• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2012 Google Inc. All Rights Reserved.
2 //
3 // This code is licensed under the same terms as WebM:
4 //  Software License Agreement:  http://www.webmproject.org/license/software/
5 //  Additional IP Rights Grant:  http://www.webmproject.org/license/additional/
6 // -----------------------------------------------------------------------------
7 //
8 // main entry for the decoder
9 //
10 // Authors: Vikas Arora (vikaas.arora@gmail.com)
11 //          Jyrki Alakuijala (jyrki@google.com)
12 
13 #include <stdio.h>
14 #include <stdlib.h>
15 #include "./vp8li.h"
16 #include "../dsp/lossless.h"
17 #include "../dsp/yuv.h"
18 #include "../utils/huffman.h"
19 #include "../utils/utils.h"
20 
21 #if defined(__cplusplus) || defined(c_plusplus)
22 extern "C" {
23 #endif
24 
25 #define NUM_ARGB_CACHE_ROWS          16
26 
27 static const int kCodeLengthLiterals = 16;
28 static const int kCodeLengthRepeatCode = 16;
29 static const int kCodeLengthExtraBits[3] = { 2, 3, 7 };
30 static const int kCodeLengthRepeatOffsets[3] = { 3, 3, 11 };
31 
32 // -----------------------------------------------------------------------------
33 //  Five Huffman codes are used at each meta code:
34 //  1. green + length prefix codes + color cache codes,
35 //  2. alpha,
36 //  3. red,
37 //  4. blue, and,
38 //  5. distance prefix codes.
39 typedef enum {
40   GREEN = 0,
41   RED   = 1,
42   BLUE  = 2,
43   ALPHA = 3,
44   DIST  = 4
45 } HuffIndex;
46 
47 static const uint16_t kAlphabetSize[HUFFMAN_CODES_PER_META_CODE] = {
48   NUM_LITERAL_CODES + NUM_LENGTH_CODES,
49   NUM_LITERAL_CODES, NUM_LITERAL_CODES, NUM_LITERAL_CODES,
50   NUM_DISTANCE_CODES
51 };
52 
53 
54 #define NUM_CODE_LENGTH_CODES       19
55 static const uint8_t kCodeLengthCodeOrder[NUM_CODE_LENGTH_CODES] = {
56   17, 18, 0, 1, 2, 3, 4, 5, 16, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
57 };
58 
59 #define CODE_TO_PLANE_CODES        120
60 static const uint8_t code_to_plane_lut[CODE_TO_PLANE_CODES] = {
61    0x18, 0x07, 0x17, 0x19, 0x28, 0x06, 0x27, 0x29, 0x16, 0x1a,
62    0x26, 0x2a, 0x38, 0x05, 0x37, 0x39, 0x15, 0x1b, 0x36, 0x3a,
63    0x25, 0x2b, 0x48, 0x04, 0x47, 0x49, 0x14, 0x1c, 0x35, 0x3b,
64    0x46, 0x4a, 0x24, 0x2c, 0x58, 0x45, 0x4b, 0x34, 0x3c, 0x03,
65    0x57, 0x59, 0x13, 0x1d, 0x56, 0x5a, 0x23, 0x2d, 0x44, 0x4c,
66    0x55, 0x5b, 0x33, 0x3d, 0x68, 0x02, 0x67, 0x69, 0x12, 0x1e,
67    0x66, 0x6a, 0x22, 0x2e, 0x54, 0x5c, 0x43, 0x4d, 0x65, 0x6b,
68    0x32, 0x3e, 0x78, 0x01, 0x77, 0x79, 0x53, 0x5d, 0x11, 0x1f,
69    0x64, 0x6c, 0x42, 0x4e, 0x76, 0x7a, 0x21, 0x2f, 0x75, 0x7b,
70    0x31, 0x3f, 0x63, 0x6d, 0x52, 0x5e, 0x00, 0x74, 0x7c, 0x41,
71    0x4f, 0x10, 0x20, 0x62, 0x6e, 0x30, 0x73, 0x7d, 0x51, 0x5f,
72    0x40, 0x72, 0x7e, 0x61, 0x6f, 0x50, 0x71, 0x7f, 0x60, 0x70
73 };
74 
75 static int DecodeImageStream(int xsize, int ysize,
76                              int is_level0,
77                              VP8LDecoder* const dec,
78                              uint32_t** const decoded_data);
79 
80 //------------------------------------------------------------------------------
81 
VP8LCheckSignature(const uint8_t * const data,size_t size)82 int VP8LCheckSignature(const uint8_t* const data, size_t size) {
83   return (size >= 1) && (data[0] == VP8L_MAGIC_BYTE);
84 }
85 
ReadImageInfo(VP8LBitReader * const br,int * const width,int * const height,int * const has_alpha)86 static int ReadImageInfo(VP8LBitReader* const br,
87                          int* const width, int* const height,
88                          int* const has_alpha) {
89   const uint8_t signature = VP8LReadBits(br, 8);
90   if (!VP8LCheckSignature(&signature, 1)) {
91     return 0;
92   }
93   *width = VP8LReadBits(br, VP8L_IMAGE_SIZE_BITS) + 1;
94   *height = VP8LReadBits(br, VP8L_IMAGE_SIZE_BITS) + 1;
95   *has_alpha = VP8LReadBits(br, 1);
96   VP8LReadBits(br, VP8L_VERSION_BITS);  // Read/ignore the version number.
97   return 1;
98 }
99 
VP8LGetInfo(const uint8_t * data,size_t data_size,int * const width,int * const height,int * const has_alpha)100 int VP8LGetInfo(const uint8_t* data, size_t data_size,
101                 int* const width, int* const height, int* const has_alpha) {
102   if (data == NULL || data_size < VP8L_FRAME_HEADER_SIZE) {
103     return 0;         // not enough data
104   } else {
105     int w, h, a;
106     VP8LBitReader br;
107     VP8LInitBitReader(&br, data, data_size);
108     if (!ReadImageInfo(&br, &w, &h, &a)) {
109       return 0;
110     }
111     if (width != NULL) *width = w;
112     if (height != NULL) *height = h;
113     if (has_alpha != NULL) *has_alpha = a;
114     return 1;
115   }
116 }
117 
118 //------------------------------------------------------------------------------
119 
GetCopyDistance(int distance_symbol,VP8LBitReader * const br)120 static WEBP_INLINE int GetCopyDistance(int distance_symbol,
121                                        VP8LBitReader* const br) {
122   int extra_bits, offset;
123   if (distance_symbol < 4) {
124     return distance_symbol + 1;
125   }
126   extra_bits = (distance_symbol - 2) >> 1;
127   offset = (2 + (distance_symbol & 1)) << extra_bits;
128   return offset + VP8LReadBits(br, extra_bits) + 1;
129 }
130 
GetCopyLength(int length_symbol,VP8LBitReader * const br)131 static WEBP_INLINE int GetCopyLength(int length_symbol,
132                                      VP8LBitReader* const br) {
133   // Length and distance prefixes are encoded the same way.
