• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2005 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #define LOG_TAG "EventHub"
18 
19 // #define LOG_NDEBUG 0
20 
21 #include "EventHub.h"
22 
23 #include <hardware_legacy/power.h>
24 
25 #include <cutils/properties.h>
26 #include <utils/Log.h>
27 #include <utils/Timers.h>
28 #include <utils/threads.h>
29 #include <utils/Errors.h>
30 
31 #include <stdlib.h>
32 #include <stdio.h>
33 #include <unistd.h>
34 #include <fcntl.h>
35 #include <memory.h>
36 #include <errno.h>
37 #include <assert.h>
38 
39 #include <androidfw/KeyLayoutMap.h>
40 #include <androidfw/KeyCharacterMap.h>
41 #include <androidfw/VirtualKeyMap.h>
42 
43 #include <sha1.h>
44 #include <string.h>
45 #include <stdint.h>
46 #include <dirent.h>
47 
48 #include <sys/inotify.h>
49 #include <sys/epoll.h>
50 #include <sys/ioctl.h>
51 #include <sys/limits.h>
52 
53 /* this macro is used to tell if "bit" is set in "array"
54  * it selects a byte from the array, and does a boolean AND
55  * operation with a byte that only has the relevant bit set.
56  * eg. to check for the 12th bit, we do (array[1] & 1<<4)
57  */
58 #define test_bit(bit, array)    (array[bit/8] & (1<<(bit%8)))
59 
60 /* this macro computes the number of bytes needed to represent a bit array of the specified size */
61 #define sizeof_bit_array(bits)  ((bits + 7) / 8)
62 
63 #define INDENT "  "
64 #define INDENT2 "    "
65 #define INDENT3 "      "
66 
67 namespace android {
68 
69 static const char *WAKE_LOCK_ID = "KeyEvents";
70 static const char *DEVICE_PATH = "/dev/input";
71 
72 /* return the larger integer */
max(int v1,int v2)73 static inline int max(int v1, int v2)
74 {
75     return (v1 > v2) ? v1 : v2;
76 }
77 
toString(bool value)78 static inline const char* toString(bool value) {
79     return value ? "true" : "false";
80 }
81 
sha1(const String8 & in)82 static String8 sha1(const String8& in) {
83     SHA1_CTX ctx;
84     SHA1Init(&ctx);
85     SHA1Update(&ctx, reinterpret_cast<const u_char*>(in.string()), in.size());
86     u_char digest[SHA1_DIGEST_LENGTH];
87     SHA1Final(digest, &ctx);
88 
89     String8 out;
90     for (size_t i = 0; i < SHA1_DIGEST_LENGTH; i++) {
91         out.appendFormat("%02x", digest[i]);
92     }
93     return out;
94 }
95 
setDescriptor(InputDeviceIdentifier & identifier)96 static void setDescriptor(InputDeviceIdentifier& identifier) {
97     // Compute a device descriptor that uniquely identifies the device.
98     // The descriptor is assumed to be a stable identifier.  Its value should not
99     // change between reboots, reconnections, firmware updates or new releases of Android.
100     // Ideally, we also want the descriptor to be short and relatively opaque.
101     String8 rawDescriptor;
102     rawDescriptor.appendFormat(":%04x:%04x:", identifier.vendor, identifier.product);
103     if (!identifier.uniqueId.isEmpty()) {
104         rawDescriptor.append("uniqueId:");
105         rawDescriptor.append(identifier.uniqueId);
106     } if (identifier.vendor == 0 && identifier.product == 0) {
107         // If we don't know the vendor and product id, then the device is probably
108         // built-in so we need to rely on other information to uniquely identify
109         // the input device.  Usually we try to avoid relying on the device name or
110         // location but for built-in input device, they are unlikely to ever change.
111         if (!identifier.name.isEmpty()) {
112             rawDescriptor.append("name:");
113             rawDescriptor.append(identifier.name);
114         } else if (!identifier.location.isEmpty()) {
115             rawDescriptor.append("location:");
116             rawDescriptor.append(identifier.location);
117         }
118     }
119     identifier.descriptor = sha1(rawDescriptor);
120     ALOGV("Created descriptor: raw=%s, cooked=%s", rawDescriptor.string(),
121             identifier.descriptor.string());
122 }
123 
124 // --- Global Functions ---
125 
getAbsAxisUsage(int32_t axis,uint32_t deviceClasses)126 uint32_t getAbsAxisUsage(int32_t axis, uint32_t deviceClasses) {
127     // Touch devices get dibs on touch-related axes.
128     if (deviceClasses & INPUT_DEVICE_CLASS_TOUCH) {
129         switch (axis) {
130         case ABS_X:
131         case ABS_Y:
132         case ABS_PRESSURE:
133         case ABS_TOOL_WIDTH:
134         case ABS_DISTANCE:
135         case ABS_TILT_X:
136         case ABS_TILT_Y:
137         case ABS_MT_SLOT:
138         case ABS_MT_TOUCH_MAJOR:
139         case ABS_MT_TOUCH_MINOR:
140         case ABS_MT_WIDTH_MAJOR:
141         case ABS_MT_WIDTH_MINOR:
142         case ABS_MT_ORIENTATION:
143         case ABS_MT_POSITION_X:
144         case ABS_MT_POSITION_Y:
145         case ABS_MT_TOOL_TYPE:
146         case ABS_MT_BLOB_ID:
147         case ABS_MT_TRACKING_ID:
148         case ABS_MT_PRESSURE:
149         case ABS_MT_DISTANCE:
150             return INPUT_DEVICE_CLASS_TOUCH;
151         }
152     }
153 
154     // Joystick devices get the rest.
