup, *name, &attr);
1157 }
1158
1159 // Do not use ICs for objects that require access checks (including
1160 // the global object).
1161 bool use_ic = FLAG_use_ic && !object->IsAccessCheckNeeded();
1162
1163 if (use_ic) {
1164 Handle<Code> stub = generic_stub();
1165 if (!force_generic_stub) {
1166 if (object->IsString() && key->IsNumber()) {
1167 if (state == UNINITIALIZED) {
1168 stub = string_stub();
1169 }
1170 } else if (object->IsJSObject()) {
1171 Handle<JSObject> receiver = Handle<JSObject>::cast(object);
1172 if (receiver->elements()->map() ==
1173 isolate()->heap()->non_strict_arguments_elements_map()) {
1174 stub = non_strict_arguments_stub();
1175 } else if (receiver->HasIndexedInterceptor()) {
1176 stub = indexed_interceptor_stub();
1177 } else if (key->IsSmi() && (target() != *non_strict_arguments_stub())) {
1178 stub = ComputeStub(receiver, LOAD, kNonStrictMode, stub);
1179 }
1180 }
1181 } else {
1182 TRACE_GENERIC_IC("KeyedLoadIC", "force generic");
1183 }
1184 if (!stub.is_null()) set_target(*stub);
1185 }
1186
1187 TRACE_IC("KeyedLoadIC", key, state, target());
1188
1189 // Get the property.
1190 return Runtime::GetObjectProperty(isolate(), object, key);
1191 }
1192
1193
UpdateCaches(LookupResult * lookup,State state,Handle<Object> object,Handle<String> name)1194 void KeyedLoadIC::UpdateCaches(LookupResult* lookup,
1195 State state,
1196 Handle<Object> object,
1197 Handle<String> name) {
1198 // Bail out if we didn't find a result.
1199 if (!lookup->IsProperty() || !lookup->IsCacheable()) return;
1200
1201 if (!object->IsJSObject()) return;
1202 Handle<JSObject> receiver = Handle<JSObject>::cast(object);
1203
1204 if (HasNormalObjectsInPrototypeChain(isolate(), lookup, *object)) return;
1205
1206 // Compute the code stub for this load.
1207 Handle<Code> code;
1208
1209 if (state == UNINITIALIZED) {
1210 // This is the first time we execute this inline cache.
1211 // Set the target to the pre monomorphic stub to delay
1212 // setting the monomorphic state.
1213 code = pre_monomorphic_stub();
1214 } else {
1215 // Compute a monomorphic stub.
1216 Handle<JSObject> holder(lookup->holder());
1217 switch (lookup->type()) {
1218 case FIELD:
1219 code = isolate()->stub_cache()->ComputeKeyedLoadField(
1220 name, receiver, holder, lookup->GetFieldIndex());
1221 break;
1222 case CONSTANT_FUNCTION: {
1223 Handle<JSFunction> constant(lookup->GetConstantFunction());
1224 code = isolate()->stub_cache()->ComputeKeyedLoadConstant(
1225 name, receiver, holder, constant);
1226 break;
1227 }
1228 case CALLBACKS: {
1229 Handle<Object> callback_object(lookup->GetCallbackObject());
1230 if (!callback_object->IsAccessorInfo()) return;
1231 Handle<AccessorInfo> callback =
1232 Handle<AccessorInfo>::cast(callback_object);
1233 if (v8::ToCData<Address>(callback->getter()) == 0) return;
1234 code = isolate()->stub_cache()->ComputeKeyedLoadCallback(
1235 name, receiver, holder, callback);
1236 break;
1237 }
1238 case INTERCEPTOR:
1239 ASSERT(HasInterceptorGetter(lookup->holder()));
1240 code = isolate()->stub_cache()->ComputeKeyedLoadInterceptor(
1241 name, receiver, holder);
1242 break;
1243 default:
1244 // Always rewrite to the generic case so that we do not
1245 // repeatedly try to rewrite.
1246 code = generic_stub();
1247 break;
1248 }
1249 }
1250
1251 // Patch the call site depending on the state of the cache. Make
1252 // sure to always rewrite from monomorphic to megamorphic.
1253 ASSERT(state != MONOMORPHIC_PROTOTYPE_FAILURE);
1254 if (state == UNINITIALIZED || state == PREMONOMORPHIC) {
1255 set_target(*code);
1256 } else if (state == MONOMORPHIC) {
1257 set_target(*megamorphic_stub());
1258 }
1259
1260 TRACE_IC("KeyedLoadIC", name, state, target());
1261 }
1262
1263
StoreICableLookup(LookupResult * lookup)1264 static bool StoreICableLookup(LookupResult* lookup) {
1265 // Bail out if we didn't find a result.
1266 if (!lookup->IsFound() || lookup->type() == NULL_DESCRIPTOR) return false;
1267
1268 // Bail out if inline caching is not allowed.
1269 if (!lookup->IsCacheable()) return false;
1270
1271 // If the property is read-only, we leave the IC in its current state.
1272 if (lookup->IsReadOnly()) return false;
1273
1274 return true;
1275 }
1276
1277
LookupForWrite(Handle<JSObject> receiver,Handle<String> name,LookupResult * lookup)1278 static bool LookupForWrite(Handle<JSObject> receiver,
1279 Handle<String> name,
1280 LookupResult* lookup) {
1281 receiver->LocalLookup(*name, lookup);
1282 if (!StoreICableLookup(lookup)) {
1283 return false;
1284 }
1285
1286 if (lookup->type() == INTERCEPTOR &&
1287 receiver->GetNamedInterceptor()->setter()->IsUndefined()) {
1288 receiver->LocalLookupRealNamedProperty(*name, lookup);
1289 return StoreICableLookup(lookup);
1290 }
1291
1292 return true;
1293 }
1294
1295
Store(State state,StrictModeFlag strict_mode,Handle<Object> object,Handle<String> name,Handle<Object> value)1296 MaybeObject* StoreIC::Store(State state,
1297 StrictModeFlag strict_mode,
1298 Handle<Object> object,
1299 Handle<String> name,
1300 Handle<Object> value) {
1301 if (!object->IsJSObject()) {
1302 // Handle proxies.
1303 if (object->IsJSProxy()) {
1304 return JSProxy::cast(*object)->
1305 SetProperty(*name, *value, NONE, strict_mode);
1306 }
1307
1308 // If the object is undefined or null it's illegal to try to set any
1309 // properties on it; throw a TypeError in that case.
1310 if (object->IsUndefined() || object->IsNull()) {
1311 return TypeError("non_object_property_store", object, name);
1312 }
1313
1314 // The length property of string values is read-only. Throw in strict mode.
1315 if (strict_mode == kStrictMode && object->IsString() &&
1316 name->Equals(isolate()->heap()->length_symbol())) {
1317 return TypeError("strict_read_only_property", object, name);
1318 }
1319 // Ignore other stores where the receiver is not a JSObject.
1320 // TODO(1475): Must check prototype chains of object wrappers.
1321 return *value;
1322 }
1323
1324 Handle<JSObject> receiver = Handle<JSObject>::cast(object);
1325
1326 // Check if the given name is an array index.
1327 uint32_t index;
1328 if (name->AsArrayIndex(&index)) {
1329 Handle<Object> result =
1330 JSObject::SetElement(receiver, index, value, NONE, strict_mode);
1331 RETURN_IF_EMPTY_HANDLE(isolate(), result);
1332 return *value;
1333 }
1334
1335 // Use specialized code for setting the length of arrays with fast
1336 // properties. Slow properties might indicate redefinition of the
1337 // length property.
1338 if (receiver->IsJSArray() &&
1339 name->Equals(isolate()->heap()->length_symbol()) &&
1340 Handle<JSArray>::cast(receiver)->AllowsSetElementsLength() &&
1341 receiver->HasFastProperties()) {
1342 #ifdef DEBUG
1343 if (FLAG_trace_ic) PrintF("[StoreIC : +#length /array]\n");
1344 #endif
1345 Handle<Code> stub = (strict_mode == kStrictMode)
1346 ? isolate()->builtins()->StoreIC_ArrayLength_Strict()
1347 : isolate()->builtins()->StoreIC_ArrayLength();
1348 set_target(*stub);
1349 return receiver->SetProperty(*name, *value, NONE, strict_mode);
1350 }
1351
1352 // Lookup the property locally in the receiver.
