1 /*
2 * Copyright (C) 2009 Apple Inc. All rights reserved.
3 * Copyright (C) 2010 Peter Varga (pvarga@inf.u-szeged.hu), University of Szeged
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 *
14 * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
15 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
17 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
18 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
19 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
20 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
21 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
22 * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
24 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25 */
26
27 #include "config.h"
28 #include "YarrPattern.h"
29
30 #include "Yarr.h"
31 #include "YarrParser.h"
32 #include <wtf/Vector.h>
33
34 using namespace WTF;
35
36 namespace JSC { namespace Yarr {
37
38 #include "RegExpJitTables.h"
39
40 class CharacterClassConstructor {
41 public:
CharacterClassConstructor(bool isCaseInsensitive=false)42 CharacterClassConstructor(bool isCaseInsensitive = false)
43 : m_isCaseInsensitive(isCaseInsensitive)
44 {
45 }
46
reset()47 void reset()
48 {
49 m_matches.clear();
50 m_ranges.clear();
51 m_matchesUnicode.clear();
52 m_rangesUnicode.clear();
53 }
54
append(const CharacterClass * other)55 void append(const CharacterClass* other)
56 {
57 for (size_t i = 0; i < other->m_matches.size(); ++i)
58 addSorted(m_matches, other->m_matches[i]);
59 for (size_t i = 0; i < other->m_ranges.size(); ++i)
60 addSortedRange(m_ranges, other->m_ranges[i].begin, other->m_ranges[i].end);
61 for (size_t i = 0; i < other->m_matchesUnicode.size(); ++i)
62 addSorted(m_matchesUnicode, other->m_matchesUnicode[i]);
63 for (size_t i = 0; i < other->m_rangesUnicode.size(); ++i)
64 addSortedRange(m_rangesUnicode, other->m_rangesUnicode[i].begin, other->m_rangesUnicode[i].end);
65 }
66
putChar(UChar ch)67 void putChar(UChar ch)
68 {
69 if (ch <= 0x7f) {
70 if (m_isCaseInsensitive && isASCIIAlpha(ch)) {
71 addSorted(m_matches, toASCIIUpper(ch));
72 addSorted(m_matches, toASCIILower(ch));
73 } else
74 addSorted(m_matches, ch);
75 } else {
76 UChar upper, lower;
77 if (m_isCaseInsensitive && ((upper = Unicode::toUpper(ch)) != (lower = Unicode::toLower(ch)))) {
78 addSorted(m_matchesUnicode, upper);
79 addSorted(m_matchesUnicode, lower);
80 } else
81 addSorted(m_matchesUnicode, ch);
82 }
83 }
84
85 // returns true if this character has another case, and 'ch' is the upper case form.
isUnicodeUpper(UChar ch)86 static inline bool isUnicodeUpper(UChar ch)
87 {
88 return ch != Unicode::toLower(ch);
89 }
90
91 // returns true if this character has another case, and 'ch' is the lower case form.
isUnicodeLower(UChar ch)92 static inline bool isUnicodeLower(UChar ch)
93 {
94 return ch != Unicode::toUpper(ch);
95 }
96
putRange(UChar lo,UChar hi)97 void putRange(UChar lo, UChar hi)
98 {
99 if (lo <= 0x7f) {
100 char asciiLo = lo;
101 char asciiHi = std::min(hi, (UChar)0x7f);
102 addSortedRange(m_ranges, lo, asciiHi);
103
104 if (m_isCaseInsensitive) {
105 if ((asciiLo <= 'Z') && (asciiHi >= 'A'))
106 addSortedRange(m_ranges, std::max(asciiLo, 'A')+('a'-'A'), std::min(asciiHi, 'Z')+('a'-'A'));
107 if ((asciiLo <= 'z') && (asciiHi >= 'a'))
108 addSortedRange(m_ranges, std::max(asciiLo, 'a')+('A'-'a'), std::min(asciiHi, 'z')+('A'-'a'));
109 }
110 }
111 if (hi >= 0x80) {
112 uint32_t unicodeCurr = std::max(lo, (UChar)0x80);
113 addSortedRange(m_rangesUnicode, unicodeCurr, hi);
114
115 if (m_isCaseInsensitive) {
116 while (unicodeCurr <= hi) {
117 // If the upper bound of the range (hi) is 0xffff, the increments to
118 // unicodeCurr in this loop may take it to 0x10000. This is fine
119 // (if so we won't re-enter the loop, since the loop condition above
120 // will definitely fail) - but this does mean we cannot use a UChar
121 // to represent unicodeCurr, we must use a 32-bit value instead.
