1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Redistribution and use in source and binary forms, with or without
3 // modification, are permitted provided that the following conditions are
4 // met:
5 //
6 // * Redistributions of source code must retain the above copyright
7 // notice, this list of conditions and the following disclaimer.
8 // * Redistributions in binary form must reproduce the above
9 // copyright notice, this list of conditions and the following
10 // disclaimer in the documentation and/or other materials provided
11 // with the distribution.
12 // * Neither the name of Google Inc. nor the names of its
13 // contributors may be used to endorse or promote products derived
14 // from this software without specific prior written permission.
15 //
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28 #ifndef V8_X64_ASSEMBLER_X64_INL_H_
29 #define V8_X64_ASSEMBLER_X64_INL_H_
30
31 #include "x64/assembler-x64.h"
32
33 #include "cpu.h"
34 #include "debug.h"
35 #include "v8memory.h"
36
37 namespace v8 {
38 namespace internal {
39
40
41 // -----------------------------------------------------------------------------
42 // Implementation of Assembler
43
44
emitl(uint32_t x)45 void Assembler::emitl(uint32_t x) {
46 Memory::uint32_at(pc_) = x;
47 pc_ += sizeof(uint32_t);
48 }
49
50
emitq(uint64_t x,RelocInfo::Mode rmode)51 void Assembler::emitq(uint64_t x, RelocInfo::Mode rmode) {
52 Memory::uint64_at(pc_) = x;
53 if (rmode != RelocInfo::NONE) {
54 RecordRelocInfo(rmode, x);
55 }
56 pc_ += sizeof(uint64_t);
57 }
58
59
emitw(uint16_t x)60 void Assembler::emitw(uint16_t x) {
61 Memory::uint16_at(pc_) = x;
62 pc_ += sizeof(uint16_t);
63 }
64
65
emit_code_target(Handle<Code> target,RelocInfo::Mode rmode,unsigned ast_id)66 void Assembler::emit_code_target(Handle<Code> target,
67 RelocInfo::Mode rmode,
68 unsigned ast_id) {
69 ASSERT(RelocInfo::IsCodeTarget(rmode));
70 if (rmode == RelocInfo::CODE_TARGET && ast_id != kNoASTId) {
71 RecordRelocInfo(RelocInfo::CODE_TARGET_WITH_ID, ast_id);
72 } else {
73 RecordRelocInfo(rmode);
74 }
75 int current = code_targets_.length();
76 if (current > 0 && code_targets_.last().is_identical_to(target)) {
77 // Optimization if we keep jumping to the same code target.
78 emitl(current - 1);
79 } else {
80 code_targets_.Add(target);
81 emitl(current);
82 }
83 }
84
85
emit_rex_64(Register reg,Register rm_reg)86 void Assembler::emit_rex_64(Register reg, Register rm_reg) {
87 emit(0x48 | reg.high_bit() << 2 | rm_reg.high_bit());
88 }
89
90
emit_rex_64(XMMRegister reg,Register rm_reg)91 void Assembler::emit_rex_64(XMMRegister reg, Register rm_reg) {
92 emit(0x48 | (reg.code() & 0x8) >> 1 | rm_reg.code() >> 3);
93 }
94
95
emit_rex_64(Register reg,XMMRegister rm_reg)96 void Assembler::emit_rex_64(Register reg, XMMRegister rm_reg) {
97 emit(0x48 | (reg.code() & 0x8) >> 1 | rm_reg.code() >> 3);
98 }
99
100
emit_rex_64(Register reg,const Operand & op)101 void Assembler::emit_rex_64(Register reg, const Operand& op) {
102 emit(0x48 | reg.high_bit() << 2 | op.rex_);
103 }
104
105
emit_rex_64(XMMRegister reg,const Operand & op)106 void Assembler::emit_rex_64(XMMRegister reg, const Operand& op) {
107 emit(0x48 | (reg.code() & 0x8) >> 1 | op.rex_);
108 }
109
110
emit_rex_64(Register rm_reg)111 void Assembler::emit_rex_64(Register rm_reg) {
112 ASSERT_EQ(rm_reg.code() & 0xf, rm_reg.code());
113 emit(0x48 | rm_reg.high_bit());
114 }
115
116