1353 if (FLAG_use_ic && !receiver->IsJSGlobalProxy()) {
1354 LookupResult lookup(isolate());
1355
1356 if (LookupForWrite(receiver, name, &lookup)) {
1357 // Generate a stub for this store.
1358 UpdateCaches(&lookup, state, strict_mode, receiver, name, value);
1359 } else {
1360 // Strict mode doesn't allow setting non-existent global property
1361 // or an assignment to a read only property.
1362 if (strict_mode == kStrictMode) {
1363 if (lookup.IsProperty() && lookup.IsReadOnly()) {
1364 return TypeError("strict_read_only_property", object, name);
1365 } else if (IsContextual(object)) {
1366 return ReferenceError("not_defined", name);
1367 }
1368 }
1369 }
1370 }
1371
1372 if (receiver->IsJSGlobalProxy()) {
1373 // TODO(ulan): find out why we patch this site even with --no-use-ic
1374 // Generate a generic stub that goes to the runtime when we see a global
1375 // proxy as receiver.
1376 Handle<Code> stub = (strict_mode == kStrictMode)
1377 ? global_proxy_stub_strict()
1378 : global_proxy_stub();
1379 if (target() != *stub) {
1380 set_target(*stub);
1381 TRACE_IC("StoreIC", name, state, target());
1382 }
1383 }
1384
1385 // Set the property.
1386 return receiver->SetProperty(*name, *value, NONE, strict_mode);
1387 }
1388
1389
UpdateCaches(LookupResult * lookup,State state,StrictModeFlag strict_mode,Handle<JSObject> receiver,Handle<String> name,Handle<Object> value)1390 void StoreIC::UpdateCaches(LookupResult* lookup,
1391 State state,
1392 StrictModeFlag strict_mode,
1393 Handle<JSObject> receiver,
1394 Handle<String> name,
1395 Handle<Object> value) {
1396 ASSERT(!receiver->IsJSGlobalProxy());
1397 ASSERT(StoreICableLookup(lookup));
1398 // These are not cacheable, so we never see such LookupResults here.
1399 ASSERT(lookup->type() != HANDLER);
1400 // We get only called for properties or transitions, see StoreICableLookup.
1401 ASSERT(lookup->type() != NULL_DESCRIPTOR);
1402
1403 // If the property has a non-field type allowing map transitions
1404 // where there is extra room in the object, we leave the IC in its
1405 // current state.
1406 PropertyType type = lookup->type();
1407
1408 // Compute the code stub for this store; used for rewriting to
1409 // monomorphic state and making sure that the code stub is in the
1410 // stub cache.
1411 Handle<Code> code;
1412 switch (type) {
1413 case FIELD:
1414 code = isolate()->stub_cache()->ComputeStoreField(name,
1415 receiver,
1416 lookup->GetFieldIndex(),
1417 Handle<Map>::null(),
1418 strict_mode);
1419 break;
1420 case MAP_TRANSITION: {
1421 if (lookup->GetAttributes() != NONE) return;
1422 Handle<Map> transition(lookup->GetTransitionMap());
1423 int index = transition->PropertyIndexFor(*name);
1424 code = isolate()->stub_cache()->ComputeStoreField(
1425 name, receiver, index, transition, strict_mode);
1426 break;
1427 }
1428 case NORMAL:
1429 if (receiver->IsGlobalObject()) {
1430 // The stub generated for the global object picks the value directly
1431 // from the property cell. So the property must be directly on the
1432 // global object.
1433 Handle<GlobalObject> global = Handle<GlobalObject>::cast(receiver);
1434 Handle<JSGlobalPropertyCell> cell(global->GetPropertyCell(lookup));
1435 code = isolate()->stub_cache()->ComputeStoreGlobal(
1436 name, global, cell, strict_mode);
1437 } else {
1438 if (lookup->holder() != *receiver) return;
1439 code = isolate()->stub_cache()->ComputeStoreNormal(strict_mode);
1440 }
1441 break;
1442 case CALLBACKS: {
1443 Handle<Object> callback_object(lookup->GetCallbackObject());
1444 if (!callback_object->IsAccessorInfo()) return;
1445 Handle<AccessorInfo> callback =
1446 Handle<AccessorInfo>::cast(callback_object);
1447 if (v8::ToCData<Address>(callback->setter()) == 0) return;
1448 code = isolate()->stub_cache()->ComputeStoreCallback(
1449 name, receiver, callback, strict_mode);
1450 break;
1451 }
1452 case INTERCEPTOR:
1453 ASSERT(!receiver->GetNamedInterceptor()->setter()->IsUndefined());
1454 code = isolate()->stub_cache()->ComputeStoreInterceptor(
1455 name, receiver, strict_mode);
1456 break;
1457 case CONSTANT_FUNCTION:
1458 case CONSTANT_TRANSITION:
1459 case ELEMENTS_TRANSITION:
1460 return;
1461 case HANDLER:
1462 case NULL_DESCRIPTOR:
1463 UNREACHABLE();
1464 return;
1465 }
1466
1467 // Patch the call site depending on the state of the cache.
1468 if (state == UNINITIALIZED || state == MONOMORPHIC_PROTOTYPE_FAILURE) {
1469 set_target(*code);
1470 } else if (state == MONOMORPHIC) {
1471 // Only move to megamorphic if the target changes.
1472 if (target() != *code) {
1473 set_target((strict_mode == kStrictMode)
1474 ? megamorphic_stub_strict()
1475 : megamorphic_stub());
1476 }
1477 } else if (state == MEGAMORPHIC) {
1478 // Update the stub cache.
1479 isolate()->stub_cache()->Set(*name, receiver->map(), *code);
1480 }
1481
1482 TRACE_IC("StoreIC", name, state, target());
1483 }
1484
1485
AddOneReceiverMapIfMissing(MapHandleList * receiver_maps,Handle<Map> new_receiver_map)1486 static bool AddOneReceiverMapIfMissing(MapHandleList* receiver_maps,
1487 Handle<Map> new_receiver_map) {
1488 ASSERT(!new_receiver_map.is_null());
1489 for (int current = 0; current < receiver_maps->length(); ++current) {
1490 if (!receiver_maps->at(current).is_null() &&
1491 receiver_maps->at(current).is_identical_to(new_receiver_map)) {
1492 return false;
1493 }
1494 }
1495 receiver_maps->Add(new_receiver_map);
1496 return true;
1497 }
1498
1499
GetReceiverMapsForStub(Handle<Code> stub,MapHandleList * result)1500 void KeyedIC::GetReceiverMapsForStub(Handle<Code> stub,
1501 MapHandleList* result) {
1502 ASSERT(stub->is_inline_cache_stub());
1503 if (!string_stub().is_null() && stub.is_identical_to(string_stub())) {
1504 return result->Add(isolate()->factory()->string_map());
1505 } else if (stub->is_keyed_load_stub() || stub->is_keyed_store_stub()) {
1506 if (stub->ic_state() == MONOMORPHIC) {
1507 result->Add(Handle<Map>(stub->FindFirstMap()));
1508 } else {
1509 ASSERT(stub->ic_state() == MEGAMORPHIC);
1510 AssertNoAllocation no_allocation;
1511 int mask = RelocInfo::ModeMask(RelocInfo::EMBEDDED_OBJECT);
1512 for (RelocIterator it(*stub, mask); !it.done(); it.next()) {
1513 RelocInfo* info = it.rinfo();
1514 Handle<Object> object(info->target_object());
1515 ASSERT(object->IsMap());
1516 AddOneReceiverMapIfMissing(result, Handle<Map>::cast(object));
1517 }
1518 }
1519 }
1520 }
1521
1522
ComputeStub(Handle<JSObject> receiver,StubKind stub_kind,StrictModeFlag strict_mode,Handle<Code> generic_stub)1523 Handle<Code> KeyedIC::ComputeStub(Handle<JSObject> receiver,
1524 StubKind stub_kind,
1525 StrictModeFlag strict_mode,
1526 Handle<Code> generic_stub) {
1527 State ic_state = target()->ic_state();
1528 KeyedAccessGrowMode grow_mode = IsGrowStubKind(stub_kind)
1529 ? ALLOW_JSARRAY_GROWTH
1530 : DO_NOT_ALLOW_JSARRAY_GROWTH;
1531
1532 // Don't handle megamorphic property accesses for INTERCEPTORS or CALLBACKS
1533 // via megamorphic stubs, since they don't have a map in their relocation info
1534 // and so the stubs can't be harvested for the object needed for a map check.