122 ASSERT(unicodeCurr <= 0xffff);
123
124 if (isUnicodeUpper(unicodeCurr)) {
125 UChar lowerCaseRangeBegin = Unicode::toLower(unicodeCurr);
126 UChar lowerCaseRangeEnd = lowerCaseRangeBegin;
127 while ((++unicodeCurr <= hi) && isUnicodeUpper(unicodeCurr) && (Unicode::toLower(unicodeCurr) == (lowerCaseRangeEnd + 1)))
128 lowerCaseRangeEnd++;
129 addSortedRange(m_rangesUnicode, lowerCaseRangeBegin, lowerCaseRangeEnd);
130 } else if (isUnicodeLower(unicodeCurr)) {
131 UChar upperCaseRangeBegin = Unicode::toUpper(unicodeCurr);
132 UChar upperCaseRangeEnd = upperCaseRangeBegin;
133 while ((++unicodeCurr <= hi) && isUnicodeLower(unicodeCurr) && (Unicode::toUpper(unicodeCurr) == (upperCaseRangeEnd + 1)))
134 upperCaseRangeEnd++;
135 addSortedRange(m_rangesUnicode, upperCaseRangeBegin, upperCaseRangeEnd);
136 } else
137 ++unicodeCurr;
138 }
139 }
140 }
141 }
142
charClass()143 CharacterClass* charClass()
144 {
145 CharacterClass* characterClass = new CharacterClass(0);
146
147 characterClass->m_matches.append(m_matches);
148 characterClass->m_ranges.append(m_ranges);
149 characterClass->m_matchesUnicode.append(m_matchesUnicode);
150 characterClass->m_rangesUnicode.append(m_rangesUnicode);
151
152 reset();
153
154 return characterClass;
155 }
156
157 private:
addSorted(Vector<UChar> & matches,UChar ch)158 void addSorted(Vector<UChar>& matches, UChar ch)
159 {
160 unsigned pos = 0;
161 unsigned range = matches.size();
162
163 // binary chop, find position to insert char.
164 while (range) {
165 unsigned index = range >> 1;
166
167 int val = matches[pos+index] - ch;
168 if (!val)
169 return;
170 else if (val > 0)
171 range = index;
172 else {
173 pos += (index+1);
174 range -= (index+1);
175 }
176 }
177
178 if (pos == matches.size())
179 matches.append(ch);
180 else
181 matches.insert(pos, ch);
182 }
183
addSortedRange(Vector<CharacterRange> & ranges,UChar lo,UChar hi)184 void addSortedRange(Vector<CharacterRange>& ranges, UChar lo, UChar hi)
185 {
186 unsigned end = ranges.size();
187
188 // Simple linear scan - I doubt there are that many ranges anyway...
189 // feel free to fix this with something faster (eg binary chop).
190 for (unsigned i = 0; i < end; ++i) {
191 // does the new range fall before the current position in the array
192 if (hi < ranges[i].begin) {
193 // optional optimization: concatenate appending ranges? - may not be worthwhile.
194 if (hi == (ranges[i].begin - 1)) {
195 ranges[i].begin = lo;
196 return;
197 }
198 ranges.insert(i, CharacterRange(lo, hi));
199 return;
200 }
201 // Okay, since we didn't hit the last case, the end of the new range is definitely at or after the begining
202 // If the new range start at or before the end of the last range, then the overlap (if it starts one after the
203 // end of the last range they concatenate, which is just as good.
204 if (lo <= (ranges[i].end + 1)) {
205 // found an intersect! we'll replace this entry in the array.
206 ranges[i].begin = std::min(ranges[i].begin, lo);
207 ranges[i].end = std::max(ranges[i].end, hi);
208
209 // now check if the new range can subsume any subsequent ranges.
210 unsigned next = i+1;
211 // each iteration of the loop we will either remove something from the list, or break the loop.
212 while (next < ranges.size()) {
213 if (ranges[next].begin <= (ranges[i].end + 1)) {
214 // the next entry now overlaps / concatenates this one.
215 ranges[i].end = std::max(ranges[i].end, ranges[next].end);
216 ranges.remove(next);
217 } else
218 break;
219 }
220
221 return;
222 }
223 }
224
225 // CharacterRange comes after all existing ranges.
226 ranges.append(CharacterRange(lo, hi));
227 }
228
229 bool m_isCaseInsensitive;
230
231 Vector<UChar> m_matches;
232 Vector<CharacterRange> m_ranges;
233 Vector<UChar> m_matchesUnicode;
234 Vector<CharacterRange> m_rangesUnicode;
235 };
236
237 struct BeginCharHelper {
BeginCharHelperJSC::Yarr::BeginCharHelper238 BeginCharHelper(Vector<BeginChar>* beginChars, bool isCaseInsensitive = false)
239 : m_beginChars(beginChars)
240 , m_isCaseInsensitive(isCaseInsensitive)
241 {}
242
addBeginCharJSC::Yarr::BeginCharHelper243 void addBeginChar(BeginChar beginChar, Vector<TermChain>* hotTerms, QuantifierType quantityType, unsigned quantityCount)
244 {
245 if (quantityType == QuantifierFixedCount && quantityCount > 1) {
246 // We duplicate the first found character if the quantity of the term is more than one. eg.: /a{3}/
247 beginChar.value |= beginChar.value << 16;
248 beginChar.mask |= beginChar.mask << 16;
249 addCharacter(beginChar);
250 } else if (quantityType == QuantifierFixedCount && quantityCount == 1 && hotTerms->size())
251 // In case of characters with fixed quantifier we should check the next character as well.
252 linkHotTerms(beginChar, hotTerms);
253 else
254 // In case of greedy matching the next character checking is unnecessary therefore we just store
255 // the first character.
256 addCharacter(beginChar);
257 }
258
259 // Merge two following BeginChars in the vector to reduce the number of character checks.
mergeJSC::Yarr::BeginCharHelper260 void merge(unsigned size)
261 {
262 for (unsigned i = 0; i < size; i++) {
263 BeginChar* curr = &m_beginChars->at(i);
264 BeginChar* next = &m_beginChars->at(i + 1);
265
266 // If the current and the next size of value is different we should skip the merge process
267 // because the 16bit and 32bit values are unmergable.