155     return deviceClasses & INPUT_DEVICE_CLASS_JOYSTICK;
156 }
157 
158 // --- EventHub::Device ---
159 
Device(int fd,int32_t id,const String8 & path,const InputDeviceIdentifier & identifier)160 EventHub::Device::Device(int fd, int32_t id, const String8& path,
161         const InputDeviceIdentifier& identifier) :
162         next(NULL),
163         fd(fd), id(id), path(path), identifier(identifier),
164         classes(0), configuration(NULL), virtualKeyMap(NULL),
165         ffEffectPlaying(false), ffEffectId(-1) {
166     memset(keyBitmask, 0, sizeof(keyBitmask));
167     memset(absBitmask, 0, sizeof(absBitmask));
168     memset(relBitmask, 0, sizeof(relBitmask));
169     memset(swBitmask, 0, sizeof(swBitmask));
170     memset(ledBitmask, 0, sizeof(ledBitmask));
171     memset(ffBitmask, 0, sizeof(ffBitmask));
172     memset(propBitmask, 0, sizeof(propBitmask));
173 }
174 
~Device()175 EventHub::Device::~Device() {
176     close();
177     delete configuration;
178     delete virtualKeyMap;
179 }
180 
close()181 void EventHub::Device::close() {
182     if (fd >= 0) {
183         ::close(fd);
184         fd = -1;
185     }
186 }
187 
188 
189 // --- EventHub ---
190 
191 const uint32_t EventHub::EPOLL_ID_INOTIFY;
192 const uint32_t EventHub::EPOLL_ID_WAKE;
193 const int EventHub::EPOLL_SIZE_HINT;
194 const int EventHub::EPOLL_MAX_EVENTS;
195 
EventHub(void)196 EventHub::EventHub(void) :
197         mBuiltInKeyboardId(NO_BUILT_IN_KEYBOARD), mNextDeviceId(1),
198         mOpeningDevices(0), mClosingDevices(0),
199         mNeedToSendFinishedDeviceScan(false),
200         mNeedToReopenDevices(false), mNeedToScanDevices(true),
201         mPendingEventCount(0), mPendingEventIndex(0), mPendingINotify(false) {
202     acquire_wake_lock(PARTIAL_WAKE_LOCK, WAKE_LOCK_ID);
203 
204     mEpollFd = epoll_create(EPOLL_SIZE_HINT);
205     LOG_ALWAYS_FATAL_IF(mEpollFd < 0, "Could not create epoll instance.  errno=%d", errno);
206 
207     mINotifyFd = inotify_init();
208     int result = inotify_add_watch(mINotifyFd, DEVICE_PATH, IN_DELETE | IN_CREATE);
209     LOG_ALWAYS_FATAL_IF(result < 0, "Could not register INotify for %s.  errno=%d",
210             DEVICE_PATH, errno);
211 
212     struct epoll_event eventItem;
213     memset(&eventItem, 0, sizeof(eventItem));
214     eventItem.events = EPOLLIN;
215     eventItem.data.u32 = EPOLL_ID_INOTIFY;
216     result = epoll_ctl(mEpollFd, EPOLL_CTL_ADD, mINotifyFd, &eventItem);
217     LOG_ALWAYS_FATAL_IF(result != 0, "Could not add INotify to epoll instance.  errno=%d", errno);
218 
219     int wakeFds[2];
220     result = pipe(wakeFds);
221     LOG_ALWAYS_FATAL_IF(result != 0, "Could not create wake pipe.  errno=%d", errno);
222 
223     mWakeReadPipeFd = wakeFds[0];
224     mWakeWritePipeFd = wakeFds[1];
225 
226     result = fcntl(mWakeReadPipeFd, F_SETFL, O_NONBLOCK);
227     LOG_ALWAYS_FATAL_IF(result != 0, "Could not make wake read pipe non-blocking.  errno=%d",
228             errno);
229 
230     result = fcntl(mWakeWritePipeFd, F_SETFL, O_NONBLOCK);
231     LOG_ALWAYS_FATAL_IF(result != 0, "Could not make wake write pipe non-blocking.  errno=%d",
232             errno);
233 
234     eventItem.data.u32 = EPOLL_ID_WAKE;
235     result = epoll_ctl(mEpollFd, EPOLL_CTL_ADD, mWakeReadPipeFd, &eventItem);
236     LOG_ALWAYS_FATAL_IF(result != 0, "Could not add wake read pipe to epoll instance.  errno=%d",
237             errno);
238 }
239 
~EventHub(void)240 EventHub::~EventHub(void) {
241     closeAllDevicesLocked();
242 
243     while (mClosingDevices) {
244         Device* device = mClosingDevices;
245         mClosingDevices = device->next;
246         delete device;
247     }
248 
249     ::close(mEpollFd);
250     ::close(mINotifyFd);
251     ::close(mWakeReadPipeFd);
252     ::close(mWakeWritePipeFd);
253 
254     release_wake_lock(WAKE_LOCK_ID);
255 }
256 
getDeviceIdentifier(int32_t deviceId) const257 InputDeviceIdentifier EventHub::getDeviceIdentifier(int32_t deviceId) const {
258     AutoMutex _l(mLock);
259     Device* device = getDeviceLocked(deviceId);
260     if (device == NULL) return InputDeviceIdentifier();
261     return device->identifier;
262 }
263 
getDeviceClasses(int32_t deviceId) const264 uint32_t EventHub::getDeviceClasses(int32_t deviceId) const {
265     AutoMutex _l(mLock);
266     Device* device = getDeviceLocked(deviceId);
267     if (device == NULL) return 0;
268     return device->classes;
269 }
270 
getConfiguration(int32_t deviceId,PropertyMap * outConfiguration) const271 void EventHub::getConfiguration(int32_t deviceId, PropertyMap* outConfiguration) const {
272     AutoMutex _l(mLock);
273     Device* device = getDeviceLocked(deviceId);
274     if (device && device->configuration) {
275         *outConfiguration = *device->configuration;
276     } else {
277         outConfiguration->clear();
278     }
279 }
280 
getAbsoluteAxisInfo(int32_t deviceId,int axis,RawAbsoluteAxisInfo * outAxisInfo) const281 status_t EventHub::getAbsoluteAxisInfo(int32_t deviceId, int axis,
282         RawAbsoluteAxisInfo* outAxisInfo) const {
283     outAxisInfo->clear();
284 
285     if (axis >= 0 && axis <= ABS_MAX) {
286         AutoMutex _l(mLock);
287 
288         Device* device = getDeviceLocked(deviceId);
289         if (device && !device->isVirtual() && test_bit(axis, device->absBitmask)) {
290             struct input_absinfo info;
291             if(ioctl(device->fd, EVIOCGABS(axis), &info)) {
292                 ALOGW("Error reading absolute controller %d for device %s fd %d, errno=%d",
293                      axis, device->identifier.name.string(), device->fd, errno);
294                 return -errno;
295             }
296 
297             if (info.minimum != info.maximum) {
298                 outAxisInfo->valid = true;
299                 outAxisInfo->minValue = info.minimum;
300                 outAxisInfo->maxValue = info.maximum;
301                 outAxisInfo->flat = info.flat;
302                 outAxisInfo->fuzz = info.fuzz;
303                 outAxisInfo->resolution = info.resolution;
304             }
305             return OK;
306         }
307     }
308     return -1;
309 }
310 
hasRelativeAxis(int32_t deviceId,int axis) const311 bool EventHub::hasRelativeAxis(int32_t deviceId, int axis) const {
312     if (axis >= 0 && axis <= REL_MAX) {
313         AutoMutex _l(mLock);
314 
315         Device* device = getDeviceLocked(deviceId);
316         if (device) {
317             return test_bit(axis, device->relBitmask);
318         }
319     }
320     return false;
321 }
322 
hasInputProperty(int32_t deviceId,int property) const323 bool EventHub::hasInputProperty(int32_t deviceId, int property) const {
324     if (property >= 0 && property <= INPUT_PROP_MAX) {
325         AutoMutex _l(mLock);
326 
327         Device* device = getDeviceLocked(deviceId);
328         if (device) {
329             return test_bit(property, device->propBitmask);
330         }
331     }
332     return false;
333 }
334 
getScanCodeState(int32_t deviceId,int32_t scanCode) const335 int32_t EventHub::getScanCodeState(int32_t deviceId, int32_t scanCode) const {
336     if (scanCode >= 0 && scanCode <= KEY_MAX) {
337         AutoMutex _l(mLock);
338 
339         Device* device = getDeviceLocked(deviceId);
340         if (device && !device->isVirtual() && test_bit(scanCode, device->keyBitmask)) {
341             uint8_t keyState[sizeof_bit_array(KEY_MAX + 1)];
342             memset(keyState, 0, sizeof(keyState));
343             if (ioctl(device->fd, EVIOCGKEY(sizeof(keyState)), keyState) >= 0) {
344                 return test_bit(scanCode, keyState) ? AKEY_STATE_DOWN : AKEY_STATE_UP;
345             }
346         }
347     }
348     return AKEY_STATE_UNKNOWN;
349 }
350 
getKeyCodeState(int32_t deviceId,int32_t keyCode) const351 int32_t EventHub::getKeyCodeState(int32_t deviceId, int32_t keyCode) const {
352     AutoMutex _l(mLock);
353 
354     Device* device = getDeviceLocked(deviceId);
355     if (device && !device->isVirtual() && device->keyMap.haveKeyLayout()) {
