• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Redistribution and use in source and binary forms, with or without
3 // modification, are permitted provided that the following conditions are
4 // met:
5 //
6 //     * Redistributions of source code must retain the above copyright
7 //       notice, this list of conditions and the following disclaimer.
8 //     * Redistributions in binary form must reproduce the above
9 //       copyright notice, this list of conditions and the following
10 //       disclaimer in the documentation and/or other materials provided
11 //       with the distribution.
12 //     * Neither the name of Google Inc. nor the names of its
13 //       contributors may be used to endorse or promote products derived
14 //       from this software without specific prior written permission.
15 //
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 
28 #ifndef V8_X64_ASSEMBLER_X64_INL_H_
29 #define V8_X64_ASSEMBLER_X64_INL_H_
30 
31 #include "x64/assembler-x64.h"
32 
33 #include "cpu.h"
34 #include "debug.h"
35 #include "v8memory.h"
36 
37 namespace v8 {
38 namespace internal {
39 
40 
41 // -----------------------------------------------------------------------------
42 // Implementation of Assembler
43 
44 
emitl(uint32_t x)45 void Assembler::emitl(uint32_t x) {
46   Memory::uint32_at(pc_) = x;
47   pc_ += sizeof(uint32_t);
48 }
49 
50 
emitq(uint64_t x,RelocInfo::Mode rmode)51 void Assembler::emitq(uint64_t x, RelocInfo::Mode rmode) {
52   Memory::uint64_at(pc_) = x;
53   if (rmode != RelocInfo::NONE) {
54     RecordRelocInfo(rmode, x);
55   }
56   pc_ += sizeof(uint64_t);
57 }
58 
59 
emitw(uint16_t x)60 void Assembler::emitw(uint16_t x) {
61   Memory::uint16_at(pc_) = x;
62   pc_ += sizeof(uint16_t);
63 }
64 
65 
emit_code_target(Handle<Code> target,RelocInfo::Mode rmode,unsigned ast_id)66 void Assembler::emit_code_target(Handle<Code> target,
67                                  RelocInfo::Mode rmode,
68                                  unsigned ast_id) {
69   ASSERT(RelocInfo::IsCodeTarget(rmode));
70   if (rmode == RelocInfo::CODE_TARGET && ast_id != kNoASTId) {
71     RecordRelocInfo(RelocInfo::CODE_TARGET_WITH_ID, ast_id);
72   } else {
73     RecordRelocInfo(rmode);
74   }
75   int current = code_targets_.length();
76   if (current > 0 && code_targets_.last().is_identical_to(target)) {
77     // Optimization if we keep jumping to the same code target.
78     emitl(current - 1);
79   } else {
80     code_targets_.Add(target);
81     emitl(current);
82   }
83 }
84 
85 
emit_rex_64(Register reg,Register rm_reg)86 void Assembler::emit_rex_64(Register reg, Register rm_reg) {
87   emit(0x48 | reg.high_bit() << 2 | rm_reg.high_bit());
88 }
89 
90 
emit_rex_64(XMMRegister reg,Register rm_reg)91 void Assembler::emit_rex_64(XMMRegister reg, Register rm_reg) {
92   emit(0x48 | (reg.code() & 0x8) >> 1 | rm_reg.code() >> 3);
93 }
94 
95 
emit_rex_64(Register reg,XMMRegister rm_reg)96 void Assembler::emit_rex_64(Register reg, XMMRegister rm_reg) {
97   emit(0x48 | (reg.code() & 0x8) >> 1 | rm_reg.code() >> 3);
98 }
99 
100 
emit_rex_64(Register reg,const Operand & op)101 void Assembler::emit_rex_64(Register reg, const Operand& op) {
102   emit(0x48 | reg.high_bit() << 2 | op.rex_);
103 }
104 
105 
emit_rex_64(XMMRegister reg,const Operand & op)106 void Assembler::emit_rex_64(XMMRegister reg, const Operand& op) {
107   emit(0x48 | (reg.code() & 0x8) >> 1 | op.rex_);
108 }
109 
110 
emit_rex_64(Register rm_reg)111 void Assembler::emit_rex_64(Register rm_reg) {
112   ASSERT_EQ(rm_reg.code() & 0xf, rm_reg.code());