1535 if (target()->type() != NORMAL) {
1536 TRACE_GENERIC_IC("KeyedIC", "non-NORMAL target type");
1537 return generic_stub;
1538 }
1539
1540 bool monomorphic = false;
1541 MapHandleList target_receiver_maps;
1542 if (ic_state != UNINITIALIZED && ic_state != PREMONOMORPHIC) {
1543 GetReceiverMapsForStub(Handle<Code>(target()), &target_receiver_maps);
1544 }
1545 if (!IsTransitionStubKind(stub_kind)) {
1546 if (ic_state == UNINITIALIZED || ic_state == PREMONOMORPHIC) {
1547 monomorphic = true;
1548 } else {
1549 if (ic_state == MONOMORPHIC) {
1550 // The first time a receiver is seen that is a transitioned version of
1551 // the previous monomorphic receiver type, assume the new ElementsKind
1552 // is the monomorphic type. This benefits global arrays that only
1553 // transition once, and all call sites accessing them are faster if they
1554 // remain monomorphic. If this optimistic assumption is not true, the IC
1555 // will miss again and it will become polymorphic and support both the
1556 // untransitioned and transitioned maps.
1557 monomorphic = IsMoreGeneralElementsKindTransition(
1558 target_receiver_maps.at(0)->elements_kind(),
1559 receiver->GetElementsKind());
1560 }
1561 }
1562 }
1563
1564 if (monomorphic) {
1565 return ComputeMonomorphicStub(
1566 receiver, stub_kind, strict_mode, generic_stub);
1567 }
1568 ASSERT(target() != *generic_stub);
1569
1570 // Determine the list of receiver maps that this call site has seen,
1571 // adding the map that was just encountered.
1572 Handle<Map> receiver_map(receiver->map());
1573 bool map_added =
1574 AddOneReceiverMapIfMissing(&target_receiver_maps, receiver_map);
1575 if (IsTransitionStubKind(stub_kind)) {
1576 Handle<Map> new_map = ComputeTransitionedMap(receiver, stub_kind);
1577 map_added |= AddOneReceiverMapIfMissing(&target_receiver_maps, new_map);
1578 }
1579 if (!map_added) {
1580 // If the miss wasn't due to an unseen map, a polymorphic stub
1581 // won't help, use the generic stub.
1582 TRACE_GENERIC_IC("KeyedIC", "same map added twice");
1583 return generic_stub;
1584 }
1585
1586 // If the maximum number of receiver maps has been exceeded, use the generic
1587 // version of the IC.
1588 if (target_receiver_maps.length() > kMaxKeyedPolymorphism) {
1589 TRACE_GENERIC_IC("KeyedIC", "max polymorph exceeded");
1590 return generic_stub;
1591 }
1592
1593 if ((Code::GetKeyedAccessGrowMode(target()->extra_ic_state()) ==
1594 ALLOW_JSARRAY_GROWTH)) {
1595 grow_mode = ALLOW_JSARRAY_GROWTH;
1596 }
1597
1598 Handle<PolymorphicCodeCache> cache =
1599 isolate()->factory()->polymorphic_code_cache();
1600 Code::ExtraICState extra_state = Code::ComputeExtraICState(grow_mode,
1601 strict_mode);
1602 Code::Flags flags = Code::ComputeFlags(kind(), MEGAMORPHIC, extra_state);
1603 Handle<Object> probe = cache->Lookup(&target_receiver_maps, flags);
1604 if (probe->IsCode()) return Handle<Code>::cast(probe);
1605
1606 Handle<Code> stub =
1607 ComputePolymorphicStub(&target_receiver_maps, strict_mode, grow_mode);
1608 PolymorphicCodeCache::Update(cache, &target_receiver_maps, flags, stub);
1609 return stub;
1610 }
1611
1612
ComputeMonomorphicStubWithoutMapCheck(Handle<Map> receiver_map,StrictModeFlag strict_mode,KeyedAccessGrowMode grow_mode)1613 Handle<Code> KeyedIC::ComputeMonomorphicStubWithoutMapCheck(
1614 Handle<Map> receiver_map,
1615 StrictModeFlag strict_mode,
1616 KeyedAccessGrowMode grow_mode) {
1617 if ((receiver_map->instance_type() & kNotStringTag) == 0) {
1618 ASSERT(!string_stub().is_null());
1619 return string_stub();
1620 } else {
1621 ASSERT(receiver_map->has_dictionary_elements() ||
1622 receiver_map->has_fast_elements() ||
1623 receiver_map->has_fast_smi_only_elements() ||
1624 receiver_map->has_fast_double_elements() ||
1625 receiver_map->has_external_array_elements());
1626 bool is_js_array = receiver_map->instance_type() == JS_ARRAY_TYPE;
1627 return GetElementStubWithoutMapCheck(is_js_array,
1628 receiver_map->elements_kind(),
1629 grow_mode);
1630 }
1631 }
1632
1633
ComputeMonomorphicStub(Handle<JSObject> receiver,StubKind stub_kind,StrictModeFlag strict_mode,Handle<Code> generic_stub)1634 Handle<Code> KeyedIC::ComputeMonomorphicStub(Handle<JSObject> receiver,
1635 StubKind stub_kind,
1636 StrictModeFlag strict_mode,
1637 Handle<Code> generic_stub) {
1638 if (receiver->HasFastElements() ||
1639 receiver->HasFastSmiOnlyElements() ||
1640 receiver->HasExternalArrayElements() ||
1641 receiver->HasFastDoubleElements() ||
1642 receiver->HasDictionaryElements()) {
1643 return isolate()->stub_cache()->ComputeKeyedLoadOrStoreElement(
1644 receiver, stub_kind, strict_mode);
1645 } else {
1646 return generic_stub;
1647 }
1648 }
1649
1650
ComputeTransitionedMap(Handle<JSObject> receiver,StubKind stub_kind)1651 Handle<Map> KeyedIC::ComputeTransitionedMap(Handle<JSObject> receiver,
1652 StubKind stub_kind) {
1653 switch (stub_kind) {
1654 case KeyedIC::STORE_TRANSITION_SMI_TO_OBJECT:
1655 case KeyedIC::STORE_TRANSITION_DOUBLE_TO_OBJECT:
1656 case KeyedIC::STORE_AND_GROW_TRANSITION_SMI_TO_OBJECT:
1657 case KeyedIC::STORE_AND_GROW_TRANSITION_DOUBLE_TO_OBJECT:
1658 return JSObject::GetElementsTransitionMap(receiver, FAST_ELEMENTS);
1659 break;
1660 case KeyedIC::STORE_TRANSITION_SMI_TO_DOUBLE:
1661 case KeyedIC::STORE_AND_GROW_TRANSITION_SMI_TO_DOUBLE:
1662 return JSObject::GetElementsTransitionMap(receiver, FAST_DOUBLE_ELEMENTS);
1663 break;
1664 default:
1665 UNREACHABLE();
1666 return Handle<Map>::null();
1667 }
1668 }
1669
1670
GetElementStubWithoutMapCheck(bool is_js_array,ElementsKind elements_kind,KeyedAccessGrowMode grow_mode)1671 Handle<Code> KeyedStoreIC::GetElementStubWithoutMapCheck(
1672 bool is_js_array,
1673 ElementsKind elements_kind,
1674 KeyedAccessGrowMode grow_mode) {
1675 return KeyedStoreElementStub(is_js_array, elements_kind, grow_mode).GetCode();
1676 }
1677
1678
ComputePolymorphicStub(MapHandleList * receiver_maps,StrictModeFlag strict_mode,KeyedAccessGrowMode grow_mode)1679 Handle<Code> KeyedStoreIC::ComputePolymorphicStub(
1680 MapHandleList* receiver_maps,
1681 StrictModeFlag strict_mode,
1682 KeyedAccessGrowMode grow_mode) {
1683 // Collect MONOMORPHIC stubs for all target_receiver_maps.
