1 /*
2 * Copyright (C) 2005 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #define LOG_TAG "EventHub"
18
19 // #define LOG_NDEBUG 0
20
21 #include "EventHub.h"
22
23 #include <hardware_legacy/power.h>
24
25 #include <cutils/properties.h>
26 #include <utils/Log.h>
27 #include <utils/Timers.h>
28 #include <utils/threads.h>
29 #include <utils/Errors.h>
30
31 #include <stdlib.h>
32 #include <stdio.h>
33 #include <unistd.h>
34 #include <fcntl.h>
35 #include <memory.h>
36 #include <errno.h>
37 #include <assert.h>
38
39 #include <androidfw/KeyLayoutMap.h>
40 #include <androidfw/KeyCharacterMap.h>
41 #include <androidfw/VirtualKeyMap.h>
42
43 #include <sha1.h>
44 #include <string.h>
45 #include <stdint.h>
46 #include <dirent.h>
47
48 #include <sys/inotify.h>
49 #include <sys/epoll.h>
50 #include <sys/ioctl.h>
51 #include <sys/limits.h>
52
53 /* this macro is used to tell if "bit" is set in "array"
54 * it selects a byte from the array, and does a boolean AND
55 * operation with a byte that only has the relevant bit set.
56 * eg. to check for the 12th bit, we do (array[1] & 1<<4)
57 */
58 #define test_bit(bit, array) (array[bit/8] & (1<<(bit%8)))
59
60 /* this macro computes the number of bytes needed to represent a bit array of the specified size */
61 #define sizeof_bit_array(bits) ((bits + 7) / 8)
62
63 #define INDENT " "
64 #define INDENT2 " "
65 #define INDENT3 " "
66
67 namespace android {
68
69 static const char *WAKE_LOCK_ID = "KeyEvents";
70 static const char *DEVICE_PATH = "/dev/input";
71
72 /* return the larger integer */
max(int v1,int v2)73 static inline int max(int v1, int v2)
74 {
75 return (v1 > v2) ? v1 : v2;
76 }
77
toString(bool value)78 static inline const char* toString(bool value) {
79 return value ? "true" : "false";
80 }
81
sha1(const String8 & in)82 static String8 sha1(const String8& in) {
83 SHA1_CTX ctx;
84 SHA1Init(&ctx);
85 SHA1Update(&ctx, reinterpret_cast<const u_char*>(in.string()), in.size());
86 u_char digest[SHA1_DIGEST_LENGTH];
87 SHA1Final(digest, &ctx);
88
89 String8 out;
90 for (size_t i = 0; i < SHA1_DIGEST_LENGTH; i++) {
91 out.appendFormat("%02x", digest[i]);
92 }
93 return out;
94 }
95
setDescriptor(InputDeviceIdentifier & identifier)96 static void setDescriptor(InputDeviceIdentifier& identifier) {
97 // Compute a device descriptor that uniquely identifies the device.
98 // The descriptor is assumed to be a stable identifier. Its value should not
99 // change between reboots, reconnections, firmware updates or new releases of Android.
100 // Ideally, we also want the descriptor to be short and relatively opaque.
101 String8 rawDescriptor;
102 rawDescriptor.appendFormat(":%04x:%04x:", identifier.vendor, identifier.product);
103 if (!identifier.uniqueId.isEmpty()) {
104 rawDescriptor.append("uniqueId:");
105 rawDescriptor.append(identifier.uniqueId);
106 } if (identifier.vendor == 0 && identifier.product == 0) {
107 // If we don't know the vendor and product id, then the device is probably
108 // built-in so we need to rely on other information to uniquely identify
109 // the input device. Usually we try to avoid relying on the device name or
110 // location but for built-in input device, they are unlikely to ever change.
111 if (!identifier.name.isEmpty()) {
112 rawDescriptor.append("name:");
113 rawDescriptor.append(identifier.name);
114 } else if (!identifier.location.isEmpty()) {
115 rawDescriptor.append("location:");
116 rawDescriptor.append(identifier.location);
117 }
118 }
119 identifier.descriptor = sha1(rawDescriptor);
120 ALOGV("Created descriptor: raw=%s, cooked=%s", rawDescriptor.string(),
121 identifier.descriptor.string());
122 }
123
124 // --- Global Functions ---
125
getAbsAxisUsage(int32_t axis,uint32_t deviceClasses)126 uint32_t getAbsAxisUsage(int32_t axis, uint32_t deviceClasses) {
127 // Touch devices get dibs on touch-related axes.
128 if (deviceClasses & INPUT_DEVICE_CLASS_TOUCH) {
129 switch (axis) {
130 case ABS_X:
131 case ABS_Y:
132 case ABS_PRESSURE:
133 case ABS_TOOL_WIDTH:
134 case ABS_DISTANCE:
135 case ABS_TILT_X:
136 case ABS_TILT_Y:
137 case ABS_MT_SLOT:
138 case ABS_MT_TOUCH_MAJOR:
139 case ABS_MT_TOUCH_MINOR:
140 case ABS_MT_WIDTH_MAJOR:
141 case ABS_MT_WIDTH_MINOR:
142 case ABS_MT_ORIENTATION:
143 case ABS_MT_POSITION_X:
144 case ABS_MT_POSITION_Y:
145 case ABS_MT_TOOL_TYPE:
146 case ABS_MT_BLOB_ID:
147 case ABS_MT_TRACKING_ID:
148 case ABS_MT_PRESSURE:
149 case ABS_MT_DISTANCE:
150 return INPUT_DEVICE_CLASS_TOUCH;
151 }
152 }
153
154 // Joystick devices get the rest.
155 return deviceClasses & INPUT_DEVICE_CLASS_JOYSTICK;
156 }
157
158 // --- EventHub::Device ---
159
Device(int fd,int32_t id,const String8 & path,const InputDeviceIdentifier & identifier)160 EventHub::Device::Device(int fd, int32_t id, const String8& path,
161 const InputDeviceIdentifier& identifier) :
162 next(NULL),
163 fd(fd), id(id), path(path), identifier(identifier),
164 classes(0), configuration(NULL), virtualKeyMap(NULL),
165 ffEffectPlaying(false), ffEffectId(-1) {
166 memset(keyBitmask, 0, sizeof(keyBitmask));
167 memset(absBitmask, 0, sizeof(absBitmask));
168 memset(relBitmask, 0, sizeof(relBitmask));
169 memset(swBitmask, 0, sizeof(swBitmask));
170 memset(ledBitmask, 0, sizeof(ledBitmask));
171 memset(ffBitmask, 0, sizeof(ffBitmask));
172 memset(propBitmask, 0, sizeof(propBitmask));
173 }
174
~Device()175 EventHub::Device::~Device() {
176 close();
177 delete configuration;
178 delete virtualKeyMap;
179 }
180
close()181 void EventHub::Device::close() {
182 if (fd >= 0) {
183 ::close(fd);
184 fd = -1;
185 }
186 }
187
188
189 // --- EventHub ---
190
191 const uint32_t EventHub::EPOLL_ID_INOTIFY;
192 const uint32_t EventHub::EPOLL_ID_WAKE;
193 const int EventHub::EPOLL_SIZE_HINT;
194 const int EventHub::EPOLL_MAX_EVENTS;
195
EventHub(void)196 EventHub::EventHub(void) :
197 mBuiltInKeyboardId(NO_BUILT_IN_KEYBOARD), mNextDeviceId(1),
198 mOpeningDevices(0), mClosingDevices(0),
199 mNeedToSendFinishedDeviceScan(false),
200 mNeedToReopenDevices(false), mNeedToScanDevices(true),
201 mPendingEventCount(0), mPendingEventIndex(0), mPendingINotify(false) {
202 acquire_wake_lock(PARTIAL_WAKE_LOCK, WAKE_LOCK_ID);
203
204 mEpollFd = epoll_create(EPOLL_SIZE_HINT);
205 LOG_ALWAYS_FATAL_IF(mEpollFd < 0, "Could not create epoll instance. errno=%d", errno);
206
207 mINotifyFd = inotify_init();
208 int result = inotify_add_watch(mINotifyFd, DEVICE_PATH, IN_DELETE | IN_CREATE);
209 LOG_ALWAYS_FATAL_IF(result < 0, "Could not register INotify for %s. errno=%d",
210 DEVICE_PATH, errno);
211
212 struct epoll_event eventItem;
213 memset(&eventItem, 0, sizeof(eventItem));
214 eventItem.events = EPOLLIN;
215 eventItem.data.u32 = EPOLL_ID_INOTIFY;
216 result = epoll_ctl(mEpollFd, EPOLL_CTL_ADD, mINotifyFd, &eventItem);
217 LOG_ALWAYS_FATAL_IF(result != 0, "Could not add INotify to epoll instance. errno=%d", errno);
218
219 int wakeFds[2];
220 result = pipe(wakeFds);
221 LOG_ALWAYS_FATAL_IF(result != 0, "Could not create wake pipe. errno=%d", errno);
222
223 mWakeReadPipeFd = wakeFds[0];
224 mWakeWritePipeFd = wakeFds[1];
225
226 result = fcntl(mWakeReadPipeFd, F_SETFL, O_NONBLOCK);
227 LOG_ALWAYS_FATAL_IF(result != 0, "Could not make wake read pipe non-blocking. errno=%d",
228 errno);
229
230 result = fcntl(mWakeWritePipeFd, F_SETFL, O_NONBLOCK);
231 LOG_ALWAYS_FATAL_IF(result != 0, "Could not make wake write pipe non-blocking. errno=%d",
232 errno);
233
234 eventItem.data.u32 = EPOLL_ID_WAKE;