113   emit(0x48 | rm_reg.high_bit());
114 }
115 
116 
emit_rex_64(const Operand & op)117 void Assembler::emit_rex_64(const Operand& op) {
118   emit(0x48 | op.rex_);
119 }
120 
121 
emit_rex_32(Register reg,Register rm_reg)122 void Assembler::emit_rex_32(Register reg, Register rm_reg) {
123   emit(0x40 | reg.high_bit() << 2 | rm_reg.high_bit());
124 }
125 
126 
emit_rex_32(Register reg,const Operand & op)127 void Assembler::emit_rex_32(Register reg, const Operand& op) {
128   emit(0x40 | reg.high_bit() << 2  | op.rex_);
129 }
130 
131 
emit_rex_32(Register rm_reg)132 void Assembler::emit_rex_32(Register rm_reg) {
133   emit(0x40 | rm_reg.high_bit());
134 }
135 
136 
emit_rex_32(const Operand & op)137 void Assembler::emit_rex_32(const Operand& op) {
138   emit(0x40 | op.rex_);
139 }
140 
141 
emit_optional_rex_32(Register reg,Register rm_reg)142 void Assembler::emit_optional_rex_32(Register reg, Register rm_reg) {
143   byte rex_bits = reg.high_bit() << 2 | rm_reg.high_bit();
144   if (rex_bits != 0) emit(0x40 | rex_bits);
145 }
146 
147 
emit_optional_rex_32(Register reg,const Operand & op)148 void Assembler::emit_optional_rex_32(Register reg, const Operand& op) {
149   byte rex_bits =  reg.high_bit() << 2 | op.rex_;
150   if (rex_bits != 0) emit(0x40 | rex_bits);
151 }
152 
153 
emit_optional_rex_32(XMMRegister reg,const Operand & op)154 void Assembler::emit_optional_rex_32(XMMRegister reg, const Operand& op) {
155   byte rex_bits =  (reg.code() & 0x8) >> 1 | op.rex_;
156   if (rex_bits != 0) emit(0x40 | rex_bits);
157 }
158 
159 
emit_optional_rex_32(XMMRegister reg,XMMRegister base)160 void Assembler::emit_optional_rex_32(XMMRegister reg, XMMRegister base) {
161   byte rex_bits =  (reg.code() & 0x8) >> 1 | (base.code() & 0x8) >> 3;
162   if (rex_bits != 0) emit(0x40 | rex_bits);
163 }
164 
165 
emit_optional_rex_32(XMMRegister reg,Register base)166 void Assembler::emit_optional_rex_32(XMMRegister reg, Register base) {
167   byte rex_bits =  (reg.code() & 0x8) >> 1 | (base.code() & 0x8) >> 3;
168   if (rex_bits != 0) emit(0x40 | rex_bits);
169 }
170 
171 
emit_optional_rex_32(Register reg,XMMRegister base)172 void Assembler::emit_optional_rex_32(Register reg, XMMRegister base) {
173   byte rex_bits =  (reg.code() & 0x8) >> 1 | (base.code() & 0x8) >> 3;
174   if (rex_bits != 0) emit(0x40 | rex_bits);
175 }
176 
177 
emit_optional_rex_32(Register rm_reg)178 void Assembler::emit_optional_rex_32(Register rm_reg) {
179   if (rm_reg.high_bit()) emit(0x41);
180 }
181 
182 
emit_optional_rex_32(const Operand & op)183 void Assembler::emit_optional_rex_32(const Operand& op) {
184   if (op.rex_ != 0) emit(0x40 | op.rex_);
185 }
186 
187 
target_address_at(Address pc)188 Address Assembler::target_address_at(Address pc) {
189   return Memory::int32_at(pc) + pc + 4;
190 }
191 
192 
set_target_address_at(Address pc,Address target)193 void Assembler::set_target_address_at(Address pc, Address target) {
194   Memory::int32_at(pc) = static_cast<int32_t>(target - pc - 4);
195   CPU::FlushICache(pc, sizeof(int32_t));
196 }
197 
code_target_object_handle_at(Address pc)198 Handle<Object> Assembler::code_target_object_handle_at(Address pc) {
199   return code_targets_[Memory::int32_at(pc)];
200 }
201 
202 // -----------------------------------------------------------------------------
203 // Implementation of RelocInfo
204 
205 // The modes possibly affected by apply must be in kApplyMask.
apply(intptr_t delta)206 void RelocInfo::apply(intptr_t delta) {
207   if (IsInternalReference(rmode_)) {
208     // absolute code pointer inside code object moves with the code object.
