1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Redistribution and use in source and binary forms, with or without
3 // modification, are permitted provided that the following conditions are
4 // met:
5 //
6 // * Redistributions of source code must retain the above copyright
7 // notice, this list of conditions and the following disclaimer.
8 // * Redistributions in binary form must reproduce the above
9 // copyright notice, this list of conditions and the following
10 // disclaimer in the documentation and/or other materials provided
11 // with the distribution.
12 // * Neither the name of Google Inc. nor the names of its
13 // contributors may be used to endorse or promote products derived
14 // from this software without specific prior written permission.
15 //
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28 // Platform specific code for Solaris 10 goes here. For the POSIX comaptible
29 // parts the implementation is in platform-posix.cc.
30
31 #ifdef __sparc
32 # error "V8 does not support the SPARC CPU architecture."
33 #endif
34
35 #include <sys/stack.h> // for stack alignment
36 #include <unistd.h> // getpagesize(), usleep()
37 #include <sys/mman.h> // mmap()
38 #include <ucontext.h> // walkstack(), getcontext()
39 #include <dlfcn.h> // dladdr
40 #include <pthread.h>
41 #include <sched.h> // for sched_yield
42 #include <semaphore.h>
43 #include <time.h>
44 #include <sys/time.h> // gettimeofday(), timeradd()
45 #include <errno.h>
46 #include <ieeefp.h> // finite()
47 #include <signal.h> // sigemptyset(), etc
48 #include <sys/regset.h>
49
50
51 #undef MAP_TYPE
52
53 #include "v8.h"
54
55 #include "platform-posix.h"
56 #include "platform.h"
57 #include "v8threads.h"
58 #include "vm-state-inl.h"
59
60
61 // It seems there is a bug in some Solaris distributions (experienced in
62 // SunOS 5.10 Generic_141445-09) which make it difficult or impossible to
63 // access signbit() despite the availability of other C99 math functions.
64 #ifndef signbit
65 // Test sign - usually defined in math.h
signbit(double x)66 int signbit(double x) {
67 // We need to take care of the special case of both positive and negative
68 // versions of zero.
69 if (x == 0) {
70 return fpclass(x) & FP_NZERO;
71 } else {
72 // This won't detect negative NaN but that should be okay since we don't
73 // assume that behavior.
74 return x < 0;
75 }
76 }
77 #endif // signbit
78
79 namespace v8 {
80 namespace internal {
81
82
83 // 0 is never a valid thread id on Solaris since the main thread is 1 and
84 // subsequent have their ids incremented from there
85 static const pthread_t kNoThread = (pthread_t) 0;
86
87
ceiling(double x)88 double ceiling(double x) {
89 return ceil(x);
90 }
91
92
93 static Mutex* limit_mutex = NULL;
SetUp()94 void OS::SetUp() {
95 // Seed the random number generator.
96 // Convert the current time to a 64-bit integer first, before converting it
97 // to an unsigned. Going directly will cause an overflow and the seed to be
98 // set to all ones. The seed will be identical for different instances that
99 // call this setup code within the same millisecond.
100 uint64_t seed = static_cast<uint64_t>(TimeCurrentMillis());
101 srandom(static_cast<unsigned int>(seed));
102 limit_mutex = CreateMutex();
103 }
104
105
PostSetUp()106 void OS::PostSetUp() {
107 // Math functions depend on CPU features therefore they are initialized after
108 // CPU.
109 MathSetup();
110 }
111
112
CpuFeaturesImpliedByPlatform()113 uint64_t OS::CpuFeaturesImpliedByPlatform() {
114 return 0; // Solaris runs on a lot of things.
115 }
116
117
ActivationFrameAlignment()118 int OS::ActivationFrameAlignment() {
119 // GCC generates code that requires 16 byte alignment such as movdqa.