134   return GetCopyDistance(length_symbol, br);
135 }
136 
PlaneCodeToDistance(int xsize,int plane_code)137 static WEBP_INLINE int PlaneCodeToDistance(int xsize, int plane_code) {
138   if (plane_code > CODE_TO_PLANE_CODES) {
139     return plane_code - CODE_TO_PLANE_CODES;
140   } else {
141     const int dist_code = code_to_plane_lut[plane_code - 1];
142     const int yoffset = dist_code >> 4;
143     const int xoffset = 8 - (dist_code & 0xf);
144     const int dist = yoffset * xsize + xoffset;
145     return (dist >= 1) ? dist : 1;
146   }
147 }
148 
149 //------------------------------------------------------------------------------
150 // Decodes the next Huffman code from bit-stream.
151 // FillBitWindow(br) needs to be called at minimum every second call
152 // to ReadSymbolUnsafe.
ReadSymbolUnsafe(const HuffmanTree * tree,VP8LBitReader * const br)153 static int ReadSymbolUnsafe(const HuffmanTree* tree, VP8LBitReader* const br) {
154   const HuffmanTreeNode* node = tree->root_;
155   assert(node != NULL);
156   while (!HuffmanTreeNodeIsLeaf(node)) {
157     node = HuffmanTreeNextNode(node, VP8LReadOneBitUnsafe(br));
158   }
159   return node->symbol_;
160 }
161 
ReadSymbol(const HuffmanTree * tree,VP8LBitReader * const br)162 static WEBP_INLINE int ReadSymbol(const HuffmanTree* tree,
163                                   VP8LBitReader* const br) {
164   const int read_safe = (br->pos_ + 8 > br->len_);
165   if (!read_safe) {
166     return ReadSymbolUnsafe(tree, br);
167   } else {
168     const HuffmanTreeNode* node = tree->root_;
169     assert(node != NULL);
170     while (!HuffmanTreeNodeIsLeaf(node)) {
171       node = HuffmanTreeNextNode(node, VP8LReadOneBit(br));
172     }
173     return node->symbol_;
174   }
175 }
176 
ReadHuffmanCodeLengths(VP8LDecoder * const dec,const int * const code_length_code_lengths,int num_symbols,int * const code_lengths)177 static int ReadHuffmanCodeLengths(
178     VP8LDecoder* const dec, const int* const code_length_code_lengths,
179     int num_symbols, int* const code_lengths) {
180   int ok = 0;
181   VP8LBitReader* const br = &dec->br_;
182   int symbol;
183   int max_symbol;
184   int prev_code_len = DEFAULT_CODE_LENGTH;
185   HuffmanTree tree;
186 
187   if (!HuffmanTreeBuildImplicit(&tree, code_length_code_lengths,
188                                 NUM_CODE_LENGTH_CODES)) {
189     dec->status_ = VP8_STATUS_BITSTREAM_ERROR;
190     return 0;
191   }
192 
193   if (VP8LReadBits(br, 1)) {    // use length
194     const int length_nbits = 2 + 2 * VP8LReadBits(br, 3);
195     max_symbol = 2 + VP8LReadBits(br, length_nbits);
196     if (max_symbol > num_symbols) {
197       dec->status_ = VP8_STATUS_BITSTREAM_ERROR;
198       goto End;
199     }
200   } else {
201     max_symbol = num_symbols;
202   }
203 
204   symbol = 0;
205   while (symbol < num_symbols) {
206     int code_len;
207     if (max_symbol-- == 0) break;
208     VP8LFillBitWindow(br);
209     code_len = ReadSymbol(&tree, br);
210     if (code_len < kCodeLengthLiterals) {
211       code_lengths[symbol++] = code_len;
212       if (code_len != 0) prev_code_len = code_len;
213     } else {
214       const int use_prev = (code_len == kCodeLengthRepeatCode);
215       const int slot = code_len - kCodeLengthLiterals;
216       const int extra_bits = kCodeLengthExtraBits[slot];
217       const int repeat_offset = kCodeLengthRepeatOffsets[slot];
218       int repeat = VP8LReadBits(br, extra_bits) + repeat_offset;
219       if (symbol + repeat > num_symbols) {
220         dec->status_ = VP8_STATUS_BITSTREAM_ERROR;
221         goto End;
222       } else {
223         const int length = use_prev ? prev_code_len : 0;
224         while (repeat-- > 0) code_lengths[symbol++] = length;
225       }
226     }
227   }
228   ok = 1;
229 
230  End:
231   HuffmanTreeRelease(&tree);
232   return ok;
233 }
234 
ReadHuffmanCode(int alphabet_size,VP8LDecoder * const dec,HuffmanTree * const tree)235 static int ReadHuffmanCode(int alphabet_size, VP8LDecoder* const dec,
236                            HuffmanTree* const tree) {
237   int ok = 0;
238   VP8LBitReader* const br = &dec->br_;
239   const int simple_code = VP8LReadBits(br, 1);
240 
241   if (simple_code) {  // Read symbols, codes & code lengths directly.
242     int symbols[2];
243     int codes[2];
244     int code_lengths[2];
245     const int num_symbols = VP8LReadBits(br, 1) + 1;
246     const int first_symbol_len_code = VP8LReadBits(br, 1);
247     // The first code is either 1 bit or 8 bit code.
248     symbols[0] = VP8LReadBits(br, (first_symbol_len_code == 0) ? 1 : 8);
249     codes[0] = 0;
250     code_lengths[0] = num_symbols - 1;
251     // The second code (if present), is always 8 bit long.
252     if (num_symbols == 2) {
253       symbols[1] = VP8LReadBits(br, 8);
254       codes[1] = 1;
255       code_lengths[1] = num_symbols - 1;
256     }
257     ok = HuffmanTreeBuildExplicit(tree, code_lengths, codes, symbols,
258                                   alphabet_size, num_symbols);
259   } else {  // Decode Huffman-coded code lengths.