356         Vector<int32_t> scanCodes;
357         device->keyMap.keyLayoutMap->findScanCodesForKey(keyCode, &scanCodes);
358         if (scanCodes.size() != 0) {
359             uint8_t keyState[sizeof_bit_array(KEY_MAX + 1)];
360             memset(keyState, 0, sizeof(keyState));
361             if (ioctl(device->fd, EVIOCGKEY(sizeof(keyState)), keyState) >= 0) {
362                 for (size_t i = 0; i < scanCodes.size(); i++) {
363                     int32_t sc = scanCodes.itemAt(i);
364                     if (sc >= 0 && sc <= KEY_MAX && test_bit(sc, keyState)) {
365                         return AKEY_STATE_DOWN;
366                     }
367                 }
368                 return AKEY_STATE_UP;
369             }
370         }
371     }
372     return AKEY_STATE_UNKNOWN;
373 }
374 
getSwitchState(int32_t deviceId,int32_t sw) const375 int32_t EventHub::getSwitchState(int32_t deviceId, int32_t sw) const {
376     if (sw >= 0 && sw <= SW_MAX) {
377         AutoMutex _l(mLock);
378 
379         Device* device = getDeviceLocked(deviceId);
380         if (device && !device->isVirtual() && test_bit(sw, device->swBitmask)) {
381             uint8_t swState[sizeof_bit_array(SW_MAX + 1)];
382             memset(swState, 0, sizeof(swState));
383             if (ioctl(device->fd, EVIOCGSW(sizeof(swState)), swState) >= 0) {
384                 return test_bit(sw, swState) ? AKEY_STATE_DOWN : AKEY_STATE_UP;
385             }
386         }
387     }
388     return AKEY_STATE_UNKNOWN;
389 }
390 
getAbsoluteAxisValue(int32_t deviceId,int32_t axis,int32_t * outValue) const391 status_t EventHub::getAbsoluteAxisValue(int32_t deviceId, int32_t axis, int32_t* outValue) const {
392     *outValue = 0;
393 
394     if (axis >= 0 && axis <= ABS_MAX) {
395         AutoMutex _l(mLock);
396 
397         Device* device = getDeviceLocked(deviceId);
398         if (device && !device->isVirtual() && test_bit(axis, device->absBitmask)) {
399             struct input_absinfo info;
400             if(ioctl(device->fd, EVIOCGABS(axis), &info)) {
401                 ALOGW("Error reading absolute controller %d for device %s fd %d, errno=%d",
402                      axis, device->identifier.name.string(), device->fd, errno);
403                 return -errno;
404             }
405 
406             *outValue = info.value;
407             return OK;
408         }
409     }
410     return -1;
411 }
412 
markSupportedKeyCodes(int32_t deviceId,size_t numCodes,const int32_t * keyCodes,uint8_t * outFlags) const413 bool EventHub::markSupportedKeyCodes(int32_t deviceId, size_t numCodes,
414         const int32_t* keyCodes, uint8_t* outFlags) const {
415     AutoMutex _l(mLock);
416 
417     Device* device = getDeviceLocked(deviceId);
418     if (device && device->keyMap.haveKeyLayout()) {
419         Vector<int32_t> scanCodes;
420         for (size_t codeIndex = 0; codeIndex < numCodes; codeIndex++) {
421             scanCodes.clear();
422 
423             status_t err = device->keyMap.keyLayoutMap->findScanCodesForKey(
424                     keyCodes[codeIndex], &scanCodes);
425             if (! err) {
426                 // check the possible scan codes identified by the layout map against the
427                 // map of codes actually emitted by the driver
428                 for (size_t sc = 0; sc < scanCodes.size(); sc++) {
429                     if (test_bit(scanCodes[sc], device->keyBitmask)) {
430                         outFlags[codeIndex] = 1;
431                         break;
432                     }
433                 }
434             }
435         }
436         return true;
437     }
438     return false;
439 }
440 
mapKey(int32_t deviceId,int32_t scanCode,int32_t usageCode,int32_t * outKeycode,uint32_t * outFlags) const441 status_t EventHub::mapKey(int32_t deviceId, int32_t scanCode, int32_t usageCode,
442         int32_t* outKeycode, uint32_t* outFlags) const {
443     AutoMutex _l(mLock);
444     Device* device = getDeviceLocked(deviceId);
445 
446     if (device) {
447         // Check the key character map first.
448         sp<KeyCharacterMap> kcm = device->getKeyCharacterMap();
449         if (kcm != NULL) {
450             if (!kcm->mapKey(scanCode, usageCode, outKeycode)) {
451                 *outFlags = 0;
452                 return NO_ERROR;
453             }
454         }
455 
456         // Check the key layout next.
457         if (device->keyMap.haveKeyLayout()) {
458             if (!device->keyMap.keyLayoutMap->mapKey(
459                     scanCode, usageCode, outKeycode, outFlags)) {
460                 return NO_ERROR;
461             }
462         }
463     }
464 
465     *outKeycode = 0;
466     *outFlags = 0;
467     return NAME_NOT_FOUND;
468 }
469 
mapAxis(int32_t deviceId,int32_t scanCode,AxisInfo * outAxisInfo) const470 status_t EventHub::mapAxis(int32_t deviceId, int32_t scanCode, AxisInfo* outAxisInfo) const {
471     AutoMutex _l(mLock);
472     Device* device = getDeviceLocked(deviceId);
473 
474     if (device && device->keyMap.haveKeyLayout()) {
475         status_t err = device->keyMap.keyLayoutMap->mapAxis(scanCode, outAxisInfo);
476         if (err == NO_ERROR) {
477             return NO_ERROR;
478         }
479     }
480 
481     return NAME_NOT_FOUND;
482 }
483 
setExcludedDevices(const Vector<String8> & devices)484 void EventHub::setExcludedDevices(const Vector<String8>& devices) {
485     AutoMutex _l(mLock);
486 
487     mExcludedDevices = devices;
488 }
489 
hasScanCode(int32_t deviceId,int32_t scanCode) const490 bool EventHub::hasScanCode(int32_t deviceId, int32_t scanCode) const {
491     AutoMutex _l(mLock);
492     Device* device = getDeviceLocked(deviceId);
493     if (device && scanCode >= 0 && scanCode <= KEY_MAX) {
494         if (test_bit(scanCode, device->keyBitmask)) {
495             return true;
496         }
497     }
498     return false;
499 }
500 
hasLed(int32_t deviceId,int32_t led) const501 bool EventHub::hasLed(int32_t deviceId, int32_t led) const {
502     AutoMutex _l(mLock);
503     Device* device = getDeviceLocked(deviceId);
504     if (device && led >= 0 && led <= LED_MAX) {
505         if (test_bit(led, device->ledBitmask)) {
506             return true;
507         }
508     }
509     return false;
510 }
511 
setLedState(int32_t deviceId,int32_t led,bool on)512 void EventHub::setLedState(int32_t deviceId, int32_t led, bool on) {
513     AutoMutex _l(mLock);
514     Device* device = getDeviceLocked(deviceId);
515     if (device && !device->isVirtual() && led >= 0 && led <= LED_MAX) {
516         struct input_event ev;
517         ev.time.tv_sec = 0;
518         ev.time.tv_usec = 0;
519         ev.type = EV_LED;
520         ev.code = led;
521         ev.value = on ? 1 : 0;
522 
523         ssize_t nWrite;
524         do {
525             nWrite = write(device->fd, &ev, sizeof(struct input_event));
526         } while (nWrite == -1 && errno == EINTR);
527     }
528 }
529 
getVirtualKeyDefinitions(int32_t deviceId,Vector<VirtualKeyDefinition> & outVirtualKeys) const530 void EventHub::getVirtualKeyDefinitions(int32_t deviceId,
531         Vector<VirtualKeyDefinition>& outVirtualKeys) const {
532     outVirtualKeys.clear();
533 
534     AutoMutex _l(mLock);
535     Device* device = getDeviceLocked(deviceId);
536     if (device && device->virtualKeyMap) {
537         outVirtualKeys.appendVector(device->virtualKeyMap->getVirtualKeys());
538     }
539 }
540 
getKeyCharacterMap(int32_t deviceId) const541 sp<KeyCharacterMap> EventHub::getKeyCharacterMap(int32_t deviceId) const {
542     AutoMutex _l(mLock);
543     Device* device = getDeviceLocked(deviceId);
544     if (device) {
545         return device->getKeyCharacterMap();
546     }
547     return NULL;
548 }
549 
setKeyboardLayoutOverlay(int32_t deviceId,const sp<KeyCharacterMap> & map)550 bool EventHub::setKeyboardLayoutOverlay(int32_t deviceId,
551         const sp<KeyCharacterMap>& map) {
552     AutoMutex _l(mLock);
553     Device* device = getDeviceLocked(deviceId);
554     if (device) {
555         if (map != device->overlayKeyMap) {