268 if (curr->value <= 0xFFFF && next->value > 0xFFFF)
269 continue;
270
271 unsigned diff = curr->value ^ next->value;
272
273 curr->mask |= diff;
274 curr->value |= curr->mask;
275
276 m_beginChars->remove(i + 1);
277 size--;
278 }
279 }
280
281 private:
addCharacterJSC::Yarr::BeginCharHelper282 void addCharacter(BeginChar beginChar)
283 {
284 unsigned pos = 0;
285 unsigned range = m_beginChars->size();
286
287 // binary chop, find position to insert char.
288 while (range) {
289 unsigned index = range >> 1;
290
291 int val = m_beginChars->at(pos+index).value - beginChar.value;
292 if (!val)
293 return;
294 if (val < 0)
295 range = index;
296 else {
297 pos += (index+1);
298 range -= (index+1);
299 }
300 }
301
302 if (pos == m_beginChars->size())
303 m_beginChars->append(beginChar);
304 else
305 m_beginChars->insert(pos, beginChar);
306 }
307
308 // Create BeginChar objects by appending each terms from a hotTerms vector to an existing BeginChar object.
linkHotTermsJSC::Yarr::BeginCharHelper309 void linkHotTerms(BeginChar beginChar, Vector<TermChain>* hotTerms)
310 {
311 for (unsigned i = 0; i < hotTerms->size(); i++) {
312 PatternTerm hotTerm = hotTerms->at(i).term;
313 ASSERT(hotTerm.type == PatternTerm::TypePatternCharacter);
314
315 UChar characterNext = hotTerm.patternCharacter;
316
317 // Append a character to an existing BeginChar object.
318 if (characterNext <= 0x7f) {
319 unsigned mask = 0;
320
321 if (m_isCaseInsensitive && isASCIIAlpha(characterNext)) {
322 mask = 32;
323 characterNext = toASCIILower(characterNext);
324 }
325
326 addCharacter(BeginChar(beginChar.value | (characterNext << 16), beginChar.mask | (mask << 16)));
327 } else {
328 UChar upper, lower;
329 if (m_isCaseInsensitive && ((upper = Unicode::toUpper(characterNext)) != (lower = Unicode::toLower(characterNext)))) {
330 addCharacter(BeginChar(beginChar.value | (upper << 16), beginChar.mask));
331 addCharacter(BeginChar(beginChar.value | (lower << 16), beginChar.mask));
332 } else
333 addCharacter(BeginChar(beginChar.value | (characterNext << 16), beginChar.mask));
334 }
335 }
336 }
337
338 Vector<BeginChar>* m_beginChars;
339 bool m_isCaseInsensitive;
340 };
341
342 class YarrPatternConstructor {
343 public:
YarrPatternConstructor(YarrPattern & pattern)344 YarrPatternConstructor(YarrPattern& pattern)
345 : m_pattern(pattern)
346 , m_characterClassConstructor(pattern.m_ignoreCase)
347 , m_beginCharHelper(&pattern.m_beginChars, pattern.m_ignoreCase)
348 , m_invertParentheticalAssertion(false)
349 {
350 m_pattern.m_body = new PatternDisjunction();
351 m_alternative = m_pattern.m_body->addNewAlternative();
352 m_pattern.m_disjunctions.append(m_pattern.m_body);
353 }
354
~YarrPatternConstructor()355 ~YarrPatternConstructor()
356 {
357 }
358
reset()359 void reset()
360 {
361 m_pattern.reset();
362 m_characterClassConstructor.reset();
363
364 m_pattern.m_body = new PatternDisjunction();
365 m_alternative = m_pattern.m_body->addNewAlternative();
366 m_pattern.m_disjunctions.append(m_pattern.m_body);
367 }
368
assertionBOL()369 void assertionBOL()
370 {
371 if (!m_alternative->m_terms.size() & !m_invertParentheticalAssertion) {
372 m_alternative->m_startsWithBOL = true;
373 m_alternative->m_containsBOL = true;
374 m_pattern.m_containsBOL = true;
375 }
376 m_alternative->m_terms.append(PatternTerm::BOL());
377 }
assertionEOL()378 void assertionEOL()
379 {
380 m_alternative->m_terms.append(PatternTerm::EOL());
381 }
assertionWordBoundary(bool invert)382 void assertionWordBoundary(bool invert)
383 {
384 m_alternative->m_terms.append(PatternTerm::WordBoundary(invert));
385 }
386
atomPatternCharacter(UChar ch)387 void atomPatternCharacter(UChar ch)
388 {
389 // We handle case-insensitive checking of unicode characters which do have both
390 // cases by handling them as if they were defined using a CharacterClass.