209     Memory::Address_at(pc_) += static_cast<int32_t>(delta);
210     CPU::FlushICache(pc_, sizeof(Address));
211   } else if (IsCodeTarget(rmode_)) {
212     Memory::int32_at(pc_) -= static_cast<int32_t>(delta);
213     CPU::FlushICache(pc_, sizeof(int32_t));
214   }
215 }
216 
217 
target_address()218 Address RelocInfo::target_address() {
219   ASSERT(IsCodeTarget(rmode_) || rmode_ == RUNTIME_ENTRY);
220   if (IsCodeTarget(rmode_)) {
221     return Assembler::target_address_at(pc_);
222   } else {
223     return Memory::Address_at(pc_);
224   }
225 }
226 
227 
target_address_address()228 Address RelocInfo::target_address_address() {
229   ASSERT(IsCodeTarget(rmode_) || rmode_ == RUNTIME_ENTRY
230                               || rmode_ == EMBEDDED_OBJECT
231                               || rmode_ == EXTERNAL_REFERENCE);
232   return reinterpret_cast<Address>(pc_);
233 }
234 
235 
target_address_size()236 int RelocInfo::target_address_size() {
237   if (IsCodedSpecially()) {
238     return Assembler::kSpecialTargetSize;
239   } else {
240     return kPointerSize;
241   }
242 }
243 
244 
set_target_address(Address target,WriteBarrierMode mode)245 void RelocInfo::set_target_address(Address target, WriteBarrierMode mode) {
246   ASSERT(IsCodeTarget(rmode_) || rmode_ == RUNTIME_ENTRY);
247   if (IsCodeTarget(rmode_)) {
248     Assembler::set_target_address_at(pc_, target);
249     Object* target_code = Code::GetCodeFromTargetAddress(target);
250     if (mode == UPDATE_WRITE_BARRIER && host() != NULL) {
251       host()->GetHeap()->incremental_marking()->RecordWriteIntoCode(
252           host(), this, HeapObject::cast(target_code));
253     }
254   } else {
255     Memory::Address_at(pc_) = target;
256     CPU::FlushICache(pc_, sizeof(Address));
257   }
258 }
259 
260 
target_object()261 Object* RelocInfo::target_object() {
262   ASSERT(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
263   return Memory::Object_at(pc_);
264 }
265 
266 
target_object_handle(Assembler * origin)267 Handle<Object> RelocInfo::target_object_handle(Assembler* origin) {
268   ASSERT(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
269   if (rmode_ == EMBEDDED_OBJECT) {
270     return Memory::Object_Handle_at(pc_);
271   } else {
272     return origin->code_target_object_handle_at(pc_);
273   }
274 }
275 
276 
target_object_address()277 Object** RelocInfo::target_object_address() {
278   ASSERT(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
279   return reinterpret_cast<Object**>(pc_);
280 }
281 
282 
target_reference_address()283 Address* RelocInfo::target_reference_address() {
284   ASSERT(rmode_ == RelocInfo::EXTERNAL_REFERENCE);
285   return reinterpret_cast<Address*>(pc_);
286 }
287 
288 
set_target_object(Object * target,WriteBarrierMode mode)289 void RelocInfo::set_target_object(Object* target, WriteBarrierMode mode) {
290   ASSERT(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
291   Memory::Object_at(pc_) = target;
292   CPU::FlushICache(pc_, sizeof(Address));
293   if (mode == UPDATE_WRITE_BARRIER &&
294       host() != NULL &&
295       target->IsHeapObject()) {
296     host()->GetHeap()->incremental_marking()->RecordWrite(
297         host(), &Memory::Object_at(pc_), HeapObject::cast(target));
298   }
299 }
300 
301 
target_cell_handle()302 Handle<JSGlobalPropertyCell> RelocInfo::target_cell_handle() {
303   ASSERT(rmode_ == RelocInfo::GLOBAL_PROPERTY_CELL);
304   Address address = Memory::Address_at(pc_);
305   return Handle<JSGlobalPropertyCell>(
306       reinterpret_cast<JSGlobalPropertyCell**>(address));
307 }
308 
309 
target_cell()310 JSGlobalPropertyCell* RelocInfo::target_cell() {
311   ASSERT(rmode_ == RelocInfo::GLOBAL_PROPERTY_CELL);
312   Address address = Memory::Address_at(pc_);
313   Object* object = HeapObject::FromAddress(
314       address - JSGlobalPropertyCell::kValueOffset);
315   return reinterpret_cast<JSGlobalPropertyCell*>(object);
316 }
317 
318 
set_target_cell(JSGlobalPropertyCell * cell,WriteBarrierMode mode)319 void RelocInfo::set_target_cell(JSGlobalPropertyCell* cell,
320                                 WriteBarrierMode mode) {
321   ASSERT(rmode_ == RelocInfo::GLOBAL_PROPERTY_CELL);
322   Address address = cell->address() + JSGlobalPropertyCell::kValueOffset;
323   Memory::Address_at(pc_) = address;
324   CPU::FlushICache(pc_, sizeof(Address));
325   if (mode == UPDATE_WRITE_BARRIER &&
326       host() != NULL) {
327     // TODO(1550) We are passing NULL as a slot because cell can never be on
328     // evacuation candidate.
