• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2011 Google Inc. All Rights Reserved.
2 //
3 // This code is licensed under the same terms as WebM:
4 //  Software License Agreement:  http://www.webmproject.org/license/software/
5 //  Additional IP Rights Grant:  http://www.webmproject.org/license/additional/
6 // -----------------------------------------------------------------------------
7 //
8 // Spatial prediction using various filters
9 //
10 // Author: Urvang (urvang@google.com)
11 
12 #include "./filters.h"
13 #include <assert.h>
14 #include <stdlib.h>
15 #include <string.h>
16 
17 #if defined(__cplusplus) || defined(c_plusplus)
18 extern "C" {
19 #endif
20 
21 //------------------------------------------------------------------------------
22 // Helpful macro.
23 
24 # define SANITY_CHECK(in, out)                              \
25   assert(in != NULL);                                       \
26   assert(out != NULL);                                      \
27   assert(width > 0);                                        \
28   assert(height > 0);                                       \
29   assert(bpp > 0);                                          \
30   assert(stride >= width * bpp);
31 
PredictLine(const uint8_t * src,const uint8_t * pred,uint8_t * dst,int length,int inverse)32 static WEBP_INLINE void PredictLine(const uint8_t* src, const uint8_t* pred,
33                                     uint8_t* dst, int length, int inverse) {
34   int i;
35   if (inverse) {
36     for (i = 0; i < length; ++i) dst[i] = src[i] + pred[i];
37   } else {
38     for (i = 0; i < length; ++i) dst[i] = src[i] - pred[i];
39   }
40 }
41 
42 //------------------------------------------------------------------------------
43 // Horizontal filter.
44 
DoHorizontalFilter(const uint8_t * in,int width,int height,int bpp,int stride,int inverse,uint8_t * out)45 static WEBP_INLINE void DoHorizontalFilter(const uint8_t* in,
46     int width, int height, int bpp, int stride, int inverse, uint8_t* out) {
47   int h;
48   const uint8_t* preds = (inverse ? out : in);
49   SANITY_CHECK(in, out);
50 
51   // Filter line-by-line.
52   for (h = 0; h < height; ++h) {
53     // Leftmost pixel is predicted from above (except for topmost scanline).
54     if (h == 0) {
55       memcpy((void*)out, (const void*)in, bpp);
56     } else {
57       PredictLine(in, preds - stride, out, bpp, inverse);
58     }
59     PredictLine(in + bpp, preds, out + bpp, bpp * (width - 1), inverse);
60     preds += stride;
61     in += stride;
62     out += stride;
63   }
64 }
65 
HorizontalFilter(const uint8_t * data,int width,int height,int bpp,int stride,uint8_t * filtered_data)66 static void HorizontalFilter(const uint8_t* data, int width, int height,
67                              int bpp, int stride, uint8_t* filtered_data) {
68   DoHorizontalFilter(data, width, height, bpp, stride, 0, filtered_data);
69 }
70 
HorizontalUnfilter(const uint8_t * data,int width,int height,int bpp,int stride,uint8_t * recon_data)71 static void HorizontalUnfilter(const uint8_t* data, int width, int height,
72                                int bpp, int stride, uint8_t* recon_data) {
73   DoHorizontalFilter(data, width, height, bpp, stride, 1, recon_data);
74 }
75 
76 //------------------------------------------------------------------------------
77 // Vertical filter.
78 
DoVerticalFilter(const uint8_t * in,int width,int height,int bpp,int stride,int inverse,uint8_t * out)79 static WEBP_INLINE void DoVerticalFilter(const uint8_t* in,
80     int width, int height, int bpp, int stride, int inverse, uint8_t* out) {
81   int h;
82   const uint8_t* preds = (inverse ? out : in);
83   SANITY_CHECK(in, out);
84 
85   // Very first top-left pixel is copied.
86   memcpy((void*)out, (const void*)in, bpp);
87   // Rest of top scan-line is left-predicted.
88   PredictLine(in + bpp, preds, out + bpp, bpp * (width - 1), inverse);
89 
90   // Filter line-by-line.
91   for (h = 1; h < height; ++h) {
92     in += stride;
93     out += stride;
94     PredictLine(in, preds, out, bpp * width, inverse);
95     preds += stride;
96   }
97 }
98 
VerticalFilter(const uint8_t * data,int width,int height,int bpp,int stride,uint8_t * filtered_data)99 static void VerticalFilter(const uint8_t* data, int width, int height,
100                            int bpp, int stride, uint8_t* filtered_data) {
101   DoVerticalFilter(data, width, height, bpp, stride, 0, filtered_data);
102 }
103 
VerticalUnfilter(const uint8_t * data,int width,int height,int bpp,int stride,uint8_t * recon_data)104 static void VerticalUnfilter(const uint8_t* data, int width, int height,
105                              int bpp, int stride, uint8_t* recon_data) {
106   DoVerticalFilter(data, width, height, bpp, stride, 1, recon_data);
107 }
108 
109 //------------------------------------------------------------------------------
110 // Gradient filter.