235 result = epoll_ctl(mEpollFd, EPOLL_CTL_ADD, mWakeReadPipeFd, &eventItem);
236 LOG_ALWAYS_FATAL_IF(result != 0, "Could not add wake read pipe to epoll instance. errno=%d",
237 errno);
238 }
239
~EventHub(void)240 EventHub::~EventHub(void) {
241 closeAllDevicesLocked();
242
243 while (mClosingDevices) {
244 Device* device = mClosingDevices;
245 mClosingDevices = device->next;
246 delete device;
247 }
248
249 ::close(mEpollFd);
250 ::close(mINotifyFd);
251 ::close(mWakeReadPipeFd);
252 ::close(mWakeWritePipeFd);
253
254 release_wake_lock(WAKE_LOCK_ID);
255 }
256
getDeviceIdentifier(int32_t deviceId) const257 InputDeviceIdentifier EventHub::getDeviceIdentifier(int32_t deviceId) const {
258 AutoMutex _l(mLock);
259 Device* device = getDeviceLocked(deviceId);
260 if (device == NULL) return InputDeviceIdentifier();
261 return device->identifier;
262 }
263
getDeviceClasses(int32_t deviceId) const264 uint32_t EventHub::getDeviceClasses(int32_t deviceId) const {
265 AutoMutex _l(mLock);
266 Device* device = getDeviceLocked(deviceId);
267 if (device == NULL) return 0;
268 return device->classes;
269 }
270
getConfiguration(int32_t deviceId,PropertyMap * outConfiguration) const271 void EventHub::getConfiguration(int32_t deviceId, PropertyMap* outConfiguration) const {
272 AutoMutex _l(mLock);
273 Device* device = getDeviceLocked(deviceId);
274 if (device && device->configuration) {
275 *outConfiguration = *device->configuration;
276 } else {
277 outConfiguration->clear();
278 }
279 }
280
getAbsoluteAxisInfo(int32_t deviceId,int axis,RawAbsoluteAxisInfo * outAxisInfo) const281 status_t EventHub::getAbsoluteAxisInfo(int32_t deviceId, int axis,
282 RawAbsoluteAxisInfo* outAxisInfo) const {
283 outAxisInfo->clear();
284
285 if (axis >= 0 && axis <= ABS_MAX) {
286 AutoMutex _l(mLock);
287
288 Device* device = getDeviceLocked(deviceId);
289 if (device && !device->isVirtual() && test_bit(axis, device->absBitmask)) {
290 struct input_absinfo info;
291 if(ioctl(device->fd, EVIOCGABS(axis), &info)) {
292 ALOGW("Error reading absolute controller %d for device %s fd %d, errno=%d",
293 axis, device->identifier.name.string(), device->fd, errno);
294 return -errno;
295 }
296
297 if (info.minimum != info.maximum) {
298 outAxisInfo->valid = true;
299 outAxisInfo->minValue = info.minimum;
300 outAxisInfo->maxValue = info.maximum;
301 outAxisInfo->flat = info.flat;
302 outAxisInfo->fuzz = info.fuzz;
303 outAxisInfo->resolution = info.resolution;
304 }
305 return OK;
306 }
307 }
308 return -1;
309 }
310
hasRelativeAxis(int32_t deviceId,int axis) const311 bool EventHub::hasRelativeAxis(int32_t deviceId, int axis) const {
312 if (axis >= 0 && axis <= REL_MAX) {
313 AutoMutex _l(mLock);
314
315 Device* device = getDeviceLocked(deviceId);
316 if (device) {
317 return test_bit(axis, device->relBitmask);
318 }
319 }
320 return false;
321 }
322
hasInputProperty(int32_t deviceId,int property) const323 bool EventHub::hasInputProperty(int32_t deviceId, int property) const {
324 if (property >= 0 && property <= INPUT_PROP_MAX) {
325 AutoMutex _l(mLock);
326
327 Device* device = getDeviceLocked(deviceId);
328 if (device) {
329 return test_bit(property, device->propBitmask);
330 }
331 }
332 return false;
333 }
334
getScanCodeState(int32_t deviceId,int32_t scanCode) const335 int32_t EventHub::getScanCodeState(int32_t deviceId, int32_t scanCode) const {
336 if (scanCode >= 0 && scanCode <= KEY_MAX) {
337 AutoMutex _l(mLock);
338
339 Device* device = getDeviceLocked(deviceId);
340 if (device && !device->isVirtual() && test_bit(scanCode, device->keyBitmask)) {
341 uint8_t keyState[sizeof_bit_array(KEY_MAX + 1)];
342 memset(keyState, 0, sizeof(keyState));
343 if (ioctl(device->fd, EVIOCGKEY(sizeof(keyState)), keyState) >= 0) {
344 return test_bit(scanCode, keyState) ? AKEY_STATE_DOWN : AKEY_STATE_UP;
345 }
346 }
347 }
348 return AKEY_STATE_UNKNOWN;
349 }
350
getKeyCodeState(int32_t deviceId,int32_t keyCode) const351 int32_t EventHub::getKeyCodeState(int32_t deviceId, int32_t keyCode) const {
352 AutoMutex _l(mLock);
353
354 Device* device = getDeviceLocked(deviceId);
355 if (device && !device->isVirtual() && device->keyMap.haveKeyLayout()) {
356 Vector<int32_t> scanCodes;
357 device->keyMap.keyLayoutMap->findScanCodesForKey(keyCode, &scanCodes);
358 if (scanCodes.size() != 0) {
359 uint8_t keyState[sizeof_bit_array(KEY_MAX + 1)];
360 memset(keyState, 0, sizeof(keyState));
361 if (ioctl(device->fd, EVIOCGKEY(sizeof(keyState)), keyState) >= 0) {
362 for (size_t i = 0; i < scanCodes.size(); i++) {
363 int32_t sc = scanCodes.itemAt(i);
364 if (sc >= 0 && sc <= KEY_MAX && test_bit(sc, keyState)) {
365 return AKEY_STATE_DOWN;
366 }
367 }
368 return AKEY_STATE_UP;
369 }
370 }
371 }
372 return AKEY_STATE_UNKNOWN;
373 }
374
getSwitchState(int32_t deviceId,int32_t sw) const375 int32_t EventHub::getSwitchState(int32_t deviceId, int32_t sw) const {
376 if (sw >= 0 && sw <= SW_MAX) {
377 AutoMutex _l(mLock);
378
379 Device* device = getDeviceLocked(deviceId);
380 if (device && !device->isVirtual() && test_bit(sw, device->swBitmask)) {
381 uint8_t swState[sizeof_bit_array(SW_MAX + 1)];
382 memset(swState, 0, sizeof(swState));
383 if (ioctl(device->fd, EVIOCGSW(sizeof(swState)), swState) >= 0) {
384 return test_bit(sw, swState) ? AKEY_STATE_DOWN : AKEY_STATE_UP;
385 }
386 }
387 }
388 return AKEY_STATE_UNKNOWN;
389 }
390
getAbsoluteAxisValue(int32_t deviceId,int32_t axis,int32_t * outValue) const391 status_t EventHub::getAbsoluteAxisValue(int32_t deviceId, int32_t axis, int32_t* outValue) const {
392 *outValue = 0;
393
394 if (axis >= 0 && axis <= ABS_MAX) {
395 AutoMutex _l(mLock);
396
397 Device* device = getDeviceLocked(deviceId);
398 if (device && !device->isVirtual() && test_bit(axis, device->absBitmask)) {
399 struct input_absinfo info;
400 if(ioctl(device->fd, EVIOCGABS(axis), &info)) {
401 ALOGW("Error reading absolute controller %d for device %s fd %d, errno=%d",
402 axis, device->identifier.name.string(), device->fd, errno);
403 return -errno;
404 }
405
406 *outValue = info.value;
407 return OK;
408 }
409 }
410 return -1;
411 }
412
markSupportedKeyCodes(int32_t deviceId,size_t numCodes,const int32_t * keyCodes,uint8_t * outFlags) const413 bool EventHub::markSupportedKeyCodes(int32_t deviceId, size_t numCodes,
414 const int32_t* keyCodes, uint8_t* outFlags) const {
415 AutoMutex _l(mLock);
416
417 Device* device = getDeviceLocked(deviceId);
418 if (device && device->keyMap.haveKeyLayout()) {
419 Vector<int32_t> scanCodes;
420 for (size_t codeIndex = 0; codeIndex < numCodes; codeIndex++) {
421 scanCodes.clear();
422
423 status_t err = device->keyMap.keyLayoutMap->findScanCodesForKey(
424 keyCodes[codeIndex], &scanCodes);
425 if (! err) {
426 // check the possible scan codes identified by the layout map against the
427 // map of codes actually emitted by the driver
428 for (size_t sc = 0; sc < scanCodes.size(); sc++) {
429 if (test_bit(scanCodes[sc], device->keyBitmask)) {
430 outFlags[codeIndex] = 1;
431 break;
432 }
433 }
434 }
435 }
436 return true;
437 }
438 return false;
439 }
440
mapKey(int32_t deviceId,int32_t scanCode,int32_t usageCode,int32_t * outKeycode,uint32_t * outFlags) const441 status_t EventHub::mapKey(int32_t deviceId, int32_t scanCode, int32_t usageCode,
442 int32_t* outKeycode, uint32_t* outFlags) const {
443 AutoMutex _l(mLock);
444 Device* device = getDeviceLocked(deviceId);
445
446 if (device) {
447 // Check the key character map first.