emit_rex_64(const Operand & op)117 void Assembler::emit_rex_64(const Operand& op) {
118 emit(0x48 | op.rex_);
119 }
120
121
emit_rex_32(Register reg,Register rm_reg)122 void Assembler::emit_rex_32(Register reg, Register rm_reg) {
123 emit(0x40 | reg.high_bit() << 2 | rm_reg.high_bit());
124 }
125
126
emit_rex_32(Register reg,const Operand & op)127 void Assembler::emit_rex_32(Register reg, const Operand& op) {
128 emit(0x40 | reg.high_bit() << 2 | op.rex_);
129 }
130
131
emit_rex_32(Register rm_reg)132 void Assembler::emit_rex_32(Register rm_reg) {
133 emit(0x40 | rm_reg.high_bit());
134 }
135
136
emit_rex_32(const Operand & op)137 void Assembler::emit_rex_32(const Operand& op) {
138 emit(0x40 | op.rex_);
139 }
140
141
emit_optional_rex_32(Register reg,Register rm_reg)142 void Assembler::emit_optional_rex_32(Register reg, Register rm_reg) {
143 byte rex_bits = reg.high_bit() << 2 | rm_reg.high_bit();
144 if (rex_bits != 0) emit(0x40 | rex_bits);
145 }
146
147
emit_optional_rex_32(Register reg,const Operand & op)148 void Assembler::emit_optional_rex_32(Register reg, const Operand& op) {
149 byte rex_bits = reg.high_bit() << 2 | op.rex_;
150 if (rex_bits != 0) emit(0x40 | rex_bits);
151 }
152
153
emit_optional_rex_32(XMMRegister reg,const Operand & op)154 void Assembler::emit_optional_rex_32(XMMRegister reg, const Operand& op) {
155 byte rex_bits = (reg.code() & 0x8) >> 1 | op.rex_;
156 if (rex_bits != 0) emit(0x40 | rex_bits);
157 }
158
159
emit_optional_rex_32(XMMRegister reg,XMMRegister base)160 void Assembler::emit_optional_rex_32(XMMRegister reg, XMMRegister base) {
161 byte rex_bits = (reg.code() & 0x8) >> 1 | (base.code() & 0x8) >> 3;
162 if (rex_bits != 0) emit(0x40 | rex_bits);
163 }
164
165
emit_optional_rex_32(XMMRegister reg,Register base)166 void Assembler::emit_optional_rex_32(XMMRegister reg, Register base) {
167 byte rex_bits = (reg.code() & 0x8) >> 1 | (base.code() & 0x8) >> 3;
168 if (rex_bits != 0) emit(0x40 | rex_bits);
169 }
170
171
emit_optional_rex_32(Register reg,XMMRegister base)172 void Assembler::emit_optional_rex_32(Register reg, XMMRegister base) {
173 byte rex_bits = (reg.code() & 0x8) >> 1 | (base.code() & 0x8) >> 3;
174 if (rex_bits != 0) emit(0x40 | rex_bits);
175 }
176
177
emit_optional_rex_32(Register rm_reg)178 void Assembler::emit_optional_rex_32(Register rm_reg) {
179 if (rm_reg.high_bit()) emit(0x41);
180 }
181
182
emit_optional_rex_32(const Operand & op)183 void Assembler::emit_optional_rex_32(const Operand& op) {
184 if (op.rex_ != 0) emit(0x40 | op.rex_);
185 }
186
187
target_address_at(Address pc)188 Address Assembler::target_address_at(Address pc) {
189 return Memory::int32_at(pc) + pc + 4;
190 }
191
192
set_target_address_at(Address pc,Address target)193 void Assembler::set_target_address_at(Address pc, Address target) {
194 Memory::int32_at(pc) = static_cast<int32_t>(target - pc - 4);
195 CPU::FlushICache(pc, sizeof(int32_t));
196 }
197
code_target_object_handle_at(Address pc)198 Handle<Object> Assembler::code_target_object_handle_at(Address pc) {
199 return code_targets_[Memory::int32_at(pc)];
200 }
201
202 // -----------------------------------------------------------------------------
203 // Implementation of RelocInfo
204
205 // The modes possibly affected by apply must be in kApplyMask.
apply(intptr_t delta)206 void RelocInfo::apply(intptr_t delta) {
207 if (IsInternalReference(rmode_)) {
208 // absolute code pointer inside code object moves with the code object.
