• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2012 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #define LOG_TAG "FastMixer"
18 //#define LOG_NDEBUG 0
19 
20 #include <sys/atomics.h>
21 #include <time.h>
22 #include <utils/Log.h>
23 #include <utils/Trace.h>
24 #include <system/audio.h>
25 #ifdef FAST_MIXER_STATISTICS
26 #include <cpustats/CentralTendencyStatistics.h>
27 #ifdef CPU_FREQUENCY_STATISTICS
28 #include <cpustats/ThreadCpuUsage.h>
29 #endif
30 #endif
31 #include "AudioMixer.h"
32 #include "FastMixer.h"
33 
34 #define FAST_HOT_IDLE_NS     1000000L   // 1 ms: time to sleep while hot idling
35 #define FAST_DEFAULT_NS    999999999L   // ~1 sec: default time to sleep
36 #define MIN_WARMUP_CYCLES          2    // minimum number of loop cycles to wait for warmup
37 #define MAX_WARMUP_CYCLES         10    // maximum number of loop cycles to wait for warmup
38 
39 namespace android {
40 
41 // Fast mixer thread
threadLoop()42 bool FastMixer::threadLoop()
43 {
44     static const FastMixerState initial;
45     const FastMixerState *previous = &initial, *current = &initial;
46     FastMixerState preIdle; // copy of state before we went into idle
47     struct timespec oldTs = {0, 0};
48     bool oldTsValid = false;
49     long slopNs = 0;    // accumulated time we've woken up too early (> 0) or too late (< 0)
50     long sleepNs = -1;  // -1: busy wait, 0: sched_yield, > 0: nanosleep
51     int fastTrackNames[FastMixerState::kMaxFastTracks]; // handles used by mixer to identify tracks
52     int generations[FastMixerState::kMaxFastTracks];    // last observed mFastTracks[i].mGeneration
53     unsigned i;
54     for (i = 0; i < FastMixerState::kMaxFastTracks; ++i) {
55         fastTrackNames[i] = -1;
56         generations[i] = 0;
57     }
58     NBAIO_Sink *outputSink = NULL;
59     int outputSinkGen = 0;
60     AudioMixer* mixer = NULL;
61     short *mixBuffer = NULL;
62     enum {UNDEFINED, MIXED, ZEROED} mixBufferState = UNDEFINED;
63     NBAIO_Format format = Format_Invalid;
64     unsigned sampleRate = 0;
65     int fastTracksGen = 0;
66     long periodNs = 0;      // expected period; the time required to render one mix buffer
67     long underrunNs = 0;    // underrun likely when write cycle is greater than this value
68     long overrunNs = 0;     // overrun likely when write cycle is less than this value
69     long forceNs = 0;       // if overrun detected, force the write cycle to take this much time
70     long warmupNs = 0;      // warmup complete when write cycle is greater than to this value
71     FastMixerDumpState dummyDumpState, *dumpState = &dummyDumpState;
72     bool ignoreNextOverrun = true;  // used to ignore initial overrun and first after an underrun
73 #ifdef FAST_MIXER_STATISTICS
74     struct timespec oldLoad = {0, 0};    // previous value of clock_gettime(CLOCK_THREAD_CPUTIME_ID)
75     bool oldLoadValid = false;  // whether oldLoad is valid
76     uint32_t bounds = 0;
77     bool full = false;      // whether we have collected at least kSamplingN samples
78 #ifdef CPU_FREQUENCY_STATISTICS
79     ThreadCpuUsage tcu;     // for reading the current CPU clock frequency in kHz
80 #endif
81 #endif
82     unsigned coldGen = 0;   // last observed mColdGen
83     bool isWarm = false;    // true means ready to mix, false means wait for warmup before mixing
84     struct timespec measuredWarmupTs = {0, 0};  // how long did it take for warmup to complete
85     uint32_t warmupCycles = 0;  // counter of number of loop cycles required to warmup
86     NBAIO_Sink* teeSink = NULL; // if non-NULL, then duplicate write() to this non-blocking sink
87 
88     for (;;) {
89 
90         // either nanosleep, sched_yield, or busy wait
91         if (sleepNs >= 0) {
92             if (sleepNs > 0) {
93                 ALOG_ASSERT(sleepNs < 1000000000);
94                 const struct timespec req = {0, sleepNs};
95                 nanosleep(&req, NULL);
96             } else {
97                 sched_yield();
98             }
99         }
100         // default to long sleep for next cycle
101         sleepNs = FAST_DEFAULT_NS;
102 
103         // poll for state change
104         const FastMixerState *next = mSQ.poll();
105         if (next == NULL) {
106             // continue to use the default initial state until a real state is available
107             ALOG_ASSERT(current == &initial && previous == &initial);
108             next = current;
109         }
110 
111         FastMixerState::Command command = next->mCommand;
112         if (next != current) {
113 
114             // As soon as possible of learning of a new dump area, start using it
115             dumpState = next->mDumpState != NULL ? next->mDumpState : &dummyDumpState;
116             teeSink = next->mTeeSink;
117 
118             // We want to always have a valid reference to the previous (non-idle) state.