120 return Max(STACK_ALIGN, 16);
121 }
122
123
ReleaseStore(volatile AtomicWord * ptr,AtomicWord value)124 void OS::ReleaseStore(volatile AtomicWord* ptr, AtomicWord value) {
125 __asm__ __volatile__("" : : : "memory");
126 *ptr = value;
127 }
128
129
LocalTimezone(double time)130 const char* OS::LocalTimezone(double time) {
131 if (isnan(time)) return "";
132 time_t tv = static_cast<time_t>(floor(time/msPerSecond));
133 struct tm* t = localtime(&tv);
134 if (NULL == t) return "";
135 return tzname[0]; // The location of the timezone string on Solaris.
136 }
137
138
LocalTimeOffset()139 double OS::LocalTimeOffset() {
140 // On Solaris, struct tm does not contain a tm_gmtoff field.
141 time_t utc = time(NULL);
142 ASSERT(utc != -1);
143 struct tm* loc = localtime(&utc);
144 ASSERT(loc != NULL);
145 return static_cast<double>((mktime(loc) - utc) * msPerSecond);
146 }
147
148
149 // We keep the lowest and highest addresses mapped as a quick way of
150 // determining that pointers are outside the heap (used mostly in assertions
151 // and verification). The estimate is conservative, i.e., not all addresses in
152 // 'allocated' space are actually allocated to our heap. The range is
153 // [lowest, highest), inclusive on the low and and exclusive on the high end.
154 static void* lowest_ever_allocated = reinterpret_cast<void*>(-1);
155 static void* highest_ever_allocated = reinterpret_cast<void*>(0);
156
157
UpdateAllocatedSpaceLimits(void * address,int size)158 static void UpdateAllocatedSpaceLimits(void* address, int size) {
159 ASSERT(limit_mutex != NULL);
160 ScopedLock lock(limit_mutex);
161
162 lowest_ever_allocated = Min(lowest_ever_allocated, address);
163 highest_ever_allocated =
164 Max(highest_ever_allocated,
165 reinterpret_cast<void*>(reinterpret_cast<char*>(address) + size));
166 }
167
168
IsOutsideAllocatedSpace(void * address)169 bool OS::IsOutsideAllocatedSpace(void* address) {
170 return address < lowest_ever_allocated || address >= highest_ever_allocated;
171 }
172
173
AllocateAlignment()174 size_t OS::AllocateAlignment() {
175 return static_cast<size_t>(getpagesize());
176 }
177
178
Allocate(const size_t requested,size_t * allocated,bool is_executable)179 void* OS::Allocate(const size_t requested,
180 size_t* allocated,
181 bool is_executable) {
182 const size_t msize = RoundUp(requested, getpagesize());
183 int prot = PROT_READ | PROT_WRITE | (is_executable ? PROT_EXEC : 0);
184 void* mbase = mmap(NULL, msize, prot, MAP_PRIVATE | MAP_ANON, -1, 0);
185
186 if (mbase == MAP_FAILED) {
187 LOG(ISOLATE, StringEvent("OS::Allocate", "mmap failed"));
188 return NULL;
189 }
190 *allocated = msize;
191 UpdateAllocatedSpaceLimits(mbase, msize);
192 return mbase;
193 }
194
195
Free(void * address,const size_t size)196 void OS::Free(void* address, const size_t size) {
197 // TODO(1240712): munmap has a return value which is ignored here.
198 int result = munmap(address, size);
199 USE(result);
200 ASSERT(result == 0);
201 }
202
203
Sleep(int milliseconds)204 void OS::Sleep(int milliseconds) {
205 useconds_t ms = static_cast<useconds_t>(milliseconds);
206 usleep(1000 * ms);
207 }
208
209
Abort()210 void OS::Abort() {
211 // Redirect to std abort to signal abnormal program termination.