1684 CodeHandleList handler_ics(receiver_maps->length());
1685 MapHandleList transitioned_maps(receiver_maps->length());
1686 for (int i = 0; i < receiver_maps->length(); ++i) {
1687 Handle<Map> receiver_map(receiver_maps->at(i));
1688 Handle<Code> cached_stub;
1689 Handle<Map> transitioned_map =
1690 receiver_map->FindTransitionedMap(receiver_maps);
1691 if (!transitioned_map.is_null()) {
1692 cached_stub = ElementsTransitionAndStoreStub(
1693 receiver_map->elements_kind(), // original elements_kind
1694 transitioned_map->elements_kind(),
1695 receiver_map->instance_type() == JS_ARRAY_TYPE, // is_js_array
1696 strict_mode, grow_mode).GetCode();
1697 } else {
1698 cached_stub = ComputeMonomorphicStubWithoutMapCheck(receiver_map,
1699 strict_mode,
1700 grow_mode);
1701 }
1702 ASSERT(!cached_stub.is_null());
1703 handler_ics.Add(cached_stub);
1704 transitioned_maps.Add(transitioned_map);
1705 }
1706 KeyedStoreStubCompiler compiler(isolate(), strict_mode, grow_mode);
1707 Handle<Code> code = compiler.CompileStorePolymorphic(
1708 receiver_maps, &handler_ics, &transitioned_maps);
1709 isolate()->counters()->keyed_store_polymorphic_stubs()->Increment();
1710 PROFILE(isolate(),
1711 CodeCreateEvent(Logger::KEYED_STORE_MEGAMORPHIC_IC_TAG, *code, 0));
1712 return code;
1713 }
1714
1715
GetStubKind(Handle<JSObject> receiver,Handle<Object> key,Handle<Object> value)1716 KeyedIC::StubKind KeyedStoreIC::GetStubKind(Handle<JSObject> receiver,
1717 Handle<Object> key,
1718 Handle<Object> value) {
1719 ASSERT(key->IsSmi());
1720 int index = Smi::cast(*key)->value();
1721 bool allow_growth = receiver->IsJSArray() &&
1722 JSArray::cast(*receiver)->length()->IsSmi() &&
1723 index >= Smi::cast(JSArray::cast(*receiver)->length())->value();
1724
1725 if (allow_growth) {
1726 // Handle growing array in stub if necessary.
1727 if (receiver->HasFastSmiOnlyElements()) {
1728 if (value->IsHeapNumber()) {
1729 return STORE_AND_GROW_TRANSITION_SMI_TO_DOUBLE;
1730 }
1731 if (value->IsHeapObject()) {
1732 return STORE_AND_GROW_TRANSITION_SMI_TO_OBJECT;
1733 }
1734 } else if (receiver->HasFastDoubleElements()) {
1735 if (!value->IsSmi() && !value->IsHeapNumber()) {
1736 return STORE_AND_GROW_TRANSITION_DOUBLE_TO_OBJECT;
1737 }
1738 }
1739 return STORE_AND_GROW_NO_TRANSITION;
1740 } else {
1741 // Handle only in-bounds elements accesses.
1742 if (receiver->HasFastSmiOnlyElements()) {
1743 if (value->IsHeapNumber()) {
1744 return STORE_TRANSITION_SMI_TO_DOUBLE;
1745 } else if (value->IsHeapObject()) {
1746 return STORE_TRANSITION_SMI_TO_OBJECT;
1747 }
1748 } else if (receiver->HasFastDoubleElements()) {
1749 if (!value->IsSmi() && !value->IsHeapNumber()) {
1750 return STORE_TRANSITION_DOUBLE_TO_OBJECT;
1751 }
1752 }
1753 return STORE_NO_TRANSITION;
1754 }
1755 }
1756
1757
Store(State state,StrictModeFlag strict_mode,Handle<Object> object,Handle<Object> key,Handle<Object> value,bool force_generic)1758 MaybeObject* KeyedStoreIC::Store(State state,
1759 StrictModeFlag strict_mode,
1760 Handle<Object> object,
1761 Handle<Object> key,
1762 Handle<Object> value,
1763 bool force_generic) {
1764 if (key->IsSymbol()) {
1765 Handle<String> name = Handle<String>::cast(key);
1766
1767 // Handle proxies.
1768 if (object->IsJSProxy()) {
1769 return JSProxy::cast(*object)->SetProperty(
1770 *name, *value, NONE, strict_mode);
1771 }
1772
1773 // If the object is undefined or null it's illegal to try to set any
1774 // properties on it; throw a TypeError in that case.
1775 if (object->IsUndefined() || object->IsNull()) {
1776 return TypeError("non_object_property_store", object, name);
1777 }
1778
1779 // Ignore stores where the receiver is not a JSObject.
1780 if (!object->IsJSObject()) return *value;
1781 Handle<JSObject> receiver = Handle<JSObject>::cast(object);
1782
1783 // Check if the given name is an array index.
1784 uint32_t index;
1785 if (name->AsArrayIndex(&index)) {
1786 Handle<Object> result =
1787 JSObject::SetElement(receiver, index, value, NONE, strict_mode);
1788 RETURN_IF_EMPTY_HANDLE(isolate(), result);
1789 return *value;
1790 }
1791
1792 // Update inline cache and stub cache.
1793 if (FLAG_use_ic && !receiver->IsJSGlobalProxy()) {
1794 LookupResult lookup(isolate());
1795 if (LookupForWrite(receiver, name, &lookup)) {
1796 UpdateCaches(&lookup, state, strict_mode, receiver, name, value);
1797 }
1798 }
1799
1800 // Set the property.
1801 return receiver->SetProperty(*name, *value, NONE, strict_mode);
1802 }
1803
1804 // Do not use ICs for objects that require access checks (including
1805 // the global object).
1806 bool use_ic = FLAG_use_ic && !object->IsAccessCheckNeeded();
1807 ASSERT(!(use_ic && object->IsJSGlobalProxy()));
1808
1809 if (use_ic) {
1810 Handle<Code> stub = (strict_mode == kStrictMode)
1811 ? generic_stub_strict()
1812 : generic_stub();
1813 if (object->IsJSObject()) {
1814 Handle<JSObject> receiver = Handle<JSObject>::cast(object);
1815 if (receiver->elements()->map() ==
1816 isolate()->heap()->non_strict_arguments_elements_map()) {
1817 stub = non_strict_arguments_stub();
1818 } else if (!force_generic) {
1819 if (key->IsSmi() && (target() != *non_strict_arguments_stub())) {
1820 StubKind stub_kind = GetStubKind(receiver, key, value);
1821 stub = ComputeStub(receiver, stub_kind, strict_mode, stub);
1822 }
1823 } else {
1824 TRACE_GENERIC_IC("KeyedStoreIC", "force generic");
1825 }
1826 }
1827 if (!stub.is_null()) set_target(*stub);
1828 }
1829
1830 TRACE_IC("KeyedStoreIC", key, state, target());
1831
1832 // Set the property.
