1 // Copyright 2012 Google Inc. All Rights Reserved.
2 //
3 // This code is licensed under the same terms as WebM:
4 // Software License Agreement: http://www.webmproject.org/license/software/
5 // Additional IP Rights Grant: http://www.webmproject.org/license/additional/
6 // -----------------------------------------------------------------------------
7 //
8 // main entry for the decoder
9 //
10 // Authors: Vikas Arora (vikaas.arora@gmail.com)
11 // Jyrki Alakuijala (jyrki@google.com)
12
13 #include <stdio.h>
14 #include <stdlib.h>
15 #include "./vp8li.h"
16 #include "../dsp/lossless.h"
17 #include "../dsp/yuv.h"
18 #include "../utils/huffman.h"
19 #include "../utils/utils.h"
20
21 #if defined(__cplusplus) || defined(c_plusplus)
22 extern "C" {
23 #endif
24
25 #define NUM_ARGB_CACHE_ROWS 16
26
27 static const int kCodeLengthLiterals = 16;
28 static const int kCodeLengthRepeatCode = 16;
29 static const int kCodeLengthExtraBits[3] = { 2, 3, 7 };
30 static const int kCodeLengthRepeatOffsets[3] = { 3, 3, 11 };
31
32 // -----------------------------------------------------------------------------
33 // Five Huffman codes are used at each meta code:
34 // 1. green + length prefix codes + color cache codes,
35 // 2. alpha,
36 // 3. red,
37 // 4. blue, and,
38 // 5. distance prefix codes.
39 typedef enum {
40 GREEN = 0,
41 RED = 1,
42 BLUE = 2,
43 ALPHA = 3,
44 DIST = 4
45 } HuffIndex;
46
47 static const uint16_t kAlphabetSize[HUFFMAN_CODES_PER_META_CODE] = {
48 NUM_LITERAL_CODES + NUM_LENGTH_CODES,
49 NUM_LITERAL_CODES, NUM_LITERAL_CODES, NUM_LITERAL_CODES,
50 NUM_DISTANCE_CODES
51 };
52
53
54 #define NUM_CODE_LENGTH_CODES 19
55 static const uint8_t kCodeLengthCodeOrder[NUM_CODE_LENGTH_CODES] = {
56 17, 18, 0, 1, 2, 3, 4, 5, 16, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
57 };
58
59 #define CODE_TO_PLANE_CODES 120
60 static const uint8_t code_to_plane_lut[CODE_TO_PLANE_CODES] = {
61 0x18, 0x07, 0x17, 0x19, 0x28, 0x06, 0x27, 0x29, 0x16, 0x1a,
62 0x26, 0x2a, 0x38, 0x05, 0x37, 0x39, 0x15, 0x1b, 0x36, 0x3a,
63 0x25, 0x2b, 0x48, 0x04, 0x47, 0x49, 0x14, 0x1c, 0x35, 0x3b,
64 0x46, 0x4a, 0x24, 0x2c, 0x58, 0x45, 0x4b, 0x34, 0x3c, 0x03,
65 0x57, 0x59, 0x13, 0x1d, 0x56, 0x5a, 0x23, 0x2d, 0x44, 0x4c,
66 0x55, 0x5b, 0x33, 0x3d, 0x68, 0x02, 0x67, 0x69, 0x12, 0x1e,
67 0x66, 0x6a, 0x22, 0x2e, 0x54, 0x5c, 0x43, 0x4d, 0x65, 0x6b,
68 0x32, 0x3e, 0x78, 0x01, 0x77, 0x79, 0x53, 0x5d, 0x11, 0x1f,
69 0x64, 0x6c, 0x42, 0x4e, 0x76, 0x7a, 0x21, 0x2f, 0x75, 0x7b,
70 0x31, 0x3f, 0x63, 0x6d, 0x52, 0x5e, 0x00, 0x74, 0x7c, 0x41,
71 0x4f, 0x10, 0x20, 0x62, 0x6e, 0x30, 0x73, 0x7d, 0x51, 0x5f,
72 0x40, 0x72, 0x7e, 0x61, 0x6f, 0x50, 0x71, 0x7f, 0x60, 0x70
73 };
74
75 static int DecodeImageStream(int xsize, int ysize,
76 int is_level0,
77 VP8LDecoder* const dec,
78 uint32_t** const decoded_data);
79
80 //------------------------------------------------------------------------------
81
VP8LCheckSignature(const uint8_t * const data,size_t size)82 int VP8LCheckSignature(const uint8_t* const data, size_t size) {
83 return (size >= 1) && (data[0] == VP8L_MAGIC_BYTE);
84 }
85
ReadImageInfo(VP8LBitReader * const br,int * const width,int * const height,int * const has_alpha)86 static int ReadImageInfo(VP8LBitReader* const br,
87 int* const width, int* const height,
88 int* const has_alpha) {
89 const uint8_t signature = VP8LReadBits(br, 8);
90 if (!VP8LCheckSignature(&signature, 1)) {
91 return 0;
92 }
93 *width = VP8LReadBits(br, VP8L_IMAGE_SIZE_BITS) + 1;
94 *height = VP8LReadBits(br, VP8L_IMAGE_SIZE_BITS) + 1;
95 *has_alpha = VP8LReadBits(br, 1);
96 VP8LReadBits(br, VP8L_VERSION_BITS); // Read/ignore the version number.
97 return 1;
98 }
99
VP8LGetInfo(const uint8_t * data,size_t data_size,int * const width,int * const height,int * const has_alpha)100 int VP8LGetInfo(const uint8_t* data, size_t data_size,
101 int* const width, int* const height, int* const has_alpha) {
102 if (data == NULL || data_size < VP8L_FRAME_HEADER_SIZE) {
103 return 0; // not enough data
104 } else {
105 int w, h, a;
106 VP8LBitReader br;
107 VP8LInitBitReader(&br, data, data_size);
108 if (!ReadImageInfo(&br, &w, &h, &a)) {
109 return 0;
110 }
111 if (width != NULL) *width = w;
112 if (height != NULL) *height = h;
113 if (has_alpha != NULL) *has_alpha = a;
114 return 1;
115 }
116 }
117
118 //------------------------------------------------------------------------------
119
GetCopyDistance(int distance_symbol,VP8LBitReader * const br)120 static WEBP_INLINE int GetCopyDistance(int distance_symbol,
121 VP8LBitReader* const br) {
122 int extra_bits, offset;
123 if (distance_symbol < 4) {
124 return distance_symbol + 1;
125 }
126 extra_bits = (distance_symbol - 2) >> 1;
127 offset = (2 + (distance_symbol & 1)) << extra_bits;
128 return offset + VP8LReadBits(br, extra_bits) + 1;
129 }
130
GetCopyLength(int length_symbol,VP8LBitReader * const br)131 static WEBP_INLINE int GetCopyLength(int length_symbol,
132 VP8LBitReader* const br) {
133 // Length and distance prefixes are encoded the same way.