212 abort();
213 }
214
215
DebugBreak()216 void OS::DebugBreak() {
217 asm("int $3");
218 }
219
220
221 class PosixMemoryMappedFile : public OS::MemoryMappedFile {
222 public:
PosixMemoryMappedFile(FILE * file,void * memory,int size)223 PosixMemoryMappedFile(FILE* file, void* memory, int size)
224 : file_(file), memory_(memory), size_(size) { }
225 virtual ~PosixMemoryMappedFile();
memory()226 virtual void* memory() { return memory_; }
size()227 virtual int size() { return size_; }
228 private:
229 FILE* file_;
230 void* memory_;
231 int size_;
232 };
233
234
open(const char * name)235 OS::MemoryMappedFile* OS::MemoryMappedFile::open(const char* name) {
236 FILE* file = fopen(name, "r+");
237 if (file == NULL) return NULL;
238
239 fseek(file, 0, SEEK_END);
240 int size = ftell(file);
241
242 void* memory =
243 mmap(0, size, PROT_READ | PROT_WRITE, MAP_SHARED, fileno(file), 0);
244 return new PosixMemoryMappedFile(file, memory, size);
245 }
246
247
create(const char * name,int size,void * initial)248 OS::MemoryMappedFile* OS::MemoryMappedFile::create(const char* name, int size,
249 void* initial) {
250 FILE* file = fopen(name, "w+");
251 if (file == NULL) return NULL;
252 int result = fwrite(initial, size, 1, file);
253 if (result < 1) {
254 fclose(file);
255 return NULL;
256 }
257 void* memory =
258 mmap(0, size, PROT_READ | PROT_WRITE, MAP_SHARED, fileno(file), 0);
259 return new PosixMemoryMappedFile(file, memory, size);
260 }
261
262
~PosixMemoryMappedFile()263 PosixMemoryMappedFile::~PosixMemoryMappedFile() {
264 if (memory_) munmap(memory_, size_);
265 fclose(file_);
266 }
267
268
LogSharedLibraryAddresses()269 void OS::LogSharedLibraryAddresses() {
270 }
271
272
SignalCodeMovingGC()273 void OS::SignalCodeMovingGC() {
274 }
275
276
277 struct StackWalker {
278 Vector<OS::StackFrame>& frames;
279 int index;
280 };
281
282
StackWalkCallback(uintptr_t pc,int signo,void * data)283 static int StackWalkCallback(uintptr_t pc, int signo, void* data) {
284 struct StackWalker* walker = static_cast<struct StackWalker*>(data);
285 Dl_info info;
286
287 int i = walker->index;
288
289 walker->frames[i].address = reinterpret_cast<void*>(pc);
290
291 // Make sure line termination is in place.
292 walker->frames[i].text[OS::kStackWalkMaxTextLen - 1] = '\0';
293
294 Vector<char> text = MutableCStrVector(walker->frames[i].text,
295 OS::kStackWalkMaxTextLen);
296
297 if (dladdr(reinterpret_cast<void*>(pc), &info) == 0) {
298 OS::SNPrintF(text, "[0x%p]", pc);
299 } else if ((info.dli_fname != NULL && info.dli_sname != NULL)) {
300 // We have symbol info.
301 OS::SNPrintF(text, "%s'%s+0x%x", info.dli_fname, info.dli_sname, pc);
302 } else {
303 // No local symbol info.
304 OS::SNPrintF(text,
305 "%s'0x%p [0x%p]",
306 info.dli_fname,
307 pc - reinterpret_cast<uintptr_t>(info.dli_fbase),
308 pc);
309 }
310 walker->index++;
311 return 0;
312 }
313
314
StackWalk(Vector<OS::StackFrame> frames)315 int OS::StackWalk(Vector<OS::StackFrame> frames) {
316 ucontext_t ctx;
317 struct StackWalker walker = { frames, 0 };
318
319 if (getcontext(&ctx) < 0) return kStackWalkError;
320
321 if (!walkcontext(&ctx, StackWalkCallback, &walker)) {
322 return kStackWalkError;
323 }
324
325 return walker.index;
326 }
327
328
329 // Constants used for mmap.