119             // However, the state queue only guarantees access to current and previous states.
120             // So when there is a transition from a non-idle state into an idle state, we make a
121             // copy of the last known non-idle state so it is still available on return from idle.
122             // The possible transitions are:
123             //  non-idle -> non-idle    update previous from current in-place
124             //  non-idle -> idle        update previous from copy of current
125             //  idle     -> idle        don't update previous
126             //  idle     -> non-idle    don't update previous
127             if (!(current->mCommand & FastMixerState::IDLE)) {
128                 if (command & FastMixerState::IDLE) {
129                     preIdle = *current;
130                     current = &preIdle;
131                     oldTsValid = false;
132                     oldLoadValid = false;
133                     ignoreNextOverrun = true;
134                 }
135                 previous = current;
136             }
137             current = next;
138         }
139 #if !LOG_NDEBUG
140         next = NULL;    // not referenced again
141 #endif
142 
143         dumpState->mCommand = command;
144 
145         switch (command) {
146         case FastMixerState::INITIAL:
147         case FastMixerState::HOT_IDLE:
148             sleepNs = FAST_HOT_IDLE_NS;
149             continue;
150         case FastMixerState::COLD_IDLE:
151             // only perform a cold idle command once
152             // FIXME consider checking previous state and only perform if previous != COLD_IDLE
153             if (current->mColdGen != coldGen) {
154                 int32_t *coldFutexAddr = current->mColdFutexAddr;
155                 ALOG_ASSERT(coldFutexAddr != NULL);
156                 int32_t old = android_atomic_dec(coldFutexAddr);
157                 if (old <= 0) {
158                     __futex_syscall4(coldFutexAddr, FUTEX_WAIT_PRIVATE, old - 1, NULL);
159                 }
160                 // This may be overly conservative; there could be times that the normal mixer
161                 // requests such a brief cold idle that it doesn't require resetting this flag.
162                 isWarm = false;
163                 measuredWarmupTs.tv_sec = 0;
164                 measuredWarmupTs.tv_nsec = 0;
165                 warmupCycles = 0;
166                 sleepNs = -1;
167                 coldGen = current->mColdGen;
168                 bounds = 0;
169                 full = false;
170                 oldTsValid = !clock_gettime(CLOCK_MONOTONIC, &oldTs);
171             } else {
172                 sleepNs = FAST_HOT_IDLE_NS;
173             }
174             continue;
175         case FastMixerState::EXIT:
176             delete mixer;
177             delete[] mixBuffer;
178             return false;
179         case FastMixerState::MIX:
180         case FastMixerState::WRITE:
181         case FastMixerState::MIX_WRITE:
182             break;
183         default:
184             LOG_FATAL("bad command %d", command);
185         }
186 
187         // there is a non-idle state available to us; did the state change?
188         size_t frameCount = current->mFrameCount;
189         if (current != previous) {
190 
191             // handle state change here, but since we want to diff the state,
192             // we're prepared for previous == &initial the first time through
193             unsigned previousTrackMask;
194 
195             // check for change in output HAL configuration
196             NBAIO_Format previousFormat = format;
197             if (current->mOutputSinkGen != outputSinkGen) {
198                 outputSink = current->mOutputSink;
199                 outputSinkGen = current->mOutputSinkGen;
200                 if (outputSink == NULL) {
201                     format = Format_Invalid;
202                     sampleRate = 0;
203                 } else {
204                     format = outputSink->format();
205                     sampleRate = Format_sampleRate(format);
206                     ALOG_ASSERT(Format_channelCount(format) == 2);
207                 }
208                 dumpState->mSampleRate = sampleRate;
209             }
210 
211             if ((format != previousFormat) || (frameCount != previous->mFrameCount)) {
212                 // FIXME to avoid priority inversion, don't delete here
213                 delete mixer;
214                 mixer = NULL;
215                 delete[] mixBuffer;
216                 mixBuffer = NULL;
217                 if (frameCount > 0 && sampleRate > 0) {
218                     // FIXME new may block for unbounded time at internal mutex of the heap
219                     //       implementation; it would be better to have normal mixer allocate for us
220                     //       to avoid blocking here and to prevent possible priority inversion
221                     mixer = new AudioMixer(frameCount, sampleRate, FastMixerState::kMaxFastTracks);
222                     mixBuffer = new short[frameCount * 2];
223                     periodNs = (frameCount * 1000000000LL) / sampleRate;    // 1.00
224                     underrunNs = (frameCount * 1750000000LL) / sampleRate;  // 1.75