260     int* code_lengths = NULL;
261     int i;
262     int code_length_code_lengths[NUM_CODE_LENGTH_CODES] = { 0 };
263     const int num_codes = VP8LReadBits(br, 4) + 4;
264     if (num_codes > NUM_CODE_LENGTH_CODES) {
265       dec->status_ = VP8_STATUS_BITSTREAM_ERROR;
266       return 0;
267     }
268 
269     code_lengths =
270         (int*)WebPSafeCalloc((uint64_t)alphabet_size, sizeof(*code_lengths));
271     if (code_lengths == NULL) {
272       dec->status_ = VP8_STATUS_OUT_OF_MEMORY;
273       return 0;
274     }
275 
276     for (i = 0; i < num_codes; ++i) {
277       code_length_code_lengths[kCodeLengthCodeOrder[i]] = VP8LReadBits(br, 3);
278     }
279     ok = ReadHuffmanCodeLengths(dec, code_length_code_lengths, alphabet_size,
280                                 code_lengths);
281     if (ok) {
282       ok = HuffmanTreeBuildImplicit(tree, code_lengths, alphabet_size);
283     }
284     free(code_lengths);
285   }
286   ok = ok && !br->error_;
287   if (!ok) {
288     dec->status_ = VP8_STATUS_BITSTREAM_ERROR;
289     return 0;
290   }
291   return 1;
292 }
293 
DeleteHtreeGroups(HTreeGroup * htree_groups,int num_htree_groups)294 static void DeleteHtreeGroups(HTreeGroup* htree_groups, int num_htree_groups) {
295   if (htree_groups != NULL) {
296     int i, j;
297     for (i = 0; i < num_htree_groups; ++i) {
298       HuffmanTree* const htrees = htree_groups[i].htrees_;
299       for (j = 0; j < HUFFMAN_CODES_PER_META_CODE; ++j) {
300         HuffmanTreeRelease(&htrees[j]);
301       }
302     }
303     free(htree_groups);
304   }
305 }
306 
ReadHuffmanCodes(VP8LDecoder * const dec,int xsize,int ysize,int color_cache_bits,int allow_recursion)307 static int ReadHuffmanCodes(VP8LDecoder* const dec, int xsize, int ysize,
308                             int color_cache_bits, int allow_recursion) {
309   int i, j;
310   VP8LBitReader* const br = &dec->br_;
311   VP8LMetadata* const hdr = &dec->hdr_;
312   uint32_t* huffman_image = NULL;
313   HTreeGroup* htree_groups = NULL;
314   int num_htree_groups = 1;
315 
316   if (allow_recursion && VP8LReadBits(br, 1)) {
317     // use meta Huffman codes.
318     const int huffman_precision = VP8LReadBits(br, 3) + 2;
319     const int huffman_xsize = VP8LSubSampleSize(xsize, huffman_precision);
320     const int huffman_ysize = VP8LSubSampleSize(ysize, huffman_precision);
321     const int huffman_pixs = huffman_xsize * huffman_ysize;
322     if (!DecodeImageStream(huffman_xsize, huffman_ysize, 0, dec,
323                            &huffman_image)) {
324       dec->status_ = VP8_STATUS_BITSTREAM_ERROR;
325       goto Error;
326     }
327     hdr->huffman_subsample_bits_ = huffman_precision;
328     for (i = 0; i < huffman_pixs; ++i) {
329       // The huffman data is stored in red and green bytes.
330       const int index = (huffman_image[i] >> 8) & 0xffff;
331       huffman_image[i] = index;
332       if (index >= num_htree_groups) {
333         num_htree_groups = index + 1;
334       }
335     }
336   }
337 
338   if (br->error_) goto Error;
339 
340   assert(num_htree_groups <= 0x10000);
341   htree_groups =
342       (HTreeGroup*)WebPSafeCalloc((uint64_t)num_htree_groups,
343                                   sizeof(*htree_groups));
344   if (htree_groups == NULL) {
345     dec->status_ = VP8_STATUS_OUT_OF_MEMORY;
346     goto Error;
347   }
348 
349   for (i = 0; i < num_htree_groups; ++i) {
350     HuffmanTree* const htrees = htree_groups[i].htrees_;
351     for (j = 0; j < HUFFMAN_CODES_PER_META_CODE; ++j) {
352       int alphabet_size = kAlphabetSize[j];
353       if (j == 0 && color_cache_bits > 0) {
354         alphabet_size += 1 << color_cache_bits;
355       }
356       if (!ReadHuffmanCode(alphabet_size, dec, htrees + j)) goto Error;
357     }
358   }
359 
360   // All OK. Finalize pointers and return.
361   hdr->huffman_image_ = huffman_image;
362   hdr->num_htree_groups_ = num_htree_groups;
363   hdr->htree_groups_ = htree_groups;
364   return 1;
365 
366  Error:
367   free(huffman_image);
368   DeleteHtreeGroups(htree_groups, num_htree_groups);
369   return 0;
370 }
371 
372 //------------------------------------------------------------------------------
373 // Scaling.
374 
AllocateAndInitRescaler(VP8LDecoder * const dec,VP8Io * const io)375 static int AllocateAndInitRescaler(VP8LDecoder* const dec, VP8Io* const io) {
376   const int num_channels = 4;
377   const int in_width = io->mb_w;
378   const int out_width = io->scaled_width;
379   const int in_height = io->mb_h;
380   const int out_height = io->scaled_height;
381   const uint64_t work_size = 2 * num_channels * (uint64_t)out_width;
382   int32_t* work;        // Rescaler work area.
383   const uint64_t scaled_data_size = num_channels * (uint64_t)out_width;
384   uint32_t* scaled_data;  // Temporary storage for scaled BGRA data.
385   const uint64_t memory_size = sizeof(*dec->rescaler) +
386                                work_size * sizeof(*work) +
387                                scaled_data_size * sizeof(*scaled_data);
388   uint8_t* memory = (uint8_t*)WebPSafeCalloc(memory_size, sizeof(*memory));
389   if (memory == NULL) {
390     dec->status_ = VP8_STATUS_OUT_OF_MEMORY;
391     return 0;
392   }
393   assert(dec->rescaler_memory == NULL);
394   dec->rescaler_memory = memory;
395 
396   dec->rescaler = (WebPRescaler*)memory;
397   memory += sizeof(*dec->rescaler);
398   work = (int32_t*)memory;
399   memory += work_size * sizeof(*work);
400   scaled_data = (uint32_t*)memory;
401 
402   WebPRescalerInit(dec->rescaler, in_width, in_height, (uint8_t*)scaled_data,
403                    out_width, out_height, 0, num_channels,
404                    in_width, out_width, in_height, out_height, work);
405   return 1;
406 }
407 
408 //------------------------------------------------------------------------------
409 // Export to ARGB
410 
411 // We have special "export" function since we need to convert from BGRA
Export(WebPRescaler * const rescaler,WEBP_CSP_MODE colorspace,int rgba_stride,uint8_t * const rgba)412 static int Export(WebPRescaler* const rescaler, WEBP_CSP_MODE colorspace,
413                   int rgba_stride, uint8_t* const rgba) {
414   const uint32_t* const src = (const uint32_t*)rescaler->dst;
415   const int dst_width = rescaler->dst_width;
416   int num_lines_out = 0;
417   while (WebPRescalerHasPendingOutput(rescaler)) {
418     uint8_t* const dst = rgba + num_lines_out * rgba_stride;
419     WebPRescalerExportRow(rescaler);
420     VP8LConvertFromBGRA(src, dst_width, colorspace, dst);
421     ++num_lines_out;
422   }
423   return num_lines_out;
424 }
425 
426 // Emit scaled rows.