448 sp<KeyCharacterMap> kcm = device->getKeyCharacterMap();
449 if (kcm != NULL) {
450 if (!kcm->mapKey(scanCode, usageCode, outKeycode)) {
451 *outFlags = 0;
452 return NO_ERROR;
453 }
454 }
455
456 // Check the key layout next.
457 if (device->keyMap.haveKeyLayout()) {
458 if (!device->keyMap.keyLayoutMap->mapKey(
459 scanCode, usageCode, outKeycode, outFlags)) {
460 return NO_ERROR;
461 }
462 }
463 }
464
465 *outKeycode = 0;
466 *outFlags = 0;
467 return NAME_NOT_FOUND;
468 }
469
mapAxis(int32_t deviceId,int32_t scanCode,AxisInfo * outAxisInfo) const470 status_t EventHub::mapAxis(int32_t deviceId, int32_t scanCode, AxisInfo* outAxisInfo) const {
471 AutoMutex _l(mLock);
472 Device* device = getDeviceLocked(deviceId);
473
474 if (device && device->keyMap.haveKeyLayout()) {
475 status_t err = device->keyMap.keyLayoutMap->mapAxis(scanCode, outAxisInfo);
476 if (err == NO_ERROR) {
477 return NO_ERROR;
478 }
479 }
480
481 return NAME_NOT_FOUND;
482 }
483
setExcludedDevices(const Vector<String8> & devices)484 void EventHub::setExcludedDevices(const Vector<String8>& devices) {
485 AutoMutex _l(mLock);
486
487 mExcludedDevices = devices;
488 }
489
hasScanCode(int32_t deviceId,int32_t scanCode) const490 bool EventHub::hasScanCode(int32_t deviceId, int32_t scanCode) const {
491 AutoMutex _l(mLock);
492 Device* device = getDeviceLocked(deviceId);
493 if (device && scanCode >= 0 && scanCode <= KEY_MAX) {
494 if (test_bit(scanCode, device->keyBitmask)) {
495 return true;
496 }
497 }
498 return false;
499 }
500
hasLed(int32_t deviceId,int32_t led) const501 bool EventHub::hasLed(int32_t deviceId, int32_t led) const {
502 AutoMutex _l(mLock);
503 Device* device = getDeviceLocked(deviceId);
504 if (device && led >= 0 && led <= LED_MAX) {
505 if (test_bit(led, device->ledBitmask)) {
506 return true;
507 }
508 }
509 return false;
510 }
511
setLedState(int32_t deviceId,int32_t led,bool on)512 void EventHub::setLedState(int32_t deviceId, int32_t led, bool on) {
513 AutoMutex _l(mLock);
514 Device* device = getDeviceLocked(deviceId);
515 if (device && !device->isVirtual() && led >= 0 && led <= LED_MAX) {
516 struct input_event ev;
517 ev.time.tv_sec = 0;
518 ev.time.tv_usec = 0;
519 ev.type = EV_LED;
520 ev.code = led;
521 ev.value = on ? 1 : 0;
522
523 ssize_t nWrite;
524 do {
525 nWrite = write(device->fd, &ev, sizeof(struct input_event));
526 } while (nWrite == -1 && errno == EINTR);
527 }
528 }
529
getVirtualKeyDefinitions(int32_t deviceId,Vector<VirtualKeyDefinition> & outVirtualKeys) const530 void EventHub::getVirtualKeyDefinitions(int32_t deviceId,
531 Vector<VirtualKeyDefinition>& outVirtualKeys) const {
532 outVirtualKeys.clear();
533
534 AutoMutex _l(mLock);
535 Device* device = getDeviceLocked(deviceId);
536 if (device && device->virtualKeyMap) {
537 outVirtualKeys.appendVector(device->virtualKeyMap->getVirtualKeys());
538 }
539 }
540
getKeyCharacterMap(int32_t deviceId) const541 sp<KeyCharacterMap> EventHub::getKeyCharacterMap(int32_t deviceId) const {
542 AutoMutex _l(mLock);
543 Device* device = getDeviceLocked(deviceId);
544 if (device) {
545 return device->getKeyCharacterMap();
546 }
547 return NULL;
548 }
549
setKeyboardLayoutOverlay(int32_t deviceId,const sp<KeyCharacterMap> & map)550 bool EventHub::setKeyboardLayoutOverlay(int32_t deviceId,
551 const sp<KeyCharacterMap>& map) {
552 AutoMutex _l(mLock);
553 Device* device = getDeviceLocked(deviceId);
554 if (device) {
555 if (map != device->overlayKeyMap) {
556 device->overlayKeyMap = map;
557 device->combinedKeyMap = KeyCharacterMap::combine(
558 device->keyMap.keyCharacterMap, map);
559 return true;
560 }
561 }
562 return false;
563 }
564
vibrate(int32_t deviceId,nsecs_t duration)565 void EventHub::vibrate(int32_t deviceId, nsecs_t duration) {
566 AutoMutex _l(mLock);
567 Device* device = getDeviceLocked(deviceId);
568 if (device && !device->isVirtual()) {
569 ff_effect effect;
570 memset(&effect, 0, sizeof(effect));
571 effect.type = FF_RUMBLE;
572 effect.id = device->ffEffectId;
573 effect.u.rumble.strong_magnitude = 0xc000;
574 effect.u.rumble.weak_magnitude = 0xc000;
575 effect.replay.length = (duration + 999999LL) / 1000000LL;
576 effect.replay.delay = 0;
577 if (ioctl(device->fd, EVIOCSFF, &effect)) {
578 ALOGW("Could not upload force feedback effect to device %s due to error %d.",
579 device->identifier.name.string(), errno);
580 return;
581 }
582 device->ffEffectId = effect.id;
583
584 struct input_event ev;
585 ev.time.tv_sec = 0;
586 ev.time.tv_usec = 0;
587 ev.type = EV_FF;
588 ev.code = device->ffEffectId;
589 ev.value = 1;
590 if (write(device->fd, &ev, sizeof(ev)) != sizeof(ev)) {
591 ALOGW("Could not start force feedback effect on device %s due to error %d.",
592 device->identifier.name.string(), errno);
593 return;
594 }
595 device->ffEffectPlaying = true;
596 }
597 }
598
cancelVibrate(int32_t deviceId)599 void EventHub::cancelVibrate(int32_t deviceId) {
600 AutoMutex _l(mLock);
601 Device* device = getDeviceLocked(deviceId);
602 if (device && !device->isVirtual()) {
603 if (device->ffEffectPlaying) {
604 device->ffEffectPlaying = false;
605
606 struct input_event ev;
607 ev.time.tv_sec = 0;
608 ev.time.tv_usec = 0;
609 ev.type = EV_FF;
610 ev.code = device->ffEffectId;
611 ev.value = 0;
612 if (write(device->fd, &ev, sizeof(ev)) != sizeof(ev)) {
613 ALOGW("Could not stop force feedback effect on device %s due to error %d.",
614 device->identifier.name.string(), errno);
615 return;
616 }
617 }
618 }
619 }
620
getDeviceLocked(int32_t deviceId) const621 EventHub::Device* EventHub::getDeviceLocked(int32_t deviceId) const {
622 if (deviceId == BUILT_IN_KEYBOARD_ID) {
623 deviceId = mBuiltInKeyboardId;
624 }
625 ssize_t index = mDevices.indexOfKey(deviceId);
626 return index >= 0 ? mDevices.valueAt(index) : NULL;
627 }
628