225                     overrunNs = (frameCount * 500000000LL) / sampleRate;    // 0.50
226                     forceNs = (frameCount * 950000000LL) / sampleRate;      // 0.95
227                     warmupNs = (frameCount * 500000000LL) / sampleRate;     // 0.50
228                 } else {
229                     periodNs = 0;
230                     underrunNs = 0;
231                     overrunNs = 0;
232                     forceNs = 0;
233                     warmupNs = 0;
234                 }
235                 mixBufferState = UNDEFINED;
236 #if !LOG_NDEBUG
237                 for (i = 0; i < FastMixerState::kMaxFastTracks; ++i) {
238                     fastTrackNames[i] = -1;
239                 }
240 #endif
241                 // we need to reconfigure all active tracks
242                 previousTrackMask = 0;
243                 fastTracksGen = current->mFastTracksGen - 1;
244                 dumpState->mFrameCount = frameCount;
245             } else {
246                 previousTrackMask = previous->mTrackMask;
247             }
248 
249             // check for change in active track set
250             unsigned currentTrackMask = current->mTrackMask;
251             dumpState->mTrackMask = currentTrackMask;
252             if (current->mFastTracksGen != fastTracksGen) {
253                 ALOG_ASSERT(mixBuffer != NULL);
254                 int name;
255 
256                 // process removed tracks first to avoid running out of track names
257                 unsigned removedTracks = previousTrackMask & ~currentTrackMask;
258                 while (removedTracks != 0) {
259                     i = __builtin_ctz(removedTracks);
260                     removedTracks &= ~(1 << i);
261                     const FastTrack* fastTrack = &current->mFastTracks[i];
262                     ALOG_ASSERT(fastTrack->mBufferProvider == NULL);
263                     if (mixer != NULL) {
264                         name = fastTrackNames[i];
265                         ALOG_ASSERT(name >= 0);
266                         mixer->deleteTrackName(name);
267                     }
268 #if !LOG_NDEBUG
269                     fastTrackNames[i] = -1;
270 #endif
271                     // don't reset track dump state, since other side is ignoring it
272                     generations[i] = fastTrack->mGeneration;
273                 }
274 
275                 // now process added tracks
276                 unsigned addedTracks = currentTrackMask & ~previousTrackMask;
277                 while (addedTracks != 0) {
278                     i = __builtin_ctz(addedTracks);
279                     addedTracks &= ~(1 << i);
280                     const FastTrack* fastTrack = &current->mFastTracks[i];
281                     AudioBufferProvider *bufferProvider = fastTrack->mBufferProvider;
282                     ALOG_ASSERT(bufferProvider != NULL && fastTrackNames[i] == -1);
283                     if (mixer != NULL) {
284                         // calling getTrackName with default channel mask and a random invalid
285                         //   sessionId (no effects here)
286                         name = mixer->getTrackName(AUDIO_CHANNEL_OUT_STEREO, -555);
287                         ALOG_ASSERT(name >= 0);
288                         fastTrackNames[i] = name;
289                         mixer->setBufferProvider(name, bufferProvider);
290                         mixer->setParameter(name, AudioMixer::TRACK, AudioMixer::MAIN_BUFFER,
291                                 (void *) mixBuffer);
292                         // newly allocated track names default to full scale volume
293                         if (fastTrack->mSampleRate != 0 && fastTrack->mSampleRate != sampleRate) {
294                             mixer->setParameter(name, AudioMixer::RESAMPLE,
295                                     AudioMixer::SAMPLE_RATE, (void*) fastTrack->mSampleRate);
296                         }
297                         mixer->setParameter(name, AudioMixer::TRACK, AudioMixer::CHANNEL_MASK,
298                                 (void *) fastTrack->mChannelMask);
299                         mixer->enable(name);
300                     }
301                     generations[i] = fastTrack->mGeneration;
302                 }
303 
304                 // finally process modified tracks; these use the same slot
305                 // but may have a different buffer provider or volume provider
306                 unsigned modifiedTracks = currentTrackMask & previousTrackMask;
307                 while (modifiedTracks != 0) {
308                     i = __builtin_ctz(modifiedTracks);
309                     modifiedTracks &= ~(1 << i);
310                     const FastTrack* fastTrack = &current->mFastTracks[i];
311                     if (fastTrack->mGeneration != generations[i]) {
312                         AudioBufferProvider *bufferProvider = fastTrack->mBufferProvider;
313                         ALOG_ASSERT(bufferProvider != NULL);
314                         if (mixer != NULL) {
315                             name = fastTrackNames[i];
316                             ALOG_ASSERT(name >= 0);
317                             mixer->setBufferProvider(name, bufferProvider);