EmitRescaledRows(const VP8LDecoder * const dec,const uint32_t * const data,int in_stride,int mb_h,uint8_t * const out,int out_stride)427 static int EmitRescaledRows(const VP8LDecoder* const dec,
428                             const uint32_t* const data, int in_stride, int mb_h,
429                             uint8_t* const out, int out_stride) {
430   const WEBP_CSP_MODE colorspace = dec->output_->colorspace;
431   const uint8_t* const in = (const uint8_t*)data;
432   int num_lines_in = 0;
433   int num_lines_out = 0;
434   while (num_lines_in < mb_h) {
435     const uint8_t* const row_in = in + num_lines_in * in_stride;
436     uint8_t* const row_out = out + num_lines_out * out_stride;
437     num_lines_in += WebPRescalerImport(dec->rescaler, mb_h - num_lines_in,
438                                        row_in, in_stride);
439     num_lines_out += Export(dec->rescaler, colorspace, out_stride, row_out);
440   }
441   return num_lines_out;
442 }
443 
444 // Emit rows without any scaling.
EmitRows(WEBP_CSP_MODE colorspace,const uint32_t * const data,int in_stride,int mb_w,int mb_h,uint8_t * const out,int out_stride)445 static int EmitRows(WEBP_CSP_MODE colorspace,
446                     const uint32_t* const data, int in_stride,
447                     int mb_w, int mb_h,
448                     uint8_t* const out, int out_stride) {
449   int lines = mb_h;
450   const uint8_t* row_in = (const uint8_t*)data;
451   uint8_t* row_out = out;
452   while (lines-- > 0) {
453     VP8LConvertFromBGRA((const uint32_t*)row_in, mb_w, colorspace, row_out);
454     row_in += in_stride;
455     row_out += out_stride;
456   }
457   return mb_h;  // Num rows out == num rows in.
458 }
459 
460 //------------------------------------------------------------------------------
461 // Export to YUVA
462 
ConvertToYUVA(const uint32_t * const src,int width,int y_pos,const WebPDecBuffer * const output)463 static void ConvertToYUVA(const uint32_t* const src, int width, int y_pos,
464                           const WebPDecBuffer* const output) {
465   const WebPYUVABuffer* const buf = &output->u.YUVA;
466   // first, the luma plane
467   {
468     int i;
469     uint8_t* const y = buf->y + y_pos * buf->y_stride;
470     for (i = 0; i < width; ++i) {
471       const uint32_t p = src[i];
472       y[i] = VP8RGBToY((p >> 16) & 0xff, (p >> 8) & 0xff, (p >> 0) & 0xff);
473     }
474   }
475 
476   // then U/V planes
477   {
478     uint8_t* const u = buf->u + (y_pos >> 1) * buf->u_stride;
479     uint8_t* const v = buf->v + (y_pos >> 1) * buf->v_stride;
480     const int uv_width = width >> 1;
481     int i;
482     for (i = 0; i < uv_width; ++i) {
483       const uint32_t v0 = src[2 * i + 0];
484       const uint32_t v1 = src[2 * i + 1];
485       // VP8RGBToU/V expects four accumulated pixels. Hence we need to
486       // scale r/g/b value by a factor 2. We just shift v0/v1 one bit less.
487       const int r = ((v0 >> 15) & 0x1fe) + ((v1 >> 15) & 0x1fe);
488       const int g = ((v0 >>  7) & 0x1fe) + ((v1 >>  7) & 0x1fe);
489       const int b = ((v0 <<  1) & 0x1fe) + ((v1 <<  1) & 0x1fe);
490       if (!(y_pos & 1)) {  // even lines: store values
491         u[i] = VP8RGBToU(r, g, b);
492         v[i] = VP8RGBToV(r, g, b);
493       } else {             // odd lines: average with previous values
494         const int tmp_u = VP8RGBToU(r, g, b);
495         const int tmp_v = VP8RGBToV(r, g, b);
496         // Approximated average-of-four. But it's an acceptable diff.
497         u[i] = (u[i] + tmp_u + 1) >> 1;
498         v[i] = (v[i] + tmp_v + 1) >> 1;
499       }
500     }
501     if (width & 1) {       // last pixel
502       const uint32_t v0 = src[2 * i + 0];
503       const int r = (v0 >> 14) & 0x3fc;
504       const int g = (v0 >>  6) & 0x3fc;
505       const int b = (v0 <<  2) & 0x3fc;
506       if (!(y_pos & 1)) {  // even lines
507         u[i] = VP8RGBToU(r, g, b);
508         v[i] = VP8RGBToV(r, g, b);
509       } else {             // odd lines (note: we could just skip this)
510         const int tmp_u = VP8RGBToU(r, g, b);
511         const int tmp_v = VP8RGBToV(r, g, b);
512         u[i] = (u[i] + tmp_u + 1) >> 1;
513         v[i] = (v[i] + tmp_v + 1) >> 1;
514       }
515     }
516   }
517   // Lastly, store alpha if needed.
518   if (buf->a != NULL) {
519     int i;
520     uint8_t* const a = buf->a + y_pos * buf->a_stride;
521     for (i = 0; i < width; ++i) a[i] = (src[i] >> 24);
522   }
523 }
524 
ExportYUVA(const VP8LDecoder * const dec,int y_pos)525 static int ExportYUVA(const VP8LDecoder* const dec, int y_pos) {
526   WebPRescaler* const rescaler = dec->rescaler;
527   const uint32_t* const src = (const uint32_t*)rescaler->dst;
528   const int dst_width = rescaler->dst_width;
529   int num_lines_out = 0;
530   while (WebPRescalerHasPendingOutput(rescaler)) {
531     WebPRescalerExportRow(rescaler);
532     ConvertToYUVA(src, dst_width, y_pos, dec->output_);
533     ++y_pos;
534     ++num_lines_out;
535   }
536   return num_lines_out;
537 }
538 
EmitRescaledRowsYUVA(const VP8LDecoder * const dec,const uint32_t * const data,int in_stride,int mb_h)539 static int EmitRescaledRowsYUVA(const VP8LDecoder* const dec,
540                                 const uint32_t* const data,
541                                 int in_stride, int mb_h) {
542   const uint8_t* const in = (const uint8_t*)data;
543   int num_lines_in = 0;
544   int y_pos = dec->last_out_row_;
545   while (num_lines_in < mb_h) {
546     const uint8_t* const row_in = in + num_lines_in * in_stride;
547     num_lines_in += WebPRescalerImport(dec->rescaler, mb_h - num_lines_in,
548                                        row_in, in_stride);
549     y_pos += ExportYUVA(dec, y_pos);
550   }
551   return y_pos;
552 }
553 
EmitRowsYUVA(const VP8LDecoder * const dec,const uint32_t * const data,int in_stride,int mb_w,int num_rows)554 static int EmitRowsYUVA(const VP8LDecoder* const dec,
555                         const uint32_t* const data, int in_stride,
556                         int mb_w, int num_rows) {
557   int y_pos = dec->last_out_row_;
558   const uint8_t* row_in = (const uint8_t*)data;
559   while (num_rows-- > 0) {
560     ConvertToYUVA((const uint32_t*)row_in, mb_w, y_pos, dec->output_);
561     row_in += in_stride;
562     ++y_pos;
563   }
564   return y_pos;
565 }
566 
567 //------------------------------------------------------------------------------
568 // Cropping.