getDeviceByPathLocked(const char * devicePath) const629 EventHub::Device* EventHub::getDeviceByPathLocked(const char* devicePath) const {
630 for (size_t i = 0; i < mDevices.size(); i++) {
631 Device* device = mDevices.valueAt(i);
632 if (device->path == devicePath) {
633 return device;
634 }
635 }
636 return NULL;
637 }
638
getEvents(int timeoutMillis,RawEvent * buffer,size_t bufferSize)639 size_t EventHub::getEvents(int timeoutMillis, RawEvent* buffer, size_t bufferSize) {
640 ALOG_ASSERT(bufferSize >= 1);
641
642 AutoMutex _l(mLock);
643
644 struct input_event readBuffer[bufferSize];
645
646 RawEvent* event = buffer;
647 size_t capacity = bufferSize;
648 bool awoken = false;
649 for (;;) {
650 nsecs_t now = systemTime(SYSTEM_TIME_MONOTONIC);
651
652 // Reopen input devices if needed.
653 if (mNeedToReopenDevices) {
654 mNeedToReopenDevices = false;
655
656 ALOGI("Reopening all input devices due to a configuration change.");
657
658 closeAllDevicesLocked();
659 mNeedToScanDevices = true;
660 break; // return to the caller before we actually rescan
661 }
662
663 // Report any devices that had last been added/removed.
664 while (mClosingDevices) {
665 Device* device = mClosingDevices;
666 ALOGV("Reporting device closed: id=%d, name=%s\n",
667 device->id, device->path.string());
668 mClosingDevices = device->next;
669 event->when = now;
670 event->deviceId = device->id == mBuiltInKeyboardId ? BUILT_IN_KEYBOARD_ID : device->id;
671 event->type = DEVICE_REMOVED;
672 event += 1;
673 delete device;
674 mNeedToSendFinishedDeviceScan = true;
675 if (--capacity == 0) {
676 break;
677 }
678 }
679
680 if (mNeedToScanDevices) {
681 mNeedToScanDevices = false;
682 scanDevicesLocked();
683 mNeedToSendFinishedDeviceScan = true;
684 }
685
686 while (mOpeningDevices != NULL) {
687 Device* device = mOpeningDevices;
688 ALOGV("Reporting device opened: id=%d, name=%s\n",
689 device->id, device->path.string());
690 mOpeningDevices = device->next;
691 event->when = now;
692 event->deviceId = device->id == mBuiltInKeyboardId ? 0 : device->id;
693 event->type = DEVICE_ADDED;
694 event += 1;
695 mNeedToSendFinishedDeviceScan = true;
696 if (--capacity == 0) {
697 break;
698 }
699 }
700
701 if (mNeedToSendFinishedDeviceScan) {
702 mNeedToSendFinishedDeviceScan = false;
703 event->when = now;
704 event->type = FINISHED_DEVICE_SCAN;
705 event += 1;
706 if (--capacity == 0) {
707 break;
708 }
709 }
710
711 // Grab the next input event.
712 bool deviceChanged = false;
713 while (mPendingEventIndex < mPendingEventCount) {
714 const struct epoll_event& eventItem = mPendingEventItems[mPendingEventIndex++];
715 if (eventItem.data.u32 == EPOLL_ID_INOTIFY) {
716 if (eventItem.events & EPOLLIN) {
717 mPendingINotify = true;
718 } else {
719 ALOGW("Received unexpected epoll event 0x%08x for INotify.", eventItem.events);
720 }
721 continue;
722 }
723
724 if (eventItem.data.u32 == EPOLL_ID_WAKE) {
725 if (eventItem.events & EPOLLIN) {
726 ALOGV("awoken after wake()");
727 awoken = true;
728 char buffer[16];
729 ssize_t nRead;
730 do {
731 nRead = read(mWakeReadPipeFd, buffer, sizeof(buffer));
732 } while ((nRead == -1 && errno == EINTR) || nRead == sizeof(buffer));
733 } else {
734 ALOGW("Received unexpected epoll event 0x%08x for wake read pipe.",
735 eventItem.events);
736 }
737 continue;
738 }
739
740 ssize_t deviceIndex = mDevices.indexOfKey(eventItem.data.u32);
741 if (deviceIndex < 0) {
742 ALOGW("Received unexpected epoll event 0x%08x for unknown device id %d.",
743 eventItem.events, eventItem.data.u32);
744 continue;
745 }
746
747 Device* device = mDevices.valueAt(deviceIndex);
748 if (eventItem.events & EPOLLIN) {
749 int32_t readSize = read(device->fd, readBuffer,
750 sizeof(struct input_event) * capacity);
751 if (readSize == 0 || (readSize < 0 && errno == ENODEV)) {
752 // Device was removed before INotify noticed.
753 ALOGW("could not get event, removed? (fd: %d size: %d bufferSize: %d "
754 "capacity: %d errno: %d)\n",
755 device->fd, readSize, bufferSize, capacity, errno);
756 deviceChanged = true;
757 closeDeviceLocked(device);
758 } else if (readSize < 0) {
759 if (errno != EAGAIN && errno != EINTR) {
760 ALOGW("could not get event (errno=%d)", errno);
761 }
762 } else if ((readSize % sizeof(struct input_event)) != 0) {
763 ALOGE("could not get event (wrong size: %d)", readSize);
764 } else {
765 int32_t deviceId = device->id == mBuiltInKeyboardId ? 0 : device->id;
766
767 size_t count = size_t(readSize) / sizeof(struct input_event);
768 for (size_t i = 0; i < count; i++) {
769 const struct input_event& iev = readBuffer[i];
770 ALOGV("%s got: t0=%d, t1=%d, type=%d, code=%d, value=%d",
771 device->path.string(),
772 (int) iev.time.tv_sec, (int) iev.time.tv_usec,
773 iev.type, iev.code, iev.value);
774
775 #ifdef HAVE_POSIX_CLOCKS
776 // Use the time specified in the event instead of the current time
777 // so that downstream code can get more accurate estimates of
778 // event dispatch latency from the time the event is enqueued onto
779 // the evdev client buffer.
780 //
781 // The event's timestamp fortuitously uses the same monotonic clock
782 // time base as the rest of Android. The kernel event device driver
783 // (drivers/input/evdev.c) obtains timestamps using ktime_get_ts().
784 // The systemTime(SYSTEM_TIME_MONOTONIC) function we use everywhere
785 // calls clock_gettime(CLOCK_MONOTONIC) which is implemented as a
786 // system call that also queries ktime_get_ts().
787 event->when = nsecs_t(iev.time.tv_sec) * 1000000000LL
788 + nsecs_t(iev.time.tv_usec) * 1000LL;
789 ALOGV("event time %lld, now %lld", event->when, now);
790
791 // Bug 7291243: Add a guard in case the kernel generates timestamps
792 // that appear to be far into the future because they were generated
793 // using the wrong clock source.