209 Memory::Address_at(pc_) += static_cast<int32_t>(delta);
210 CPU::FlushICache(pc_, sizeof(Address));
211 } else if (IsCodeTarget(rmode_)) {
212 Memory::int32_at(pc_) -= static_cast<int32_t>(delta);
213 CPU::FlushICache(pc_, sizeof(int32_t));
214 }
215 }
216
217
target_address()218 Address RelocInfo::target_address() {
219 ASSERT(IsCodeTarget(rmode_) || rmode_ == RUNTIME_ENTRY);
220 if (IsCodeTarget(rmode_)) {
221 return Assembler::target_address_at(pc_);
222 } else {
223 return Memory::Address_at(pc_);
224 }
225 }
226
227
target_address_address()228 Address RelocInfo::target_address_address() {
229 ASSERT(IsCodeTarget(rmode_) || rmode_ == RUNTIME_ENTRY
230 || rmode_ == EMBEDDED_OBJECT
231 || rmode_ == EXTERNAL_REFERENCE);
232 return reinterpret_cast<Address>(pc_);
233 }
234
235
target_address_size()236 int RelocInfo::target_address_size() {
237 if (IsCodedSpecially()) {
238 return Assembler::kSpecialTargetSize;
239 } else {
240 return kPointerSize;
241 }
242 }
243
244
set_target_address(Address target,WriteBarrierMode mode)245 void RelocInfo::set_target_address(Address target, WriteBarrierMode mode) {
246 ASSERT(IsCodeTarget(rmode_) || rmode_ == RUNTIME_ENTRY);
247 if (IsCodeTarget(rmode_)) {
248 Assembler::set_target_address_at(pc_, target);
249 Object* target_code = Code::GetCodeFromTargetAddress(target);
250 if (mode == UPDATE_WRITE_BARRIER && host() != NULL) {
251 host()->GetHeap()->incremental_marking()->RecordWriteIntoCode(
252 host(), this, HeapObject::cast(target_code));
253 }
254 } else {
255 Memory::Address_at(pc_) = target;
256 CPU::FlushICache(pc_, sizeof(Address));
257 }
258 }
259
260
target_object()261 Object* RelocInfo::target_object() {
262 ASSERT(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
263 return Memory::Object_at(pc_);
264 }
265
266
target_object_handle(Assembler * origin)267 Handle<Object> RelocInfo::target_object_handle(Assembler* origin) {
268 ASSERT(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
269 if (rmode_ == EMBEDDED_OBJECT) {
270 return Memory::Object_Handle_at(pc_);
271 } else {
272 return origin->code_target_object_handle_at(pc_);
273 }
274 }
275
276
target_object_address()277 Object** RelocInfo::target_object_address() {
278 ASSERT(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
279 return reinterpret_cast<Object**>(pc_);
280 }
281
282
target_reference_address()283 Address* RelocInfo::target_reference_address() {
284 ASSERT(rmode_ == RelocInfo::EXTERNAL_REFERENCE);
285 return reinterpret_cast<Address*>(pc_);
286 }
287
288
set_target_object(Object * target,WriteBarrierMode mode)289 void RelocInfo::set_target_object(Object* target, WriteBarrierMode mode) {
290 ASSERT(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
291 Memory::Object_at(pc_) = target;
292 CPU::FlushICache(pc_, sizeof(Address));
293 if (mode == UPDATE_WRITE_BARRIER &&
294 host() != NULL &&
295 target->IsHeapObject()) {
296 host()->GetHeap()->incremental_marking()->RecordWrite(
297 host(), &Memory::Object_at(pc_), HeapObject::cast(target));
298 }
299 }
300
301
target_cell_handle()302 Handle<JSGlobalPropertyCell> RelocInfo::target_cell_handle() {
303 ASSERT(rmode_ == RelocInfo::GLOBAL_PROPERTY_CELL);
304 Address address = Memory::Address_at(pc_);
305 return Handle<JSGlobalPropertyCell>(
306 reinterpret_cast<JSGlobalPropertyCell**>(address));
307 }
308
309
target_cell()310 JSGlobalPropertyCell* RelocInfo::target_cell() {
311 ASSERT(rmode_ == RelocInfo::GLOBAL_PROPERTY_CELL);
312 Address address = Memory::Address_at(pc_);
313 Object* object = HeapObject::FromAddress(
314 address - JSGlobalPropertyCell::kValueOffset);
315 return reinterpret_cast<JSGlobalPropertyCell*>(object);
316 }
317
318
set_target_cell(JSGlobalPropertyCell * cell,WriteBarrierMode mode)319 void RelocInfo::set_target_cell(JSGlobalPropertyCell* cell,
320 WriteBarrierMode mode) {
321 ASSERT(rmode_ == RelocInfo::GLOBAL_PROPERTY_CELL);
322 Address address = cell->address() + JSGlobalPropertyCell::kValueOffset;
323 Memory::Address_at(pc_) = address;
324 CPU::FlushICache(pc_, sizeof(Address));
325 if (mode == UPDATE_WRITE_BARRIER &&
326 host() != NULL) {
327 // TODO(1550) We are passing NULL as a slot because cell can never be on
328 // evacuation candidate.