329     host()->GetHeap()->incremental_marking()->RecordWrite(
330         host(), NULL, cell);
331   }
332 }
333 
334 
IsPatchedReturnSequence()335 bool RelocInfo::IsPatchedReturnSequence() {
336   // The recognized call sequence is:
337   //  movq(kScratchRegister, immediate64); call(kScratchRegister);
338   // It only needs to be distinguished from a return sequence
339   //  movq(rsp, rbp); pop(rbp); ret(n); int3 *6
340   // The 11th byte is int3 (0xCC) in the return sequence and
341   // REX.WB (0x48+register bit) for the call sequence.
342 #ifdef ENABLE_DEBUGGER_SUPPORT
343   return pc_[10] != 0xCC;
344 #else
345   return false;
346 #endif
347 }
348 
349 
IsPatchedDebugBreakSlotSequence()350 bool RelocInfo::IsPatchedDebugBreakSlotSequence() {
351   return !Assembler::IsNop(pc());
352 }
353 
354 
call_address()355 Address RelocInfo::call_address() {
356   ASSERT((IsJSReturn(rmode()) && IsPatchedReturnSequence()) ||
357          (IsDebugBreakSlot(rmode()) && IsPatchedDebugBreakSlotSequence()));
358   return Memory::Address_at(
359       pc_ + Assembler::kRealPatchReturnSequenceAddressOffset);
360 }
361 
362 
set_call_address(Address target)363 void RelocInfo::set_call_address(Address target) {
364   ASSERT((IsJSReturn(rmode()) && IsPatchedReturnSequence()) ||
365          (IsDebugBreakSlot(rmode()) && IsPatchedDebugBreakSlotSequence()));
366   Memory::Address_at(pc_ + Assembler::kRealPatchReturnSequenceAddressOffset) =
367       target;
368   CPU::FlushICache(pc_ + Assembler::kRealPatchReturnSequenceAddressOffset,
369                    sizeof(Address));
370   if (host() != NULL) {
371     Object* target_code = Code::GetCodeFromTargetAddress(target);
372     host()->GetHeap()->incremental_marking()->RecordWriteIntoCode(
373         host(), this, HeapObject::cast(target_code));
374   }
375 }
376 
377 
call_object()378 Object* RelocInfo::call_object() {
379   return *call_object_address();
380 }
381 
382 
set_call_object(Object * target)383 void RelocInfo::set_call_object(Object* target) {
384   *call_object_address() = target;
385 }
386 
387 
call_object_address()388 Object** RelocInfo::call_object_address() {
389   ASSERT((IsJSReturn(rmode()) && IsPatchedReturnSequence()) ||
390          (IsDebugBreakSlot(rmode()) && IsPatchedDebugBreakSlotSequence()));
391   return reinterpret_cast<Object**>(
392       pc_ + Assembler::kPatchReturnSequenceAddressOffset);
393 }
394 
395 
Visit(ObjectVisitor * visitor)396 void RelocInfo::Visit(ObjectVisitor* visitor) {
397   RelocInfo::Mode mode = rmode();
398   if (mode == RelocInfo::EMBEDDED_OBJECT) {
399     visitor->VisitEmbeddedPointer(this);
400     CPU::FlushICache(pc_, sizeof(Address));
401   } else if (RelocInfo::IsCodeTarget(mode)) {
402     visitor->VisitCodeTarget(this);
403   } else if (mode == RelocInfo::GLOBAL_PROPERTY_CELL) {
404     visitor->VisitGlobalPropertyCell(this);
405   } else if (mode == RelocInfo::EXTERNAL_REFERENCE) {
406     visitor->VisitExternalReference(this);
407     CPU::FlushICache(pc_, sizeof(Address));
408 #ifdef ENABLE_DEBUGGER_SUPPORT
409   // TODO(isolates): Get a cached isolate below.