1833 return Runtime::SetObjectProperty(
1834 isolate(), object , key, value, NONE, strict_mode);
1835 }
1836
1837
UpdateCaches(LookupResult * lookup,State state,StrictModeFlag strict_mode,Handle<JSObject> receiver,Handle<String> name,Handle<Object> value)1838 void KeyedStoreIC::UpdateCaches(LookupResult* lookup,
1839 State state,
1840 StrictModeFlag strict_mode,
1841 Handle<JSObject> receiver,
1842 Handle<String> name,
1843 Handle<Object> value) {
1844 ASSERT(!receiver->IsJSGlobalProxy());
1845 ASSERT(StoreICableLookup(lookup));
1846 // These are not cacheable, so we never see such LookupResults here.
1847 ASSERT(lookup->type() != HANDLER);
1848 // We get only called for properties or transitions, see StoreICableLookup.
1849 ASSERT(lookup->type() != NULL_DESCRIPTOR);
1850
1851 // If the property has a non-field type allowing map transitions
1852 // where there is extra room in the object, we leave the IC in its
1853 // current state.
1854 PropertyType type = lookup->type();
1855
1856 // Compute the code stub for this store; used for rewriting to
1857 // monomorphic state and making sure that the code stub is in the
1858 // stub cache.
1859 Handle<Code> code;
1860
1861 switch (type) {
1862 case FIELD:
1863 code = isolate()->stub_cache()->ComputeKeyedStoreField(
1864 name, receiver, lookup->GetFieldIndex(),
1865 Handle<Map>::null(), strict_mode);
1866 break;
1867 case MAP_TRANSITION:
1868 if (lookup->GetAttributes() == NONE) {
1869 Handle<Map> transition(lookup->GetTransitionMap());
1870 int index = transition->PropertyIndexFor(*name);
1871 code = isolate()->stub_cache()->ComputeKeyedStoreField(
1872 name, receiver, index, transition, strict_mode);
1873 break;
1874 }
1875 // fall through.
1876 case NORMAL:
1877 case CONSTANT_FUNCTION:
1878 case CALLBACKS:
1879 case INTERCEPTOR:
1880 case CONSTANT_TRANSITION:
1881 case ELEMENTS_TRANSITION:
1882 // Always rewrite to the generic case so that we do not
1883 // repeatedly try to rewrite.
1884 code = (strict_mode == kStrictMode)
1885 ? generic_stub_strict()
1886 : generic_stub();
1887 break;
1888 case HANDLER:
1889 case NULL_DESCRIPTOR:
1890 UNREACHABLE();
1891 return;
1892 }
1893
1894 ASSERT(!code.is_null());
1895
1896 // Patch the call site depending on the state of the cache. Make
1897 // sure to always rewrite from monomorphic to megamorphic.
1898 ASSERT(state != MONOMORPHIC_PROTOTYPE_FAILURE);
1899 if (state == UNINITIALIZED || state == PREMONOMORPHIC) {
1900 set_target(*code);
1901 } else if (state == MONOMORPHIC) {
1902 set_target((strict_mode == kStrictMode)
1903 ? *megamorphic_stub_strict()
1904 : *megamorphic_stub());
1905 }
1906
1907 TRACE_IC("KeyedStoreIC", name, state, target());
1908 }
1909
1910
1911 #undef TRACE_IC
1912
1913
1914 // ----------------------------------------------------------------------------
1915 // Static IC stub generators.
1916 //
1917
1918 // Used from ic-<arch>.cc.
RUNTIME_FUNCTION(MaybeObject *,CallIC_Miss)1919 RUNTIME_FUNCTION(MaybeObject*, CallIC_Miss) {
1920 HandleScope scope(isolate);
1921 ASSERT(args.length() == 2);
1922 CallIC ic(isolate);
1923 IC::State state = IC::StateFrom(ic.target(), args[0], args[1]);
1924 Code::ExtraICState extra_ic_state = ic.target()->extra_ic_state();
1925 MaybeObject* maybe_result = ic.LoadFunction(state,
1926 extra_ic_state,
1927 args.at<Object>(0),
1928 args.at<String>(1));
1929 // Result could be a function or a failure.
1930 JSFunction* raw_function = NULL;
1931 if (!maybe_result->To(&raw_function)) return maybe_result;
1932
1933 // The first time the inline cache is updated may be the first time the
1934 // function it references gets called. If the function is lazily compiled
1935 // then the first call will trigger a compilation. We check for this case
1936 // and we do the compilation immediately, instead of waiting for the stub
1937 // currently attached to the JSFunction object to trigger compilation.
1938 if (raw_function->is_compiled()) return raw_function;
1939
1940 Handle<JSFunction> function(raw_function);
1941 JSFunction::CompileLazy(function, CLEAR_EXCEPTION);
1942 return *function;
1943 }
1944
1945
1946 // Used from ic-<arch>.cc.
RUNTIME_FUNCTION(MaybeObject *,KeyedCallIC_Miss)1947 RUNTIME_FUNCTION(MaybeObject*, KeyedCallIC_Miss) {
1948 HandleScope scope(isolate);
1949 ASSERT(args.length() == 2);
1950 KeyedCallIC ic(isolate);
1951 IC::State state = IC::StateFrom(ic.target(), args[0], args[1]);
1952 MaybeObject* maybe_result =
1953 ic.LoadFunction(state, args.at<Object>(0), args.at<Object>(1));
1954 // Result could be a function or a failure.
1955 JSFunction* raw_function = NULL;
1956 if (!maybe_result->To(&raw_function)) return maybe_result;
1957
1958 if (raw_function->is_compiled()) return raw_function;
1959
1960 Handle<JSFunction> function(raw_function);
1961 JSFunction::CompileLazy(function, CLEAR_EXCEPTION);
1962 return *function;
1963 }
1964
1965
1966 // Used from ic-<arch>.cc.
RUNTIME_FUNCTION(MaybeObject *,LoadIC_Miss)1967 RUNTIME_FUNCTION(MaybeObject*, LoadIC_Miss) {
1968 HandleScope scope(isolate);
1969 ASSERT(args.length() == 2);
1970 LoadIC ic(isolate);
1971 IC::State state = IC::StateFrom(ic.target(), args[0], args[1]);
1972 return ic.Load(state, args.at<Object>(0), args.at<String>(1));
1973 }
1974
1975
1976 // Used from ic-<arch>.cc
RUNTIME_FUNCTION(MaybeObject *,KeyedLoadIC_Miss)1977 RUNTIME_FUNCTION(MaybeObject*, KeyedLoadIC_Miss) {
1978 HandleScope scope(isolate);
1979 ASSERT(args.length() == 2);
1980 KeyedLoadIC ic(isolate);
1981 IC::State state = IC::StateFrom(ic.target(), args[0], args[1]);
1982 return ic.Load(state, args.at<Object>(0), args.at<Object>(1), false);
1983 }
1984
1985
RUNTIME_FUNCTION(MaybeObject *,KeyedLoadIC_MissForceGeneric)1986 RUNTIME_FUNCTION(MaybeObject*, KeyedLoadIC_MissForceGeneric) {
1987 HandleScope scope(isolate);
1988 ASSERT(args.length() == 2);
1989 KeyedLoadIC ic(isolate);
1990 IC::State state = IC::StateFrom(ic.target(), args[0], args[1]);
1991 return ic.Load(state, args.at<Object>(0), args.at<Object>(1), true);
1992 }
1993
1994
1995 // Used from ic-<arch>.cc.
RUNTIME_FUNCTION(MaybeObject *,StoreIC_Miss)1996 RUNTIME_FUNCTION(MaybeObject*, StoreIC_Miss) {
1997 HandleScope scope;
1998 ASSERT(args.length() == 3);
1999 StoreIC ic(isolate);
2000 IC::State state = IC::StateFrom(ic.target(), args[0], args[1]);
2001 Code::ExtraICState extra_ic_state = ic.target()->extra_ic_state();
2002 return ic.Store(state,
2003 Code::GetStrictMode(extra_ic_state),
2004 args.at<Object>(0),
2005 args.at<String>(1),
2006 args.at<Object>(2));
2007 }
2008
2009
RUNTIME_FUNCTION(MaybeObject *,StoreIC_ArrayLength)2010 RUNTIME_FUNCTION(MaybeObject*, StoreIC_ArrayLength) {
2011 NoHandleAllocation nha;
2012
2013 ASSERT(args.length() == 2);
2014 JSArray* receiver = JSArray::cast(args[0]);
2015 Object* len = args[1];
2016
2017 // The generated code should filter out non-Smis before we get here.