318                             if (fastTrack->mVolumeProvider == NULL) {
319                                 mixer->setParameter(name, AudioMixer::VOLUME, AudioMixer::VOLUME0,
320                                         (void *)0x1000);
321                                 mixer->setParameter(name, AudioMixer::VOLUME, AudioMixer::VOLUME1,
322                                         (void *)0x1000);
323                             }
324                             if (fastTrack->mSampleRate != 0 &&
325                                     fastTrack->mSampleRate != sampleRate) {
326                                 mixer->setParameter(name, AudioMixer::RESAMPLE,
327                                         AudioMixer::SAMPLE_RATE, (void*) fastTrack->mSampleRate);
328                             } else {
329                                 mixer->setParameter(name, AudioMixer::RESAMPLE,
330                                         AudioMixer::REMOVE, NULL);
331                             }
332                             mixer->setParameter(name, AudioMixer::TRACK, AudioMixer::CHANNEL_MASK,
333                                     (void *) fastTrack->mChannelMask);
334                             // already enabled
335                         }
336                         generations[i] = fastTrack->mGeneration;
337                     }
338                 }
339 
340                 fastTracksGen = current->mFastTracksGen;
341 
342                 dumpState->mNumTracks = popcount(currentTrackMask);
343             }
344 
345 #if 1   // FIXME shouldn't need this
346             // only process state change once
347             previous = current;
348 #endif
349         }
350 
351         // do work using current state here
352         if ((command & FastMixerState::MIX) && (mixer != NULL) && isWarm) {
353             ALOG_ASSERT(mixBuffer != NULL);
354             // for each track, update volume and check for underrun
355             unsigned currentTrackMask = current->mTrackMask;
356             while (currentTrackMask != 0) {
357                 i = __builtin_ctz(currentTrackMask);
358                 currentTrackMask &= ~(1 << i);
359                 const FastTrack* fastTrack = &current->mFastTracks[i];
360                 int name = fastTrackNames[i];
361                 ALOG_ASSERT(name >= 0);
362                 if (fastTrack->mVolumeProvider != NULL) {
363                     uint32_t vlr = fastTrack->mVolumeProvider->getVolumeLR();
364                     mixer->setParameter(name, AudioMixer::VOLUME, AudioMixer::VOLUME0,
365                             (void *)(vlr & 0xFFFF));
366                     mixer->setParameter(name, AudioMixer::VOLUME, AudioMixer::VOLUME1,
367                             (void *)(vlr >> 16));
368                 }
369                 // FIXME The current implementation of framesReady() for fast tracks
370                 // takes a tryLock, which can block
371                 // up to 1 ms.  If enough active tracks all blocked in sequence, this would result
372                 // in the overall fast mix cycle being delayed.  Should use a non-blocking FIFO.
373                 size_t framesReady = fastTrack->mBufferProvider->framesReady();
374 #if defined(ATRACE_TAG) && (ATRACE_TAG != ATRACE_TAG_NEVER)
375                 // I wish we had formatted trace names
376                 char traceName[16];
377                 strcpy(traceName, "framesReady");
378                 traceName[11] = i + (i < 10 ? '0' : 'A' - 10);
379                 traceName[12] = '\0';
380                 ATRACE_INT(traceName, framesReady);
381 #endif
382                 FastTrackDump *ftDump = &dumpState->mTracks[i];
383                 FastTrackUnderruns underruns = ftDump->mUnderruns;
384                 if (framesReady < frameCount) {
385                     if (framesReady == 0) {
386                         underruns.mBitFields.mEmpty++;
387                         underruns.mBitFields.mMostRecent = UNDERRUN_EMPTY;
388                         mixer->disable(name);
389                     } else {
390                         // allow mixing partial buffer
391                         underruns.mBitFields.mPartial++;
392                         underruns.mBitFields.mMostRecent = UNDERRUN_PARTIAL;
393                         mixer->enable(name);
394                     }
395                 } else {
396                     underruns.mBitFields.mFull++;
397                     underruns.mBitFields.mMostRecent = UNDERRUN_FULL;
398                     mixer->enable(name);
399                 }
400                 ftDump->mUnderruns = underruns;
401                 ftDump->mFramesReady = framesReady;
402             }
403 
404             int64_t pts;
405             if (outputSink == NULL || (OK != outputSink->getNextWriteTimestamp(&pts)))
406                 pts = AudioBufferProvider::kInvalidPTS;
407 
408             // process() is CPU-bound
409             mixer->process(pts);
410             mixBufferState = MIXED;
411         } else if (mixBufferState == MIXED) {
412             mixBufferState = UNDEFINED;
413         }
414         bool attemptedWrite = false;
415         //bool didFullWrite = false;    // dumpsys could display a count of partial writes