391 if (m_pattern.m_ignoreCase && !isASCII(ch) && (Unicode::toUpper(ch) != Unicode::toLower(ch))) {
392 atomCharacterClassBegin();
393 atomCharacterClassAtom(ch);
394 atomCharacterClassEnd();
395 } else
396 m_alternative->m_terms.append(PatternTerm(ch));
397 }
398
atomBuiltInCharacterClass(BuiltInCharacterClassID classID,bool invert)399 void atomBuiltInCharacterClass(BuiltInCharacterClassID classID, bool invert)
400 {
401 switch (classID) {
402 case DigitClassID:
403 m_alternative->m_terms.append(PatternTerm(m_pattern.digitsCharacterClass(), invert));
404 break;
405 case SpaceClassID:
406 m_alternative->m_terms.append(PatternTerm(m_pattern.spacesCharacterClass(), invert));
407 break;
408 case WordClassID:
409 m_alternative->m_terms.append(PatternTerm(m_pattern.wordcharCharacterClass(), invert));
410 break;
411 case NewlineClassID:
412 m_alternative->m_terms.append(PatternTerm(m_pattern.newlineCharacterClass(), invert));
413 break;
414 }
415 }
416
atomCharacterClassBegin(bool invert=false)417 void atomCharacterClassBegin(bool invert = false)
418 {
419 m_invertCharacterClass = invert;
420 }
421
atomCharacterClassAtom(UChar ch)422 void atomCharacterClassAtom(UChar ch)
423 {
424 m_characterClassConstructor.putChar(ch);
425 }
426
atomCharacterClassRange(UChar begin,UChar end)427 void atomCharacterClassRange(UChar begin, UChar end)
428 {
429 m_characterClassConstructor.putRange(begin, end);
430 }
431
atomCharacterClassBuiltIn(BuiltInCharacterClassID classID,bool invert)432 void atomCharacterClassBuiltIn(BuiltInCharacterClassID classID, bool invert)
433 {
434 ASSERT(classID != NewlineClassID);
435
436 switch (classID) {
437 case DigitClassID:
438 m_characterClassConstructor.append(invert ? m_pattern.nondigitsCharacterClass() : m_pattern.digitsCharacterClass());
439 break;
440
441 case SpaceClassID:
442 m_characterClassConstructor.append(invert ? m_pattern.nonspacesCharacterClass() : m_pattern.spacesCharacterClass());
443 break;
444
445 case WordClassID:
446 m_characterClassConstructor.append(invert ? m_pattern.nonwordcharCharacterClass() : m_pattern.wordcharCharacterClass());
447 break;
448
449 default:
450 ASSERT_NOT_REACHED();
451 }
452 }
453
atomCharacterClassEnd()454 void atomCharacterClassEnd()
455 {
456 CharacterClass* newCharacterClass = m_characterClassConstructor.charClass();
457 m_pattern.m_userCharacterClasses.append(newCharacterClass);
458 m_alternative->m_terms.append(PatternTerm(newCharacterClass, m_invertCharacterClass));
459 }
460
atomParenthesesSubpatternBegin(bool capture=true)461 void atomParenthesesSubpatternBegin(bool capture = true)
462 {
463 unsigned subpatternId = m_pattern.m_numSubpatterns + 1;
464 if (capture)
465 m_pattern.m_numSubpatterns++;
466
467 PatternDisjunction* parenthesesDisjunction = new PatternDisjunction(m_alternative);
468 m_pattern.m_disjunctions.append(parenthesesDisjunction);
469 m_alternative->m_terms.append(PatternTerm(PatternTerm::TypeParenthesesSubpattern, subpatternId, parenthesesDisjunction, capture, false));
470 m_alternative = parenthesesDisjunction->addNewAlternative();
471 }
472
atomParentheticalAssertionBegin(bool invert=false)473 void atomParentheticalAssertionBegin(bool invert = false)
474 {
475 PatternDisjunction* parenthesesDisjunction = new PatternDisjunction(m_alternative);
476 m_pattern.m_disjunctions.append(parenthesesDisjunction);
477 m_alternative->m_terms.append(PatternTerm(PatternTerm::TypeParentheticalAssertion, m_pattern.m_numSubpatterns + 1, parenthesesDisjunction, false, invert));
478 m_alternative = parenthesesDisjunction->addNewAlternative();
479 m_invertParentheticalAssertion = invert;
480 }
481
atomParenthesesEnd()482 void atomParenthesesEnd()
483 {
484 ASSERT(m_alternative->m_parent);
485 ASSERT(m_alternative->m_parent->m_parent);
486
487 PatternDisjunction* parenthesesDisjunction = m_alternative->m_parent;
488 m_alternative = m_alternative->m_parent->m_parent;
489
490 PatternTerm& lastTerm = m_alternative->lastTerm();
491
492 unsigned numParenAlternatives = parenthesesDisjunction->m_alternatives.size();
493 unsigned numBOLAnchoredAlts = 0;
494 bool containsEmptyAlternative = false;
495
496 for (unsigned i = 0; i < numParenAlternatives; i++) {
497 if (!parenthesesDisjunction->m_alternatives[i]->m_terms.size() && numParenAlternatives > 1) {
498 PatternAlternative* altToRemove = parenthesesDisjunction->m_alternatives[i];
499 parenthesesDisjunction->m_alternatives.remove(i);
500 delete altToRemove;
501 --numParenAlternatives;
502
503 containsEmptyAlternative = true;
504 continue;
505 }
506
507 // Bubble up BOL flags
508 if (parenthesesDisjunction->m_alternatives[i]->m_startsWithBOL)
509 numBOLAnchoredAlts++;
510 }
511
512 if (numBOLAnchoredAlts) {
513 m_alternative->m_containsBOL = true;
514 // If all the alternatives in parens start with BOL, then so does this one
515 if (numBOLAnchoredAlts == numParenAlternatives)
516 m_alternative->m_startsWithBOL = true;
517 }
518
519 lastTerm.parentheses.lastSubpatternId = m_pattern.m_numSubpatterns;
520 m_invertParentheticalAssertion = false;
521
522 if (containsEmptyAlternative) {
523 // Backup and remove the current disjunction's alternatives.
524 Vector<PatternAlternative*> alternatives;
525 alternatives.append(parenthesesDisjunction->m_alternatives);
526 parenthesesDisjunction->m_alternatives.clear();
527 PatternAlternative* alternative = parenthesesDisjunction->addNewAlternative();
528
529 // Insert a new non-capturing parentheses.