569 
570 // Sets io->mb_y, io->mb_h & io->mb_w according to start row, end row and
571 // crop options. Also updates the input data pointer, so that it points to the
572 // start of the cropped window.
573 // Note that 'pixel_stride' is in units of 'uint32_t' (and not 'bytes).
574 // Returns true if the crop window is not empty.
SetCropWindow(VP8Io * const io,int y_start,int y_end,const uint32_t ** const in_data,int pixel_stride)575 static int SetCropWindow(VP8Io* const io, int y_start, int y_end,
576                          const uint32_t** const in_data, int pixel_stride) {
577   assert(y_start < y_end);
578   assert(io->crop_left < io->crop_right);
579   if (y_end > io->crop_bottom) {
580     y_end = io->crop_bottom;  // make sure we don't overflow on last row.
581   }
582   if (y_start < io->crop_top) {
583     const int delta = io->crop_top - y_start;
584     y_start = io->crop_top;
585     *in_data += pixel_stride * delta;
586   }
587   if (y_start >= y_end) return 0;  // Crop window is empty.
588 
589   *in_data += io->crop_left;
590 
591   io->mb_y = y_start - io->crop_top;
592   io->mb_w = io->crop_right - io->crop_left;
593   io->mb_h = y_end - y_start;
594   return 1;  // Non-empty crop window.
595 }
596 
597 //------------------------------------------------------------------------------
598 
GetMetaIndex(const uint32_t * const image,int xsize,int bits,int x,int y)599 static WEBP_INLINE int GetMetaIndex(
600     const uint32_t* const image, int xsize, int bits, int x, int y) {
601   if (bits == 0) return 0;
602   return image[xsize * (y >> bits) + (x >> bits)];
603 }
604 
GetHtreeGroupForPos(VP8LMetadata * const hdr,int x,int y)605 static WEBP_INLINE HTreeGroup* GetHtreeGroupForPos(VP8LMetadata* const hdr,
606                                                    int x, int y) {
607   const int meta_index = GetMetaIndex(hdr->huffman_image_, hdr->huffman_xsize_,
608                                       hdr->huffman_subsample_bits_, x, y);
609   assert(meta_index < hdr->num_htree_groups_);
610   return hdr->htree_groups_ + meta_index;
611 }
612 
613 //------------------------------------------------------------------------------
614 // Main loop, with custom row-processing function
615 
616 typedef void (*ProcessRowsFunc)(VP8LDecoder* const dec, int row);
617 
ApplyInverseTransforms(VP8LDecoder * const dec,int num_rows,const uint32_t * const rows)618 static void ApplyInverseTransforms(VP8LDecoder* const dec, int num_rows,
619                                    const uint32_t* const rows) {
620   int n = dec->next_transform_;
621   const int cache_pixs = dec->width_ * num_rows;
622   const int start_row = dec->last_row_;
623   const int end_row = start_row + num_rows;
624   const uint32_t* rows_in = rows;
625   uint32_t* const rows_out = dec->argb_cache_;
626 
627   // Inverse transforms.
628   // TODO: most transforms only need to operate on the cropped region only.
629   memcpy(rows_out, rows_in, cache_pixs * sizeof(*rows_out));
630   while (n-- > 0) {
631     VP8LTransform* const transform = &dec->transforms_[n];
632     VP8LInverseTransform(transform, start_row, end_row, rows_in, rows_out);
633     rows_in = rows_out;
634   }
635 }
636 
637 // Processes (transforms, scales & color-converts) the rows decoded after the
638 // last call.
ProcessRows(VP8LDecoder * const dec,int row)639 static void ProcessRows(VP8LDecoder* const dec, int row) {
640   const uint32_t* const rows = dec->argb_ + dec->width_ * dec->last_row_;
641   const int num_rows = row - dec->last_row_;
642 
643   if (num_rows <= 0) return;  // Nothing to be done.
644   ApplyInverseTransforms(dec, num_rows, rows);
645 
646   // Emit output.
647   {
648     VP8Io* const io = dec->io_;
649     const uint32_t* rows_data = dec->argb_cache_;
650     if (!SetCropWindow(io, dec->last_row_, row, &rows_data, io->width)) {
651       // Nothing to output (this time).
652     } else {
653       const WebPDecBuffer* const output = dec->output_;
654       const int in_stride = io->width * sizeof(*rows_data);
655       if (output->colorspace < MODE_YUV) {  // convert to RGBA
656         const WebPRGBABuffer* const buf = &output->u.RGBA;
657         uint8_t* const rgba = buf->rgba + dec->last_out_row_ * buf->stride;
658         const int num_rows_out = io->use_scaling ?
659             EmitRescaledRows(dec, rows_data, in_stride, io->mb_h,
660                              rgba, buf->stride) :
661             EmitRows(output->colorspace, rows_data, in_stride,
662                      io->mb_w, io->mb_h, rgba, buf->stride);
663         // Update 'last_out_row_'.
664         dec->last_out_row_ += num_rows_out;
665       } else {                              // convert to YUVA
666         dec->last_out_row_ = io->use_scaling ?
667             EmitRescaledRowsYUVA(dec, rows_data, in_stride, io->mb_h) :
668             EmitRowsYUVA(dec, rows_data, in_stride, io->mb_w, io->mb_h);
669       }
670       assert(dec->last_out_row_ <= output->height);
671     }
672   }
673 
674   // Update 'last_row_'.
675   dec->last_row_ = row;
676   assert(dec->last_row_ <= dec->height_);
677 }
678 
DecodeImageData(VP8LDecoder * const dec,uint32_t * const data,int width,int height,ProcessRowsFunc process_func)679 static int DecodeImageData(VP8LDecoder* const dec,
680                            uint32_t* const data, int width, int height,
681                            ProcessRowsFunc process_func) {
682   int ok = 1;
683   int col = 0, row = 0;
684   VP8LBitReader* const br = &dec->br_;
685   VP8LMetadata* const hdr = &dec->hdr_;
686   HTreeGroup* htree_group = hdr->htree_groups_;
687   uint32_t* src = data;
688   uint32_t* last_cached = data;
689   uint32_t* const src_end = data + width * height;
690   const int len_code_limit = NUM_LITERAL_CODES + NUM_LENGTH_CODES;
691   const int color_cache_limit = len_code_limit + hdr->color_cache_size_;
692   VP8LColorCache* const color_cache =
693       (hdr->color_cache_size_ > 0) ? &hdr->color_cache_ : NULL;
694   const int mask = hdr->huffman_mask_;
695 
696   assert(htree_group != NULL);
697 
698   while (!br->eos_ && src < src_end) {
699     int code;
700     // Only update when changing tile. Note we could use the following test:
701     //   if "((((prev_col ^ col) | prev_row ^ row)) > mask)" -> tile changed
702     // but that's actually slower and requires storing the previous col/row
703     if ((col & mask) == 0) {
704       htree_group = GetHtreeGroupForPos(hdr, col, row);
705     }
706     VP8LFillBitWindow(br);
707     code = ReadSymbol(&htree_group->htrees_[GREEN], br);
708     if (code < NUM_LITERAL_CODES) {   // Literal.