416         if ((command & FastMixerState::WRITE) && (outputSink != NULL) && (mixBuffer != NULL)) {
417             if (mixBufferState == UNDEFINED) {
418                 memset(mixBuffer, 0, frameCount * 2 * sizeof(short));
419                 mixBufferState = ZEROED;
420             }
421             if (teeSink != NULL) {
422                 (void) teeSink->write(mixBuffer, frameCount);
423             }
424             // FIXME write() is non-blocking and lock-free for a properly implemented NBAIO sink,
425             //       but this code should be modified to handle both non-blocking and blocking sinks
426             dumpState->mWriteSequence++;
427 #if defined(ATRACE_TAG) && (ATRACE_TAG != ATRACE_TAG_NEVER)
428             Tracer::traceBegin(ATRACE_TAG, "write");
429 #endif
430             ssize_t framesWritten = outputSink->write(mixBuffer, frameCount);
431 #if defined(ATRACE_TAG) && (ATRACE_TAG != ATRACE_TAG_NEVER)
432             Tracer::traceEnd(ATRACE_TAG);
433 #endif
434             dumpState->mWriteSequence++;
435             if (framesWritten >= 0) {
436                 ALOG_ASSERT(framesWritten <= frameCount);
437                 dumpState->mFramesWritten += framesWritten;
438                 //if ((size_t) framesWritten == frameCount) {
439                 //    didFullWrite = true;
440                 //}
441             } else {
442                 dumpState->mWriteErrors++;
443             }
444             attemptedWrite = true;
445             // FIXME count # of writes blocked excessively, CPU usage, etc. for dump
446         }
447 
448         // To be exactly periodic, compute the next sleep time based on current time.
449         // This code doesn't have long-term stability when the sink is non-blocking.
450         // FIXME To avoid drift, use the local audio clock or watch the sink's fill status.
451         struct timespec newTs;
452         int rc = clock_gettime(CLOCK_MONOTONIC, &newTs);
453         if (rc == 0) {
454             if (oldTsValid) {
455                 time_t sec = newTs.tv_sec - oldTs.tv_sec;
456                 long nsec = newTs.tv_nsec - oldTs.tv_nsec;
457                 ALOGE_IF(sec < 0 || (sec == 0 && nsec < 0),
458                         "clock_gettime(CLOCK_MONOTONIC) failed: was %ld.%09ld but now %ld.%09ld",
459                         oldTs.tv_sec, oldTs.tv_nsec, newTs.tv_sec, newTs.tv_nsec);
460                 if (nsec < 0) {
461                     --sec;
462                     nsec += 1000000000;
463                 }
464                 // To avoid an initial underrun on fast tracks after exiting standby,
465                 // do not start pulling data from tracks and mixing until warmup is complete.
466                 // Warmup is considered complete after the earlier of:
467                 //      MIN_WARMUP_CYCLES write() attempts and last one blocks for at least warmupNs
468                 //      MAX_WARMUP_CYCLES write() attempts.
469                 // This is overly conservative, but to get better accuracy requires a new HAL API.
470                 if (!isWarm && attemptedWrite) {
471                     measuredWarmupTs.tv_sec += sec;
472                     measuredWarmupTs.tv_nsec += nsec;
473                     if (measuredWarmupTs.tv_nsec >= 1000000000) {
474                         measuredWarmupTs.tv_sec++;
475                         measuredWarmupTs.tv_nsec -= 1000000000;
476                     }
477                     ++warmupCycles;
478                     if ((nsec > warmupNs && warmupCycles >= MIN_WARMUP_CYCLES) ||
479                             (warmupCycles >= MAX_WARMUP_CYCLES)) {
480                         isWarm = true;
481                         dumpState->mMeasuredWarmupTs = measuredWarmupTs;
482                         dumpState->mWarmupCycles = warmupCycles;
483                     }
484                 }
485                 sleepNs = -1;
486               if (isWarm) {
487                 if (sec > 0 || nsec > underrunNs) {
488 #if defined(ATRACE_TAG) && (ATRACE_TAG != ATRACE_TAG_NEVER)
489                     ScopedTrace st(ATRACE_TAG, "underrun");
490 #endif
491                     // FIXME only log occasionally
492                     ALOGV("underrun: time since last cycle %d.%03ld sec",
493                             (int) sec, nsec / 1000000L);
494                     dumpState->mUnderruns++;
495                     ignoreNextOverrun = true;
496                 } else if (nsec < overrunNs) {
497                     if (ignoreNextOverrun) {
498                         ignoreNextOverrun = false;
499                     } else {
500                         // FIXME only log occasionally
501                         ALOGV("overrun: time since last cycle %d.%03ld sec",
502                                 (int) sec, nsec / 1000000L);
503                         dumpState->mOverruns++;
504                     }
505                     // This forces a minimum cycle time. It:
506                     //   - compensates for an audio HAL with jitter due to sample rate conversion
507                     //   - works with a variable buffer depth audio HAL that never pulls at a rate
508                     //     < than overrunNs per buffer.