530 unsigned subpatternId = m_pattern.m_numSubpatterns + 1;
531 PatternDisjunction* newDisjunction = new PatternDisjunction(alternative);
532 m_pattern.m_disjunctions.append(newDisjunction);
533 alternative->m_terms.append(PatternTerm(PatternTerm::TypeParenthesesSubpattern, subpatternId, newDisjunction, false, false));
534 newDisjunction->m_alternatives.append(alternatives);
535
536 // Set the quantifier of the new parentheses to '?' and set the inherited properties.
537 PatternTerm& disjunctionTerm = alternative->lastTerm();
538 disjunctionTerm.quantify(1, QuantifierGreedy);
539 disjunctionTerm.parentheses.lastSubpatternId = m_pattern.m_numSubpatterns;
540 alternative->m_containsBOL = m_alternative->m_containsBOL;
541 alternative->m_startsWithBOL = m_alternative->m_startsWithBOL;
542 }
543 }
544
atomBackReference(unsigned subpatternId)545 void atomBackReference(unsigned subpatternId)
546 {
547 ASSERT(subpatternId);
548 m_pattern.m_containsBackreferences = true;
549 m_pattern.m_maxBackReference = std::max(m_pattern.m_maxBackReference, subpatternId);
550
551 if (subpatternId > m_pattern.m_numSubpatterns) {
552 m_alternative->m_terms.append(PatternTerm::ForwardReference());
553 return;
554 }
555
556 PatternAlternative* currentAlternative = m_alternative;
557 ASSERT(currentAlternative);
558
559 // Note to self: if we waited until the AST was baked, we could also remove forwards refs
560 while ((currentAlternative = currentAlternative->m_parent->m_parent)) {
561 PatternTerm& term = currentAlternative->lastTerm();
562 ASSERT((term.type == PatternTerm::TypeParenthesesSubpattern) || (term.type == PatternTerm::TypeParentheticalAssertion));
563
564 if ((term.type == PatternTerm::TypeParenthesesSubpattern) && term.capture() && (subpatternId == term.parentheses.subpatternId)) {
565 m_alternative->m_terms.append(PatternTerm::ForwardReference());
566 return;
567 }
568 }
569
570 m_alternative->m_terms.append(PatternTerm(subpatternId));
571 }
572
573 // deep copy the argument disjunction. If filterStartsWithBOL is true,
574 // skip alternatives with m_startsWithBOL set true.
copyDisjunction(PatternDisjunction * disjunction,bool filterStartsWithBOL=false)575 PatternDisjunction* copyDisjunction(PatternDisjunction* disjunction, bool filterStartsWithBOL = false)
576 {
577 PatternDisjunction* newDisjunction = 0;
578 for (unsigned alt = 0; alt < disjunction->m_alternatives.size(); ++alt) {
579 PatternAlternative* alternative = disjunction->m_alternatives[alt];
580 if (!filterStartsWithBOL || !alternative->m_startsWithBOL) {
581 if (!newDisjunction) {
582 newDisjunction = new PatternDisjunction();
583 newDisjunction->m_parent = disjunction->m_parent;
584 }
585 PatternAlternative* newAlternative = newDisjunction->addNewAlternative();
586 for (unsigned i = 0; i < alternative->m_terms.size(); ++i)
587 newAlternative->m_terms.append(copyTerm(alternative->m_terms[i], filterStartsWithBOL));
588 }
589 }
590
591 if (newDisjunction)
592 m_pattern.m_disjunctions.append(newDisjunction);
593 return newDisjunction;
594 }
595
copyTerm(PatternTerm & term,bool filterStartsWithBOL=false)596 PatternTerm copyTerm(PatternTerm& term, bool filterStartsWithBOL = false)
597 {
598 if ((term.type != PatternTerm::TypeParenthesesSubpattern) && (term.type != PatternTerm::TypeParentheticalAssertion))
599 return PatternTerm(term);
600
601 PatternTerm termCopy = term;
602 termCopy.parentheses.disjunction = copyDisjunction(termCopy.parentheses.disjunction, filterStartsWithBOL);
603 return termCopy;
604 }
605
quantifyAtom(unsigned min,unsigned max,bool greedy)606 void quantifyAtom(unsigned min, unsigned max, bool greedy)
607 {
608 ASSERT(min <= max);
609 ASSERT(m_alternative->m_terms.size());
610
611 if (!max) {
612 m_alternative->removeLastTerm();
613 return;
614 }
615
616 PatternTerm& term = m_alternative->lastTerm();
617 ASSERT(term.type > PatternTerm::TypeAssertionWordBoundary);
618 ASSERT((term.quantityCount == 1) && (term.quantityType == QuantifierFixedCount));
619
620 // For any assertion with a zero minimum, not matching is valid and has no effect,
621 // remove it. Otherwise, we need to match as least once, but there is no point
622 // matching more than once, so remove the quantifier. It is not entirely clear
623 // from the spec whether or not this behavior is correct, but I believe this
624 // matches Firefox. :-/
625 if (term.type == PatternTerm::TypeParentheticalAssertion) {
626 if (!min)
627 m_alternative->removeLastTerm();
628 return;
629 }
630
631 if (min == 0)
632 term.quantify(max, greedy ? QuantifierGreedy : QuantifierNonGreedy);
633 else if (min == max)
634 term.quantify(min, QuantifierFixedCount);
635 else {
636 term.quantify(min, QuantifierFixedCount);
637 m_alternative->m_terms.append(copyTerm(term));
638 // NOTE: this term is interesting from an analysis perspective, in that it can be ignored.....