2018 ASSERT(len->IsSmi());
2019
2020 #ifdef DEBUG
2021 // The length property has to be a writable callback property.
2022 LookupResult debug_lookup(isolate);
2023 receiver->LocalLookup(isolate->heap()->length_symbol(), &debug_lookup);
2024 ASSERT(debug_lookup.type() == CALLBACKS && !debug_lookup.IsReadOnly());
2025 #endif
2026
2027 Object* result;
2028 { MaybeObject* maybe_result = receiver->SetElementsLength(len);
2029 if (!maybe_result->ToObject(&result)) return maybe_result;
2030 }
2031 return len;
2032 }
2033
2034
2035 // Extend storage is called in a store inline cache when
2036 // it is necessary to extend the properties array of a
2037 // JSObject.
RUNTIME_FUNCTION(MaybeObject *,SharedStoreIC_ExtendStorage)2038 RUNTIME_FUNCTION(MaybeObject*, SharedStoreIC_ExtendStorage) {
2039 NoHandleAllocation na;
2040 ASSERT(args.length() == 3);
2041
2042 // Convert the parameters
2043 JSObject* object = JSObject::cast(args[0]);
2044 Map* transition = Map::cast(args[1]);
2045 Object* value = args[2];
2046
2047 // Check the object has run out out property space.
2048 ASSERT(object->HasFastProperties());
2049 ASSERT(object->map()->unused_property_fields() == 0);
2050
2051 // Expand the properties array.
2052 FixedArray* old_storage = object->properties();
2053 int new_unused = transition->unused_property_fields();
2054 int new_size = old_storage->length() + new_unused + 1;
2055 Object* result;
2056 { MaybeObject* maybe_result = old_storage->CopySize(new_size);
2057 if (!maybe_result->ToObject(&result)) return maybe_result;
2058 }
2059 FixedArray* new_storage = FixedArray::cast(result);
2060 new_storage->set(old_storage->length(), value);
2061
2062 // Set the new property value and do the map transition.
2063 object->set_properties(new_storage);
2064 object->set_map(transition);
2065
2066 // Return the stored value.
2067 return value;
2068 }
2069
2070
2071 // Used from ic-<arch>.cc.
RUNTIME_FUNCTION(MaybeObject *,KeyedStoreIC_Miss)2072 RUNTIME_FUNCTION(MaybeObject*, KeyedStoreIC_Miss) {
2073 HandleScope scope(isolate);
2074 ASSERT(args.length() == 3);
2075 KeyedStoreIC ic(isolate);
2076 IC::State state = IC::StateFrom(ic.target(), args[0], args[1]);
2077 Code::ExtraICState extra_ic_state = ic.target()->extra_ic_state();
2078 return ic.Store(state,
2079 Code::GetStrictMode(extra_ic_state),
2080 args.at<Object>(0),
2081 args.at<Object>(1),
2082 args.at<Object>(2),
2083 false);
2084 }
2085
2086
RUNTIME_FUNCTION(MaybeObject *,KeyedStoreIC_Slow)2087 RUNTIME_FUNCTION(MaybeObject*, KeyedStoreIC_Slow) {
2088 NoHandleAllocation na;
2089 ASSERT(args.length() == 3);
2090 KeyedStoreIC ic(isolate);
2091 Code::ExtraICState extra_ic_state = ic.target()->extra_ic_state();
2092 Handle<Object> object = args.at<Object>(0);
2093 Handle<Object> key = args.at<Object>(1);
2094 Handle<Object> value = args.at<Object>(2);
2095 StrictModeFlag strict_mode = Code::GetStrictMode(extra_ic_state);
2096 return Runtime::SetObjectProperty(isolate,
2097 object,
2098 key,
2099 value,
2100 NONE,
2101 strict_mode);
2102 }
2103
2104
RUNTIME_FUNCTION(MaybeObject *,KeyedStoreIC_MissForceGeneric)2105 RUNTIME_FUNCTION(MaybeObject*, KeyedStoreIC_MissForceGeneric) {
2106 HandleScope scope(isolate);
2107 ASSERT(args.length() == 3);
2108 KeyedStoreIC ic(isolate);
2109 IC::State state = IC::StateFrom(ic.target(), args[0], args[1]);
2110 Code::ExtraICState extra_ic_state = ic.target()->extra_ic_state();
2111 return ic.Store(state,
2112 Code::GetStrictMode(extra_ic_state),
2113 args.at<Object>(0),
2114 args.at<Object>(1),
2115 args.at<Object>(2),
2116 true);
2117 }
2118
2119
patch(Code * code)2120 void UnaryOpIC::patch(Code* code) {
2121 set_target(code);
2122 }
2123
2124
GetName(TypeInfo type_info)2125 const char* UnaryOpIC::GetName(TypeInfo type_info) {
2126 switch (type_info) {
2127 case UNINITIALIZED: return "Uninitialized";
2128 case SMI: return "Smi";
2129 case HEAP_NUMBER: return "HeapNumbers";
2130 case GENERIC: return "Generic";
2131 default: return "Invalid";
2132 }
2133 }
2134
2135
ToState(TypeInfo type_info)2136 UnaryOpIC::State UnaryOpIC::ToState(TypeInfo type_info) {
2137 switch (type_info) {
2138 case UNINITIALIZED:
2139 return ::v8::internal::UNINITIALIZED;
2140 case SMI:
2141 case HEAP_NUMBER:
2142 return MONOMORPHIC;
2143 case GENERIC:
2144 return MEGAMORPHIC;
2145 }
2146 UNREACHABLE();
2147 return ::v8::internal::UNINITIALIZED;
2148 }
2149
GetTypeInfo(Handle<Object> operand)2150 UnaryOpIC::TypeInfo UnaryOpIC::GetTypeInfo(Handle<Object> operand) {
2151 ::v8::internal::TypeInfo operand_type =
2152 ::v8::internal::TypeInfo::TypeFromValue(operand);
2153 if (operand_type.IsSmi()) {
2154 return SMI;
2155 } else if (operand_type.IsNumber()) {
2156 return HEAP_NUMBER;
2157 } else {
2158 return GENERIC;
2159 }
2160 }
2161
2162
ComputeNewType(UnaryOpIC::TypeInfo current_type,UnaryOpIC::TypeInfo previous_type)2163 UnaryOpIC::TypeInfo UnaryOpIC::ComputeNewType(
2164 UnaryOpIC::TypeInfo current_type,
2165 UnaryOpIC::TypeInfo previous_type) {
2166 switch (previous_type) {
2167 case UnaryOpIC::UNINITIALIZED:
2168 return current_type;
2169 case UnaryOpIC::SMI:
2170 return (current_type == UnaryOpIC::GENERIC)
2171 ? UnaryOpIC::GENERIC
2172 : UnaryOpIC::HEAP_NUMBER;
2173 case UnaryOpIC::HEAP_NUMBER:
2174 return UnaryOpIC::GENERIC;
2175 case UnaryOpIC::GENERIC:
2176 // We should never do patching if we are in GENERIC state.