509                     //   - recovers from overrun immediately after underrun
510                     // It doesn't work with a non-blocking audio HAL.
511                     sleepNs = forceNs - nsec;
512                 } else {
513                     ignoreNextOverrun = false;
514                 }
515               }
516 #ifdef FAST_MIXER_STATISTICS
517               if (isWarm) {
518                 // advance the FIFO queue bounds
519                 size_t i = bounds & (FastMixerDumpState::kSamplingN - 1);
520                 bounds = (bounds & 0xFFFF0000) | ((bounds + 1) & 0xFFFF);
521                 if (full) {
522                     bounds += 0x10000;
523                 } else if (!(bounds & (FastMixerDumpState::kSamplingN - 1))) {
524                     full = true;
525                 }
526                 // compute the delta value of clock_gettime(CLOCK_MONOTONIC)
527                 uint32_t monotonicNs = nsec;
528                 if (sec > 0 && sec < 4) {
529                     monotonicNs += sec * 1000000000;
530                 }
531                 // compute the raw CPU load = delta value of clock_gettime(CLOCK_THREAD_CPUTIME_ID)
532                 uint32_t loadNs = 0;
533                 struct timespec newLoad;
534                 rc = clock_gettime(CLOCK_THREAD_CPUTIME_ID, &newLoad);
535                 if (rc == 0) {
536                     if (oldLoadValid) {
537                         sec = newLoad.tv_sec - oldLoad.tv_sec;
538                         nsec = newLoad.tv_nsec - oldLoad.tv_nsec;
539                         if (nsec < 0) {
540                             --sec;
541                             nsec += 1000000000;
542                         }
543                         loadNs = nsec;
544                         if (sec > 0 && sec < 4) {
545                             loadNs += sec * 1000000000;
546                         }
547                     } else {
548                         // first time through the loop
549                         oldLoadValid = true;
550                     }
551                     oldLoad = newLoad;
552                 }
553 #ifdef CPU_FREQUENCY_STATISTICS
554                 // get the absolute value of CPU clock frequency in kHz
555                 int cpuNum = sched_getcpu();
556                 uint32_t kHz = tcu.getCpukHz(cpuNum);
557                 kHz = (kHz << 4) | (cpuNum & 0xF);
558 #endif
559                 // save values in FIFO queues for dumpsys
560                 // these stores #1, #2, #3 are not atomic with respect to each other,
561                 // or with respect to store #4 below
562                 dumpState->mMonotonicNs[i] = monotonicNs;
563                 dumpState->mLoadNs[i] = loadNs;
564 #ifdef CPU_FREQUENCY_STATISTICS
565                 dumpState->mCpukHz[i] = kHz;
566 #endif
567                 // this store #4 is not atomic with respect to stores #1, #2, #3 above, but
568                 // the newest open and oldest closed halves are atomic with respect to each other
569                 dumpState->mBounds = bounds;
570 #if defined(ATRACE_TAG) && (ATRACE_TAG != ATRACE_TAG_NEVER)
571                 ATRACE_INT("cycle_ms", monotonicNs / 1000000);
572                 ATRACE_INT("load_us", loadNs / 1000);
573 #endif
574               }
575 #endif
576             } else {
577                 // first time through the loop
578                 oldTsValid = true;
579                 sleepNs = periodNs;
580                 ignoreNextOverrun = true;
581             }
582             oldTs = newTs;
583         } else {
584             // monotonic clock is broken
585             oldTsValid = false;
586             sleepNs = periodNs;
587         }
588 
589 
590     }   // for (;;)
591 
592     // never return 'true'; Thread::_threadLoop() locks mutex which can result in priority inversion
593 }
594 
FastMixerDumpState()595 FastMixerDumpState::FastMixerDumpState() :
596     mCommand(FastMixerState::INITIAL), mWriteSequence(0), mFramesWritten(0),