556             device->overlayKeyMap = map;
557             device->combinedKeyMap = KeyCharacterMap::combine(
558                     device->keyMap.keyCharacterMap, map);
559             return true;
560         }
561     }
562     return false;
563 }
564 
vibrate(int32_t deviceId,nsecs_t duration)565 void EventHub::vibrate(int32_t deviceId, nsecs_t duration) {
566     AutoMutex _l(mLock);
567     Device* device = getDeviceLocked(deviceId);
568     if (device && !device->isVirtual()) {
569         ff_effect effect;
570         memset(&effect, 0, sizeof(effect));
571         effect.type = FF_RUMBLE;
572         effect.id = device->ffEffectId;
573         effect.u.rumble.strong_magnitude = 0xc000;
574         effect.u.rumble.weak_magnitude = 0xc000;
575         effect.replay.length = (duration + 999999LL) / 1000000LL;
576         effect.replay.delay = 0;
577         if (ioctl(device->fd, EVIOCSFF, &effect)) {
578             ALOGW("Could not upload force feedback effect to device %s due to error %d.",
579                     device->identifier.name.string(), errno);
580             return;
581         }
582         device->ffEffectId = effect.id;
583 
584         struct input_event ev;
585         ev.time.tv_sec = 0;
586         ev.time.tv_usec = 0;
587         ev.type = EV_FF;
588         ev.code = device->ffEffectId;
589         ev.value = 1;
590         if (write(device->fd, &ev, sizeof(ev)) != sizeof(ev)) {
591             ALOGW("Could not start force feedback effect on device %s due to error %d.",
592                     device->identifier.name.string(), errno);
593             return;
594         }
595         device->ffEffectPlaying = true;
596     }
597 }
598 
cancelVibrate(int32_t deviceId)599 void EventHub::cancelVibrate(int32_t deviceId) {
600     AutoMutex _l(mLock);
601     Device* device = getDeviceLocked(deviceId);
602     if (device && !device->isVirtual()) {
603         if (device->ffEffectPlaying) {
604             device->ffEffectPlaying = false;
605 
606             struct input_event ev;
607             ev.time.tv_sec = 0;
608             ev.time.tv_usec = 0;
609             ev.type = EV_FF;
610             ev.code = device->ffEffectId;
611             ev.value = 0;
612             if (write(device->fd, &ev, sizeof(ev)) != sizeof(ev)) {
613                 ALOGW("Could not stop force feedback effect on device %s due to error %d.",
614                         device->identifier.name.string(), errno);
615                 return;
616             }
617         }
618     }
619 }
620 
getDeviceLocked(int32_t deviceId) const621 EventHub::Device* EventHub::getDeviceLocked(int32_t deviceId) const {
622     if (deviceId == BUILT_IN_KEYBOARD_ID) {
623         deviceId = mBuiltInKeyboardId;
624     }
625     ssize_t index = mDevices.indexOfKey(deviceId);
626     return index >= 0 ? mDevices.valueAt(index) : NULL;
627 }
628 
getDeviceByPathLocked(const char * devicePath) const629 EventHub::Device* EventHub::getDeviceByPathLocked(const char* devicePath) const {
630     for (size_t i = 0; i < mDevices.size(); i++) {
631         Device* device = mDevices.valueAt(i);
632         if (device->path == devicePath) {
633             return device;
634         }
635     }
636     return NULL;
637 }
638 
getEvents(int timeoutMillis,RawEvent * buffer,size_t bufferSize)639 size_t EventHub::getEvents(int timeoutMillis, RawEvent* buffer, size_t bufferSize) {
640     ALOG_ASSERT(bufferSize >= 1);
641 
642     AutoMutex _l(mLock);
643 
644     struct input_event readBuffer[bufferSize];
645 
646     RawEvent* event = buffer;
647     size_t capacity = bufferSize;
648     bool awoken = false;
649     for (;;) {
650         nsecs_t now = systemTime(SYSTEM_TIME_MONOTONIC);
651 
652         // Reopen input devices if needed.
653         if (mNeedToReopenDevices) {
654             mNeedToReopenDevices = false;
655 
656             ALOGI("Reopening all input devices due to a configuration change.");
657 
658             closeAllDevicesLocked();
659             mNeedToScanDevices = true;
660             break; // return to the caller before we actually rescan
661         }
662 
663         // Report any devices that had last been added/removed.
664         while (mClosingDevices) {
665             Device* device = mClosingDevices;
666             ALOGV("Reporting device closed: id=%d, name=%s\n",
667                  device->id, device->path.string());
668             mClosingDevices = device->next;
669             event->when = now;
670             event->deviceId = device->id == mBuiltInKeyboardId ? BUILT_IN_KEYBOARD_ID : device->id;
671             event->type = DEVICE_REMOVED;
672             event += 1;
673             delete device;
674             mNeedToSendFinishedDeviceScan = true;
675             if (--capacity == 0) {
676                 break;
677             }
678         }
679 
680         if (mNeedToScanDevices) {
681             mNeedToScanDevices = false;
682             scanDevicesLocked();
683             mNeedToSendFinishedDeviceScan = true;
684         }
685 
686         while (mOpeningDevices != NULL) {
687             Device* device = mOpeningDevices;
688             ALOGV("Reporting device opened: id=%d, name=%s\n",
689                  device->id, device->path.string());
690             mOpeningDevices = device->next;
691             event->when = now;
692             event->deviceId = device->id == mBuiltInKeyboardId ? 0 : device->id;
693             event->type = DEVICE_ADDED;
694             event += 1;
695             mNeedToSendFinishedDeviceScan = true;
696             if (--capacity == 0) {
697                 break;
698             }
699         }
700 
701         if (mNeedToSendFinishedDeviceScan) {
702             mNeedToSendFinishedDeviceScan = false;
703             event->when = now;
704             event->type = FINISHED_DEVICE_SCAN;
705             event += 1;
706             if (--capacity == 0) {
707                 break;
708             }
709         }
710 
711         // Grab the next input event.
712         bool deviceChanged = false;
713         while (mPendingEventIndex < mPendingEventCount) {
714             const struct epoll_event& eventItem = mPendingEventItems[mPendingEventIndex++];
715             if (eventItem.data.u32 == EPOLL_ID_INOTIFY) {
716                 if (eventItem.events & EPOLLIN) {
717                     mPendingINotify = true;
718                 } else {
719                     ALOGW("Received unexpected epoll event 0x%08x for INotify.", eventItem.events);
720                 }
721                 continue;
722             }
723 
724             if (eventItem.data.u32 == EPOLL_ID_WAKE) {
725                 if (eventItem.events & EPOLLIN) {
726                     ALOGV("awoken after wake()");
727                     awoken = true;
728                     char buffer[16];
729                     ssize_t nRead;
730                     do {
731                         nRead = read(mWakeReadPipeFd, buffer, sizeof(buffer));
732                     } while ((nRead == -1 && errno == EINTR) || nRead == sizeof(buffer));
733                 } else {
734                     ALOGW("Received unexpected epoll event 0x%08x for wake read pipe.",
735                             eventItem.events);
736                 }
737                 continue;
738             }
739 
740             ssize_t deviceIndex = mDevices.indexOfKey(eventItem.data.u32);
741             if (deviceIndex < 0) {
742                 ALOGW("Received unexpected epoll event 0x%08x for unknown device id %d.",
743                         eventItem.events, eventItem.data.u32);
744                 continue;
745             }
746 
747             Device* device = mDevices.valueAt(deviceIndex);
748             if (eventItem.events & EPOLLIN) {
749                 int32_t readSize = read(device->fd, readBuffer,
750                         sizeof(struct input_event) * capacity);
751                 if (readSize == 0 || (readSize < 0 && errno == ENODEV)) {
752                     // Device was removed before INotify noticed.