134 return GetCopyDistance(length_symbol, br);
135 }
136
PlaneCodeToDistance(int xsize,int plane_code)137 static WEBP_INLINE int PlaneCodeToDistance(int xsize, int plane_code) {
138 if (plane_code > CODE_TO_PLANE_CODES) {
139 return plane_code - CODE_TO_PLANE_CODES;
140 } else {
141 const int dist_code = code_to_plane_lut[plane_code - 1];
142 const int yoffset = dist_code >> 4;
143 const int xoffset = 8 - (dist_code & 0xf);
144 const int dist = yoffset * xsize + xoffset;
145 return (dist >= 1) ? dist : 1;
146 }
147 }
148
149 //------------------------------------------------------------------------------
150 // Decodes the next Huffman code from bit-stream.
151 // FillBitWindow(br) needs to be called at minimum every second call
152 // to ReadSymbolUnsafe.
ReadSymbolUnsafe(const HuffmanTree * tree,VP8LBitReader * const br)153 static int ReadSymbolUnsafe(const HuffmanTree* tree, VP8LBitReader* const br) {
154 const HuffmanTreeNode* node = tree->root_;
155 assert(node != NULL);
156 while (!HuffmanTreeNodeIsLeaf(node)) {
157 node = HuffmanTreeNextNode(node, VP8LReadOneBitUnsafe(br));
158 }
159 return node->symbol_;
160 }
161
ReadSymbol(const HuffmanTree * tree,VP8LBitReader * const br)162 static WEBP_INLINE int ReadSymbol(const HuffmanTree* tree,
163 VP8LBitReader* const br) {
164 const int read_safe = (br->pos_ + 8 > br->len_);
165 if (!read_safe) {
166 return ReadSymbolUnsafe(tree, br);
167 } else {
168 const HuffmanTreeNode* node = tree->root_;
169 assert(node != NULL);
170 while (!HuffmanTreeNodeIsLeaf(node)) {
171 node = HuffmanTreeNextNode(node, VP8LReadOneBit(br));
172 }
173 return node->symbol_;
174 }
175 }
176
ReadHuffmanCodeLengths(VP8LDecoder * const dec,const int * const code_length_code_lengths,int num_symbols,int * const code_lengths)177 static int ReadHuffmanCodeLengths(
178 VP8LDecoder* const dec, const int* const code_length_code_lengths,
179 int num_symbols, int* const code_lengths) {
180 int ok = 0;
181 VP8LBitReader* const br = &dec->br_;
182 int symbol;
183 int max_symbol;
184 int prev_code_len = DEFAULT_CODE_LENGTH;
185 HuffmanTree tree;
186
187 if (!HuffmanTreeBuildImplicit(&tree, code_length_code_lengths,
188 NUM_CODE_LENGTH_CODES)) {
189 dec->status_ = VP8_STATUS_BITSTREAM_ERROR;
190 return 0;
191 }
192
193 if (VP8LReadBits(br, 1)) { // use length
194 const int length_nbits = 2 + 2 * VP8LReadBits(br, 3);
195 max_symbol = 2 + VP8LReadBits(br, length_nbits);
196 if (max_symbol > num_symbols) {
197 dec->status_ = VP8_STATUS_BITSTREAM_ERROR;
198 goto End;
199 }
200 } else {
201 max_symbol = num_symbols;
202 }
203
204 symbol = 0;
205 while (symbol < num_symbols) {
206 int code_len;
207 if (max_symbol-- == 0) break;
208 VP8LFillBitWindow(br);
209 code_len = ReadSymbol(&tree, br);
210 if (code_len < kCodeLengthLiterals) {
211 code_lengths[symbol++] = code_len;
212 if (code_len != 0) prev_code_len = code_len;
213 } else {
214 const int use_prev = (code_len == kCodeLengthRepeatCode);
215 const int slot = code_len - kCodeLengthLiterals;
216 const int extra_bits = kCodeLengthExtraBits[slot];
217 const int repeat_offset = kCodeLengthRepeatOffsets[slot];
218 int repeat = VP8LReadBits(br, extra_bits) + repeat_offset;
219 if (symbol + repeat > num_symbols) {
220 dec->status_ = VP8_STATUS_BITSTREAM_ERROR;
221 goto End;
222 } else {
223 const int length = use_prev ? prev_code_len : 0;
224 while (repeat-- > 0) code_lengths[symbol++] = length;
225 }
226 }
227 }
228 ok = 1;
229
230 End:
231 HuffmanTreeRelease(&tree);
232 return ok;
233 }
234
ReadHuffmanCode(int alphabet_size,VP8LDecoder * const dec,HuffmanTree * const tree)235 static int ReadHuffmanCode(int alphabet_size, VP8LDecoder* const dec,
236 HuffmanTree* const tree) {
237 int ok = 0;
238 VP8LBitReader* const br = &dec->br_;
239 const int simple_code = VP8LReadBits(br, 1);
240
241 if (simple_code) { // Read symbols, codes & code lengths directly.
242 int symbols[2];
243 int codes[2];
244 int code_lengths[2];
245 const int num_symbols = VP8LReadBits(br, 1) + 1;
246 const int first_symbol_len_code = VP8LReadBits(br, 1);
247 // The first code is either 1 bit or 8 bit code.
248 symbols[0] = VP8LReadBits(br, (first_symbol_len_code == 0) ? 1 : 8);
249 codes[0] = 0;
250 code_lengths[0] = num_symbols - 1;
251 // The second code (if present), is always 8 bit long.
252 if (num_symbols == 2) {
253 symbols[1] = VP8LReadBits(br, 8);
254 codes[1] = 1;
255 code_lengths[1] = num_symbols - 1;
256 }
257 ok = HuffmanTreeBuildExplicit(tree, code_lengths, codes, symbols,
258 alphabet_size, num_symbols);
259 } else { // Decode Huffman-coded code lengths.