330 static const int kMmapFd = -1;
331 static const int kMmapFdOffset = 0;
332
333
VirtualMemory()334 VirtualMemory::VirtualMemory() : address_(NULL), size_(0) { }
335
VirtualMemory(size_t size)336 VirtualMemory::VirtualMemory(size_t size) {
337 address_ = ReserveRegion(size);
338 size_ = size;
339 }
340
341
VirtualMemory(size_t size,size_t alignment)342 VirtualMemory::VirtualMemory(size_t size, size_t alignment)
343 : address_(NULL), size_(0) {
344 ASSERT(IsAligned(alignment, static_cast<intptr_t>(OS::AllocateAlignment())));
345 size_t request_size = RoundUp(size + alignment,
346 static_cast<intptr_t>(OS::AllocateAlignment()));
347 void* reservation = mmap(OS::GetRandomMmapAddr(),
348 request_size,
349 PROT_NONE,
350 MAP_PRIVATE | MAP_ANONYMOUS | MAP_NORESERVE,
351 kMmapFd,
352 kMmapFdOffset);
353 if (reservation == MAP_FAILED) return;
354
355 Address base = static_cast<Address>(reservation);
356 Address aligned_base = RoundUp(base, alignment);
357 ASSERT_LE(base, aligned_base);
358
359 // Unmap extra memory reserved before and after the desired block.
360 if (aligned_base != base) {
361 size_t prefix_size = static_cast<size_t>(aligned_base - base);
362 OS::Free(base, prefix_size);
363 request_size -= prefix_size;
364 }
365
366 size_t aligned_size = RoundUp(size, OS::AllocateAlignment());
367 ASSERT_LE(aligned_size, request_size);
368
369 if (aligned_size != request_size) {
370 size_t suffix_size = request_size - aligned_size;
371 OS::Free(aligned_base + aligned_size, suffix_size);
372 request_size -= suffix_size;
373 }
374
375 ASSERT(aligned_size == request_size);
376
377 address_ = static_cast<void*>(aligned_base);
378 size_ = aligned_size;
379 }
380
381
~VirtualMemory()382 VirtualMemory::~VirtualMemory() {
383 if (IsReserved()) {
384 bool result = ReleaseRegion(address(), size());
385 ASSERT(result);
386 USE(result);
387 }
388 }
389
390
IsReserved()391 bool VirtualMemory::IsReserved() {
392 return address_ != NULL;
393 }
394
395
Reset()396 void VirtualMemory::Reset() {
397 address_ = NULL;
398 size_ = 0;
399 }
400
401
Commit(void * address,size_t size,bool is_executable)402 bool VirtualMemory::Commit(void* address, size_t size, bool is_executable) {
403 return CommitRegion(address, size, is_executable);
404 }
405
406
Uncommit(void * address,size_t size)407 bool VirtualMemory::Uncommit(void* address, size_t size) {
408 return UncommitRegion(address, size);
409 }
410
411
Guard(void * address)412 bool VirtualMemory::Guard(void* address) {
413 OS::Guard(address, OS::CommitPageSize());
414 return true;
415 }
416
417
ReserveRegion(size_t size)418 void* VirtualMemory::ReserveRegion(size_t size) {
419 void* result = mmap(OS::GetRandomMmapAddr(),
420 size,
421 PROT_NONE,
422 MAP_PRIVATE | MAP_ANONYMOUS | MAP_NORESERVE,
423 kMmapFd,
424 kMmapFdOffset);
425
426 if (result == MAP_FAILED) return NULL;
427
428 return result;
429 }
430
431
CommitRegion(void * base,size_t size,bool is_executable)432 bool VirtualMemory::CommitRegion(void* base, size_t size, bool is_executable) {
433 int prot = PROT_READ | PROT_WRITE | (is_executable ? PROT_EXEC : 0);
434 if (MAP_FAILED == mmap(base,
435 size,
436 prot,
437 MAP_PRIVATE | MAP_ANONYMOUS | MAP_FIXED,
438 kMmapFd,
439 kMmapFdOffset)) {
440 return false;
441 }
442
443 UpdateAllocatedSpaceLimits(base, size);
444 return true;
445 }
446
447
UncommitRegion(void * base,size_t size)448 bool VirtualMemory::UncommitRegion(void* base, size_t size) {
449 return mmap(base,
450 size,
451 PROT_NONE,
452 MAP_PRIVATE | MAP_ANONYMOUS | MAP_NORESERVE | MAP_FIXED,
453 kMmapFd,
454 kMmapFdOffset) != MAP_FAILED;
455 }
456
457
ReleaseRegion(void * base,size_t size)458 bool VirtualMemory::ReleaseRegion(void* base, size_t size) {
459 return munmap(base, size) == 0;
460 }
461
462
463 class Thread::PlatformData : public Malloced {
464 public:
PlatformData()465 PlatformData() : thread_(kNoThread) { }
466
467 pthread_t thread_; // Thread handle for pthread.