794 //
795 // This can happen because when the input device is initially opened
796 // it has a default clock source of CLOCK_REALTIME. Any input events
797 // enqueued right after the device is opened will have timestamps
798 // generated using CLOCK_REALTIME. We later set the clock source
799 // to CLOCK_MONOTONIC but it is already too late.
800 //
801 // Invalid input event timestamps can result in ANRs, crashes and
802 // and other issues that are hard to track down. We must not let them
803 // propagate through the system.
804 //
805 // Log a warning so that we notice the problem and recover gracefully.
806 if (event->when >= now + 10 * 1000000000LL) {
807 // Double-check. Time may have moved on.
808 nsecs_t time = systemTime(SYSTEM_TIME_MONOTONIC);
809 if (event->when > time) {
810 ALOGW("An input event from %s has a timestamp that appears to "
811 "have been generated using the wrong clock source "
812 "(expected CLOCK_MONOTONIC): "
813 "event time %lld, current time %lld, call time %lld. "
814 "Using current time instead.",
815 device->path.string(), event->when, time, now);
816 event->when = time;
817 } else {
818 ALOGV("Event time is ok but failed the fast path and required "
819 "an extra call to systemTime: "
820 "event time %lld, current time %lld, call time %lld.",
821 event->when, time, now);
822 }
823 }
824 #else
825 event->when = now;
826 #endif
827 event->deviceId = deviceId;
828 event->type = iev.type;
829 event->code = iev.code;
830 event->value = iev.value;
831 event += 1;
832 }
833 capacity -= count;
834 if (capacity == 0) {
835 // The result buffer is full. Reset the pending event index
836 // so we will try to read the device again on the next iteration.
837 mPendingEventIndex -= 1;
838 break;
839 }
840 }
841 } else if (eventItem.events & EPOLLHUP) {
842 ALOGI("Removing device %s due to epoll hang-up event.",
843 device->identifier.name.string());
844 deviceChanged = true;
845 closeDeviceLocked(device);
846 } else {
847 ALOGW("Received unexpected epoll event 0x%08x for device %s.",
848 eventItem.events, device->identifier.name.string());
849 }
850 }
851
852 // readNotify() will modify the list of devices so this must be done after
853 // processing all other events to ensure that we read all remaining events
854 // before closing the devices.
855 if (mPendingINotify && mPendingEventIndex >= mPendingEventCount) {
856 mPendingINotify = false;
857 readNotifyLocked();
858 deviceChanged = true;
859 }
860
861 // Report added or removed devices immediately.
862 if (deviceChanged) {
863 continue;
864 }
865
866 // Return now if we have collected any events or if we were explicitly awoken.
867 if (event != buffer || awoken) {
868 break;
869 }
870
871 // Poll for events. Mind the wake lock dance!
872 // We hold a wake lock at all times except during epoll_wait(). This works due to some
873 // subtle choreography. When a device driver has pending (unread) events, it acquires
874 // a kernel wake lock. However, once the last pending event has been read, the device
875 // driver will release the kernel wake lock. To prevent the system from going to sleep
876 // when this happens, the EventHub holds onto its own user wake lock while the client
877 // is processing events. Thus the system can only sleep if there are no events
878 // pending or currently being processed.
879 //
880 // The timeout is advisory only. If the device is asleep, it will not wake just to
881 // service the timeout.
882 mPendingEventIndex = 0;
883
884 mLock.unlock(); // release lock before poll, must be before release_wake_lock
885 release_wake_lock(WAKE_LOCK_ID);
886
887 int pollResult = epoll_wait(mEpollFd, mPendingEventItems, EPOLL_MAX_EVENTS, timeoutMillis);
888
889 acquire_wake_lock(PARTIAL_WAKE_LOCK, WAKE_LOCK_ID);
890 mLock.lock(); // reacquire lock after poll, must be after acquire_wake_lock
891
892 if (pollResult == 0) {
893 // Timed out.
894 mPendingEventCount = 0;
895 break;
896 }
897
898 if (pollResult < 0) {
899 // An error occurred.
900 mPendingEventCount = 0;
901
902 // Sleep after errors to avoid locking up the system.
903 // Hopefully the error is transient.
904 if (errno != EINTR) {
905 ALOGW("poll failed (errno=%d)\n", errno);
906 usleep(100000);
907 }
908 } else {
909 // Some events occurred.
910 mPendingEventCount = size_t(pollResult);
911 }
912 }
913
914 // All done, return the number of events we read.
915 return event - buffer;
916 }
917
wake()918 void EventHub::wake() {
919 ALOGV("wake() called");
920
921 ssize_t nWrite;
922 do {
923 nWrite = write(mWakeWritePipeFd, "W", 1);
924 } while (nWrite == -1 && errno == EINTR);
925
926 if (nWrite != 1 && errno != EAGAIN) {
927 ALOGW("Could not write wake signal, errno=%d", errno);
928 }
929 }
930
scanDevicesLocked()931 void EventHub::scanDevicesLocked() {
932 status_t res = scanDirLocked(DEVICE_PATH);
933 if(res < 0) {
934 ALOGE("scan dir failed for %s\n", DEVICE_PATH);
935 }
936 if (mDevices.indexOfKey(VIRTUAL_KEYBOARD_ID) < 0) {
937 createVirtualKeyboardLocked();
938 }
939 }
940
941 // ----------------------------------------------------------------------------
942
containsNonZeroByte(const uint8_t * array,uint32_t startIndex,uint32_t endIndex)943 static bool containsNonZeroByte(const uint8_t* array, uint32_t startIndex, uint32_t endIndex) {
944 const uint8_t* end = array + endIndex;
945 array += startIndex;
946 while (array != end) {
947 if (*(array++) != 0) {
948 return true;
949 }
950 }
951 return false;
952 }
953
954 static const int32_t GAMEPAD_KEYCODES[] = {
955 AKEYCODE_BUTTON_A, AKEYCODE_BUTTON_B, AKEYCODE_BUTTON_C,
956 AKEYCODE_BUTTON_X, AKEYCODE_BUTTON_Y, AKEYCODE_BUTTON_Z,
957 AKEYCODE_BUTTON_L1, AKEYCODE_BUTTON_R1,
958 AKEYCODE_BUTTON_L2, AKEYCODE_BUTTON_R2,
959 AKEYCODE_BUTTON_THUMBL, AKEYCODE_BUTTON_THUMBR,
960 AKEYCODE_BUTTON_START, AKEYCODE_BUTTON_SELECT, AKEYCODE_BUTTON_MODE,
961 AKEYCODE_BUTTON_1, AKEYCODE_BUTTON_2, AKEYCODE_BUTTON_3, AKEYCODE_BUTTON_4,
962 AKEYCODE_BUTTON_5, AKEYCODE_BUTTON_6, AKEYCODE_BUTTON_7, AKEYCODE_BUTTON_8,
963 AKEYCODE_BUTTON_9, AKEYCODE_BUTTON_10, AKEYCODE_BUTTON_11, AKEYCODE_BUTTON_12,
964 AKEYCODE_BUTTON_13, AKEYCODE_BUTTON_14, AKEYCODE_BUTTON_15, AKEYCODE_BUTTON_16,
965 };
966
openDeviceLocked(const char * devicePath)967 status_t EventHub::openDeviceLocked(const char *devicePath) {
968 char buffer[80];
969
970 ALOGV("Opening device: %s", devicePath);
971
972 int fd = open(devicePath, O_RDWR | O_CLOEXEC);
973 if(fd < 0) {
974 ALOGE("could not open %s, %s\n", devicePath, strerror(errno));
975 return -1;
976 }
977
978 InputDeviceIdentifier identifier;
979
980 // Get device name.
981 if(ioctl(fd, EVIOCGNAME(sizeof(buffer) - 1), &buffer) < 1) {
982 //fprintf(stderr, "could not get device name for %s, %s\n", devicePath, strerror(errno));
983 } else {
984 buffer[sizeof(buffer) - 1] = '\0';
985 identifier.name.setTo(buffer);
986 }
987
988 // Check to see if the device is on our excluded list
989 for (size_t i = 0; i < mExcludedDevices.size(); i++) {
990 const String8& item = mExcludedDevices.itemAt(i);
991 if (identifier.name == item) {
992 ALOGI("ignoring event id %s driver %s\n", devicePath, item.string());
993 close(fd);
994 return -1;
995 }
996 }
997
998 // Get device driver version.