260 int* code_lengths = NULL;
261 int i;
262 int code_length_code_lengths[NUM_CODE_LENGTH_CODES] = { 0 };
263 const int num_codes = VP8LReadBits(br, 4) + 4;
264 if (num_codes > NUM_CODE_LENGTH_CODES) {
265 dec->status_ = VP8_STATUS_BITSTREAM_ERROR;
266 return 0;
267 }
268
269 code_lengths =
270 (int*)WebPSafeCalloc((uint64_t)alphabet_size, sizeof(*code_lengths));
271 if (code_lengths == NULL) {
272 dec->status_ = VP8_STATUS_OUT_OF_MEMORY;
273 return 0;
274 }
275
276 for (i = 0; i < num_codes; ++i) {
277 code_length_code_lengths[kCodeLengthCodeOrder[i]] = VP8LReadBits(br, 3);
278 }
279 ok = ReadHuffmanCodeLengths(dec, code_length_code_lengths, alphabet_size,
280 code_lengths);
281 if (ok) {
282 ok = HuffmanTreeBuildImplicit(tree, code_lengths, alphabet_size);
283 }
284 free(code_lengths);
285 }
286 ok = ok && !br->error_;
287 if (!ok) {
288 dec->status_ = VP8_STATUS_BITSTREAM_ERROR;
289 return 0;
290 }
291 return 1;
292 }
293
DeleteHtreeGroups(HTreeGroup * htree_groups,int num_htree_groups)294 static void DeleteHtreeGroups(HTreeGroup* htree_groups, int num_htree_groups) {
295 if (htree_groups != NULL) {
296 int i, j;
297 for (i = 0; i < num_htree_groups; ++i) {
298 HuffmanTree* const htrees = htree_groups[i].htrees_;
299 for (j = 0; j < HUFFMAN_CODES_PER_META_CODE; ++j) {
300 HuffmanTreeRelease(&htrees[j]);
301 }
302 }
303 free(htree_groups);
304 }
305 }
306
ReadHuffmanCodes(VP8LDecoder * const dec,int xsize,int ysize,int color_cache_bits,int allow_recursion)307 static int ReadHuffmanCodes(VP8LDecoder* const dec, int xsize, int ysize,
308 int color_cache_bits, int allow_recursion) {
309 int i, j;
310 VP8LBitReader* const br = &dec->br_;
311 VP8LMetadata* const hdr = &dec->hdr_;
312 uint32_t* huffman_image = NULL;
313 HTreeGroup* htree_groups = NULL;
314 int num_htree_groups = 1;
315
316 if (allow_recursion && VP8LReadBits(br, 1)) {
317 // use meta Huffman codes.
318 const int huffman_precision = VP8LReadBits(br, 3) + 2;
319 const int huffman_xsize = VP8LSubSampleSize(xsize, huffman_precision);
320 const int huffman_ysize = VP8LSubSampleSize(ysize, huffman_precision);
321 const int huffman_pixs = huffman_xsize * huffman_ysize;
322 if (!DecodeImageStream(huffman_xsize, huffman_ysize, 0, dec,
323 &huffman_image)) {
324 dec->status_ = VP8_STATUS_BITSTREAM_ERROR;
325 goto Error;
326 }
327 hdr->huffman_subsample_bits_ = huffman_precision;
328 for (i = 0; i < huffman_pixs; ++i) {
329 // The huffman data is stored in red and green bytes.
330 const int index = (huffman_image[i] >> 8) & 0xffff;
331 huffman_image[i] = index;
332 if (index >= num_htree_groups) {
333 num_htree_groups = index + 1;
334 }
335 }
336 }
337
338 if (br->error_) goto Error;
339
340 assert(num_htree_groups <= 0x10000);
341 htree_groups =
342 (HTreeGroup*)WebPSafeCalloc((uint64_t)num_htree_groups,
343 sizeof(*htree_groups));
344 if (htree_groups == NULL) {
345 dec->status_ = VP8_STATUS_OUT_OF_MEMORY;
346 goto Error;
347 }
348
349 for (i = 0; i < num_htree_groups; ++i) {
350 HuffmanTree* const htrees = htree_groups[i].htrees_;
351 for (j = 0; j < HUFFMAN_CODES_PER_META_CODE; ++j) {
352 int alphabet_size = kAlphabetSize[j];
353 if (j == 0 && color_cache_bits > 0) {
354 alphabet_size += 1 << color_cache_bits;
355 }
356 if (!ReadHuffmanCode(alphabet_size, dec, htrees + j)) goto Error;
357 }
358 }
359
360 // All OK. Finalize pointers and return.
361 hdr->huffman_image_ = huffman_image;
362 hdr->num_htree_groups_ = num_htree_groups;
363 hdr->htree_groups_ = htree_groups;
364 return 1;
365
366 Error:
367 free(huffman_image);
368 DeleteHtreeGroups(htree_groups, num_htree_groups);
369 return 0;
370 }
371
372 //------------------------------------------------------------------------------
373 // Scaling.
374
AllocateAndInitRescaler(VP8LDecoder * const dec,VP8Io * const io)375 static int AllocateAndInitRescaler(VP8LDecoder* const dec, VP8Io* const io) {
376 const int num_channels = 4;
377 const int in_width = io->mb_w;
378 const int out_width = io->scaled_width;
379 const int in_height = io->mb_h;
380 const int out_height = io->scaled_height;
381 const uint64_t work_size = 2 * num_channels * (uint64_t)out_width;
382 int32_t* work; // Rescaler work area.
383 const uint64_t scaled_data_size = num_channels * (uint64_t)out_width;
384 uint32_t* scaled_data; // Temporary storage for scaled BGRA data.
385 const uint64_t memory_size = sizeof(*dec->rescaler) +
386 work_size * sizeof(*work) +
387 scaled_data_size * sizeof(*scaled_data);
388 uint8_t* memory = (uint8_t*)WebPSafeCalloc(memory_size, sizeof(*memory));
389 if (memory == NULL) {
390 dec->status_ = VP8_STATUS_OUT_OF_MEMORY;
391 return 0;
392 }
393 assert(dec->rescaler_memory == NULL);
394 dec->rescaler_memory = memory;
395
396 dec->rescaler = (WebPRescaler*)memory;
397 memory += sizeof(*dec->rescaler);
398 work = (int32_t*)memory;
399 memory += work_size * sizeof(*work);
400 scaled_data = (uint32_t*)memory;
401
402 WebPRescalerInit(dec->rescaler, in_width, in_height, (uint8_t*)scaled_data,
403 out_width, out_height, 0, num_channels,
404 in_width, out_width, in_height, out_height, work);
405 return 1;
406 }
407
408 //------------------------------------------------------------------------------
409 // Export to ARGB
410
411 // We have special "export" function since we need to convert from BGRA
Export(WebPRescaler * const rescaler,WEBP_CSP_MODE colorspace,int rgba_stride,uint8_t * const rgba)412 static int Export(WebPRescaler* const rescaler, WEBP_CSP_MODE colorspace,
413 int rgba_stride, uint8_t* const rgba) {
414 const uint32_t* const src = (const uint32_t*)rescaler->dst;
415 const int dst_width = rescaler->dst_width;
416 int num_lines_out = 0;
417 while (WebPRescalerHasPendingOutput(rescaler)) {
418 uint8_t* const dst = rgba + num_lines_out * rgba_stride;
419 WebPRescalerExportRow(rescaler);
420 VP8LConvertFromBGRA(src, dst_width, colorspace, dst);
421 ++num_lines_out;
422 }
423 return num_lines_out;
424 }
425
426 // Emit scaled rows.