468 };
469
470
Thread(const Options & options)471 Thread::Thread(const Options& options)
472 : data_(new PlatformData()),
473 stack_size_(options.stack_size()) {
474 set_name(options.name());
475 }
476
477
~Thread()478 Thread::~Thread() {
479 delete data_;
480 }
481
482
ThreadEntry(void * arg)483 static void* ThreadEntry(void* arg) {
484 Thread* thread = reinterpret_cast<Thread*>(arg);
485 // This is also initialized by the first argument to pthread_create() but we
486 // don't know which thread will run first (the original thread or the new
487 // one) so we initialize it here too.
488 thread->data()->thread_ = pthread_self();
489 ASSERT(thread->data()->thread_ != kNoThread);
490 thread->Run();
491 return NULL;
492 }
493
494
set_name(const char * name)495 void Thread::set_name(const char* name) {
496 strncpy(name_, name, sizeof(name_));
497 name_[sizeof(name_) - 1] = '\0';
498 }
499
500
Start()501 void Thread::Start() {
502 pthread_attr_t* attr_ptr = NULL;
503 pthread_attr_t attr;
504 if (stack_size_ > 0) {
505 pthread_attr_init(&attr);
506 pthread_attr_setstacksize(&attr, static_cast<size_t>(stack_size_));
507 attr_ptr = &attr;
508 }
509 pthread_create(&data_->thread_, NULL, ThreadEntry, this);
510 ASSERT(data_->thread_ != kNoThread);
511 }
512
513
Join()514 void Thread::Join() {
515 pthread_join(data_->thread_, NULL);
516 }
517
518
CreateThreadLocalKey()519 Thread::LocalStorageKey Thread::CreateThreadLocalKey() {
520 pthread_key_t key;
521 int result = pthread_key_create(&key, NULL);
522 USE(result);
523 ASSERT(result == 0);
524 return static_cast<LocalStorageKey>(key);
525 }
526
527
DeleteThreadLocalKey(LocalStorageKey key)528 void Thread::DeleteThreadLocalKey(LocalStorageKey key) {
529 pthread_key_t pthread_key = static_cast<pthread_key_t>(key);
530 int result = pthread_key_delete(pthread_key);
531 USE(result);
532 ASSERT(result == 0);
533 }
534
535
GetThreadLocal(LocalStorageKey key)536 void* Thread::GetThreadLocal(LocalStorageKey key) {
537 pthread_key_t pthread_key = static_cast<pthread_key_t>(key);
538 return pthread_getspecific(pthread_key);
539 }
540
541
SetThreadLocal(LocalStorageKey key,void * value)542 void Thread::SetThreadLocal(LocalStorageKey key, void* value) {
543 pthread_key_t pthread_key = static_cast<pthread_key_t>(key);
544 pthread_setspecific(pthread_key, value);
545 }
546
547
YieldCPU()548 void Thread::YieldCPU() {
549 sched_yield();
550 }
551
552
553 class SolarisMutex : public Mutex {
554 public:
SolarisMutex()555 SolarisMutex() {
556 pthread_mutexattr_t attr;
557 pthread_mutexattr_init(&attr);
558 pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_RECURSIVE);
559 pthread_mutex_init(&mutex_, &attr);
560 }
561
~SolarisMutex()562 ~SolarisMutex() { pthread_mutex_destroy(&mutex_); }
563
Lock()564 int Lock() { return pthread_mutex_lock(&mutex_); }
565
Unlock()566 int Unlock() { return pthread_mutex_unlock(&mutex_); }
567
TryLock()568 virtual bool TryLock() {
569 int result = pthread_mutex_trylock(&mutex_);
570 // Return false if the lock is busy and locking failed.