597     mNumTracks(0), mWriteErrors(0), mUnderruns(0), mOverruns(0),
598     mSampleRate(0), mFrameCount(0), /* mMeasuredWarmupTs({0, 0}), */ mWarmupCycles(0),
599     mTrackMask(0)
600 #ifdef FAST_MIXER_STATISTICS
601     , mBounds(0)
602 #endif
603 {
604     mMeasuredWarmupTs.tv_sec = 0;
605     mMeasuredWarmupTs.tv_nsec = 0;
606     // sample arrays aren't accessed atomically with respect to the bounds,
607     // so clearing reduces chance for dumpsys to read random uninitialized samples
608     memset(&mMonotonicNs, 0, sizeof(mMonotonicNs));
609     memset(&mLoadNs, 0, sizeof(mLoadNs));
610 #ifdef CPU_FREQUENCY_STATISTICS
611     memset(&mCpukHz, 0, sizeof(mCpukHz));
612 #endif
613 }
614 
~FastMixerDumpState()615 FastMixerDumpState::~FastMixerDumpState()
616 {
617 }
618 
619 // helper function called by qsort()
compare_uint32_t(const void * pa,const void * pb)620 static int compare_uint32_t(const void *pa, const void *pb)
621 {
622     uint32_t a = *(const uint32_t *)pa;
623     uint32_t b = *(const uint32_t *)pb;
624     if (a < b) {
625         return -1;
626     } else if (a > b) {
627         return 1;
628     } else {
629         return 0;
630     }
631 }
632 
dump(int fd)633 void FastMixerDumpState::dump(int fd)
634 {
635     if (mCommand == FastMixerState::INITIAL) {
636         fdprintf(fd, "FastMixer not initialized\n");
637         return;
638     }
639 #define COMMAND_MAX 32
640     char string[COMMAND_MAX];
641     switch (mCommand) {
642     case FastMixerState::INITIAL:
643         strcpy(string, "INITIAL");
644         break;
645     case FastMixerState::HOT_IDLE:
646         strcpy(string, "HOT_IDLE");
647         break;
648     case FastMixerState::COLD_IDLE:
649         strcpy(string, "COLD_IDLE");
650         break;
651     case FastMixerState::EXIT:
652         strcpy(string, "EXIT");
653         break;
654     case FastMixerState::MIX:
655         strcpy(string, "MIX");
656         break;
657     case FastMixerState::WRITE:
658         strcpy(string, "WRITE");
659         break;
660     case FastMixerState::MIX_WRITE:
661         strcpy(string, "MIX_WRITE");
662         break;
663     default:
664         snprintf(string, COMMAND_MAX, "%d", mCommand);
665         break;
666     }
667     double measuredWarmupMs = (mMeasuredWarmupTs.tv_sec * 1000.0) +
668             (mMeasuredWarmupTs.tv_nsec / 1000000.0);
669     double mixPeriodSec = (double) mFrameCount / (double) mSampleRate;
670     fdprintf(fd, "FastMixer command=%s writeSequence=%u framesWritten=%u\n"
671                  "          numTracks=%u writeErrors=%u underruns=%u overruns=%u\n"
672                  "          sampleRate=%u frameCount=%u measuredWarmup=%.3g ms, warmupCycles=%u\n"
673                  "          mixPeriod=%.2f ms\n",
674                  string, mWriteSequence, mFramesWritten,
675                  mNumTracks, mWriteErrors, mUnderruns, mOverruns,
676                  mSampleRate, mFrameCount, measuredWarmupMs, mWarmupCycles,
677                  mixPeriodSec * 1e3);
678 #ifdef FAST_MIXER_STATISTICS
679     // find the interval of valid samples
680     uint32_t bounds = mBounds;
681     uint32_t newestOpen = bounds & 0xFFFF;
682     uint32_t oldestClosed = bounds >> 16;
683     uint32_t n = (newestOpen - oldestClosed) & 0xFFFF;
684     if (n > kSamplingN) {
685         ALOGE("too many samples %u", n);
686         n = kSamplingN;
687     }
688     // statistics for monotonic (wall clock) time, thread raw CPU load in time, CPU clock frequency,
689     // and adjusted CPU load in MHz normalized for CPU clock frequency
690     CentralTendencyStatistics wall, loadNs;
691 #ifdef CPU_FREQUENCY_STATISTICS
692     CentralTendencyStatistics kHz, loadMHz;
693     uint32_t previousCpukHz = 0;
694 #endif
695     // Assuming a normal distribution for cycle times, three standard deviations on either side of
696     // the mean account for 99.73% of the population.  So if we take each tail to be 1/1000 of the
697     // sample set, we get 99.8% combined, or close to three standard deviations.