709       int red, green, blue, alpha;
710       red = ReadSymbol(&htree_group->htrees_[RED], br);
711       green = code;
712       VP8LFillBitWindow(br);
713       blue = ReadSymbol(&htree_group->htrees_[BLUE], br);
714       alpha = ReadSymbol(&htree_group->htrees_[ALPHA], br);
715       *src = (alpha << 24) + (red << 16) + (green << 8) + blue;
716  AdvanceByOne:
717       ++src;
718       ++col;
719       if (col >= width) {
720         col = 0;
721         ++row;
722         if ((process_func != NULL) && (row % NUM_ARGB_CACHE_ROWS == 0)) {
723           process_func(dec, row);
724         }
725         if (color_cache != NULL) {
726           while (last_cached < src) {
727             VP8LColorCacheInsert(color_cache, *last_cached++);
728           }
729         }
730       }
731     } else if (code < len_code_limit) {           // Backward reference
732       int dist_code, dist;
733       const int length_sym = code - NUM_LITERAL_CODES;
734       const int length = GetCopyLength(length_sym, br);
735       const int dist_symbol = ReadSymbol(&htree_group->htrees_[DIST], br);
736       VP8LFillBitWindow(br);
737       dist_code = GetCopyDistance(dist_symbol, br);
738       dist = PlaneCodeToDistance(width, dist_code);
739       if (src - data < dist || src_end - src < length) {
740         ok = 0;
741         goto End;
742       }
743       {
744         int i;
745         for (i = 0; i < length; ++i) src[i] = src[i - dist];
746         src += length;
747       }
748       col += length;
749       while (col >= width) {
750         col -= width;
751         ++row;
752         if ((process_func != NULL) && (row % NUM_ARGB_CACHE_ROWS == 0)) {
753           process_func(dec, row);
754         }
755       }
756       if (src < src_end) {
757         htree_group = GetHtreeGroupForPos(hdr, col, row);
758         if (color_cache != NULL) {
759           while (last_cached < src) {
760             VP8LColorCacheInsert(color_cache, *last_cached++);
761           }
762         }
763       }
764     } else if (code < color_cache_limit) {    // Color cache.
765       const int key = code - len_code_limit;
766       assert(color_cache != NULL);
767       while (last_cached < src) {
768         VP8LColorCacheInsert(color_cache, *last_cached++);
769       }
770       *src = VP8LColorCacheLookup(color_cache, key);
771       goto AdvanceByOne;
772     } else {    // Not reached.
773       ok = 0;
774       goto End;
775     }
776     ok = !br->error_;
777     if (!ok) goto End;
778   }
779   // Process the remaining rows corresponding to last row-block.
780   if (process_func != NULL) process_func(dec, row);
781 
782  End:
783   if (br->error_ || !ok || (br->eos_ && src < src_end)) {
784     ok = 0;
785     dec->status_ = (!br->eos_) ?
786         VP8_STATUS_BITSTREAM_ERROR : VP8_STATUS_SUSPENDED;
787   } else if (src == src_end) {
788     dec->state_ = READ_DATA;
789   }
790 
791   return ok;
792 }
793 
794 // -----------------------------------------------------------------------------
795 // VP8LTransform
796 
ClearTransform(VP8LTransform * const transform)797 static void ClearTransform(VP8LTransform* const transform) {
798   free(transform->data_);
799   transform->data_ = NULL;
800 }
801 
802 // For security reason, we need to remap the color map to span
803 // the total possible bundled values, and not just the num_colors.
ExpandColorMap(int num_colors,VP8LTransform * const transform)804 static int ExpandColorMap(int num_colors, VP8LTransform* const transform) {
805   int i;
806   const int final_num_colors = 1 << (8 >> transform->bits_);
807   uint32_t* const new_color_map =
808       (uint32_t*)WebPSafeMalloc((uint64_t)final_num_colors,
809                                 sizeof(*new_color_map));
810   if (new_color_map == NULL) {
811     return 0;
812   } else {
813     uint8_t* const data = (uint8_t*)transform->data_;
814     uint8_t* const new_data = (uint8_t*)new_color_map;
815     new_color_map[0] = transform->data_[0];
816     for (i = 4; i < 4 * num_colors; ++i) {
817       // Equivalent to AddPixelEq(), on a byte-basis.
818       new_data[i] = (data[i] + new_data[i - 4]) & 0xff;
819     }
820     for (; i < 4 * final_num_colors; ++i)
821       new_data[i] = 0;  // black tail.
822     free(transform->data_);
823     transform->data_ = new_color_map;
824   }
825   return 1;
826 }
827 
ReadTransform(int * const xsize,int const * ysize,VP8LDecoder * const dec)828 static int ReadTransform(int* const xsize, int const* ysize,
829                          VP8LDecoder* const dec) {
830   int ok = 1;
831   VP8LBitReader* const br = &dec->br_;
832   VP8LTransform* transform = &dec->transforms_[dec->next_transform_];
833   const VP8LImageTransformType type =
834       (VP8LImageTransformType)VP8LReadBits(br, 2);
835 
836   // Each transform type can only be present once in the stream.
837   if (dec->transforms_seen_ & (1U << type)) {
838     return 0;  // Already there, let's not accept the second same transform.