EmitRescaledRows(const VP8LDecoder * const dec,const uint32_t * const data,int in_stride,int mb_h,uint8_t * const out,int out_stride)427 static int EmitRescaledRows(const VP8LDecoder* const dec,
428 const uint32_t* const data, int in_stride, int mb_h,
429 uint8_t* const out, int out_stride) {
430 const WEBP_CSP_MODE colorspace = dec->output_->colorspace;
431 const uint8_t* const in = (const uint8_t*)data;
432 int num_lines_in = 0;
433 int num_lines_out = 0;
434 while (num_lines_in < mb_h) {
435 const uint8_t* const row_in = in + num_lines_in * in_stride;
436 uint8_t* const row_out = out + num_lines_out * out_stride;
437 num_lines_in += WebPRescalerImport(dec->rescaler, mb_h - num_lines_in,
438 row_in, in_stride);
439 num_lines_out += Export(dec->rescaler, colorspace, out_stride, row_out);
440 }
441 return num_lines_out;
442 }
443
444 // Emit rows without any scaling.
EmitRows(WEBP_CSP_MODE colorspace,const uint32_t * const data,int in_stride,int mb_w,int mb_h,uint8_t * const out,int out_stride)445 static int EmitRows(WEBP_CSP_MODE colorspace,
446 const uint32_t* const data, int in_stride,
447 int mb_w, int mb_h,
448 uint8_t* const out, int out_stride) {
449 int lines = mb_h;
450 const uint8_t* row_in = (const uint8_t*)data;
451 uint8_t* row_out = out;
452 while (lines-- > 0) {
453 VP8LConvertFromBGRA((const uint32_t*)row_in, mb_w, colorspace, row_out);
454 row_in += in_stride;
455 row_out += out_stride;
456 }
457 return mb_h; // Num rows out == num rows in.
458 }
459
460 //------------------------------------------------------------------------------
461 // Export to YUVA
462
ConvertToYUVA(const uint32_t * const src,int width,int y_pos,const WebPDecBuffer * const output)463 static void ConvertToYUVA(const uint32_t* const src, int width, int y_pos,
464 const WebPDecBuffer* const output) {
465 const WebPYUVABuffer* const buf = &output->u.YUVA;
466 // first, the luma plane
467 {
468 int i;
469 uint8_t* const y = buf->y + y_pos * buf->y_stride;
470 for (i = 0; i < width; ++i) {
471 const uint32_t p = src[i];
472 y[i] = VP8RGBToY((p >> 16) & 0xff, (p >> 8) & 0xff, (p >> 0) & 0xff);
473 }
474 }
475
476 // then U/V planes
477 {
478 uint8_t* const u = buf->u + (y_pos >> 1) * buf->u_stride;
479 uint8_t* const v = buf->v + (y_pos >> 1) * buf->v_stride;
480 const int uv_width = width >> 1;
481 int i;
482 for (i = 0; i < uv_width; ++i) {
483 const uint32_t v0 = src[2 * i + 0];
484 const uint32_t v1 = src[2 * i + 1];
485 // VP8RGBToU/V expects four accumulated pixels. Hence we need to
486 // scale r/g/b value by a factor 2. We just shift v0/v1 one bit less.
487 const int r = ((v0 >> 15) & 0x1fe) + ((v1 >> 15) & 0x1fe);
488 const int g = ((v0 >> 7) & 0x1fe) + ((v1 >> 7) & 0x1fe);
489 const int b = ((v0 << 1) & 0x1fe) + ((v1 << 1) & 0x1fe);
490 if (!(y_pos & 1)) { // even lines: store values
491 u[i] = VP8RGBToU(r, g, b);
492 v[i] = VP8RGBToV(r, g, b);
493 } else { // odd lines: average with previous values
494 const int tmp_u = VP8RGBToU(r, g, b);
495 const int tmp_v = VP8RGBToV(r, g, b);
496 // Approximated average-of-four. But it's an acceptable diff.
497 u[i] = (u[i] + tmp_u + 1) >> 1;
498 v[i] = (v[i] + tmp_v + 1) >> 1;
499 }
500 }
501 if (width & 1) { // last pixel
502 const uint32_t v0 = src[2 * i + 0];
503 const int r = (v0 >> 14) & 0x3fc;
504 const int g = (v0 >> 6) & 0x3fc;
505 const int b = (v0 << 2) & 0x3fc;
506 if (!(y_pos & 1)) { // even lines
507 u[i] = VP8RGBToU(r, g, b);
508 v[i] = VP8RGBToV(r, g, b);
509 } else { // odd lines (note: we could just skip this)
510 const int tmp_u = VP8RGBToU(r, g, b);
511 const int tmp_v = VP8RGBToV(r, g, b);
512 u[i] = (u[i] + tmp_u + 1) >> 1;
513 v[i] = (v[i] + tmp_v + 1) >> 1;
514 }
515 }
516 }
517 // Lastly, store alpha if needed.
518 if (buf->a != NULL) {
519 int i;
520 uint8_t* const a = buf->a + y_pos * buf->a_stride;
521 for (i = 0; i < width; ++i) a[i] = (src[i] >> 24);
522 }
523 }
524
ExportYUVA(const VP8LDecoder * const dec,int y_pos)525 static int ExportYUVA(const VP8LDecoder* const dec, int y_pos) {
526 WebPRescaler* const rescaler = dec->rescaler;
527 const uint32_t* const src = (const uint32_t*)rescaler->dst;
528 const int dst_width = rescaler->dst_width;
529 int num_lines_out = 0;
530 while (WebPRescalerHasPendingOutput(rescaler)) {
531 WebPRescalerExportRow(rescaler);
532 ConvertToYUVA(src, dst_width, y_pos, dec->output_);
533 ++y_pos;
534 ++num_lines_out;
535 }
536 return num_lines_out;
537 }
538
EmitRescaledRowsYUVA(const VP8LDecoder * const dec,const uint32_t * const data,int in_stride,int mb_h)539 static int EmitRescaledRowsYUVA(const VP8LDecoder* const dec,
540 const uint32_t* const data,
541 int in_stride, int mb_h) {
542 const uint8_t* const in = (const uint8_t*)data;
543 int num_lines_in = 0;
544 int y_pos = dec->last_out_row_;
545 while (num_lines_in < mb_h) {
546 const uint8_t* const row_in = in + num_lines_in * in_stride;
547 num_lines_in += WebPRescalerImport(dec->rescaler, mb_h - num_lines_in,
548 row_in, in_stride);
549 y_pos += ExportYUVA(dec, y_pos);
550 }
551 return y_pos;
552 }
553
EmitRowsYUVA(const VP8LDecoder * const dec,const uint32_t * const data,int in_stride,int mb_w,int num_rows)554 static int EmitRowsYUVA(const VP8LDecoder* const dec,
555 const uint32_t* const data, int in_stride,
556 int mb_w, int num_rows) {
557 int y_pos = dec->last_out_row_;
558 const uint8_t* row_in = (const uint8_t*)data;
559 while (num_rows-- > 0) {
560 ConvertToYUVA((const uint32_t*)row_in, mb_w, y_pos, dec->output_);
561 row_in += in_stride;
562 ++y_pos;
563 }
564 return y_pos;
565 }
566
567 //------------------------------------------------------------------------------
568 // Cropping.