999 int driverVersion;
1000 if(ioctl(fd, EVIOCGVERSION, &driverVersion)) {
1001 ALOGE("could not get driver version for %s, %s\n", devicePath, strerror(errno));
1002 close(fd);
1003 return -1;
1004 }
1005
1006 // Get device identifier.
1007 struct input_id inputId;
1008 if(ioctl(fd, EVIOCGID, &inputId)) {
1009 ALOGE("could not get device input id for %s, %s\n", devicePath, strerror(errno));
1010 close(fd);
1011 return -1;
1012 }
1013 identifier.bus = inputId.bustype;
1014 identifier.product = inputId.product;
1015 identifier.vendor = inputId.vendor;
1016 identifier.version = inputId.version;
1017
1018 // Get device physical location.
1019 if(ioctl(fd, EVIOCGPHYS(sizeof(buffer) - 1), &buffer) < 1) {
1020 //fprintf(stderr, "could not get location for %s, %s\n", devicePath, strerror(errno));
1021 } else {
1022 buffer[sizeof(buffer) - 1] = '\0';
1023 identifier.location.setTo(buffer);
1024 }
1025
1026 // Get device unique id.
1027 if(ioctl(fd, EVIOCGUNIQ(sizeof(buffer) - 1), &buffer) < 1) {
1028 //fprintf(stderr, "could not get idstring for %s, %s\n", devicePath, strerror(errno));
1029 } else {
1030 buffer[sizeof(buffer) - 1] = '\0';
1031 identifier.uniqueId.setTo(buffer);
1032 }
1033
1034 // Fill in the descriptor.
1035 setDescriptor(identifier);
1036
1037 // Make file descriptor non-blocking for use with poll().
1038 if (fcntl(fd, F_SETFL, O_NONBLOCK)) {
1039 ALOGE("Error %d making device file descriptor non-blocking.", errno);
1040 close(fd);
1041 return -1;
1042 }
1043
1044 // Allocate device. (The device object takes ownership of the fd at this point.)
1045 int32_t deviceId = mNextDeviceId++;
1046 Device* device = new Device(fd, deviceId, String8(devicePath), identifier);
1047
1048 ALOGV("add device %d: %s\n", deviceId, devicePath);
1049 ALOGV(" bus: %04x\n"
1050 " vendor %04x\n"
1051 " product %04x\n"
1052 " version %04x\n",
1053 identifier.bus, identifier.vendor, identifier.product, identifier.version);
1054 ALOGV(" name: \"%s\"\n", identifier.name.string());
1055 ALOGV(" location: \"%s\"\n", identifier.location.string());
1056 ALOGV(" unique id: \"%s\"\n", identifier.uniqueId.string());
1057 ALOGV(" descriptor: \"%s\"\n", identifier.descriptor.string());
1058 ALOGV(" driver: v%d.%d.%d\n",
1059 driverVersion >> 16, (driverVersion >> 8) & 0xff, driverVersion & 0xff);
1060
1061 // Load the configuration file for the device.
1062 loadConfigurationLocked(device);
1063
1064 // Figure out the kinds of events the device reports.
1065 ioctl(fd, EVIOCGBIT(EV_KEY, sizeof(device->keyBitmask)), device->keyBitmask);
1066 ioctl(fd, EVIOCGBIT(EV_ABS, sizeof(device->absBitmask)), device->absBitmask);
1067 ioctl(fd, EVIOCGBIT(EV_REL, sizeof(device->relBitmask)), device->relBitmask);
1068 ioctl(fd, EVIOCGBIT(EV_SW, sizeof(device->swBitmask)), device->swBitmask);
1069 ioctl(fd, EVIOCGBIT(EV_LED, sizeof(device->ledBitmask)), device->ledBitmask);
1070 ioctl(fd, EVIOCGBIT(EV_FF, sizeof(device->ffBitmask)), device->ffBitmask);
1071 ioctl(fd, EVIOCGPROP(sizeof(device->propBitmask)), device->propBitmask);
1072
1073 // See if this is a keyboard. Ignore everything in the button range except for
1074 // joystick and gamepad buttons which are handled like keyboards for the most part.
1075 bool haveKeyboardKeys = containsNonZeroByte(device->keyBitmask, 0, sizeof_bit_array(BTN_MISC))
1076 || containsNonZeroByte(device->keyBitmask, sizeof_bit_array(KEY_OK),
1077 sizeof_bit_array(KEY_MAX + 1));
1078 bool haveGamepadButtons = containsNonZeroByte(device->keyBitmask, sizeof_bit_array(BTN_MISC),
1079 sizeof_bit_array(BTN_MOUSE))
1080 || containsNonZeroByte(device->keyBitmask, sizeof_bit_array(BTN_JOYSTICK),
1081 sizeof_bit_array(BTN_DIGI));
1082 if (haveKeyboardKeys || haveGamepadButtons) {
1083 device->classes |= INPUT_DEVICE_CLASS_KEYBOARD;
1084 }
1085
1086 // See if this is a cursor device such as a trackball or mouse.
1087 if (test_bit(BTN_MOUSE, device->keyBitmask)
1088 && test_bit(REL_X, device->relBitmask)
1089 && test_bit(REL_Y, device->relBitmask)) {
1090 device->classes |= INPUT_DEVICE_CLASS_CURSOR;
1091 }
1092
1093 // See if this is a touch pad.
1094 // Is this a new modern multi-touch driver?
1095 if (test_bit(ABS_MT_POSITION_X, device->absBitmask)
1096 && test_bit(ABS_MT_POSITION_Y, device->absBitmask)) {
1097 // Some joysticks such as the PS3 controller report axes that conflict
1098 // with the ABS_MT range. Try to confirm that the device really is
1099 // a touch screen.
1100 if (test_bit(BTN_TOUCH, device->keyBitmask) || !haveGamepadButtons) {
1101 device->classes |= INPUT_DEVICE_CLASS_TOUCH | INPUT_DEVICE_CLASS_TOUCH_MT;
1102 }
1103 // Is this an old style single-touch driver?
1104 } else if (test_bit(BTN_TOUCH, device->keyBitmask)
1105 && test_bit(ABS_X, device->absBitmask)
1106 && test_bit(ABS_Y, device->absBitmask)) {
1107 device->classes |= INPUT_DEVICE_CLASS_TOUCH;
1108 }
1109
1110 // See if this device is a joystick.
1111 // Assumes that joysticks always have gamepad buttons in order to distinguish them
1112 // from other devices such as accelerometers that also have absolute axes.
1113 if (haveGamepadButtons) {
1114 uint32_t assumedClasses = device->classes | INPUT_DEVICE_CLASS_JOYSTICK;
1115 for (int i = 0; i <= ABS_MAX; i++) {
1116 if (test_bit(i, device->absBitmask)
1117 && (getAbsAxisUsage(i, assumedClasses) & INPUT_DEVICE_CLASS_JOYSTICK)) {
1118 device->classes = assumedClasses;
1119 break;
1120 }
1121 }
1122 }
1123
1124 // Check whether this device has switches.
1125 for (int i = 0; i <= SW_MAX; i++) {
1126 if (test_bit(i, device->swBitmask)) {
1127 device->classes |= INPUT_DEVICE_CLASS_SWITCH;
1128 break;
1129 }
1130 }
1131
1132 // Check whether this device supports the vibrator.
1133 if (test_bit(FF_RUMBLE, device->ffBitmask)) {
1134 device->classes |= INPUT_DEVICE_CLASS_VIBRATOR;
1135 }
1136
1137 // Configure virtual keys.
1138 if ((device->classes & INPUT_DEVICE_CLASS_TOUCH)) {
1139 // Load the virtual keys for the touch screen, if any.
1140 // We do this now so that we can make sure to load the keymap if necessary.
1141 status_t status = loadVirtualKeyMapLocked(device);
1142 if (!status) {
1143 device->classes |= INPUT_DEVICE_CLASS_KEYBOARD;
1144 }
1145 }
1146
1147 // Load the key map.
1148 // We need to do this for joysticks too because the key layout may specify axes.
1149 status_t keyMapStatus = NAME_NOT_FOUND;
1150 if (device->classes & (INPUT_DEVICE_CLASS_KEYBOARD | INPUT_DEVICE_CLASS_JOYSTICK)) {
1151 // Load the keymap for the device.