2177 UNREACHABLE();
2178 return UnaryOpIC::GENERIC;
2179 }
2180 UNREACHABLE();
2181 return UnaryOpIC::GENERIC;
2182 }
2183
2184
patch(Code * code)2185 void BinaryOpIC::patch(Code* code) {
2186 set_target(code);
2187 }
2188
2189
GetName(TypeInfo type_info)2190 const char* BinaryOpIC::GetName(TypeInfo type_info) {
2191 switch (type_info) {
2192 case UNINITIALIZED: return "Uninitialized";
2193 case SMI: return "SMI";
2194 case INT32: return "Int32s";
2195 case HEAP_NUMBER: return "HeapNumbers";
2196 case ODDBALL: return "Oddball";
2197 case BOTH_STRING: return "BothStrings";
2198 case STRING: return "Strings";
2199 case GENERIC: return "Generic";
2200 default: return "Invalid";
2201 }
2202 }
2203
2204
ToState(TypeInfo type_info)2205 BinaryOpIC::State BinaryOpIC::ToState(TypeInfo type_info) {
2206 switch (type_info) {
2207 case UNINITIALIZED:
2208 return ::v8::internal::UNINITIALIZED;
2209 case SMI:
2210 case INT32:
2211 case HEAP_NUMBER:
2212 case ODDBALL:
2213 case BOTH_STRING:
2214 case STRING:
2215 return MONOMORPHIC;
2216 case GENERIC:
2217 return MEGAMORPHIC;
2218 }
2219 UNREACHABLE();
2220 return ::v8::internal::UNINITIALIZED;
2221 }
2222
2223
JoinTypes(BinaryOpIC::TypeInfo x,BinaryOpIC::TypeInfo y)2224 BinaryOpIC::TypeInfo BinaryOpIC::JoinTypes(BinaryOpIC::TypeInfo x,
2225 BinaryOpIC::TypeInfo y) {
2226 if (x == UNINITIALIZED) return y;
2227 if (y == UNINITIALIZED) return x;
2228 if (x == y) return x;
2229 if (x == BOTH_STRING && y == STRING) return STRING;
2230 if (x == STRING && y == BOTH_STRING) return STRING;
2231 if (x == STRING || x == BOTH_STRING || y == STRING || y == BOTH_STRING) {
2232 return GENERIC;
2233 }
2234 if (x > y) return x;
2235 return y;
2236 }
2237
2238
GetTypeInfo(Handle<Object> left,Handle<Object> right)2239 BinaryOpIC::TypeInfo BinaryOpIC::GetTypeInfo(Handle<Object> left,
2240 Handle<Object> right) {
2241 ::v8::internal::TypeInfo left_type =
2242 ::v8::internal::TypeInfo::TypeFromValue(left);
2243 ::v8::internal::TypeInfo right_type =
2244 ::v8::internal::TypeInfo::TypeFromValue(right);
2245
2246 if (left_type.IsSmi() && right_type.IsSmi()) {
2247 return SMI;
2248 }
2249
2250 if (left_type.IsInteger32() && right_type.IsInteger32()) {
2251 // Platforms with 32-bit Smis have no distinct INT32 type.
2252 if (kSmiValueSize == 32) return SMI;
2253 return INT32;
2254 }
2255
2256 if (left_type.IsNumber() && right_type.IsNumber()) {
2257 return HEAP_NUMBER;
2258 }
2259
2260 // Patching for fast string ADD makes sense even if only one of the
2261 // arguments is a string.
2262 if (left_type.IsString()) {
2263 return right_type.IsString() ? BOTH_STRING : STRING;
2264 } else if (right_type.IsString()) {
2265 return STRING;
2266 }
2267
2268 // Check for oddball objects.
2269 if (left->IsUndefined() && right->IsNumber()) return ODDBALL;
2270 if (left->IsNumber() && right->IsUndefined()) return ODDBALL;
2271
2272 return GENERIC;
2273 }
2274
2275
RUNTIME_FUNCTION(MaybeObject *,UnaryOp_Patch)2276 RUNTIME_FUNCTION(MaybeObject*, UnaryOp_Patch) {
2277 ASSERT(args.length() == 4);
2278
2279 HandleScope scope(isolate);
2280 Handle<Object> operand = args.at<Object>(0);
2281 Token::Value op = static_cast<Token::Value>(args.smi_at(1));
2282 UnaryOverwriteMode mode = static_cast<UnaryOverwriteMode>(args.smi_at(2));
2283 UnaryOpIC::TypeInfo previous_type =
2284 static_cast<UnaryOpIC::TypeInfo>(args.smi_at(3));
2285
2286 UnaryOpIC::TypeInfo type = UnaryOpIC::GetTypeInfo(operand);
2287 type = UnaryOpIC::ComputeNewType(type, previous_type);
2288
2289 UnaryOpStub stub(op, mode, type);
2290 Handle<Code> code = stub.GetCode();
2291 if (!code.is_null()) {
2292 if (FLAG_trace_ic) {
2293 PrintF("[UnaryOpIC (%s->%s)#%s]\n",
2294 UnaryOpIC::GetName(previous_type),
2295 UnaryOpIC::GetName(type),
2296 Token::Name(op));
2297 }
2298 UnaryOpIC ic(isolate);
2299 ic.patch(*code);
2300 }
2301
2302 Handle<JSBuiltinsObject> builtins = Handle<JSBuiltinsObject>(
2303 isolate->thread_local_top()->context_->builtins(), isolate);
2304 Object* builtin = NULL; // Initialization calms down the compiler.
2305 switch (op) {
2306 case Token::SUB:
2307 builtin = builtins->javascript_builtin(Builtins::UNARY_MINUS);
2308 break;
2309 case Token::BIT_NOT:
2310 builtin = builtins->javascript_builtin(Builtins::BIT_NOT);
2311 break;
2312 default:
2313 UNREACHABLE();
2314 }
2315
2316 Handle<JSFunction> builtin_function(JSFunction::cast(builtin), isolate);
2317
2318 bool caught_exception;
2319 Handle<Object> result = Execution::Call(builtin_function, operand, 0, NULL,
2320 &caught_exception);
2321 if (caught_exception) {
2322 return Failure::Exception();
2323 }
2324 return *result;
2325 }
2326
RUNTIME_FUNCTION(MaybeObject *,BinaryOp_Patch)2327 RUNTIME_FUNCTION(MaybeObject*, BinaryOp_Patch) {
2328 ASSERT(args.length() == 5);
2329
2330 HandleScope scope(isolate);
2331 Handle<Object> left = args.at<Object>(0);
2332 Handle<Object> right = args.at<Object>(1);
2333 int key = args.smi_at(2);
2334 Token::Value op = static_cast<Token::Value>(args.smi_at(3));
2335 BinaryOpIC::TypeInfo previous_type =
2336 static_cast<BinaryOpIC::TypeInfo>(args.smi_at(4));
2337
2338 BinaryOpIC::TypeInfo type = BinaryOpIC::GetTypeInfo(left, right);
2339 type = BinaryOpIC::JoinTypes(type, previous_type);
2340 BinaryOpIC::TypeInfo result_type = BinaryOpIC::UNINITIALIZED;
2341 if ((type == BinaryOpIC::STRING || type == BinaryOpIC::BOTH_STRING) &&
2342 op != Token::ADD) {
2343 type = BinaryOpIC::GENERIC;
2344 }
2345 if (type == BinaryOpIC::SMI && previous_type == BinaryOpIC::SMI) {
2346 if (op == Token::DIV ||
2347 op == Token::MUL ||
2348 op == Token::SHR ||
2349 kSmiValueSize == 32) {
2350 // Arithmetic on two Smi inputs has yielded a heap number.
2351 // That is the only way to get here from the Smi stub.
2352 // With 32-bit Smis, all overflows give heap numbers, but with
2353 // 31-bit Smis, most operations overflow to int32 results.
2354 result_type = BinaryOpIC::HEAP_NUMBER;
2355 } else {
2356 // Other operations on SMIs that overflow yield int32s.
2357 result_type = BinaryOpIC::INT32;
2358 }
2359 }
2360 if (type == BinaryOpIC::INT32 && previous_type == BinaryOpIC::INT32) {
2361 // We must be here because an operation on two INT32 types overflowed.
2362 result_type = BinaryOpIC::HEAP_NUMBER;
2363 }
2364
2365 BinaryOpStub stub(key, type, result_type);
2366 Handle<Code> code = stub.GetCode();
2367 if (!code.is_null()) {
2368 if (FLAG_trace_ic) {
2369 PrintF("[BinaryOpIC (%s->(%s->%s))#%s]\n",
2370 BinaryOpIC::GetName(previous_type),
2371 BinaryOpIC::GetName(type),
2372 BinaryOpIC::GetName(result_type),
2373 Token::Name(op));
2374 }
2375 BinaryOpIC ic(isolate);
2376 ic.patch(*code);
2377
2378 // Activate inlined smi code.