569
570 // Sets io->mb_y, io->mb_h & io->mb_w according to start row, end row and
571 // crop options. Also updates the input data pointer, so that it points to the
572 // start of the cropped window.
573 // Note that 'pixel_stride' is in units of 'uint32_t' (and not 'bytes).
574 // Returns true if the crop window is not empty.
SetCropWindow(VP8Io * const io,int y_start,int y_end,const uint32_t ** const in_data,int pixel_stride)575 static int SetCropWindow(VP8Io* const io, int y_start, int y_end,
576 const uint32_t** const in_data, int pixel_stride) {
577 assert(y_start < y_end);
578 assert(io->crop_left < io->crop_right);
579 if (y_end > io->crop_bottom) {
580 y_end = io->crop_bottom; // make sure we don't overflow on last row.
581 }
582 if (y_start < io->crop_top) {
583 const int delta = io->crop_top - y_start;
584 y_start = io->crop_top;
585 *in_data += pixel_stride * delta;
586 }
587 if (y_start >= y_end) return 0; // Crop window is empty.
588
589 *in_data += io->crop_left;
590
591 io->mb_y = y_start - io->crop_top;
592 io->mb_w = io->crop_right - io->crop_left;
593 io->mb_h = y_end - y_start;
594 return 1; // Non-empty crop window.
595 }
596
597 //------------------------------------------------------------------------------
598
GetMetaIndex(const uint32_t * const image,int xsize,int bits,int x,int y)599 static WEBP_INLINE int GetMetaIndex(
600 const uint32_t* const image, int xsize, int bits, int x, int y) {
601 if (bits == 0) return 0;
602 return image[xsize * (y >> bits) + (x >> bits)];
603 }
604
GetHtreeGroupForPos(VP8LMetadata * const hdr,int x,int y)605 static WEBP_INLINE HTreeGroup* GetHtreeGroupForPos(VP8LMetadata* const hdr,
606 int x, int y) {
607 const int meta_index = GetMetaIndex(hdr->huffman_image_, hdr->huffman_xsize_,
608 hdr->huffman_subsample_bits_, x, y);
609 assert(meta_index < hdr->num_htree_groups_);
610 return hdr->htree_groups_ + meta_index;
611 }
612
613 //------------------------------------------------------------------------------
614 // Main loop, with custom row-processing function
615
616 typedef void (*ProcessRowsFunc)(VP8LDecoder* const dec, int row);
617
ApplyInverseTransforms(VP8LDecoder * const dec,int num_rows,const uint32_t * const rows)618 static void ApplyInverseTransforms(VP8LDecoder* const dec, int num_rows,
619 const uint32_t* const rows) {
620 int n = dec->next_transform_;
621 const int cache_pixs = dec->width_ * num_rows;
622 const int start_row = dec->last_row_;
623 const int end_row = start_row + num_rows;
624 const uint32_t* rows_in = rows;
625 uint32_t* const rows_out = dec->argb_cache_;
626
627 // Inverse transforms.
628 // TODO: most transforms only need to operate on the cropped region only.
629 memcpy(rows_out, rows_in, cache_pixs * sizeof(*rows_out));
630 while (n-- > 0) {
631 VP8LTransform* const transform = &dec->transforms_[n];
632 VP8LInverseTransform(transform, start_row, end_row, rows_in, rows_out);
633 rows_in = rows_out;
634 }
635 }
636
637 // Processes (transforms, scales & color-converts) the rows decoded after the
638 // last call.
ProcessRows(VP8LDecoder * const dec,int row)639 static void ProcessRows(VP8LDecoder* const dec, int row) {
640 const uint32_t* const rows = dec->argb_ + dec->width_ * dec->last_row_;
641 const int num_rows = row - dec->last_row_;
642
643 if (num_rows <= 0) return; // Nothing to be done.
644 ApplyInverseTransforms(dec, num_rows, rows);
645
646 // Emit output.
647 {
648 VP8Io* const io = dec->io_;
649 const uint32_t* rows_data = dec->argb_cache_;
650 if (!SetCropWindow(io, dec->last_row_, row, &rows_data, io->width)) {
651 // Nothing to output (this time).
652 } else {
653 const WebPDecBuffer* const output = dec->output_;
654 const int in_stride = io->width * sizeof(*rows_data);
655 if (output->colorspace < MODE_YUV) { // convert to RGBA
656 const WebPRGBABuffer* const buf = &output->u.RGBA;
657 uint8_t* const rgba = buf->rgba + dec->last_out_row_ * buf->stride;
658 const int num_rows_out = io->use_scaling ?
659 EmitRescaledRows(dec, rows_data, in_stride, io->mb_h,
660 rgba, buf->stride) :
661 EmitRows(output->colorspace, rows_data, in_stride,
662 io->mb_w, io->mb_h, rgba, buf->stride);
663 // Update 'last_out_row_'.
664 dec->last_out_row_ += num_rows_out;
665 } else { // convert to YUVA
666 dec->last_out_row_ = io->use_scaling ?
667 EmitRescaledRowsYUVA(dec, rows_data, in_stride, io->mb_h) :
668 EmitRowsYUVA(dec, rows_data, in_stride, io->mb_w, io->mb_h);
669 }
670 assert(dec->last_out_row_ <= output->height);
671 }
672 }
673
674 // Update 'last_row_'.
675 dec->last_row_ = row;
676 assert(dec->last_row_ <= dec->height_);
677 }
678
DecodeImageData(VP8LDecoder * const dec,uint32_t * const data,int width,int height,ProcessRowsFunc process_func)679 static int DecodeImageData(VP8LDecoder* const dec,
680 uint32_t* const data, int width, int height,
681 ProcessRowsFunc process_func) {
682 int ok = 1;
683 int col = 0, row = 0;
684 VP8LBitReader* const br = &dec->br_;
685 VP8LMetadata* const hdr = &dec->hdr_;
686 HTreeGroup* htree_group = hdr->htree_groups_;
687 uint32_t* src = data;
688 uint32_t* last_cached = data;
689 uint32_t* const src_end = data + width * height;
690 const int len_code_limit = NUM_LITERAL_CODES + NUM_LENGTH_CODES;
691 const int color_cache_limit = len_code_limit + hdr->color_cache_size_;
692 VP8LColorCache* const color_cache =
693 (hdr->color_cache_size_ > 0) ? &hdr->color_cache_ : NULL;
694 const int mask = hdr->huffman_mask_;
695
696 assert(htree_group != NULL);
697
698 while (!br->eos_ && src < src_end) {
699 int code;
700 // Only update when changing tile. Note we could use the following test:
701 // if "((((prev_col ^ col) | prev_row ^ row)) > mask)" -> tile changed
702 // but that's actually slower and requires storing the previous col/row
703 if ((col & mask) == 0) {
704 htree_group = GetHtreeGroupForPos(hdr, col, row);
705 }
706 VP8LFillBitWindow(br);
707 code = ReadSymbol(&htree_group->htrees_[GREEN], br);
708 if (code < NUM_LITERAL_CODES) { // Literal.