410   } else if (((RelocInfo::IsJSReturn(mode) &&
411               IsPatchedReturnSequence()) ||
412              (RelocInfo::IsDebugBreakSlot(mode) &&
413               IsPatchedDebugBreakSlotSequence())) &&
414              Isolate::Current()->debug()->has_break_points()) {
415     visitor->VisitDebugTarget(this);
416 #endif
417   } else if (mode == RelocInfo::RUNTIME_ENTRY) {
418     visitor->VisitRuntimeEntry(this);
419   }
420 }
421 
422 
423 template<typename StaticVisitor>
Visit(Heap * heap)424 void RelocInfo::Visit(Heap* heap) {
425   RelocInfo::Mode mode = rmode();
426   if (mode == RelocInfo::EMBEDDED_OBJECT) {
427     StaticVisitor::VisitEmbeddedPointer(heap, this);
428     CPU::FlushICache(pc_, sizeof(Address));
429   } else if (RelocInfo::IsCodeTarget(mode)) {
430     StaticVisitor::VisitCodeTarget(heap, this);
431   } else if (mode == RelocInfo::GLOBAL_PROPERTY_CELL) {
432     StaticVisitor::VisitGlobalPropertyCell(heap, this);
433   } else if (mode == RelocInfo::EXTERNAL_REFERENCE) {
434     StaticVisitor::VisitExternalReference(this);
435     CPU::FlushICache(pc_, sizeof(Address));
436 #ifdef ENABLE_DEBUGGER_SUPPORT
437   } else if (heap->isolate()->debug()->has_break_points() &&
438              ((RelocInfo::IsJSReturn(mode) &&
439               IsPatchedReturnSequence()) ||
440              (RelocInfo::IsDebugBreakSlot(mode) &&
441               IsPatchedDebugBreakSlotSequence()))) {
442     StaticVisitor::VisitDebugTarget(heap, this);
443 #endif
444   } else if (mode == RelocInfo::RUNTIME_ENTRY) {
445     StaticVisitor::VisitRuntimeEntry(this);
446   }
447 }
448 
449 
450 // -----------------------------------------------------------------------------
451 // Implementation of Operand
452 
set_modrm(int mod,Register rm_reg)453 void Operand::set_modrm(int mod, Register rm_reg) {
454   ASSERT(is_uint2(mod));
455   buf_[0] = mod << 6 | rm_reg.low_bits();
456   // Set REX.B to the high bit of rm.code().
457   rex_ |= rm_reg.high_bit();
458 }
459 
460 
set_sib(ScaleFactor scale,Register index,Register base)461 void Operand::set_sib(ScaleFactor scale, Register index, Register base) {
462   ASSERT(len_ == 1);
463   ASSERT(is_uint2(scale));
464   // Use SIB with no index register only for base rsp or r12. Otherwise we
465   // would skip the SIB byte entirely.
466   ASSERT(!index.is(rsp) || base.is(rsp) || base.is(r12));
467   buf_[1] = (scale << 6) | (index.low_bits() << 3) | base.low_bits();
468   rex_ |= index.high_bit() << 1 | base.high_bit();
469   len_ = 2;
470 }
471 
set_disp8(int disp)472 void Operand::set_disp8(int disp) {
473   ASSERT(is_int8(disp));
474   ASSERT(len_ == 1 || len_ == 2);
475   int8_t* p = reinterpret_cast<int8_t*>(&buf_[len_]);
476   *p = disp;
477   len_ += sizeof(int8_t);
478 }
479 
set_disp32(int disp)480 void Operand::set_disp32(int disp) {
481   ASSERT(len_ == 1 || len_ == 2);
482   int32_t* p = reinterpret_cast<int32_t*>(&buf_[len_]);
483   *p = disp;
484   len_ += sizeof(int32_t);
485 }
486 
487 
488 } }  // namespace v8::internal
489 
490 #endif  // V8_X64_ASSEMBLER_X64_INL_H_
491