2379 if (previous_type == BinaryOpIC::UNINITIALIZED) {
2380 PatchInlinedSmiCode(ic.address());
2381 }
2382 }
2383
2384 Handle<JSBuiltinsObject> builtins = Handle<JSBuiltinsObject>(
2385 isolate->thread_local_top()->context_->builtins(), isolate);
2386 Object* builtin = NULL; // Initialization calms down the compiler.
2387 switch (op) {
2388 case Token::ADD:
2389 builtin = builtins->javascript_builtin(Builtins::ADD);
2390 break;
2391 case Token::SUB:
2392 builtin = builtins->javascript_builtin(Builtins::SUB);
2393 break;
2394 case Token::MUL:
2395 builtin = builtins->javascript_builtin(Builtins::MUL);
2396 break;
2397 case Token::DIV:
2398 builtin = builtins->javascript_builtin(Builtins::DIV);
2399 break;
2400 case Token::MOD:
2401 builtin = builtins->javascript_builtin(Builtins::MOD);
2402 break;
2403 case Token::BIT_AND:
2404 builtin = builtins->javascript_builtin(Builtins::BIT_AND);
2405 break;
2406 case Token::BIT_OR:
2407 builtin = builtins->javascript_builtin(Builtins::BIT_OR);
2408 break;
2409 case Token::BIT_XOR:
2410 builtin = builtins->javascript_builtin(Builtins::BIT_XOR);
2411 break;
2412 case Token::SHR:
2413 builtin = builtins->javascript_builtin(Builtins::SHR);
2414 break;
2415 case Token::SAR:
2416 builtin = builtins->javascript_builtin(Builtins::SAR);
2417 break;
2418 case Token::SHL:
2419 builtin = builtins->javascript_builtin(Builtins::SHL);
2420 break;
2421 default:
2422 UNREACHABLE();
2423 }
2424
2425 Handle<JSFunction> builtin_function(JSFunction::cast(builtin), isolate);
2426
2427 bool caught_exception;
2428 Handle<Object> builtin_args[] = { right };
2429 Handle<Object> result = Execution::Call(builtin_function,
2430 left,
2431 ARRAY_SIZE(builtin_args),
2432 builtin_args,
2433 &caught_exception);
2434 if (caught_exception) {
2435 return Failure::Exception();
2436 }
2437 return *result;
2438 }
2439
2440
GetUninitialized(Token::Value op)2441 Handle<Code> CompareIC::GetUninitialized(Token::Value op) {
2442 ICCompareStub stub(op, UNINITIALIZED);
2443 return stub.GetCode();
2444 }
2445
2446
ComputeState(Code * target)2447 CompareIC::State CompareIC::ComputeState(Code* target) {
2448 int key = target->major_key();
2449 if (key == CodeStub::Compare) return GENERIC;
2450 ASSERT(key == CodeStub::CompareIC);
2451 return static_cast<State>(target->compare_state());
2452 }
2453
2454
GetStateName(State state)2455 const char* CompareIC::GetStateName(State state) {
2456 switch (state) {
2457 case UNINITIALIZED: return "UNINITIALIZED";
2458 case SMIS: return "SMIS";
2459 case HEAP_NUMBERS: return "HEAP_NUMBERS";
2460 case OBJECTS: return "OBJECTS";
2461 case KNOWN_OBJECTS: return "OBJECTS";
2462 case SYMBOLS: return "SYMBOLS";
2463 case STRINGS: return "STRINGS";
2464 case GENERIC: return "GENERIC";
2465 default:
2466 UNREACHABLE();
2467 return NULL;
2468 }
2469 }
2470
2471
TargetState(State state,bool has_inlined_smi_code,Handle<Object> x,Handle<Object> y)2472 CompareIC::State CompareIC::TargetState(State state,
2473 bool has_inlined_smi_code,
2474 Handle<Object> x,
2475 Handle<Object> y) {
2476 switch (state) {
2477 case UNINITIALIZED:
2478 if (x->IsSmi() && y->IsSmi()) return SMIS;
2479 if (x->IsNumber() && y->IsNumber()) return HEAP_NUMBERS;
2480 if (Token::IsOrderedRelationalCompareOp(op_)) {
2481 // Ordered comparisons treat undefined as NaN, so the
2482 // HEAP_NUMBER stub will do the right thing.
2483 if ((x->IsNumber() && y->IsUndefined()) ||
2484 (y->IsNumber() && x->IsUndefined())) {
2485 return HEAP_NUMBERS;
2486 }
2487 }
2488 if (x->IsSymbol() && y->IsSymbol()) {
2489 // We compare symbols as strings if we need to determine
2490 // the order in a non-equality compare.
2491 return Token::IsEqualityOp(op_) ? SYMBOLS : STRINGS;
2492 }
2493 if (x->IsString() && y->IsString()) return STRINGS;
2494 if (!Token::IsEqualityOp(op_)) return GENERIC;
2495 if (x->IsJSObject() && y->IsJSObject()) {
2496 if (Handle<JSObject>::cast(x)->map() ==
2497 Handle<JSObject>::cast(y)->map() &&
2498 Token::IsEqualityOp(op_)) {
2499 return KNOWN_OBJECTS;
2500 } else {
2501 return OBJECTS;
2502 }
2503 }
2504 return GENERIC;
2505 case SMIS:
2506 return has_inlined_smi_code && x->IsNumber() && y->IsNumber()
2507 ? HEAP_NUMBERS
2508 : GENERIC;
2509 case SYMBOLS:
2510 ASSERT(Token::IsEqualityOp(op_));
2511 return x->IsString() && y->IsString() ? STRINGS : GENERIC;
2512 case HEAP_NUMBERS:
2513 case STRINGS:
2514 case OBJECTS:
2515 case KNOWN_OBJECTS:
2516 case GENERIC:
2517 return GENERIC;
2518 }
2519 UNREACHABLE();
2520 return GENERIC;
2521 }
2522
2523
2524 // Used from ic_<arch>.cc.
RUNTIME_FUNCTION(Code *,CompareIC_Miss)2525 RUNTIME_FUNCTION(Code*, CompareIC_Miss) {
2526 NoHandleAllocation na;
2527 ASSERT(args.length() == 3);
2528 CompareIC ic(isolate, static_cast<Token::Value>(args.smi_at(2)));
2529 ic.UpdateCaches(args.at<Object>(0), args.at<Object>(1));
2530 return ic.target();
2531 }
2532
2533
RUNTIME_FUNCTION(MaybeObject *,ToBoolean_Patch)2534 RUNTIME_FUNCTION(MaybeObject*, ToBoolean_Patch) {
2535 ASSERT(args.length() == 3);
2536
2537 HandleScope scope(isolate);
2538 Handle<Object> object = args.at<Object>(0);
2539 Register tos = Register::from_code(args.smi_at(1));
2540 ToBooleanStub::Types old_types(args.smi_at(2));
2541
2542 ToBooleanStub::Types new_types(old_types);
2543 bool to_boolean_value = new_types.Record(object);
2544 old_types.TraceTransition(new_types);
2545
2546 ToBooleanStub stub(tos, new_types);
2547 Handle<Code> code = stub.GetCode();
2548 ToBooleanIC ic(isolate);
2549 ic.patch(*code);
2550 return Smi::FromInt(to_boolean_value ? 1 : 0);
2551 }
2552
2553
patch(Code * code)2554 void ToBooleanIC::patch(Code* code) {
2555 set_target(code);
2556 }
2557
2558
2559 static const Address IC_utilities[] = {
2560 #define ADDR(name) FUNCTION_ADDR(name),
2561 IC_UTIL_LIST(ADDR)
2562 NULL
2563 #undef ADDR
2564 };
2565
2566
AddressFromUtilityId(IC::UtilityId id)2567 Address IC::AddressFromUtilityId(IC::UtilityId id) {
2568 return IC_utilities[id];
2569 }
2570
2571
2572 } } // namespace v8::internal
2573