571 if (result == EBUSY) {
572 return false;
573 }
574 ASSERT(result == 0); // Verify no other errors.
575 return true;
576 }
577
578 private:
579 pthread_mutex_t mutex_;
580 };
581
582
CreateMutex()583 Mutex* OS::CreateMutex() {
584 return new SolarisMutex();
585 }
586
587
588 class SolarisSemaphore : public Semaphore {
589 public:
SolarisSemaphore(int count)590 explicit SolarisSemaphore(int count) { sem_init(&sem_, 0, count); }
~SolarisSemaphore()591 virtual ~SolarisSemaphore() { sem_destroy(&sem_); }
592
593 virtual void Wait();
594 virtual bool Wait(int timeout);
Signal()595 virtual void Signal() { sem_post(&sem_); }
596 private:
597 sem_t sem_;
598 };
599
600
Wait()601 void SolarisSemaphore::Wait() {
602 while (true) {
603 int result = sem_wait(&sem_);
604 if (result == 0) return; // Successfully got semaphore.
605 CHECK(result == -1 && errno == EINTR); // Signal caused spurious wakeup.
606 }
607 }
608
609
610 #ifndef TIMEVAL_TO_TIMESPEC
611 #define TIMEVAL_TO_TIMESPEC(tv, ts) do { \
612 (ts)->tv_sec = (tv)->tv_sec; \
613 (ts)->tv_nsec = (tv)->tv_usec * 1000; \
614 } while (false)
615 #endif
616
617
618 #ifndef timeradd
619 #define timeradd(a, b, result) \
620 do { \
621 (result)->tv_sec = (a)->tv_sec + (b)->tv_sec; \
622 (result)->tv_usec = (a)->tv_usec + (b)->tv_usec; \
623 if ((result)->tv_usec >= 1000000) { \
624 ++(result)->tv_sec; \
625 (result)->tv_usec -= 1000000; \
626 } \
627 } while (0)
628 #endif
629
630
Wait(int timeout)631 bool SolarisSemaphore::Wait(int timeout) {
632 const long kOneSecondMicros = 1000000; // NOLINT
633
634 // Split timeout into second and nanosecond parts.
635 struct timeval delta;
636 delta.tv_usec = timeout % kOneSecondMicros;
637 delta.tv_sec = timeout / kOneSecondMicros;
638
639 struct timeval current_time;
640 // Get the current time.
641 if (gettimeofday(¤t_time, NULL) == -1) {
642 return false;
643 }
644
645 // Calculate time for end of timeout.
646 struct timeval end_time;
647 timeradd(¤t_time, &delta, &end_time);
648
649 struct timespec ts;
650 TIMEVAL_TO_TIMESPEC(&end_time, &ts);
651 // Wait for semaphore signalled or timeout.
652 while (true) {
653 int result = sem_timedwait(&sem_, &ts);
654 if (result == 0) return true; // Successfully got semaphore.
655 if (result == -1 && errno == ETIMEDOUT) return false; // Timeout.
656 CHECK(result == -1 && errno == EINTR); // Signal caused spurious wakeup.
657 }
658 }
659
660
CreateSemaphore(int count)661 Semaphore* OS::CreateSemaphore(int count) {
662 return new SolarisSemaphore(count);
663 }
664
665
GetThreadID()666 static pthread_t GetThreadID() {
667 return pthread_self();
668 }
669
ProfilerSignalHandler(int signal,siginfo_t * info,void * context)670 static void ProfilerSignalHandler(int signal, siginfo_t* info, void* context) {
671 USE(info);
672 if (signal != SIGPROF) return;
673 Isolate* isolate = Isolate::UncheckedCurrent();
674 if (isolate == NULL || !isolate->IsInitialized() || !isolate->IsInUse()) {
675 // We require a fully initialized and entered isolate.
676 return;
677 }
678 if (v8::Locker::IsActive() &&
679 !isolate->thread_manager()->IsLockedByCurrentThread()) {
680 return;
681 }
682
683 Sampler* sampler = isolate->logger()->sampler();
684 if (sampler == NULL || !sampler->IsActive()) return;
685
686 TickSample sample_obj;
687 TickSample* sample = CpuProfiler::TickSampleEvent(isolate);
688 if (sample == NULL) sample = &sample_obj;
689
690 // Extracting the sample from the context is extremely machine dependent.