753                     ALOGW("could not get event, removed? (fd: %d size: %d bufferSize: %d "
754                             "capacity: %d errno: %d)\n",
755                             device->fd, readSize, bufferSize, capacity, errno);
756                     deviceChanged = true;
757                     closeDeviceLocked(device);
758                 } else if (readSize < 0) {
759                     if (errno != EAGAIN && errno != EINTR) {
760                         ALOGW("could not get event (errno=%d)", errno);
761                     }
762                 } else if ((readSize % sizeof(struct input_event)) != 0) {
763                     ALOGE("could not get event (wrong size: %d)", readSize);
764                 } else {
765                     int32_t deviceId = device->id == mBuiltInKeyboardId ? 0 : device->id;
766 
767                     size_t count = size_t(readSize) / sizeof(struct input_event);
768                     for (size_t i = 0; i < count; i++) {
769                         const struct input_event& iev = readBuffer[i];
770                         ALOGV("%s got: t0=%d, t1=%d, type=%d, code=%d, value=%d",
771                                 device->path.string(),
772                                 (int) iev.time.tv_sec, (int) iev.time.tv_usec,
773                                 iev.type, iev.code, iev.value);
774 
775 #ifdef HAVE_POSIX_CLOCKS
776                         // Use the time specified in the event instead of the current time
777                         // so that downstream code can get more accurate estimates of
778                         // event dispatch latency from the time the event is enqueued onto
779                         // the evdev client buffer.
780                         //
781                         // The event's timestamp fortuitously uses the same monotonic clock
782                         // time base as the rest of Android.  The kernel event device driver
783                         // (drivers/input/evdev.c) obtains timestamps using ktime_get_ts().
784                         // The systemTime(SYSTEM_TIME_MONOTONIC) function we use everywhere
785                         // calls clock_gettime(CLOCK_MONOTONIC) which is implemented as a
786                         // system call that also queries ktime_get_ts().
787                         event->when = nsecs_t(iev.time.tv_sec) * 1000000000LL
788                                 + nsecs_t(iev.time.tv_usec) * 1000LL;
789                         ALOGV("event time %lld, now %lld", event->when, now);
790 
791                         // Bug 7291243: Add a guard in case the kernel generates timestamps
792                         // that appear to be far into the future because they were generated
793                         // using the wrong clock source.
794                         //
795                         // This can happen because when the input device is initially opened
796                         // it has a default clock source of CLOCK_REALTIME.  Any input events
797                         // enqueued right after the device is opened will have timestamps
798                         // generated using CLOCK_REALTIME.  We later set the clock source
799                         // to CLOCK_MONOTONIC but it is already too late.
800                         //
801                         // Invalid input event timestamps can result in ANRs, crashes and
802                         // and other issues that are hard to track down.  We must not let them
803                         // propagate through the system.
804                         //
805                         // Log a warning so that we notice the problem and recover gracefully.
806                         if (event->when >= now + 10 * 1000000000LL) {
807                             // Double-check.  Time may have moved on.
808                             nsecs_t time = systemTime(SYSTEM_TIME_MONOTONIC);
809                             if (event->when > time) {
810                                 ALOGW("An input event from %s has a timestamp that appears to "
811                                         "have been generated using the wrong clock source "
812                                         "(expected CLOCK_MONOTONIC): "
813                                         "event time %lld, current time %lld, call time %lld.  "
814                                         "Using current time instead.",
815                                         device->path.string(), event->when, time, now);
816                                 event->when = time;
817                             } else {
818                                 ALOGV("Event time is ok but failed the fast path and required "
819                                         "an extra call to systemTime: "
820                                         "event time %lld, current time %lld, call time %lld.",
821                                         event->when, time, now);
822                             }
823                         }
824 #else
825                         event->when = now;
826 #endif
827                         event->deviceId = deviceId;
828                         event->type = iev.type;
829                         event->code = iev.code;
830                         event->value = iev.value;
831                         event += 1;
832                     }
833                     capacity -= count;
834                     if (capacity == 0) {
835                         // The result buffer is full.  Reset the pending event index
836                         // so we will try to read the device again on the next iteration.
837                         mPendingEventIndex -= 1;
838                         break;
839                     }
840                 }
841             } else if (eventItem.events & EPOLLHUP) {
842                 ALOGI("Removing device %s due to epoll hang-up event.",
843                         device->identifier.name.string());
844                 deviceChanged = true;
845                 closeDeviceLocked(device);
846             } else {
847                 ALOGW("Received unexpected epoll event 0x%08x for device %s.",
848                         eventItem.events, device->identifier.name.string());
849             }
850         }
851 
852         // readNotify() will modify the list of devices so this must be done after
853         // processing all other events to ensure that we read all remaining events
854         // before closing the devices.
855         if (mPendingINotify && mPendingEventIndex >= mPendingEventCount) {
856             mPendingINotify = false;
857             readNotifyLocked();
858             deviceChanged = true;
859         }
860 
861         // Report added or removed devices immediately.
862         if (deviceChanged) {
863             continue;
864         }
865 
866         // Return now if we have collected any events or if we were explicitly awoken.
867         if (event != buffer || awoken) {
868             break;
869         }
870 
871         // Poll for events.  Mind the wake lock dance!
872         // We hold a wake lock at all times except during epoll_wait().  This works due to some
873         // subtle choreography.  When a device driver has pending (unread) events, it acquires
874         // a kernel wake lock.  However, once the last pending event has been read, the device
875         // driver will release the kernel wake lock.  To prevent the system from going to sleep
876         // when this happens, the EventHub holds onto its own user wake lock while the client
877         // is processing events.  Thus the system can only sleep if there are no events
878         // pending or currently being processed.
879         //
880         // The timeout is advisory only.  If the device is asleep, it will not wake just to
881         // service the timeout.
882         mPendingEventIndex = 0;
883 
884         mLock.unlock(); // release lock before poll, must be before release_wake_lock
885         release_wake_lock(WAKE_LOCK_ID);
886 
887         int pollResult = epoll_wait(mEpollFd, mPendingEventItems, EPOLL_MAX_EVENTS, timeoutMillis);
888 
889         acquire_wake_lock(PARTIAL_WAKE_LOCK, WAKE_LOCK_ID);
890         mLock.lock(); // reacquire lock after poll, must be after acquire_wake_lock
891 
892         if (pollResult == 0) {
893             // Timed out.
894             mPendingEventCount = 0;
895             break;
896         }
897 
898         if (pollResult < 0) {
899             // An error occurred.
900             mPendingEventCount = 0;
901 
902             // Sleep after errors to avoid locking up the system.
903             // Hopefully the error is transient.
904             if (errno != EINTR) {
905                 ALOGW("poll failed (errno=%d)\n", errno);
906                 usleep(100000);
907             }
908         } else {
909             // Some events occurred.
910             mPendingEventCount = size_t(pollResult);
911         }
912     }
913 
914     // All done, return the number of events we read.