698     static const uint32_t kTailDenominator = 1000;
699     uint32_t *tail = n >= kTailDenominator ? new uint32_t[n] : NULL;
700     // loop over all the samples
701     for (uint32_t j = 0; j < n; ++j) {
702         size_t i = oldestClosed++ & (kSamplingN - 1);
703         uint32_t wallNs = mMonotonicNs[i];
704         if (tail != NULL) {
705             tail[j] = wallNs;
706         }
707         wall.sample(wallNs);
708         uint32_t sampleLoadNs = mLoadNs[i];
709         loadNs.sample(sampleLoadNs);
710 #ifdef CPU_FREQUENCY_STATISTICS
711         uint32_t sampleCpukHz = mCpukHz[i];
712         // skip bad kHz samples
713         if ((sampleCpukHz & ~0xF) != 0) {
714             kHz.sample(sampleCpukHz >> 4);
715             if (sampleCpukHz == previousCpukHz) {
716                 double megacycles = (double) sampleLoadNs * (double) (sampleCpukHz >> 4) * 1e-12;
717                 double adjMHz = megacycles / mixPeriodSec;  // _not_ wallNs * 1e9
718                 loadMHz.sample(adjMHz);
719             }
720         }
721         previousCpukHz = sampleCpukHz;
722 #endif
723     }
724     fdprintf(fd, "Simple moving statistics over last %.1f seconds:\n", wall.n() * mixPeriodSec);
725     fdprintf(fd, "  wall clock time in ms per mix cycle:\n"
726                  "    mean=%.2f min=%.2f max=%.2f stddev=%.2f\n",
727                  wall.mean()*1e-6, wall.minimum()*1e-6, wall.maximum()*1e-6, wall.stddev()*1e-6);
728     fdprintf(fd, "  raw CPU load in us per mix cycle:\n"
729                  "    mean=%.0f min=%.0f max=%.0f stddev=%.0f\n",
730                  loadNs.mean()*1e-3, loadNs.minimum()*1e-3, loadNs.maximum()*1e-3,
731                  loadNs.stddev()*1e-3);
732 #ifdef CPU_FREQUENCY_STATISTICS
733     fdprintf(fd, "  CPU clock frequency in MHz:\n"
734                  "    mean=%.0f min=%.0f max=%.0f stddev=%.0f\n",
735                  kHz.mean()*1e-3, kHz.minimum()*1e-3, kHz.maximum()*1e-3, kHz.stddev()*1e-3);
736     fdprintf(fd, "  adjusted CPU load in MHz (i.e. normalized for CPU clock frequency):\n"
737                  "    mean=%.1f min=%.1f max=%.1f stddev=%.1f\n",
738                  loadMHz.mean(), loadMHz.minimum(), loadMHz.maximum(), loadMHz.stddev());
739 #endif
740     if (tail != NULL) {
741         qsort(tail, n, sizeof(uint32_t), compare_uint32_t);
742         // assume same number of tail samples on each side, left and right
743         uint32_t count = n / kTailDenominator;
744         CentralTendencyStatistics left, right;
745         for (uint32_t i = 0; i < count; ++i) {
746             left.sample(tail[i]);
747             right.sample(tail[n - (i + 1)]);
748         }
749         fdprintf(fd, "Distribution of mix cycle times in ms for the tails (> ~3 stddev outliers):\n"
750                      "  left tail: mean=%.2f min=%.2f max=%.2f stddev=%.2f\n"
751                      "  right tail: mean=%.2f min=%.2f max=%.2f stddev=%.2f\n",
752                      left.mean()*1e-6, left.minimum()*1e-6, left.maximum()*1e-6, left.stddev()*1e-6,
753                      right.mean()*1e-6, right.minimum()*1e-6, right.maximum()*1e-6,
754                      right.stddev()*1e-6);
755         delete[] tail;
756     }
757 #endif
758     // The active track mask and track states are updated non-atomically.
759     // So if we relied on isActive to decide whether to display,
760     // then we might display an obsolete track or omit an active track.
761     // Instead we always display all tracks, with an indication
762     // of whether we think the track is active.
763     uint32_t trackMask = mTrackMask;
764     fdprintf(fd, "Fast tracks: kMaxFastTracks=%u activeMask=%#x\n",
765             FastMixerState::kMaxFastTracks, trackMask);
766     fdprintf(fd, "Index Active Full Partial Empty  Recent Ready\n");
767     for (uint32_t i = 0; i < FastMixerState::kMaxFastTracks; ++i, trackMask >>= 1) {
768         bool isActive = trackMask & 1;
769         const FastTrackDump *ftDump = &mTracks[i];
770         const FastTrackUnderruns& underruns = ftDump->mUnderruns;
771         const char *mostRecent;
772         switch (underruns.mBitFields.mMostRecent) {
773         case UNDERRUN_FULL:
774             mostRecent = "full";
775             break;
776         case UNDERRUN_PARTIAL:
777             mostRecent = "partial";
778             break;
779         case UNDERRUN_EMPTY:
780             mostRecent = "empty";
781             break;
782         default:
783             mostRecent = "?";
784             break;
785         }
786         fdprintf(fd, "%5u %6s %4u %7u %5u %7s %5u\n", i, isActive ? "yes" : "no",
787                 (underruns.mBitFields.mFull) & UNDERRUN_MASK,
788                 (underruns.mBitFields.mPartial) & UNDERRUN_MASK,
789                 (underruns.mBitFields.mEmpty) & UNDERRUN_MASK,
790                 mostRecent, ftDump->mFramesReady);
791     }
792 }
793 
794 }   // namespace android
795