1152 keyMapStatus = loadKeyMapLocked(device);
1153 }
1154
1155 // Configure the keyboard, gamepad or virtual keyboard.
1156 if (device->classes & INPUT_DEVICE_CLASS_KEYBOARD) {
1157 // Register the keyboard as a built-in keyboard if it is eligible.
1158 if (!keyMapStatus
1159 && mBuiltInKeyboardId == NO_BUILT_IN_KEYBOARD
1160 && isEligibleBuiltInKeyboard(device->identifier,
1161 device->configuration, &device->keyMap)) {
1162 mBuiltInKeyboardId = device->id;
1163 }
1164
1165 // 'Q' key support = cheap test of whether this is an alpha-capable kbd
1166 if (hasKeycodeLocked(device, AKEYCODE_Q)) {
1167 device->classes |= INPUT_DEVICE_CLASS_ALPHAKEY;
1168 }
1169
1170 // See if this device has a DPAD.
1171 if (hasKeycodeLocked(device, AKEYCODE_DPAD_UP) &&
1172 hasKeycodeLocked(device, AKEYCODE_DPAD_DOWN) &&
1173 hasKeycodeLocked(device, AKEYCODE_DPAD_LEFT) &&
1174 hasKeycodeLocked(device, AKEYCODE_DPAD_RIGHT) &&
1175 hasKeycodeLocked(device, AKEYCODE_DPAD_CENTER)) {
1176 device->classes |= INPUT_DEVICE_CLASS_DPAD;
1177 }
1178
1179 // See if this device has a gamepad.
1180 for (size_t i = 0; i < sizeof(GAMEPAD_KEYCODES)/sizeof(GAMEPAD_KEYCODES[0]); i++) {
1181 if (hasKeycodeLocked(device, GAMEPAD_KEYCODES[i])) {
1182 device->classes |= INPUT_DEVICE_CLASS_GAMEPAD;
1183 break;
1184 }
1185 }
1186 }
1187
1188 // If the device isn't recognized as something we handle, don't monitor it.
1189 if (device->classes == 0) {
1190 ALOGV("Dropping device: id=%d, path='%s', name='%s'",
1191 deviceId, devicePath, device->identifier.name.string());
1192 delete device;
1193 return -1;
1194 }
1195
1196 // Determine whether the device is external or internal.
1197 if (isExternalDeviceLocked(device)) {
1198 device->classes |= INPUT_DEVICE_CLASS_EXTERNAL;
1199 }
1200
1201 // Register with epoll.
1202 struct epoll_event eventItem;
1203 memset(&eventItem, 0, sizeof(eventItem));
1204 eventItem.events = EPOLLIN;
1205 eventItem.data.u32 = deviceId;
1206 if (epoll_ctl(mEpollFd, EPOLL_CTL_ADD, fd, &eventItem)) {
1207 ALOGE("Could not add device fd to epoll instance. errno=%d", errno);
1208 delete device;
1209 return -1;
1210 }
1211
1212 // Enable wake-lock behavior on kernels that support it.
1213 // TODO: Only need this for devices that can really wake the system.
1214 bool usingSuspendBlockIoctl = !ioctl(fd, EVIOCSSUSPENDBLOCK, 1);
1215
1216 // Tell the kernel that we want to use the monotonic clock for reporting timestamps
1217 // associated with input events. This is important because the input system
1218 // uses the timestamps extensively and assumes they were recorded using the monotonic
1219 // clock.
1220 //
1221 // In older kernel, before Linux 3.4, there was no way to tell the kernel which
1222 // clock to use to input event timestamps. The standard kernel behavior was to
1223 // record a real time timestamp, which isn't what we want. Android kernels therefore
1224 // contained a patch to the evdev_event() function in drivers/input/evdev.c to
1225 // replace the call to do_gettimeofday() with ktime_get_ts() to cause the monotonic
1226 // clock to be used instead of the real time clock.
1227 //
1228 // As of Linux 3.4, there is a new EVIOCSCLOCKID ioctl to set the desired clock.
1229 // Therefore, we no longer require the Android-specific kernel patch described above
1230 // as long as we make sure to set select the monotonic clock. We do that here.
1231 int clockId = CLOCK_MONOTONIC;
1232 bool usingClockIoctl = !ioctl(fd, EVIOCSCLOCKID, &clockId);
1233
1234 ALOGI("New device: id=%d, fd=%d, path='%s', name='%s', classes=0x%x, "
1235 "configuration='%s', keyLayout='%s', keyCharacterMap='%s', builtinKeyboard=%s, "
1236 "usingSuspendBlockIoctl=%s, usingClockIoctl=%s",
1237 deviceId, fd, devicePath, device->identifier.name.string(),
1238 device->classes,
1239 device->configurationFile.string(),
1240 device->keyMap.keyLayoutFile.string(),
1241 device->keyMap.keyCharacterMapFile.string(),
1242 toString(mBuiltInKeyboardId == deviceId),
1243 toString(usingSuspendBlockIoctl), toString(usingClockIoctl));
1244
1245 addDeviceLocked(device);
1246 return 0;
1247 }
1248
createVirtualKeyboardLocked()1249 void EventHub::createVirtualKeyboardLocked() {
1250 InputDeviceIdentifier identifier;
1251 identifier.name = "Virtual";
1252 identifier.uniqueId = "<virtual>";
1253 setDescriptor(identifier);
1254
1255 Device* device = new Device(-1, VIRTUAL_KEYBOARD_ID, String8("<virtual>"), identifier);
1256 device->classes = INPUT_DEVICE_CLASS_KEYBOARD
1257 | INPUT_DEVICE_CLASS_ALPHAKEY
1258 | INPUT_DEVICE_CLASS_DPAD
1259 | INPUT_DEVICE_CLASS_VIRTUAL;
1260 loadKeyMapLocked(device);
1261 addDeviceLocked(device);
1262 }
1263
addDeviceLocked(Device * device)1264 void EventHub::addDeviceLocked(Device* device) {
1265 mDevices.add(device->id, device);
1266 device->next = mOpeningDevices;
1267 mOpeningDevices = device;
1268 }
1269
loadConfigurationLocked(Device * device)1270 void EventHub::loadConfigurationLocked(Device* device) {
1271 device->configurationFile = getInputDeviceConfigurationFilePathByDeviceIdentifier(
1272 device->identifier, INPUT_DEVICE_CONFIGURATION_FILE_TYPE_CONFIGURATION);
1273 if (device->configurationFile.isEmpty()) {
1274 ALOGD("No input device configuration file found for device '%s'.",
1275 device->identifier.name.string());
1276 } else {
1277 status_t status = PropertyMap::load(device->configurationFile,
1278 &device->configuration);
1279 if (status) {
1280 ALOGE("Error loading input device configuration file for device '%s'. "
1281 "Using default configuration.",
1282 device->identifier.name.string());
1283 }
1284 }
1285 }
1286
loadVirtualKeyMapLocked(Device * device)1287 status_t EventHub::loadVirtualKeyMapLocked(Device* device) {
1288 // The virtual key map is supplied by the kernel as a system board property file.