691 ucontext_t* ucontext = reinterpret_cast<ucontext_t*>(context);
692 mcontext_t& mcontext = ucontext->uc_mcontext;
693 sample->state = isolate->current_vm_state();
694
695 sample->pc = reinterpret_cast<Address>(mcontext.gregs[REG_PC]);
696 sample->sp = reinterpret_cast<Address>(mcontext.gregs[REG_SP]);
697 sample->fp = reinterpret_cast<Address>(mcontext.gregs[REG_FP]);
698
699 sampler->SampleStack(sample);
700 sampler->Tick(sample);
701 }
702
703 class Sampler::PlatformData : public Malloced {
704 public:
PlatformData()705 PlatformData() : vm_tid_(GetThreadID()) {}
706
vm_tid() const707 pthread_t vm_tid() const { return vm_tid_; }
708
709 private:
710 pthread_t vm_tid_;
711 };
712
713
714 class SignalSender : public Thread {
715 public:
716 enum SleepInterval {
717 HALF_INTERVAL,
718 FULL_INTERVAL
719 };
720
721 static const int kSignalSenderStackSize = 64 * KB;
722
SignalSender(int interval)723 explicit SignalSender(int interval)
724 : Thread(Thread::Options("SignalSender", kSignalSenderStackSize)),
725 interval_(interval) {}
726
InstallSignalHandler()727 static void InstallSignalHandler() {
728 struct sigaction sa;
729 sa.sa_sigaction = ProfilerSignalHandler;
730 sigemptyset(&sa.sa_mask);
731 sa.sa_flags = SA_RESTART | SA_SIGINFO;
732 signal_handler_installed_ =
733 (sigaction(SIGPROF, &sa, &old_signal_handler_) == 0);
734 }
735
RestoreSignalHandler()736 static void RestoreSignalHandler() {
737 if (signal_handler_installed_) {
738 sigaction(SIGPROF, &old_signal_handler_, 0);
739 signal_handler_installed_ = false;
740 }
741 }
742
AddActiveSampler(Sampler * sampler)743 static void AddActiveSampler(Sampler* sampler) {
744 ScopedLock lock(mutex_.Pointer());
745 SamplerRegistry::AddActiveSampler(sampler);
746 if (instance_ == NULL) {
747 // Start a thread that will send SIGPROF signal to VM threads,
748 // when CPU profiling will be enabled.
749 instance_ = new SignalSender(sampler->interval());
750 instance_->Start();
751 } else {
752 ASSERT(instance_->interval_ == sampler->interval());
753 }
754 }
755
RemoveActiveSampler(Sampler * sampler)756 static void RemoveActiveSampler(Sampler* sampler) {
757 ScopedLock lock(mutex_.Pointer());
758 SamplerRegistry::RemoveActiveSampler(sampler);
759 if (SamplerRegistry::GetState() == SamplerRegistry::HAS_NO_SAMPLERS) {
760 RuntimeProfiler::StopRuntimeProfilerThreadBeforeShutdown(instance_);
761 delete instance_;
762 instance_ = NULL;
763 RestoreSignalHandler();
764 }
765 }
766
767 // Implement Thread::Run().
Run()768 virtual void Run() {
769 SamplerRegistry::State state;
770 while ((state = SamplerRegistry::GetState()) !=
771 SamplerRegistry::HAS_NO_SAMPLERS) {
772 bool cpu_profiling_enabled =
773 (state == SamplerRegistry::HAS_CPU_PROFILING_SAMPLERS);
774 bool runtime_profiler_enabled = RuntimeProfiler::IsEnabled();
775 if (cpu_profiling_enabled && !signal_handler_installed_) {
776 InstallSignalHandler();
777 } else if (!cpu_profiling_enabled && signal_handler_installed_) {
778 RestoreSignalHandler();
779 }
780
781 // When CPU profiling is enabled both JavaScript and C++ code is
782 // profiled. We must not suspend.