639 m_alternative->lastTerm().quantify((max == quantifyInfinite) ? max : max - min, greedy ? QuantifierGreedy : QuantifierNonGreedy);
640 if (m_alternative->lastTerm().type == PatternTerm::TypeParenthesesSubpattern)
641 m_alternative->lastTerm().parentheses.isCopy = true;
642 }
643 }
644
disjunction()645 void disjunction()
646 {
647 m_alternative = m_alternative->m_parent->addNewAlternative();
648 }
649
setupAlternativeOffsets(PatternAlternative * alternative,unsigned currentCallFrameSize,unsigned initialInputPosition)650 unsigned setupAlternativeOffsets(PatternAlternative* alternative, unsigned currentCallFrameSize, unsigned initialInputPosition)
651 {
652 alternative->m_hasFixedSize = true;
653 unsigned currentInputPosition = initialInputPosition;
654
655 for (unsigned i = 0; i < alternative->m_terms.size(); ++i) {
656 PatternTerm& term = alternative->m_terms[i];
657
658 switch (term.type) {
659 case PatternTerm::TypeAssertionBOL:
660 case PatternTerm::TypeAssertionEOL:
661 case PatternTerm::TypeAssertionWordBoundary:
662 term.inputPosition = currentInputPosition;
663 break;
664
665 case PatternTerm::TypeBackReference:
666 term.inputPosition = currentInputPosition;
667 term.frameLocation = currentCallFrameSize;
668 currentCallFrameSize += YarrStackSpaceForBackTrackInfoBackReference;
669 alternative->m_hasFixedSize = false;
670 break;
671
672 case PatternTerm::TypeForwardReference:
673 break;
674
675 case PatternTerm::TypePatternCharacter:
676 term.inputPosition = currentInputPosition;
677 if (term.quantityType != QuantifierFixedCount) {
678 term.frameLocation = currentCallFrameSize;
679 currentCallFrameSize += YarrStackSpaceForBackTrackInfoPatternCharacter;
680 alternative->m_hasFixedSize = false;
681 } else
682 currentInputPosition += term.quantityCount;
683 break;
684
685 case PatternTerm::TypeCharacterClass:
686 term.inputPosition = currentInputPosition;
687 if (term.quantityType != QuantifierFixedCount) {
688 term.frameLocation = currentCallFrameSize;
689 currentCallFrameSize += YarrStackSpaceForBackTrackInfoCharacterClass;
690 alternative->m_hasFixedSize = false;
691 } else
692 currentInputPosition += term.quantityCount;
693 break;
694
695 case PatternTerm::TypeParenthesesSubpattern:
696 // Note: for fixed once parentheses we will ensure at least the minimum is available; others are on their own.
697 term.frameLocation = currentCallFrameSize;
698 if (term.quantityCount == 1 && !term.parentheses.isCopy) {
699 if (term.quantityType != QuantifierFixedCount)
700 currentCallFrameSize += YarrStackSpaceForBackTrackInfoParenthesesOnce;
701 currentCallFrameSize = setupDisjunctionOffsets(term.parentheses.disjunction, currentCallFrameSize, currentInputPosition);
702 // If quantity is fixed, then pre-check its minimum size.
703 if (term.quantityType == QuantifierFixedCount)
704 currentInputPosition += term.parentheses.disjunction->m_minimumSize;
705 term.inputPosition = currentInputPosition;
706 } else if (term.parentheses.isTerminal) {
707 currentCallFrameSize += YarrStackSpaceForBackTrackInfoParenthesesTerminal;
708 currentCallFrameSize = setupDisjunctionOffsets(term.parentheses.disjunction, currentCallFrameSize, currentInputPosition);
709 term.inputPosition = currentInputPosition;
710 } else {
711 term.inputPosition = currentInputPosition;
712 setupDisjunctionOffsets(term.parentheses.disjunction, 0, currentInputPosition);
713 currentCallFrameSize += YarrStackSpaceForBackTrackInfoParentheses;
714 }
715 // Fixed count of 1 could be accepted, if they have a fixed size *AND* if all alternatives are of the same length.
716 alternative->m_hasFixedSize = false;
717 break;
718
719 case PatternTerm::TypeParentheticalAssertion:
720 term.inputPosition = currentInputPosition;
721 term.frameLocation = currentCallFrameSize;
722 currentCallFrameSize = setupDisjunctionOffsets(term.parentheses.disjunction, currentCallFrameSize + YarrStackSpaceForBackTrackInfoParentheticalAssertion, currentInputPosition);
723 break;
724 }
725 }
726
727 alternative->m_minimumSize = currentInputPosition - initialInputPosition;
728 return currentCallFrameSize;
729 }
730
setupDisjunctionOffsets(PatternDisjunction * disjunction,unsigned initialCallFrameSize,unsigned initialInputPosition)731 unsigned setupDisjunctionOffsets(PatternDisjunction* disjunction, unsigned initialCallFrameSize, unsigned initialInputPosition)
732 {
733 if ((disjunction != m_pattern.m_body) && (disjunction->m_alternatives.size() > 1))
734 initialCallFrameSize += YarrStackSpaceForBackTrackInfoAlternative;
735
736 unsigned minimumInputSize = UINT_MAX;
737 unsigned maximumCallFrameSize = 0;
738 bool hasFixedSize = true;
739
740 for (unsigned alt = 0; alt < disjunction->m_alternatives.size(); ++alt) {
741 PatternAlternative* alternative = disjunction->m_alternatives[alt];
742 unsigned currentAlternativeCallFrameSize = setupAlternativeOffsets(alternative, initialCallFrameSize, initialInputPosition);
743 minimumInputSize = min(minimumInputSize, alternative->m_minimumSize);
744 maximumCallFrameSize = max(maximumCallFrameSize, currentAlternativeCallFrameSize);
745 hasFixedSize &= alternative->m_hasFixedSize;
746 }
747
748 ASSERT(minimumInputSize != UINT_MAX);
749 ASSERT(maximumCallFrameSize >= initialCallFrameSize);
750
751 disjunction->m_hasFixedSize = hasFixedSize;
752 disjunction->m_minimumSize = minimumInputSize;
753 disjunction->m_callFrameSize = maximumCallFrameSize;
754 return maximumCallFrameSize;
755 }
756
setupOffsets()757 void setupOffsets()
758 {
759 setupDisjunctionOffsets(m_pattern.m_body, 0, 0);
760 }
761
762 // This optimization identifies sets of parentheses that we will never need to backtrack.