709 int red, green, blue, alpha;
710 red = ReadSymbol(&htree_group->htrees_[RED], br);
711 green = code;
712 VP8LFillBitWindow(br);
713 blue = ReadSymbol(&htree_group->htrees_[BLUE], br);
714 alpha = ReadSymbol(&htree_group->htrees_[ALPHA], br);
715 *src = (alpha << 24) + (red << 16) + (green << 8) + blue;
716 AdvanceByOne:
717 ++src;
718 ++col;
719 if (col >= width) {
720 col = 0;
721 ++row;
722 if ((process_func != NULL) && (row % NUM_ARGB_CACHE_ROWS == 0)) {
723 process_func(dec, row);
724 }
725 if (color_cache != NULL) {
726 while (last_cached < src) {
727 VP8LColorCacheInsert(color_cache, *last_cached++);
728 }
729 }
730 }
731 } else if (code < len_code_limit) { // Backward reference
732 int dist_code, dist;
733 const int length_sym = code - NUM_LITERAL_CODES;
734 const int length = GetCopyLength(length_sym, br);
735 const int dist_symbol = ReadSymbol(&htree_group->htrees_[DIST], br);
736 VP8LFillBitWindow(br);
737 dist_code = GetCopyDistance(dist_symbol, br);
738 dist = PlaneCodeToDistance(width, dist_code);
739 if (src - data < dist || src_end - src < length) {
740 ok = 0;
741 goto End;
742 }
743 {
744 int i;
745 for (i = 0; i < length; ++i) src[i] = src[i - dist];
746 src += length;
747 }
748 col += length;
749 while (col >= width) {
750 col -= width;
751 ++row;
752 if ((process_func != NULL) && (row % NUM_ARGB_CACHE_ROWS == 0)) {
753 process_func(dec, row);
754 }
755 }
756 if (src < src_end) {
757 htree_group = GetHtreeGroupForPos(hdr, col, row);
758 if (color_cache != NULL) {
759 while (last_cached < src) {
760 VP8LColorCacheInsert(color_cache, *last_cached++);
761 }
762 }
763 }
764 } else if (code < color_cache_limit) { // Color cache.
765 const int key = code - len_code_limit;
766 assert(color_cache != NULL);
767 while (last_cached < src) {
768 VP8LColorCacheInsert(color_cache, *last_cached++);
769 }
770 *src = VP8LColorCacheLookup(color_cache, key);
771 goto AdvanceByOne;
772 } else { // Not reached.
773 ok = 0;
774 goto End;
775 }
776 ok = !br->error_;
777 if (!ok) goto End;
778 }
779 // Process the remaining rows corresponding to last row-block.
780 if (process_func != NULL) process_func(dec, row);
781
782 End:
783 if (br->error_ || !ok || (br->eos_ && src < src_end)) {
784 ok = 0;
785 dec->status_ = (!br->eos_) ?
786 VP8_STATUS_BITSTREAM_ERROR : VP8_STATUS_SUSPENDED;
787 } else if (src == src_end) {
788 dec->state_ = READ_DATA;
789 }
790
791 return ok;
792 }
793
794 // -----------------------------------------------------------------------------
795 // VP8LTransform
796
ClearTransform(VP8LTransform * const transform)797 static void ClearTransform(VP8LTransform* const transform) {
798 free(transform->data_);
799 transform->data_ = NULL;
800 }
801
802 // For security reason, we need to remap the color map to span
803 // the total possible bundled values, and not just the num_colors.
ExpandColorMap(int num_colors,VP8LTransform * const transform)804 static int ExpandColorMap(int num_colors, VP8LTransform* const transform) {
805 int i;
806 const int final_num_colors = 1 << (8 >> transform->bits_);
807 uint32_t* const new_color_map =
808 (uint32_t*)WebPSafeMalloc((uint64_t)final_num_colors,
809 sizeof(*new_color_map));
810 if (new_color_map == NULL) {
811 return 0;
812 } else {
813 uint8_t* const data = (uint8_t*)transform->data_;
814 uint8_t* const new_data = (uint8_t*)new_color_map;
815 new_color_map[0] = transform->data_[0];
816 for (i = 4; i < 4 * num_colors; ++i) {
817 // Equivalent to AddPixelEq(), on a byte-basis.
818 new_data[i] = (data[i] + new_data[i - 4]) & 0xff;
819 }
820 for (; i < 4 * final_num_colors; ++i)
821 new_data[i] = 0; // black tail.
822 free(transform->data_);
823 transform->data_ = new_color_map;
824 }
825 return 1;
826 }
827
ReadTransform(int * const xsize,int const * ysize,VP8LDecoder * const dec)828 static int ReadTransform(int* const xsize, int const* ysize,
829 VP8LDecoder* const dec) {
830 int ok = 1;
831 VP8LBitReader* const br = &dec->br_;
832 VP8LTransform* transform = &dec->transforms_[dec->next_transform_];
833 const VP8LImageTransformType type =
834 (VP8LImageTransformType)VP8LReadBits(br, 2);
835
836 // Each transform type can only be present once in the stream.
837 if (dec->transforms_seen_ & (1U << type)) {
838 return 0; // Already there, let's not accept the second same transform.