783 if (!cpu_profiling_enabled) {
784 if (rate_limiter_.SuspendIfNecessary()) continue;
785 }
786 if (cpu_profiling_enabled && runtime_profiler_enabled) {
787 if (!SamplerRegistry::IterateActiveSamplers(&DoCpuProfile, this)) {
788 return;
789 }
790 Sleep(HALF_INTERVAL);
791 if (!SamplerRegistry::IterateActiveSamplers(&DoRuntimeProfile, NULL)) {
792 return;
793 }
794 Sleep(HALF_INTERVAL);
795 } else {
796 if (cpu_profiling_enabled) {
797 if (!SamplerRegistry::IterateActiveSamplers(&DoCpuProfile,
798 this)) {
799 return;
800 }
801 }
802 if (runtime_profiler_enabled) {
803 if (!SamplerRegistry::IterateActiveSamplers(&DoRuntimeProfile,
804 NULL)) {
805 return;
806 }
807 }
808 Sleep(FULL_INTERVAL);
809 }
810 }
811 }
812
DoCpuProfile(Sampler * sampler,void * raw_sender)813 static void DoCpuProfile(Sampler* sampler, void* raw_sender) {
814 if (!sampler->IsProfiling()) return;
815 SignalSender* sender = reinterpret_cast<SignalSender*>(raw_sender);
816 sender->SendProfilingSignal(sampler->platform_data()->vm_tid());
817 }
818
DoRuntimeProfile(Sampler * sampler,void * ignored)819 static void DoRuntimeProfile(Sampler* sampler, void* ignored) {
820 if (!sampler->isolate()->IsInitialized()) return;
821 sampler->isolate()->runtime_profiler()->NotifyTick();
822 }
823
SendProfilingSignal(pthread_t tid)824 void SendProfilingSignal(pthread_t tid) {
825 if (!signal_handler_installed_) return;
826 pthread_kill(tid, SIGPROF);
827 }
828
Sleep(SleepInterval full_or_half)829 void Sleep(SleepInterval full_or_half) {
830 // Convert ms to us and subtract 100 us to compensate delays
831 // occuring during signal delivery.
832 useconds_t interval = interval_ * 1000 - 100;
833 if (full_or_half == HALF_INTERVAL) interval /= 2;
834 int result = usleep(interval);
835 #ifdef DEBUG
836 if (result != 0 && errno != EINTR) {
837 fprintf(stderr,
838 "SignalSender usleep error; interval = %u, errno = %d\n",
839 interval,
840 errno);
841 ASSERT(result == 0 || errno == EINTR);
842 }
843 #endif
844 USE(result);
845 }
846
847 const int interval_;
848 RuntimeProfilerRateLimiter rate_limiter_;
849
850 // Protects the process wide state below.
851 static LazyMutex mutex_;
852 static SignalSender* instance_;
853 static bool signal_handler_installed_;
854 static struct sigaction old_signal_handler_;
855
856 private:
857 DISALLOW_COPY_AND_ASSIGN(SignalSender);
858 };
859
860 LazyMutex SignalSender::mutex_ = LAZY_MUTEX_INITIALIZER;
861 SignalSender* SignalSender::instance_ = NULL;
862 struct sigaction SignalSender::old_signal_handler_;
863 bool SignalSender::signal_handler_installed_ = false;
864
865
Sampler(Isolate * isolate,int interval)866 Sampler::Sampler(Isolate* isolate, int interval)
867 : isolate_(isolate),
868 interval_(interval),
869 profiling_(false),
870 active_(false),
871 samples_taken_(0) {
872 data_ = new PlatformData;
873 }
874
875
~Sampler()876 Sampler::~Sampler() {
877 ASSERT(!IsActive());
878 delete data_;
879 }
880
881
Start()882 void Sampler::Start() {
883 ASSERT(!IsActive());
884 SetActive(true);
885 SignalSender::AddActiveSampler(this);
886 }
887
888
Stop()889 void Sampler::Stop() {
890 ASSERT(IsActive());
891 SignalSender::RemoveActiveSampler(this);
892 SetActive(false);
893 }
894
895 } } // namespace v8::internal
896