839   }
840   dec->transforms_seen_ |= (1U << type);
841 
842   transform->type_ = type;
843   transform->xsize_ = *xsize;
844   transform->ysize_ = *ysize;
845   transform->data_ = NULL;
846   ++dec->next_transform_;
847   assert(dec->next_transform_ <= NUM_TRANSFORMS);
848 
849   switch (type) {
850     case PREDICTOR_TRANSFORM:
851     case CROSS_COLOR_TRANSFORM:
852       transform->bits_ = VP8LReadBits(br, 3) + 2;
853       ok = DecodeImageStream(VP8LSubSampleSize(transform->xsize_,
854                                                transform->bits_),
855                              VP8LSubSampleSize(transform->ysize_,
856                                                transform->bits_),
857                              0, dec, &transform->data_);
858       break;
859     case COLOR_INDEXING_TRANSFORM: {
860        const int num_colors = VP8LReadBits(br, 8) + 1;
861        const int bits = (num_colors > 16) ? 0
862                       : (num_colors > 4) ? 1
863                       : (num_colors > 2) ? 2
864                       : 3;
865        *xsize = VP8LSubSampleSize(transform->xsize_, bits);
866        transform->bits_ = bits;
867        ok = DecodeImageStream(num_colors, 1, 0, dec, &transform->data_);
868        ok = ok && ExpandColorMap(num_colors, transform);
869       break;
870     }
871     case SUBTRACT_GREEN:
872       break;
873     default:
874       assert(0);    // can't happen
875       break;
876   }
877 
878   return ok;
879 }
880 
881 // -----------------------------------------------------------------------------
882 // VP8LMetadata
883 
InitMetadata(VP8LMetadata * const hdr)884 static void InitMetadata(VP8LMetadata* const hdr) {
885   assert(hdr);
886   memset(hdr, 0, sizeof(*hdr));
887 }
888 
ClearMetadata(VP8LMetadata * const hdr)889 static void ClearMetadata(VP8LMetadata* const hdr) {
890   assert(hdr);
891 
892   free(hdr->huffman_image_);
893   DeleteHtreeGroups(hdr->htree_groups_, hdr->num_htree_groups_);
894   VP8LColorCacheClear(&hdr->color_cache_);
895   InitMetadata(hdr);
896 }
897 
898 // -----------------------------------------------------------------------------
899 // VP8LDecoder
900 
VP8LNew(void)901 VP8LDecoder* VP8LNew(void) {
902   VP8LDecoder* const dec = (VP8LDecoder*)calloc(1, sizeof(*dec));
903   if (dec == NULL) return NULL;
904   dec->status_ = VP8_STATUS_OK;
905   dec->action_ = READ_DIM;
906   dec->state_ = READ_DIM;
907   return dec;
908 }
909 
VP8LClear(VP8LDecoder * const dec)910 void VP8LClear(VP8LDecoder* const dec) {
911   int i;
912   if (dec == NULL) return;
913   ClearMetadata(&dec->hdr_);
914 
915   free(dec->argb_);
916   dec->argb_ = NULL;
917   for (i = 0; i < dec->next_transform_; ++i) {
918     ClearTransform(&dec->transforms_[i]);
919   }
920   dec->next_transform_ = 0;
921   dec->transforms_seen_ = 0;
922 
923   free(dec->rescaler_memory);
924   dec->rescaler_memory = NULL;
925 
926   dec->output_ = NULL;   // leave no trace behind
927 }
928 
VP8LDelete(VP8LDecoder * const dec)929 void VP8LDelete(VP8LDecoder* const dec) {
930   if (dec != NULL) {
931     VP8LClear(dec);
932     free(dec);
933   }
934 }
935 
UpdateDecoder(VP8LDecoder * const dec,int width,int height)936 static void UpdateDecoder(VP8LDecoder* const dec, int width, int height) {
937   VP8LMetadata* const hdr = &dec->hdr_;
938   const int num_bits = hdr->huffman_subsample_bits_;
939   dec->width_ = width;
940   dec->height_ = height;
941 
942   hdr->huffman_xsize_ = VP8LSubSampleSize(width, num_bits);
943   hdr->huffman_mask_ = (num_bits == 0) ? ~0 : (1 << num_bits) - 1;
944 }
945 
DecodeImageStream(int xsize,int ysize,int is_level0,VP8LDecoder * const dec,uint32_t ** const decoded_data)946 static int DecodeImageStream(int xsize, int ysize,
947                              int is_level0,
948                              VP8LDecoder* const dec,
949                              uint32_t** const decoded_data) {
950   int ok = 1;
951   int transform_xsize = xsize;
952   int transform_ysize = ysize;
953   VP8LBitReader* const br = &dec->br_;
954   VP8LMetadata* const hdr = &dec->hdr_;
955   uint32_t* data = NULL;
956   int color_cache_bits = 0;
957 
958   // Read the transforms (may recurse).
959   if (is_level0) {
960     while (ok && VP8LReadBits(br, 1)) {
961       ok = ReadTransform(&transform_xsize, &transform_ysize, dec);
962     }
963   }
964 
965   // Color cache
966   if (ok && VP8LReadBits(br, 1)) {
967     color_cache_bits = VP8LReadBits(br, 4);
968     ok = (color_cache_bits >= 1 && color_cache_bits <= MAX_CACHE_BITS);
969     if (!ok) {
970       dec->status_ = VP8_STATUS_BITSTREAM_ERROR;
971       goto End;
972     }
973   }
974 
975   // Read the Huffman codes (may recurse).
976   ok = ok && ReadHuffmanCodes(dec, transform_xsize, transform_ysize,
977                               color_cache_bits, is_level0);
978   if (!ok) {
979     dec->status_ = VP8_STATUS_BITSTREAM_ERROR;
980     goto End;
981   }
982 
983   // Finish setting up the color-cache
984   if (color_cache_bits > 0) {
985     hdr->color_cache_size_ = 1 << color_cache_bits;
986     if (!VP8LColorCacheInit(&hdr->color_cache_, color_cache_bits)) {
987       dec->status_ = VP8_STATUS_OUT_OF_MEMORY;
988       ok = 0;
989       goto End;
990     }
991   } else {
992     hdr->color_cache_size_ = 0;
993   }
994   UpdateDecoder(dec, transform_xsize, transform_ysize);
995 
996   if (is_level0) {   // level 0 complete
997     dec->state_ = READ_HDR;
998     goto End;
999   }
1000 
1001   {
1002     const uint64_t total_size = (uint64_t)transform_xsize * transform_ysize;
1003     data = (uint32_t*)WebPSafeMalloc(total_size, sizeof(*data));
1004     if (data == NULL) {
1005       dec->status_ = VP8_STATUS_OUT_OF_MEMORY;
1006       ok = 0;
1007       goto End;
1008     }
1009   }
1010 
1011   // Use the Huffman trees to decode the LZ77 encoded data.
1012   ok = DecodeImageData(dec, data, transform_xsize, transform_ysize, NULL);
1013   ok = ok && !br->error_;
1014 
1015  End:
1016 
1017   if (!ok) {
1018     free(data);
1019     ClearMetadata(hdr);
1020     // If not enough data (br.eos_) resulted in BIT_STREAM_ERROR, update the
1021     // status appropriately.
1022     if (dec->status_ == VP8_STATUS_BITSTREAM_ERROR && dec->br_.eos_) {
1023       dec->status_ = VP8_STATUS_SUSPENDED;
1024     }
1025   } else {
1026     if (decoded_data != NULL) {
1027       *decoded_data = data;
1028     } else {
1029       // We allocate image data in this function only for transforms. At level 0
1030       // (that is: not the transforms), we shouldn't have allocated anything.
1031       assert(data == NULL);
1032       assert(is_level0);
1033     }
1034     if (!is_level0) ClearMetadata(hdr);  // Clean up temporary data behind.