839 }
840 dec->transforms_seen_ |= (1U << type);
841
842 transform->type_ = type;
843 transform->xsize_ = *xsize;
844 transform->ysize_ = *ysize;
845 transform->data_ = NULL;
846 ++dec->next_transform_;
847 assert(dec->next_transform_ <= NUM_TRANSFORMS);
848
849 switch (type) {
850 case PREDICTOR_TRANSFORM:
851 case CROSS_COLOR_TRANSFORM:
852 transform->bits_ = VP8LReadBits(br, 3) + 2;
853 ok = DecodeImageStream(VP8LSubSampleSize(transform->xsize_,
854 transform->bits_),
855 VP8LSubSampleSize(transform->ysize_,
856 transform->bits_),
857 0, dec, &transform->data_);
858 break;
859 case COLOR_INDEXING_TRANSFORM: {
860 const int num_colors = VP8LReadBits(br, 8) + 1;
861 const int bits = (num_colors > 16) ? 0
862 : (num_colors > 4) ? 1
863 : (num_colors > 2) ? 2
864 : 3;
865 *xsize = VP8LSubSampleSize(transform->xsize_, bits);
866 transform->bits_ = bits;
867 ok = DecodeImageStream(num_colors, 1, 0, dec, &transform->data_);
868 ok = ok && ExpandColorMap(num_colors, transform);
869 break;
870 }
871 case SUBTRACT_GREEN:
872 break;
873 default:
874 assert(0); // can't happen
875 break;
876 }
877
878 return ok;
879 }
880
881 // -----------------------------------------------------------------------------
882 // VP8LMetadata
883
InitMetadata(VP8LMetadata * const hdr)884 static void InitMetadata(VP8LMetadata* const hdr) {
885 assert(hdr);
886 memset(hdr, 0, sizeof(*hdr));
887 }
888
ClearMetadata(VP8LMetadata * const hdr)889 static void ClearMetadata(VP8LMetadata* const hdr) {
890 assert(hdr);
891
892 free(hdr->huffman_image_);
893 DeleteHtreeGroups(hdr->htree_groups_, hdr->num_htree_groups_);
894 VP8LColorCacheClear(&hdr->color_cache_);
895 InitMetadata(hdr);
896 }
897
898 // -----------------------------------------------------------------------------
899 // VP8LDecoder
900
VP8LNew(void)901 VP8LDecoder* VP8LNew(void) {
902 VP8LDecoder* const dec = (VP8LDecoder*)calloc(1, sizeof(*dec));
903 if (dec == NULL) return NULL;
904 dec->status_ = VP8_STATUS_OK;
905 dec->action_ = READ_DIM;
906 dec->state_ = READ_DIM;
907 return dec;
908 }
909
VP8LClear(VP8LDecoder * const dec)910 void VP8LClear(VP8LDecoder* const dec) {
911 int i;
912 if (dec == NULL) return;
913 ClearMetadata(&dec->hdr_);
914
915 free(dec->argb_);
916 dec->argb_ = NULL;
917 for (i = 0; i < dec->next_transform_; ++i) {
918 ClearTransform(&dec->transforms_[i]);
919 }
920 dec->next_transform_ = 0;
921 dec->transforms_seen_ = 0;
922
923 free(dec->rescaler_memory);
924 dec->rescaler_memory = NULL;
925
926 dec->output_ = NULL; // leave no trace behind
927 }
928
VP8LDelete(VP8LDecoder * const dec)929 void VP8LDelete(VP8LDecoder* const dec) {
930 if (dec != NULL) {
931 VP8LClear(dec);
932 free(dec);
933 }
934 }
935
UpdateDecoder(VP8LDecoder * const dec,int width,int height)936 static void UpdateDecoder(VP8LDecoder* const dec, int width, int height) {
937 VP8LMetadata* const hdr = &dec->hdr_;
938 const int num_bits = hdr->huffman_subsample_bits_;
939 dec->width_ = width;
940 dec->height_ = height;
941
942 hdr->huffman_xsize_ = VP8LSubSampleSize(width, num_bits);
943 hdr->huffman_mask_ = (num_bits == 0) ? ~0 : (1 << num_bits) - 1;
944 }
945
DecodeImageStream(int xsize,int ysize,int is_level0,VP8LDecoder * const dec,uint32_t ** const decoded_data)946 static int DecodeImageStream(int xsize, int ysize,
947 int is_level0,
948 VP8LDecoder* const dec,
949 uint32_t** const decoded_data) {
950 int ok = 1;
951 int transform_xsize = xsize;
952 int transform_ysize = ysize;
953 VP8LBitReader* const br = &dec->br_;
954 VP8LMetadata* const hdr = &dec->hdr_;
955 uint32_t* data = NULL;
956 int color_cache_bits = 0;
957
958 // Read the transforms (may recurse).
959 if (is_level0) {
960 while (ok && VP8LReadBits(br, 1)) {
961 ok = ReadTransform(&transform_xsize, &transform_ysize, dec);
962 }
963 }
964
965 // Color cache
966 if (ok && VP8LReadBits(br, 1)) {
967 color_cache_bits = VP8LReadBits(br, 4);
968 ok = (color_cache_bits >= 1 && color_cache_bits <= MAX_CACHE_BITS);
969 if (!ok) {
970 dec->status_ = VP8_STATUS_BITSTREAM_ERROR;
971 goto End;
972 }
973 }
974
975 // Read the Huffman codes (may recurse).
976 ok = ok && ReadHuffmanCodes(dec, transform_xsize, transform_ysize,
977 color_cache_bits, is_level0);
978 if (!ok) {
979 dec->status_ = VP8_STATUS_BITSTREAM_ERROR;
980 goto End;
981 }
982
983 // Finish setting up the color-cache
984 if (color_cache_bits > 0) {
985 hdr->color_cache_size_ = 1 << color_cache_bits;
986 if (!VP8LColorCacheInit(&hdr->color_cache_, color_cache_bits)) {
987 dec->status_ = VP8_STATUS_OUT_OF_MEMORY;
988 ok = 0;
989 goto End;
990 }
991 } else {
992 hdr->color_cache_size_ = 0;
993 }
994 UpdateDecoder(dec, transform_xsize, transform_ysize);
995
996 if (is_level0) { // level 0 complete
997 dec->state_ = READ_HDR;
998 goto End;
999 }
1000
1001 {
1002 const uint64_t total_size = (uint64_t)transform_xsize * transform_ysize;
1003 data = (uint32_t*)WebPSafeMalloc(total_size, sizeof(*data));
1004 if (data == NULL) {
1005 dec->status_ = VP8_STATUS_OUT_OF_MEMORY;
1006 ok = 0;
1007 goto End;
1008 }
1009 }
1010
1011 // Use the Huffman trees to decode the LZ77 encoded data.
1012 ok = DecodeImageData(dec, data, transform_xsize, transform_ysize, NULL);
1013 ok = ok && !br->error_;
1014
1015 End:
1016
1017 if (!ok) {
1018 free(data);
1019 ClearMetadata(hdr);
1020 // If not enough data (br.eos_) resulted in BIT_STREAM_ERROR, update the
1021 // status appropriately.
1022 if (dec->status_ == VP8_STATUS_BITSTREAM_ERROR && dec->br_.eos_) {
1023 dec->status_ = VP8_STATUS_SUSPENDED;
1024 }
1025 } else {
1026 if (decoded_data != NULL) {
1027 *decoded_data = data;
1028 } else {
1029 // We allocate image data in this function only for transforms. At level 0
1030 // (that is: not the transforms), we shouldn't have allocated anything.
1031 assert(data == NULL);
1032 assert(is_level0);
1033 }
1034 if (!is_level0) ClearMetadata(hdr); // Clean up temporary data behind.