915     return event - buffer;
916 }
917 
wake()918 void EventHub::wake() {
919     ALOGV("wake() called");
920 
921     ssize_t nWrite;
922     do {
923         nWrite = write(mWakeWritePipeFd, "W", 1);
924     } while (nWrite == -1 && errno == EINTR);
925 
926     if (nWrite != 1 && errno != EAGAIN) {
927         ALOGW("Could not write wake signal, errno=%d", errno);
928     }
929 }
930 
scanDevicesLocked()931 void EventHub::scanDevicesLocked() {
932     status_t res = scanDirLocked(DEVICE_PATH);
933     if(res < 0) {
934         ALOGE("scan dir failed for %s\n", DEVICE_PATH);
935     }
936     if (mDevices.indexOfKey(VIRTUAL_KEYBOARD_ID) < 0) {
937         createVirtualKeyboardLocked();
938     }
939 }
940 
941 // ----------------------------------------------------------------------------
942 
containsNonZeroByte(const uint8_t * array,uint32_t startIndex,uint32_t endIndex)943 static bool containsNonZeroByte(const uint8_t* array, uint32_t startIndex, uint32_t endIndex) {
944     const uint8_t* end = array + endIndex;
945     array += startIndex;
946     while (array != end) {
947         if (*(array++) != 0) {
948             return true;
949         }
950     }
951     return false;
952 }
953 
954 static const int32_t GAMEPAD_KEYCODES[] = {
955         AKEYCODE_BUTTON_A, AKEYCODE_BUTTON_B, AKEYCODE_BUTTON_C,
956         AKEYCODE_BUTTON_X, AKEYCODE_BUTTON_Y, AKEYCODE_BUTTON_Z,
957         AKEYCODE_BUTTON_L1, AKEYCODE_BUTTON_R1,
958         AKEYCODE_BUTTON_L2, AKEYCODE_BUTTON_R2,
959         AKEYCODE_BUTTON_THUMBL, AKEYCODE_BUTTON_THUMBR,
960         AKEYCODE_BUTTON_START, AKEYCODE_BUTTON_SELECT, AKEYCODE_BUTTON_MODE,
961         AKEYCODE_BUTTON_1, AKEYCODE_BUTTON_2, AKEYCODE_BUTTON_3, AKEYCODE_BUTTON_4,
962         AKEYCODE_BUTTON_5, AKEYCODE_BUTTON_6, AKEYCODE_BUTTON_7, AKEYCODE_BUTTON_8,
963         AKEYCODE_BUTTON_9, AKEYCODE_BUTTON_10, AKEYCODE_BUTTON_11, AKEYCODE_BUTTON_12,
964         AKEYCODE_BUTTON_13, AKEYCODE_BUTTON_14, AKEYCODE_BUTTON_15, AKEYCODE_BUTTON_16,
965 };
966 
openDeviceLocked(const char * devicePath)967 status_t EventHub::openDeviceLocked(const char *devicePath) {
968     char buffer[80];
969 
970     ALOGV("Opening device: %s", devicePath);
971 
972     int fd = open(devicePath, O_RDWR | O_CLOEXEC);
973     if(fd < 0) {
974         ALOGE("could not open %s, %s\n", devicePath, strerror(errno));
975         return -1;
976     }
977 
978     InputDeviceIdentifier identifier;
979 
980     // Get device name.
981     if(ioctl(fd, EVIOCGNAME(sizeof(buffer) - 1), &buffer) < 1) {
982         //fprintf(stderr, "could not get device name for %s, %s\n", devicePath, strerror(errno));
983     } else {
984         buffer[sizeof(buffer) - 1] = '\0';
985         identifier.name.setTo(buffer);
986     }
987 
988     // Check to see if the device is on our excluded list
989     for (size_t i = 0; i < mExcludedDevices.size(); i++) {
990         const String8& item = mExcludedDevices.itemAt(i);
991         if (identifier.name == item) {
992             ALOGI("ignoring event id %s driver %s\n", devicePath, item.string());
993             close(fd);
994             return -1;
995         }
996     }
997 
998     // Get device driver version.
999     int driverVersion;
1000     if(ioctl(fd, EVIOCGVERSION, &driverVersion)) {
1001         ALOGE("could not get driver version for %s, %s\n", devicePath, strerror(errno));
1002         close(fd);
1003         return -1;
1004     }
1005 
1006     // Get device identifier.
1007     struct input_id inputId;
1008     if(ioctl(fd, EVIOCGID, &inputId)) {
1009         ALOGE("could not get device input id for %s, %s\n", devicePath, strerror(errno));
1010         close(fd);
1011         return -1;
1012     }
1013     identifier.bus = inputId.bustype;
1014     identifier.product = inputId.product;
1015     identifier.vendor = inputId.vendor;
1016     identifier.version = inputId.version;
1017 
1018     // Get device physical location.
1019     if(ioctl(fd, EVIOCGPHYS(sizeof(buffer) - 1), &buffer) < 1) {
1020         //fprintf(stderr, "could not get location for %s, %s\n", devicePath, strerror(errno));
1021     } else {
1022         buffer[sizeof(buffer) - 1] = '\0';
1023         identifier.location.setTo(buffer);
1024     }
1025 
1026     // Get device unique id.
1027     if(ioctl(fd, EVIOCGUNIQ(sizeof(buffer) - 1), &buffer) < 1) {
1028         //fprintf(stderr, "could not get idstring for %s, %s\n", devicePath, strerror(errno));
1029     } else {
1030         buffer[sizeof(buffer) - 1] = '\0';
1031         identifier.uniqueId.setTo(buffer);
1032     }
1033 
1034     // Fill in the descriptor.
1035     setDescriptor(identifier);
1036 
1037     // Make file descriptor non-blocking for use with poll().
1038     if (fcntl(fd, F_SETFL, O_NONBLOCK)) {
1039         ALOGE("Error %d making device file descriptor non-blocking.", errno);
1040         close(fd);
1041         return -1;
1042     }
1043 
1044     // Allocate device.  (The device object takes ownership of the fd at this point.)
1045     int32_t deviceId = mNextDeviceId++;
1046     Device* device = new Device(fd, deviceId, String8(devicePath), identifier);
1047 
1048     ALOGV("add device %d: %s\n", deviceId, devicePath);
1049     ALOGV("  bus:        %04x\n"
1050          "  vendor      %04x\n"
1051          "  product     %04x\n"
1052          "  version     %04x\n",
1053         identifier.bus, identifier.vendor, identifier.product, identifier.version);
1054     ALOGV("  name:       \"%s\"\n", identifier.name.string());
1055     ALOGV("  location:   \"%s\"\n", identifier.location.string());
1056     ALOGV("  unique id:  \"%s\"\n", identifier.uniqueId.string());
1057     ALOGV("  descriptor: \"%s\"\n", identifier.descriptor.string());
1058     ALOGV("  driver:     v%d.%d.%d\n",
1059         driverVersion >> 16, (driverVersion >> 8) & 0xff, driverVersion & 0xff);
1060 
1061     // Load the configuration file for the device.
1062     loadConfigurationLocked(device);
1063 
1064     // Figure out the kinds of events the device reports.
1065     ioctl(fd, EVIOCGBIT(EV_KEY, sizeof(device->keyBitmask)), device->keyBitmask);
1066     ioctl(fd, EVIOCGBIT(EV_ABS, sizeof(device->absBitmask)), device->absBitmask);
1067     ioctl(fd, EVIOCGBIT(EV_REL, sizeof(device->relBitmask)), device->relBitmask);
1068     ioctl(fd, EVIOCGBIT(EV_SW, sizeof(device->swBitmask)), device->swBitmask);
1069     ioctl(fd, EVIOCGBIT(EV_LED, sizeof(device->ledBitmask)), device->ledBitmask);
1070     ioctl(fd, EVIOCGBIT(EV_FF, sizeof(device->ffBitmask)), device->ffBitmask);
1071     ioctl(fd, EVIOCGPROP(sizeof(device->propBitmask)), device->propBitmask);
1072 
1073     // See if this is a keyboard.  Ignore everything in the button range except for
1074     // joystick and gamepad buttons which are handled like keyboards for the most part.