111 
GradientPredictor(uint8_t a,uint8_t b,uint8_t c)112 static WEBP_INLINE int GradientPredictor(uint8_t a, uint8_t b, uint8_t c) {
113   const int g = a + b - c;
114   return (g < 0) ? 0 : (g > 255) ? 255 : g;
115 }
116 
117 static WEBP_INLINE
DoGradientFilter(const uint8_t * in,int width,int height,int bpp,int stride,int inverse,uint8_t * out)118 void DoGradientFilter(const uint8_t* in, int width, int height,
119                       int bpp, int stride, int inverse, uint8_t* out) {
120   const uint8_t* preds = (inverse ? out : in);
121   int h;
122   SANITY_CHECK(in, out);
123 
124   // left prediction for top scan-line
125   memcpy((void*)out, (const void*)in, bpp);
126   PredictLine(in + bpp, preds, out + bpp, bpp * (width - 1), inverse);
127 
128   // Filter line-by-line.
129   for (h = 1; h < height; ++h) {
130     int w;
131     preds += stride;
132     in += stride;
133     out += stride;
134     // leftmost pixel: predict from above.
135     PredictLine(in, preds - stride, out, bpp, inverse);
136     for (w = bpp; w < width * bpp; ++w) {
137       const int pred = GradientPredictor(preds[w - bpp],
138                                          preds[w - stride],
139                                          preds[w - stride - bpp]);
140       out[w] = in[w] + (inverse ? pred : -pred);
141     }
142   }
143 }
144 
GradientFilter(const uint8_t * data,int width,int height,int bpp,int stride,uint8_t * filtered_data)145 static void GradientFilter(const uint8_t* data, int width, int height,
146                            int bpp, int stride, uint8_t* filtered_data) {
147   DoGradientFilter(data, width, height, bpp, stride, 0, filtered_data);
148 }
149 
GradientUnfilter(const uint8_t * data,int width,int height,int bpp,int stride,uint8_t * recon_data)150 static void GradientUnfilter(const uint8_t* data, int width, int height,
151                              int bpp, int stride, uint8_t* recon_data) {
152   DoGradientFilter(data, width, height, bpp, stride, 1, recon_data);
153 }
154 
155 #undef SANITY_CHECK
156 
157 // -----------------------------------------------------------------------------
158 // Quick estimate of a potentially interesting filter mode to try, in addition
159 // to the default NONE.
160 
161 #define SMAX 16
162 #define SDIFF(a, b) (abs((a) - (b)) >> 4)   // Scoring diff, in [0..SMAX)
163 
EstimateBestFilter(const uint8_t * data,int width,int height,int stride)164 WEBP_FILTER_TYPE EstimateBestFilter(const uint8_t* data,
165                                     int width, int height, int stride) {
166   int i, j;
167   int bins[WEBP_FILTER_LAST][SMAX];
168   memset(bins, 0, sizeof(bins));
169   // We only sample every other pixels. That's enough.
170   for (j = 2; j < height - 1; j += 2) {
171     const uint8_t* const p = data + j * stride;
172     int mean = p[0];
173     for (i = 2; i < width - 1; i += 2) {
174       const int diff0 = SDIFF(p[i], mean);
175       const int diff1 = SDIFF(p[i], p[i - 1]);
176       const int diff2 = SDIFF(p[i], p[i - width]);
177       const int grad_pred =
178           GradientPredictor(p[i - 1], p[i - width], p[i - width - 1]);
179       const int diff3 = SDIFF(p[i], grad_pred);
180       bins[WEBP_FILTER_NONE][diff0] = 1;
181       bins[WEBP_FILTER_HORIZONTAL][diff1] = 1;
182       bins[WEBP_FILTER_VERTICAL][diff2] = 1;
183       bins[WEBP_FILTER_GRADIENT][diff3] = 1;
184       mean = (3 * mean + p[i] + 2) >> 2;
185     }
186   }
187   {
188     WEBP_FILTER_TYPE filter, best_filter = WEBP_FILTER_NONE;
189     int best_score = 0x7fffffff;
190     for (filter = WEBP_FILTER_NONE; filter < WEBP_FILTER_LAST; ++filter) {
191       int score = 0;
192       for (i = 0; i < SMAX; ++i) {
193         if (bins[filter][i] > 0) {
194           score += i;
195         }
196       }
197       if (score < best_score) {
198         best_score = score;
199         best_filter = filter;
200       }
201     }
202     return best_filter;
203   }
204 }
205 
206 #undef SMAX
207 #undef SDIFF
208 
209 //------------------------------------------------------------------------------
210 
211 const WebPFilterFunc WebPFilters[WEBP_FILTER_LAST] = {
212   NULL,              // WEBP_FILTER_NONE
213   HorizontalFilter,  // WEBP_FILTER_HORIZONTAL
214   VerticalFilter,    // WEBP_FILTER_VERTICAL
215   GradientFilter     // WEBP_FILTER_GRADIENT
216 };
217 
218 const WebPFilterFunc WebPUnfilters[WEBP_FILTER_LAST] = {
219   NULL,                // WEBP_FILTER_NONE
220   HorizontalUnfilter,  // WEBP_FILTER_HORIZONTAL
221   VerticalUnfilter,    // WEBP_FILTER_VERTICAL
222   GradientUnfilter     // WEBP_FILTER_GRADIENT
223 };
224 
225 //------------------------------------------------------------------------------
226 
227 #if defined(__cplusplus) || defined(c_plusplus)
228 }    // extern "C"
229 #endif
230