1035 }
1036 return ok;
1037 }
1038
1039 //------------------------------------------------------------------------------
1040 // Allocate dec->argb_ and dec->argb_cache_ using dec->width_ and dec->height_
1041
AllocateARGBBuffers(VP8LDecoder * const dec,int final_width)1042 static int AllocateARGBBuffers(VP8LDecoder* const dec, int final_width) {
1043 const uint64_t num_pixels = (uint64_t)dec->width_ * dec->height_;
1044 // Scratch buffer corresponding to top-prediction row for transforming the
1045 // first row in the row-blocks.
1046 const uint64_t cache_top_pixels = final_width;
1047 // Scratch buffer for temporary BGRA storage.
1048 const uint64_t cache_pixels = (uint64_t)final_width * NUM_ARGB_CACHE_ROWS;
1049 const uint64_t total_num_pixels =
1050 num_pixels + cache_top_pixels + cache_pixels;
1051
1052 assert(dec->width_ <= final_width);
1053 dec->argb_ = (uint32_t*)WebPSafeMalloc(total_num_pixels, sizeof(*dec->argb_));
1054 if (dec->argb_ == NULL) {
1055 dec->argb_cache_ = NULL; // for sanity check
1056 dec->status_ = VP8_STATUS_OUT_OF_MEMORY;
1057 return 0;
1058 }
1059 dec->argb_cache_ = dec->argb_ + num_pixels + cache_top_pixels;
1060 return 1;
1061 }
1062
1063 //------------------------------------------------------------------------------
1064 // Special row-processing that only stores the alpha data.
1065
ExtractAlphaRows(VP8LDecoder * const dec,int row)1066 static void ExtractAlphaRows(VP8LDecoder* const dec, int row) {
1067 const int num_rows = row - dec->last_row_;
1068 const uint32_t* const in = dec->argb_ + dec->width_ * dec->last_row_;
1069
1070 if (num_rows <= 0) return; // Nothing to be done.
1071 ApplyInverseTransforms(dec, num_rows, in);
1072
1073 // Extract alpha (which is stored in the green plane).
1074 {
1075 const int width = dec->io_->width; // the final width (!= dec->width_)
1076 const int cache_pixs = width * num_rows;
1077 uint8_t* const dst = (uint8_t*)dec->io_->opaque + width * dec->last_row_;
1078 const uint32_t* const src = dec->argb_cache_;
1079 int i;
1080 for (i = 0; i < cache_pixs; ++i) dst[i] = (src[i] >> 8) & 0xff;
1081 }
1082
1083 dec->last_row_ = dec->last_out_row_ = row;
1084 }
1085
VP8LDecodeAlphaImageStream(int width,int height,const uint8_t * const data,size_t data_size,uint8_t * const output)1086 int VP8LDecodeAlphaImageStream(int width, int height, const uint8_t* const data,
1087 size_t data_size, uint8_t* const output) {
1088 VP8Io io;
1089 int ok = 0;
1090 VP8LDecoder* const dec = VP8LNew();
1091 if (dec == NULL) return 0;
1092
1093 dec->width_ = width;
1094 dec->height_ = height;
1095 dec->io_ = &io;
1096
1097 VP8InitIo(&io);
1098 WebPInitCustomIo(NULL, &io); // Just a sanity Init. io won't be used.
1099 io.opaque = output;
1100 io.width = width;
1101 io.height = height;
1102
1103 dec->status_ = VP8_STATUS_OK;
1104 VP8LInitBitReader(&dec->br_, data, data_size);
1105
1106 dec->action_ = READ_HDR;
1107 if (!DecodeImageStream(width, height, 1, dec, NULL)) goto Err;
1108
1109 // Allocate output (note that dec->width_ may have changed here).
1110 if (!AllocateARGBBuffers(dec, width)) goto Err;
1111
1112 // Decode (with special row processing).
1113 dec->action_ = READ_DATA;
1114 ok = DecodeImageData(dec, dec->argb_, dec->width_, dec->height_,
1115 ExtractAlphaRows);
1116
1117 Err:
1118 VP8LDelete(dec);
1119 return ok;
1120 }
1121
1122 //------------------------------------------------------------------------------
1123
VP8LDecodeHeader(VP8LDecoder * const dec,VP8Io * const io)1124 int VP8LDecodeHeader(VP8LDecoder* const dec, VP8Io* const io) {
1125 int width, height, has_alpha;
1126
1127 if (dec == NULL) return 0;
1128 if (io == NULL) {
1129 dec->status_ = VP8_STATUS_INVALID_PARAM;
1130 return 0;
1131 }
1132
1133 dec->io_ = io;
1134 dec->status_ = VP8_STATUS_OK;
1135 VP8LInitBitReader(&dec->br_, io->data, io->data_size);
1136 if (!ReadImageInfo(&dec->br_, &width, &height, &has_alpha)) {
1137 dec->status_ = VP8_STATUS_BITSTREAM_ERROR;
1138 goto Error;
1139 }
1140 dec->state_ = READ_DIM;
1141 io->width = width;
1142 io->height = height;
1143
1144 dec->action_ = READ_HDR;
1145 if (!DecodeImageStream(width, height, 1, dec, NULL)) goto Error;
1146 return 1;
1147
1148 Error:
1149 VP8LClear(dec);
1150 assert(dec->status_ != VP8_STATUS_OK);
1151 return 0;
1152 }
1153
VP8LDecodeImage(VP8LDecoder * const dec)1154 int VP8LDecodeImage(VP8LDecoder* const dec) {
1155 VP8Io* io = NULL;
1156 WebPDecParams* params = NULL;
1157
1158 // Sanity checks.
1159 if (dec == NULL) return 0;
1160
1161 io = dec->io_;
1162 assert(io != NULL);
1163 params = (WebPDecParams*)io->opaque;
1164 assert(params != NULL);
1165 dec->output_ = params->output;
1166 assert(dec->output_ != NULL);
1167
1168 // Initialization.
1169 if (!WebPIoInitFromOptions(params->options, io, MODE_BGRA)) {
1170 dec->status_ = VP8_STATUS_INVALID_PARAM;
1171 goto Err;
1172 }
1173
1174 if (!AllocateARGBBuffers(dec, io->width)) goto Err;
1175
1176 if (io->use_scaling && !AllocateAndInitRescaler(dec, io)) goto Err;
1177
1178 // Decode.
1179 dec->action_ = READ_DATA;
1180 if (!DecodeImageData(dec, dec->argb_, dec->width_, dec->height_,
1181 ProcessRows)) {
1182 goto Err;
1183 }
1184
1185 // Cleanup.
1186 params->last_y = dec->last_out_row_;
1187 VP8LClear(dec);
1188 return 1;
1189
1190 Err:
1191 VP8LClear(dec);
1192 assert(dec->status_ != VP8_STATUS_OK);
1193 return 0;
1194 }
1195
1196 //------------------------------------------------------------------------------
1197
1198 #if defined(__cplusplus) || defined(c_plusplus)
1199 } // extern "C"
1200 #endif
1201