1035   }
1036   return ok;
1037 }
1038 
1039 //------------------------------------------------------------------------------
1040 // Allocate dec->argb_ and dec->argb_cache_ using dec->width_ and dec->height_
1041 
AllocateARGBBuffers(VP8LDecoder * const dec,int final_width)1042 static int AllocateARGBBuffers(VP8LDecoder* const dec, int final_width) {
1043   const uint64_t num_pixels = (uint64_t)dec->width_ * dec->height_;
1044   // Scratch buffer corresponding to top-prediction row for transforming the
1045   // first row in the row-blocks.
1046   const uint64_t cache_top_pixels = final_width;
1047   // Scratch buffer for temporary BGRA storage.
1048   const uint64_t cache_pixels = (uint64_t)final_width * NUM_ARGB_CACHE_ROWS;
1049   const uint64_t total_num_pixels =
1050       num_pixels + cache_top_pixels + cache_pixels;
1051 
1052   assert(dec->width_ <= final_width);
1053   dec->argb_ = (uint32_t*)WebPSafeMalloc(total_num_pixels, sizeof(*dec->argb_));
1054   if (dec->argb_ == NULL) {
1055     dec->argb_cache_ = NULL;    // for sanity check
1056     dec->status_ = VP8_STATUS_OUT_OF_MEMORY;
1057     return 0;
1058   }
1059   dec->argb_cache_ = dec->argb_ + num_pixels + cache_top_pixels;
1060   return 1;
1061 }
1062 
1063 //------------------------------------------------------------------------------
1064 // Special row-processing that only stores the alpha data.
1065 
ExtractAlphaRows(VP8LDecoder * const dec,int row)1066 static void ExtractAlphaRows(VP8LDecoder* const dec, int row) {
1067   const int num_rows = row - dec->last_row_;
1068   const uint32_t* const in = dec->argb_ + dec->width_ * dec->last_row_;
1069 
1070   if (num_rows <= 0) return;  // Nothing to be done.
1071   ApplyInverseTransforms(dec, num_rows, in);
1072 
1073   // Extract alpha (which is stored in the green plane).
1074   {
1075     const int width = dec->io_->width;      // the final width (!= dec->width_)
1076     const int cache_pixs = width * num_rows;
1077     uint8_t* const dst = (uint8_t*)dec->io_->opaque + width * dec->last_row_;
1078     const uint32_t* const src = dec->argb_cache_;
1079     int i;
1080     for (i = 0; i < cache_pixs; ++i) dst[i] = (src[i] >> 8) & 0xff;
1081   }
1082 
1083   dec->last_row_ = dec->last_out_row_ = row;
1084 }
1085 
VP8LDecodeAlphaImageStream(int width,int height,const uint8_t * const data,size_t data_size,uint8_t * const output)1086 int VP8LDecodeAlphaImageStream(int width, int height, const uint8_t* const data,
1087                                size_t data_size, uint8_t* const output) {
1088   VP8Io io;
1089   int ok = 0;
1090   VP8LDecoder* const dec = VP8LNew();
1091   if (dec == NULL) return 0;
1092 
1093   dec->width_ = width;
1094   dec->height_ = height;
1095   dec->io_ = &io;
1096 
1097   VP8InitIo(&io);
1098   WebPInitCustomIo(NULL, &io);    // Just a sanity Init. io won't be used.
1099   io.opaque = output;
1100   io.width = width;
1101   io.height = height;
1102 
1103   dec->status_ = VP8_STATUS_OK;
1104   VP8LInitBitReader(&dec->br_, data, data_size);
1105 
1106   dec->action_ = READ_HDR;
1107   if (!DecodeImageStream(width, height, 1, dec, NULL)) goto Err;
1108 
1109   // Allocate output (note that dec->width_ may have changed here).
1110   if (!AllocateARGBBuffers(dec, width)) goto Err;
1111 
1112   // Decode (with special row processing).
1113   dec->action_ = READ_DATA;
1114   ok = DecodeImageData(dec, dec->argb_, dec->width_, dec->height_,
1115                        ExtractAlphaRows);
1116 
1117  Err:
1118   VP8LDelete(dec);
1119   return ok;
1120 }
1121 
1122 //------------------------------------------------------------------------------
1123 
VP8LDecodeHeader(VP8LDecoder * const dec,VP8Io * const io)1124 int VP8LDecodeHeader(VP8LDecoder* const dec, VP8Io* const io) {
1125   int width, height, has_alpha;
1126 
1127   if (dec == NULL) return 0;
1128   if (io == NULL) {
1129     dec->status_ = VP8_STATUS_INVALID_PARAM;
1130     return 0;
1131   }
1132 
1133   dec->io_ = io;
1134   dec->status_ = VP8_STATUS_OK;
1135   VP8LInitBitReader(&dec->br_, io->data, io->data_size);
1136   if (!ReadImageInfo(&dec->br_, &width, &height, &has_alpha)) {
1137     dec->status_ = VP8_STATUS_BITSTREAM_ERROR;
1138     goto Error;
1139   }
1140   dec->state_ = READ_DIM;
1141   io->width = width;
1142   io->height = height;
1143 
1144   dec->action_ = READ_HDR;
1145   if (!DecodeImageStream(width, height, 1, dec, NULL)) goto Error;
1146   return 1;
1147 
1148  Error:
1149    VP8LClear(dec);
1150    assert(dec->status_ != VP8_STATUS_OK);
1151    return 0;
1152 }
1153 
VP8LDecodeImage(VP8LDecoder * const dec)1154 int VP8LDecodeImage(VP8LDecoder* const dec) {
1155   VP8Io* io = NULL;
1156   WebPDecParams* params = NULL;
1157 
1158   // Sanity checks.
1159   if (dec == NULL) return 0;
1160 
1161   io = dec->io_;
1162   assert(io != NULL);
1163   params = (WebPDecParams*)io->opaque;
1164   assert(params != NULL);
1165   dec->output_ = params->output;
1166   assert(dec->output_ != NULL);
1167 
1168   // Initialization.
1169   if (!WebPIoInitFromOptions(params->options, io, MODE_BGRA)) {
1170     dec->status_ = VP8_STATUS_INVALID_PARAM;
1171     goto Err;
1172   }
1173 
1174   if (!AllocateARGBBuffers(dec, io->width)) goto Err;
1175 
1176   if (io->use_scaling && !AllocateAndInitRescaler(dec, io)) goto Err;
1177 
1178   // Decode.
1179   dec->action_ = READ_DATA;
1180   if (!DecodeImageData(dec, dec->argb_, dec->width_, dec->height_,
1181                        ProcessRows)) {
1182     goto Err;
1183   }
1184 
1185   // Cleanup.
1186   params->last_y = dec->last_out_row_;
1187   VP8LClear(dec);
1188   return 1;
1189 
1190  Err:
1191   VP8LClear(dec);
1192   assert(dec->status_ != VP8_STATUS_OK);
1193   return 0;
1194 }
1195 
1196 //------------------------------------------------------------------------------
1197 
1198 #if defined(__cplusplus) || defined(c_plusplus)
1199 }    // extern "C"
1200 #endif
1201