1075     bool haveKeyboardKeys = containsNonZeroByte(device->keyBitmask, 0, sizeof_bit_array(BTN_MISC))
1076             || containsNonZeroByte(device->keyBitmask, sizeof_bit_array(KEY_OK),
1077                     sizeof_bit_array(KEY_MAX + 1));
1078     bool haveGamepadButtons = containsNonZeroByte(device->keyBitmask, sizeof_bit_array(BTN_MISC),
1079                     sizeof_bit_array(BTN_MOUSE))
1080             || containsNonZeroByte(device->keyBitmask, sizeof_bit_array(BTN_JOYSTICK),
1081                     sizeof_bit_array(BTN_DIGI));
1082     if (haveKeyboardKeys || haveGamepadButtons) {
1083         device->classes |= INPUT_DEVICE_CLASS_KEYBOARD;
1084     }
1085 
1086     // See if this is a cursor device such as a trackball or mouse.
1087     if (test_bit(BTN_MOUSE, device->keyBitmask)
1088             && test_bit(REL_X, device->relBitmask)
1089             && test_bit(REL_Y, device->relBitmask)) {
1090         device->classes |= INPUT_DEVICE_CLASS_CURSOR;
1091     }
1092 
1093     // See if this is a touch pad.
1094     // Is this a new modern multi-touch driver?
1095     if (test_bit(ABS_MT_POSITION_X, device->absBitmask)
1096             && test_bit(ABS_MT_POSITION_Y, device->absBitmask)) {
1097         // Some joysticks such as the PS3 controller report axes that conflict
1098         // with the ABS_MT range.  Try to confirm that the device really is
1099         // a touch screen.
1100         if (test_bit(BTN_TOUCH, device->keyBitmask) || !haveGamepadButtons) {
1101             device->classes |= INPUT_DEVICE_CLASS_TOUCH | INPUT_DEVICE_CLASS_TOUCH_MT;
1102         }
1103     // Is this an old style single-touch driver?
1104     } else if (test_bit(BTN_TOUCH, device->keyBitmask)
1105             && test_bit(ABS_X, device->absBitmask)
1106             && test_bit(ABS_Y, device->absBitmask)) {
1107         device->classes |= INPUT_DEVICE_CLASS_TOUCH;
1108     }
1109 
1110     // See if this device is a joystick.
1111     // Assumes that joysticks always have gamepad buttons in order to distinguish them
1112     // from other devices such as accelerometers that also have absolute axes.
1113     if (haveGamepadButtons) {
1114         uint32_t assumedClasses = device->classes | INPUT_DEVICE_CLASS_JOYSTICK;
1115         for (int i = 0; i <= ABS_MAX; i++) {
1116             if (test_bit(i, device->absBitmask)
1117                     && (getAbsAxisUsage(i, assumedClasses) & INPUT_DEVICE_CLASS_JOYSTICK)) {
1118                 device->classes = assumedClasses;
1119                 break;
1120             }
1121         }
1122     }
1123 
1124     // Check whether this device has switches.
1125     for (int i = 0; i <= SW_MAX; i++) {
1126         if (test_bit(i, device->swBitmask)) {
1127             device->classes |= INPUT_DEVICE_CLASS_SWITCH;
1128             break;
1129         }
1130     }
1131 
1132     // Check whether this device supports the vibrator.
1133     if (test_bit(FF_RUMBLE, device->ffBitmask)) {
1134         device->classes |= INPUT_DEVICE_CLASS_VIBRATOR;
1135     }
1136 
1137     // Configure virtual keys.
1138     if ((device->classes & INPUT_DEVICE_CLASS_TOUCH)) {
1139         // Load the virtual keys for the touch screen, if any.
1140         // We do this now so that we can make sure to load the keymap if necessary.
1141         status_t status = loadVirtualKeyMapLocked(device);
1142         if (!status) {
1143             device->classes |= INPUT_DEVICE_CLASS_KEYBOARD;
1144         }
1145     }
1146 
1147     // Load the key map.
1148     // We need to do this for joysticks too because the key layout may specify axes.
1149     status_t keyMapStatus = NAME_NOT_FOUND;
1150     if (device->classes & (INPUT_DEVICE_CLASS_KEYBOARD | INPUT_DEVICE_CLASS_JOYSTICK)) {
1151         // Load the keymap for the device.
1152         keyMapStatus = loadKeyMapLocked(device);
1153     }
1154 
1155     // Configure the keyboard, gamepad or virtual keyboard.
1156     if (device->classes & INPUT_DEVICE_CLASS_KEYBOARD) {
1157         // Register the keyboard as a built-in keyboard if it is eligible.
1158         if (!keyMapStatus
1159                 && mBuiltInKeyboardId == NO_BUILT_IN_KEYBOARD
1160                 && isEligibleBuiltInKeyboard(device->identifier,
1161                         device->configuration, &device->keyMap)) {
1162             mBuiltInKeyboardId = device->id;
1163         }
1164 
1165         // 'Q' key support = cheap test of whether this is an alpha-capable kbd
1166         if (hasKeycodeLocked(device, AKEYCODE_Q)) {
1167             device->classes |= INPUT_DEVICE_CLASS_ALPHAKEY;
1168         }
1169 
1170         // See if this device has a DPAD.
1171         if (hasKeycodeLocked(device, AKEYCODE_DPAD_UP) &&
1172                 hasKeycodeLocked(device, AKEYCODE_DPAD_DOWN) &&
1173                 hasKeycodeLocked(device, AKEYCODE_DPAD_LEFT) &&
1174                 hasKeycodeLocked(device, AKEYCODE_DPAD_RIGHT) &&
1175                 hasKeycodeLocked(device, AKEYCODE_DPAD_CENTER)) {
1176             device->classes |= INPUT_DEVICE_CLASS_DPAD;
1177         }
1178 
1179         // See if this device has a gamepad.
1180         for (size_t i = 0; i < sizeof(GAMEPAD_KEYCODES)/sizeof(GAMEPAD_KEYCODES[0]); i++) {
1181             if (hasKeycodeLocked(device, GAMEPAD_KEYCODES[i])) {
1182                 device->classes |= INPUT_DEVICE_CLASS_GAMEPAD;
1183                 break;
1184             }
1185         }
1186     }
1187 
1188     // If the device isn't recognized as something we handle, don't monitor it.
1189     if (device->classes == 0) {
1190         ALOGV("Dropping device: id=%d, path='%s', name='%s'",
1191                 deviceId, devicePath, device->identifier.name.string());
1192         delete device;
1193         return -1;
1194     }
1195 
1196     // Determine whether the device is external or internal.
1197     if (isExternalDeviceLocked(device)) {
1198         device->classes |= INPUT_DEVICE_CLASS_EXTERNAL;
1199     }
1200 
1201     // Register with epoll.
1202     struct epoll_event eventItem;
1203     memset(&eventItem, 0, sizeof(eventItem));
1204     eventItem.events = EPOLLIN;
1205     eventItem.data.u32 = deviceId;
1206     if (epoll_ctl(mEpollFd, EPOLL_CTL_ADD, fd, &eventItem)) {
1207         ALOGE("Could not add device fd to epoll instance.  errno=%d", errno);
1208         delete device;
1209         return -1;
1210     }
1211 
1212     // Enable wake-lock behavior on kernels that support it.
1213     // TODO: Only need this for devices that can really wake the system.
1214     bool usingSuspendBlockIoctl = !ioctl(fd, EVIOCSSUSPENDBLOCK, 1);
1215 
1216     // Tell the kernel that we want to use the monotonic clock for reporting timestamps
1217     // associated with input events.  This is important because the input system
1218     // uses the timestamps extensively and assumes they were recorded using the monotonic
1219     // clock.