763 // In these cases we do not need to store state from prior iterations.
764 // We can presently avoid backtracking for:
765 // * where the parens are at the end of the regular expression (last term in any of the
766 // alternatives of the main body disjunction).
767 // * where the parens are non-capturing, and quantified unbounded greedy (*).
768 // * where the parens do not contain any capturing subpatterns.
checkForTerminalParentheses()769 void checkForTerminalParentheses()
770 {
771 // This check is much too crude; should be just checking whether the candidate
772 // node contains nested capturing subpatterns, not the whole expression!
773 if (m_pattern.m_numSubpatterns)
774 return;
775
776 Vector<PatternAlternative*>& alternatives = m_pattern.m_body->m_alternatives;
777 for (size_t i = 0; i < alternatives.size(); ++i) {
778 Vector<PatternTerm>& terms = alternatives[i]->m_terms;
779 if (terms.size()) {
780 PatternTerm& term = terms.last();
781 if (term.type == PatternTerm::TypeParenthesesSubpattern
782 && term.quantityType == QuantifierGreedy
783 && term.quantityCount == quantifyInfinite
784 && !term.capture())
785 term.parentheses.isTerminal = true;
786 }
787 }
788 }
789
optimizeBOL()790 void optimizeBOL()
791 {
792 // Look for expressions containing beginning of line (^) anchoring and unroll them.
793 // e.g. /^a|^b|c/ becomes /^a|^b|c/ which is executed once followed by /c/ which loops
794 // This code relies on the parsing code tagging alternatives with m_containsBOL and
795 // m_startsWithBOL and rolling those up to containing alternatives.
796 // At this point, this is only valid for non-multiline expressions.
797 PatternDisjunction* disjunction = m_pattern.m_body;
798
799 if (!m_pattern.m_containsBOL || m_pattern.m_multiline)
800 return;
801
802 PatternDisjunction* loopDisjunction = copyDisjunction(disjunction, true);
803
804 // Set alternatives in disjunction to "onceThrough"
805 for (unsigned alt = 0; alt < disjunction->m_alternatives.size(); ++alt)
806 disjunction->m_alternatives[alt]->setOnceThrough();
807
808 if (loopDisjunction) {
809 // Move alternatives from loopDisjunction to disjunction
810 for (unsigned alt = 0; alt < loopDisjunction->m_alternatives.size(); ++alt)
811 disjunction->m_alternatives.append(loopDisjunction->m_alternatives[alt]);
812
813 loopDisjunction->m_alternatives.clear();
814 }
815 }
816
817 // This function collects the terms which are potentially matching the first number of depth characters in the result.
818 // If this function returns false then it found at least one term which makes the beginning character
819 // look-up optimization inefficient.
setupDisjunctionBeginTerms(PatternDisjunction * disjunction,Vector<TermChain> * beginTerms,unsigned depth)820 bool setupDisjunctionBeginTerms(PatternDisjunction* disjunction, Vector<TermChain>* beginTerms, unsigned depth)
821 {
822 for (unsigned alt = 0; alt < disjunction->m_alternatives.size(); ++alt) {
823 PatternAlternative* alternative = disjunction->m_alternatives[alt];
824
825 if (!setupAlternativeBeginTerms(alternative, beginTerms, 0, depth))
826 return false;
827 }
828
829 return true;
830 }
831
setupAlternativeBeginTerms(PatternAlternative * alternative,Vector<TermChain> * beginTerms,unsigned termIndex,unsigned depth)832 bool setupAlternativeBeginTerms(PatternAlternative* alternative, Vector<TermChain>* beginTerms, unsigned termIndex, unsigned depth)
833 {
834 bool checkNext = true;
835 unsigned numTerms = alternative->m_terms.size();
836
837 while (checkNext && termIndex < numTerms) {
838 PatternTerm term = alternative->m_terms[termIndex];
839 checkNext = false;
840
841 switch (term.type) {
842 case PatternTerm::TypeAssertionBOL:
843 case PatternTerm::TypeAssertionEOL:
844 case PatternTerm::TypeAssertionWordBoundary:
845 return false;
846
847 case PatternTerm::TypeBackReference:
848 case PatternTerm::TypeForwardReference:
849 return false;
850
851 case PatternTerm::TypePatternCharacter:
852 if (termIndex != numTerms - 1) {
853 beginTerms->append(TermChain(term));
854 termIndex++;
855 checkNext = true;
856 } else if (term.quantityType == QuantifierFixedCount) {
857 beginTerms->append(TermChain(term));
858 if (depth < 2 && termIndex < numTerms - 1 && term.quantityCount == 1)
859 if (!setupAlternativeBeginTerms(alternative, &beginTerms->last().hotTerms, termIndex + 1, depth + 1))
860 return false;
861 }
862
863 break;
864
865 case PatternTerm::TypeCharacterClass:
866 return false;
867
868 case PatternTerm::TypeParentheticalAssertion:
869 if (term.invert())
870 return false;
871
872 case PatternTerm::TypeParenthesesSubpattern:
873 if (term.quantityType != QuantifierFixedCount) {
874 if (termIndex == numTerms - 1)
875 break;
876
877 termIndex++;
878 checkNext = true;
879 }
880
881 if (!setupDisjunctionBeginTerms(term.parentheses.disjunction, beginTerms, depth))
882 return false;
883
884 break;
885 }
886 }
887
888 return true;
889 }
890
setupBeginChars()891 void setupBeginChars()
892 {
893 Vector<TermChain> beginTerms;
894 bool containsFixedCharacter = false;
895
896 if ((!m_pattern.m_body->m_hasFixedSize || m_pattern.m_body->m_alternatives.size() > 1)
897 && setupDisjunctionBeginTerms(m_pattern.m_body, &beginTerms, 0)) {
898 unsigned size = beginTerms.size();
899
900 // If we haven't collected any terms we should abort the preparation of beginning character look-up optimization.