329 host()->GetHeap()->incremental_marking()->RecordWrite(
330 host(), NULL, cell);
331 }
332 }
333
334
IsPatchedReturnSequence()335 bool RelocInfo::IsPatchedReturnSequence() {
336 // The recognized call sequence is:
337 // movq(kScratchRegister, immediate64); call(kScratchRegister);
338 // It only needs to be distinguished from a return sequence
339 // movq(rsp, rbp); pop(rbp); ret(n); int3 *6
340 // The 11th byte is int3 (0xCC) in the return sequence and
341 // REX.WB (0x48+register bit) for the call sequence.
342 #ifdef ENABLE_DEBUGGER_SUPPORT
343 return pc_[10] != 0xCC;
344 #else
345 return false;
346 #endif
347 }
348
349
IsPatchedDebugBreakSlotSequence()350 bool RelocInfo::IsPatchedDebugBreakSlotSequence() {
351 return !Assembler::IsNop(pc());
352 }
353
354
call_address()355 Address RelocInfo::call_address() {
356 ASSERT((IsJSReturn(rmode()) && IsPatchedReturnSequence()) ||
357 (IsDebugBreakSlot(rmode()) && IsPatchedDebugBreakSlotSequence()));
358 return Memory::Address_at(
359 pc_ + Assembler::kRealPatchReturnSequenceAddressOffset);
360 }
361
362
set_call_address(Address target)363 void RelocInfo::set_call_address(Address target) {
364 ASSERT((IsJSReturn(rmode()) && IsPatchedReturnSequence()) ||
365 (IsDebugBreakSlot(rmode()) && IsPatchedDebugBreakSlotSequence()));
366 Memory::Address_at(pc_ + Assembler::kRealPatchReturnSequenceAddressOffset) =
367 target;
368 CPU::FlushICache(pc_ + Assembler::kRealPatchReturnSequenceAddressOffset,
369 sizeof(Address));
370 if (host() != NULL) {
371 Object* target_code = Code::GetCodeFromTargetAddress(target);
372 host()->GetHeap()->incremental_marking()->RecordWriteIntoCode(
373 host(), this, HeapObject::cast(target_code));
374 }
375 }
376
377
call_object()378 Object* RelocInfo::call_object() {
379 return *call_object_address();
380 }
381
382
set_call_object(Object * target)383 void RelocInfo::set_call_object(Object* target) {
384 *call_object_address() = target;
385 }
386
387
call_object_address()388 Object** RelocInfo::call_object_address() {
389 ASSERT((IsJSReturn(rmode()) && IsPatchedReturnSequence()) ||
390 (IsDebugBreakSlot(rmode()) && IsPatchedDebugBreakSlotSequence()));
391 return reinterpret_cast<Object**>(
392 pc_ + Assembler::kPatchReturnSequenceAddressOffset);
393 }
394
395
Visit(ObjectVisitor * visitor)396 void RelocInfo::Visit(ObjectVisitor* visitor) {
397 RelocInfo::Mode mode = rmode();
398 if (mode == RelocInfo::EMBEDDED_OBJECT) {
399 visitor->VisitEmbeddedPointer(this);
400 CPU::FlushICache(pc_, sizeof(Address));
401 } else if (RelocInfo::IsCodeTarget(mode)) {
402 visitor->VisitCodeTarget(this);
403 } else if (mode == RelocInfo::GLOBAL_PROPERTY_CELL) {
404 visitor->VisitGlobalPropertyCell(this);
405 } else if (mode == RelocInfo::EXTERNAL_REFERENCE) {
406 visitor->VisitExternalReference(this);
407 CPU::FlushICache(pc_, sizeof(Address));
408 #ifdef ENABLE_DEBUGGER_SUPPORT
409 // TODO(isolates): Get a cached isolate below.