1289 String8 path;
1290 path.append("/sys/board_properties/virtualkeys.");
1291 path.append(device->identifier.name);
1292 if (access(path.string(), R_OK)) {
1293 return NAME_NOT_FOUND;
1294 }
1295 return VirtualKeyMap::load(path, &device->virtualKeyMap);
1296 }
1297
loadKeyMapLocked(Device * device)1298 status_t EventHub::loadKeyMapLocked(Device* device) {
1299 return device->keyMap.load(device->identifier, device->configuration);
1300 }
1301
isExternalDeviceLocked(Device * device)1302 bool EventHub::isExternalDeviceLocked(Device* device) {
1303 if (device->configuration) {
1304 bool value;
1305 if (device->configuration->tryGetProperty(String8("device.internal"), value)) {
1306 return !value;
1307 }
1308 }
1309 return device->identifier.bus == BUS_USB || device->identifier.bus == BUS_BLUETOOTH;
1310 }
1311
hasKeycodeLocked(Device * device,int keycode) const1312 bool EventHub::hasKeycodeLocked(Device* device, int keycode) const {
1313 if (!device->keyMap.haveKeyLayout() || !device->keyBitmask) {
1314 return false;
1315 }
1316
1317 Vector<int32_t> scanCodes;
1318 device->keyMap.keyLayoutMap->findScanCodesForKey(keycode, &scanCodes);
1319 const size_t N = scanCodes.size();
1320 for (size_t i=0; i<N && i<=KEY_MAX; i++) {
1321 int32_t sc = scanCodes.itemAt(i);
1322 if (sc >= 0 && sc <= KEY_MAX && test_bit(sc, device->keyBitmask)) {
1323 return true;
1324 }
1325 }
1326
1327 return false;
1328 }
1329
closeDeviceByPathLocked(const char * devicePath)1330 status_t EventHub::closeDeviceByPathLocked(const char *devicePath) {
1331 Device* device = getDeviceByPathLocked(devicePath);
1332 if (device) {
1333 closeDeviceLocked(device);
1334 return 0;
1335 }
1336 ALOGV("Remove device: %s not found, device may already have been removed.", devicePath);
1337 return -1;
1338 }
1339
closeAllDevicesLocked()1340 void EventHub::closeAllDevicesLocked() {
1341 while (mDevices.size() > 0) {
1342 closeDeviceLocked(mDevices.valueAt(mDevices.size() - 1));
1343 }
1344 }
1345
closeDeviceLocked(Device * device)1346 void EventHub::closeDeviceLocked(Device* device) {
1347 ALOGI("Removed device: path=%s name=%s id=%d fd=%d classes=0x%x\n",
1348 device->path.string(), device->identifier.name.string(), device->id,
1349 device->fd, device->classes);
1350
1351 if (device->id == mBuiltInKeyboardId) {
1352 ALOGW("built-in keyboard device %s (id=%d) is closing! the apps will not like this",
1353 device->path.string(), mBuiltInKeyboardId);
1354 mBuiltInKeyboardId = NO_BUILT_IN_KEYBOARD;
1355 }
1356
1357 if (!device->isVirtual()) {
1358 if (epoll_ctl(mEpollFd, EPOLL_CTL_DEL, device->fd, NULL)) {
1359 ALOGW("Could not remove device fd from epoll instance. errno=%d", errno);
1360 }
1361 }
1362
1363 mDevices.removeItem(device->id);
1364 device->close();
1365
1366 // Unlink for opening devices list if it is present.
1367 Device* pred = NULL;
1368 bool found = false;
1369 for (Device* entry = mOpeningDevices; entry != NULL; ) {
1370 if (entry == device) {
1371 found = true;
1372 break;
1373 }
1374 pred = entry;
1375 entry = entry->next;
1376 }
1377 if (found) {
1378 // Unlink the device from the opening devices list then delete it.
1379 // We don't need to tell the client that the device was closed because
1380 // it does not even know it was opened in the first place.
1381 ALOGI("Device %s was immediately closed after opening.", device->path.string());
1382 if (pred) {
1383 pred->next = device->next;
1384 } else {
1385 mOpeningDevices = device->next;
1386 }
1387 delete device;
1388 } else {
1389 // Link into closing devices list.
1390 // The device will be deleted later after we have informed the client.
1391 device->next = mClosingDevices;
1392 mClosingDevices = device;
1393 }
1394 }
1395
readNotifyLocked()1396 status_t EventHub::readNotifyLocked() {
1397 int res;
1398 char devname[PATH_MAX];
1399 char *filename;
1400 char event_buf[512];
1401 int event_size;
1402 int event_pos = 0;
1403 struct inotify_event *event;
1404
1405 ALOGV("EventHub::readNotify nfd: %d\n", mINotifyFd);
1406 res = read(mINotifyFd, event_buf, sizeof(event_buf));
1407 if(res < (int)sizeof(*event)) {
1408 if(errno == EINTR)
1409 return 0;
1410 ALOGW("could not get event, %s\n", strerror(errno));
1411 return -1;
1412 }
1413 //printf("got %d bytes of event information\n", res);
1414
1415 strcpy(devname, DEVICE_PATH);
1416 filename = devname + strlen(devname);
1417 *filename++ = '/';
1418
1419 while(res >= (int)sizeof(*event)) {
1420 event = (struct inotify_event *)(event_buf + event_pos);
1421 //printf("%d: %08x \"%s\"\n", event->wd, event->mask, event->len ? event->name : "");
1422 if(event->len) {
1423 strcpy(filename, event->name);
1424 if(event->mask & IN_CREATE) {
1425 openDeviceLocked(devname);
1426 } else {
1427 ALOGI("Removing device '%s' due to inotify event\n", devname);
1428 closeDeviceByPathLocked(devname);
1429 }
1430 }
1431 event_size = sizeof(*event) + event->len;
1432 res -= event_size;
1433 event_pos += event_size;
1434 }
1435 return 0;
1436 }
1437
scanDirLocked(const char * dirname)1438 status_t EventHub::scanDirLocked(const char *dirname)
1439 {
1440 char devname[PATH_MAX];
1441 char *filename;
1442 DIR *dir;
1443 struct dirent *de;
1444 dir = opendir(dirname);
1445 if(dir == NULL)
1446 return -1;
1447 strcpy(devname, dirname);
1448 filename = devname + strlen(devname);
1449 *filename++ = '/';
1450 while((de = readdir(dir))) {
1451 if(de->d_name[0] == '.' &&
1452 (de->d_name[1] == '\0' ||
1453 (de->d_name[1] == '.' && de->d_name[2] == '\0')))
1454 continue;
1455 strcpy(filename, de->d_name);
1456 openDeviceLocked(devname);
1457 }
1458 closedir(dir);
1459 return 0;
1460 }
1461
requestReopenDevices()1462 void EventHub::requestReopenDevices() {
1463 ALOGV("requestReopenDevices() called");
1464
1465 AutoMutex _l(mLock);
1466 mNeedToReopenDevices = true;
1467 }
1468
dump(String8 & dump)1469 void EventHub::dump(String8& dump) {
1470 dump.append("Event Hub State:\n");
1471
1472 { // acquire lock
1473 AutoMutex _l(mLock);
1474
1475 dump.appendFormat(INDENT "BuiltInKeyboardId: %d\n", mBuiltInKeyboardId);
1476
1477 dump.append(INDENT "Devices:\n");
1478
1479 for (size_t i = 0; i < mDevices.size(); i++) {
1480 const Device* device = mDevices.valueAt(i);
1481 if (mBuiltInKeyboardId == device->id) {
1482 dump.appendFormat(INDENT2 "%d: %s (aka device 0 - built-in keyboard)\n",
1483 device->id, device->identifier.name.string());
1484 } else {
1485 dump.appendFormat(INDENT2 "%d: %s\n", device->id,
1486 device->identifier.name.string());
1487 }
1488 dump.appendFormat(INDENT3 "Classes: 0x%08x\n", device->classes);
1489 dump.appendFormat(INDENT3 "Path: %s\n", device->path.string());
1490 dump.appendFormat(INDENT3 "Descriptor: %s\n", device->identifier.descriptor.string());
1491 dump.appendFormat(INDENT3 "Location: %s\n", device->identifier.location.string());
1492 dump.appendFormat(INDENT3 "UniqueId: %s\n", device->identifier.uniqueId.string());
1493 dump.appendFormat(INDENT3 "Identifier: bus=0x%04x, vendor=0x%04x, "
1494 "product=0x%04x, version=0x%04x\n",
1495 device->identifier.bus, device->identifier.vendor,
1496 device->identifier.product, device->identifier.version);
1497 dump.appendFormat(INDENT3 "KeyLayoutFile: %s\n",
1498 device->keyMap.keyLayoutFile.string());
1499 dump.appendFormat(INDENT3 "KeyCharacterMapFile: %s\n",
1500 device->keyMap.keyCharacterMapFile.string());
1501 dump.appendFormat(INDENT3 "ConfigurationFile: %s\n",
1502 device->configurationFile.string());
1503 dump.appendFormat(INDENT3 "HaveKeyboardLayoutOverlay: %s\n",
1504 toString(device->overlayKeyMap != NULL));
1505 }
1506 } // release lock
1507 }
1508
monitor()1509 void EventHub::monitor() {
1510 // Acquire and release the lock to ensure that the event hub has not deadlocked.
1511 mLock.lock();
1512 mLock.unlock();
1513 }
1514
1515
1516 }; // namespace android
1517