901 if (!size)
902 return;
903
904 m_pattern.m_containsBeginChars = true;
905
906 for (unsigned i = 0; i < size; i++) {
907 PatternTerm term = beginTerms[i].term;
908
909 // We have just collected PatternCharacter terms, other terms are not allowed.
910 ASSERT(term.type == PatternTerm::TypePatternCharacter);
911
912 if (term.quantityType == QuantifierFixedCount)
913 containsFixedCharacter = true;
914
915 UChar character = term.patternCharacter;
916 unsigned mask = 0;
917
918 if (character <= 0x7f) {
919 if (m_pattern.m_ignoreCase && isASCIIAlpha(character)) {
920 mask = 32;
921 character = toASCIILower(character);
922 }
923
924 m_beginCharHelper.addBeginChar(BeginChar(character, mask), &beginTerms[i].hotTerms, term.quantityType, term.quantityCount);
925 } else {
926 UChar upper, lower;
927 if (m_pattern.m_ignoreCase && ((upper = Unicode::toUpper(character)) != (lower = Unicode::toLower(character)))) {
928 m_beginCharHelper.addBeginChar(BeginChar(upper, mask), &beginTerms[i].hotTerms, term.quantityType, term.quantityCount);
929 m_beginCharHelper.addBeginChar(BeginChar(lower, mask), &beginTerms[i].hotTerms, term.quantityType, term.quantityCount);
930 } else
931 m_beginCharHelper.addBeginChar(BeginChar(character, mask), &beginTerms[i].hotTerms, term.quantityType, term.quantityCount);
932 }
933 }
934
935 // If the pattern doesn't contain terms with fixed quantifiers then the beginning character look-up optimization is inefficient.
936 if (!containsFixedCharacter) {
937 m_pattern.m_containsBeginChars = false;
938 return;
939 }
940
941 size = m_pattern.m_beginChars.size();
942
943 if (size > 2)
944 m_beginCharHelper.merge(size - 1);
945 else if (size <= 1)
946 m_pattern.m_containsBeginChars = false;
947 }
948 }
949
950 private:
951 YarrPattern& m_pattern;
952 PatternAlternative* m_alternative;
953 CharacterClassConstructor m_characterClassConstructor;
954 BeginCharHelper m_beginCharHelper;
955 bool m_invertCharacterClass;
956 bool m_invertParentheticalAssertion;
957 };
958
compile(const UString & patternString)959 const char* YarrPattern::compile(const UString& patternString)
960 {
961 YarrPatternConstructor constructor(*this);
962
963 if (const char* error = parse(constructor, patternString))
964 return error;
965
966 // If the pattern contains illegal backreferences reset & reparse.
967 // Quoting Netscape's "What's new in JavaScript 1.2",
968 // "Note: if the number of left parentheses is less than the number specified
969 // in \#, the \# is taken as an octal escape as described in the next row."
970 if (containsIllegalBackReference()) {
971 unsigned numSubpatterns = m_numSubpatterns;
972
973 constructor.reset();
974 #if !ASSERT_DISABLED
975 const char* error =
976 #endif
977 parse(constructor, patternString, numSubpatterns);
978
979 ASSERT(!error);
980 ASSERT(numSubpatterns == m_numSubpatterns);
981 }
982
983 constructor.checkForTerminalParentheses();
984 constructor.optimizeBOL();
985
986 constructor.setupOffsets();
987 constructor.setupBeginChars();
988
989 return 0;
990 }
991
YarrPattern(const UString & pattern,bool ignoreCase,bool multiline,const char ** error)992 YarrPattern::YarrPattern(const UString& pattern, bool ignoreCase, bool multiline, const char** error)
993 : m_ignoreCase(ignoreCase)
994 , m_multiline(multiline)
995 , m_containsBackreferences(false)
996 , m_containsBeginChars(false)
997 , m_containsBOL(false)
998 , m_numSubpatterns(0)
999 , m_maxBackReference(0)
1000 , newlineCached(0)
1001 , digitsCached(0)
1002 , spacesCached(0)
1003 , wordcharCached(0)
1004 , nondigitsCached(0)
1005 , nonspacesCached(0)
1006 , nonwordcharCached(0)
1007 {
1008 *error = compile(pattern);
1009 }
1010
1011 } }
1012