410 } else if (((RelocInfo::IsJSReturn(mode) &&
411 IsPatchedReturnSequence()) ||
412 (RelocInfo::IsDebugBreakSlot(mode) &&
413 IsPatchedDebugBreakSlotSequence())) &&
414 Isolate::Current()->debug()->has_break_points()) {
415 visitor->VisitDebugTarget(this);
416 #endif
417 } else if (mode == RelocInfo::RUNTIME_ENTRY) {
418 visitor->VisitRuntimeEntry(this);
419 }
420 }
421
422
423 template<typename StaticVisitor>
Visit(Heap * heap)424 void RelocInfo::Visit(Heap* heap) {
425 RelocInfo::Mode mode = rmode();
426 if (mode == RelocInfo::EMBEDDED_OBJECT) {
427 StaticVisitor::VisitEmbeddedPointer(heap, this);
428 CPU::FlushICache(pc_, sizeof(Address));
429 } else if (RelocInfo::IsCodeTarget(mode)) {
430 StaticVisitor::VisitCodeTarget(heap, this);
431 } else if (mode == RelocInfo::GLOBAL_PROPERTY_CELL) {
432 StaticVisitor::VisitGlobalPropertyCell(heap, this);
433 } else if (mode == RelocInfo::EXTERNAL_REFERENCE) {
434 StaticVisitor::VisitExternalReference(this);
435 CPU::FlushICache(pc_, sizeof(Address));
436 #ifdef ENABLE_DEBUGGER_SUPPORT
437 } else if (heap->isolate()->debug()->has_break_points() &&
438 ((RelocInfo::IsJSReturn(mode) &&
439 IsPatchedReturnSequence()) ||
440 (RelocInfo::IsDebugBreakSlot(mode) &&
441 IsPatchedDebugBreakSlotSequence()))) {
442 StaticVisitor::VisitDebugTarget(heap, this);
443 #endif
444 } else if (mode == RelocInfo::RUNTIME_ENTRY) {
445 StaticVisitor::VisitRuntimeEntry(this);
446 }
447 }
448
449
450 // -----------------------------------------------------------------------------
451 // Implementation of Operand
452
set_modrm(int mod,Register rm_reg)453 void Operand::set_modrm(int mod, Register rm_reg) {
454 ASSERT(is_uint2(mod));
455 buf_[0] = mod << 6 | rm_reg.low_bits();
456 // Set REX.B to the high bit of rm.code().
457 rex_ |= rm_reg.high_bit();
458 }
459
460
set_sib(ScaleFactor scale,Register index,Register base)461 void Operand::set_sib(ScaleFactor scale, Register index, Register base) {
462 ASSERT(len_ == 1);
463 ASSERT(is_uint2(scale));
464 // Use SIB with no index register only for base rsp or r12. Otherwise we
465 // would skip the SIB byte entirely.
466 ASSERT(!index.is(rsp) || base.is(rsp) || base.is(r12));
467 buf_[1] = (scale << 6) | (index.low_bits() << 3) | base.low_bits();
468 rex_ |= index.high_bit() << 1 | base.high_bit();
469 len_ = 2;
470 }
471
set_disp8(int disp)472 void Operand::set_disp8(int disp) {
473 ASSERT(is_int8(disp));
474 ASSERT(len_ == 1 || len_ == 2);
475 int8_t* p = reinterpret_cast<int8_t*>(&buf_[len_]);
476 *p = disp;
477 len_ += sizeof(int8_t);
478 }
479
set_disp32(int disp)480 void Operand::set_disp32(int disp) {
481 ASSERT(len_ == 1 || len_ == 2);
482 int32_t* p = reinterpret_cast<int32_t*>(&buf_[len_]);
483 *p = disp;
484 len_ += sizeof(int32_t);
485 }
486
487
488 } } // namespace v8::internal
489
490 #endif // V8_X64_ASSEMBLER_X64_INL_H_
491