1220     //
1221     // In older kernel, before Linux 3.4, there was no way to tell the kernel which
1222     // clock to use to input event timestamps.  The standard kernel behavior was to
1223     // record a real time timestamp, which isn't what we want.  Android kernels therefore
1224     // contained a patch to the evdev_event() function in drivers/input/evdev.c to
1225     // replace the call to do_gettimeofday() with ktime_get_ts() to cause the monotonic
1226     // clock to be used instead of the real time clock.
1227     //
1228     // As of Linux 3.4, there is a new EVIOCSCLOCKID ioctl to set the desired clock.
1229     // Therefore, we no longer require the Android-specific kernel patch described above
1230     // as long as we make sure to set select the monotonic clock.  We do that here.
1231     int clockId = CLOCK_MONOTONIC;
1232     bool usingClockIoctl = !ioctl(fd, EVIOCSCLOCKID, &clockId);
1233 
1234     ALOGI("New device: id=%d, fd=%d, path='%s', name='%s', classes=0x%x, "
1235             "configuration='%s', keyLayout='%s', keyCharacterMap='%s', builtinKeyboard=%s, "
1236             "usingSuspendBlockIoctl=%s, usingClockIoctl=%s",
1237          deviceId, fd, devicePath, device->identifier.name.string(),
1238          device->classes,
1239          device->configurationFile.string(),
1240          device->keyMap.keyLayoutFile.string(),
1241          device->keyMap.keyCharacterMapFile.string(),
1242          toString(mBuiltInKeyboardId == deviceId),
1243          toString(usingSuspendBlockIoctl), toString(usingClockIoctl));
1244 
1245     addDeviceLocked(device);
1246     return 0;
1247 }
1248 
createVirtualKeyboardLocked()1249 void EventHub::createVirtualKeyboardLocked() {
1250     InputDeviceIdentifier identifier;
1251     identifier.name = "Virtual";
1252     identifier.uniqueId = "<virtual>";
1253     setDescriptor(identifier);
1254 
1255     Device* device = new Device(-1, VIRTUAL_KEYBOARD_ID, String8("<virtual>"), identifier);
1256     device->classes = INPUT_DEVICE_CLASS_KEYBOARD
1257             | INPUT_DEVICE_CLASS_ALPHAKEY
1258             | INPUT_DEVICE_CLASS_DPAD
1259             | INPUT_DEVICE_CLASS_VIRTUAL;
1260     loadKeyMapLocked(device);
1261     addDeviceLocked(device);
1262 }
1263 
addDeviceLocked(Device * device)1264 void EventHub::addDeviceLocked(Device* device) {
1265     mDevices.add(device->id, device);
1266     device->next = mOpeningDevices;
1267     mOpeningDevices = device;
1268 }
1269 
loadConfigurationLocked(Device * device)1270 void EventHub::loadConfigurationLocked(Device* device) {
1271     device->configurationFile = getInputDeviceConfigurationFilePathByDeviceIdentifier(
1272             device->identifier, INPUT_DEVICE_CONFIGURATION_FILE_TYPE_CONFIGURATION);
1273     if (device->configurationFile.isEmpty()) {
1274         ALOGD("No input device configuration file found for device '%s'.",
1275                 device->identifier.name.string());
1276     } else {
1277         status_t status = PropertyMap::load(device->configurationFile,
1278                 &device->configuration);
1279         if (status) {
1280             ALOGE("Error loading input device configuration file for device '%s'.  "
1281                     "Using default configuration.",
1282                     device->identifier.name.string());
1283         }
1284     }
1285 }
1286 
loadVirtualKeyMapLocked(Device * device)1287 status_t EventHub::loadVirtualKeyMapLocked(Device* device) {
1288     // The virtual key map is supplied by the kernel as a system board property file.
1289     String8 path;
1290     path.append("/sys/board_properties/virtualkeys.");
1291     path.append(device->identifier.name);
1292     if (access(path.string(), R_OK)) {
1293         return NAME_NOT_FOUND;
1294     }
1295     return VirtualKeyMap::load(path, &device->virtualKeyMap);
1296 }
1297 
loadKeyMapLocked(Device * device)1298 status_t EventHub::loadKeyMapLocked(Device* device) {
1299     return device->keyMap.load(device->identifier, device->configuration);
1300 }
1301 
isExternalDeviceLocked(Device * device)1302 bool EventHub::isExternalDeviceLocked(Device* device) {
1303     if (device->configuration) {
1304         bool value;
1305         if (device->configuration->tryGetProperty(String8("device.internal"), value)) {
1306             return !value;
1307         }
1308     }
1309     return device->identifier.bus == BUS_USB || device->identifier.bus == BUS_BLUETOOTH;
1310 }
1311 
hasKeycodeLocked(Device * device,int keycode) const1312 bool EventHub::hasKeycodeLocked(Device* device, int keycode) const {
1313     if (!device->keyMap.haveKeyLayout() || !device->keyBitmask) {
1314         return false;
1315     }
1316 
1317     Vector<int32_t> scanCodes;
1318     device->keyMap.keyLayoutMap->findScanCodesForKey(keycode, &scanCodes);
1319     const size_t N = scanCodes.size();
1320     for (size_t i=0; i<N && i<=KEY_MAX; i++) {
1321         int32_t sc = scanCodes.itemAt(i);
1322         if (sc >= 0 && sc <= KEY_MAX && test_bit(sc, device->keyBitmask)) {
1323             return true;
1324         }
1325     }
1326 
1327     return false;
1328 }
1329 
closeDeviceByPathLocked(const char * devicePath)1330 status_t EventHub::closeDeviceByPathLocked(const char *devicePath) {
1331     Device* device = getDeviceByPathLocked(devicePath);
1332     if (device) {
1333         closeDeviceLocked(device);
1334         return 0;
1335     }
1336     ALOGV("Remove device: %s not found, device may already have been removed.", devicePath);
1337     return -1;
1338 }
1339 
closeAllDevicesLocked()1340 void EventHub::closeAllDevicesLocked() {
1341     while (mDevices.size() > 0) {
1342         closeDeviceLocked(mDevices.valueAt(mDevices.size() - 1));
1343     }
1344 }
1345 
closeDeviceLocked(Device * device)1346 void EventHub::closeDeviceLocked(Device* device) {
1347     ALOGI("Removed device: path=%s name=%s id=%d fd=%d classes=0x%x\n",
1348          device->path.string(), device->identifier.name.string(), device->id,
1349          device->fd, device->classes);
1350 
1351     if (device->id == mBuiltInKeyboardId) {
1352         ALOGW("built-in keyboard device %s (id=%d) is closing! the apps will not like this",
1353                 device->path.string(), mBuiltInKeyboardId);
1354         mBuiltInKeyboardId = NO_BUILT_IN_KEYBOARD;
1355     }
1356 
1357     if (!device->isVirtual()) {
1358         if (epoll_ctl(mEpollFd, EPOLL_CTL_DEL, device->fd, NULL)) {
1359             ALOGW("Could not remove device fd from epoll instance.  errno=%d", errno);
1360         }
1361     }
1362 
1363     mDevices.removeItem(device->id);
1364     device->close();
1365 
1366     // Unlink for opening devices list if it is present.
1367     Device* pred = NULL;
1368     bool found = false;
1369     for (Device* entry = mOpeningDevices; entry != NULL; ) {
1370         if (entry == device) {
1371             found = true;
1372             break;
1373         }
1374         pred = entry;
1375         entry = entry->next;
1376     }
1377     if (found) {
1378         // Unlink the device from the opening devices list then delete it.
1379         // We don't need to tell the client that the device was closed because
1380         // it does not even know it was opened in the first place.
1381         ALOGI("Device %s was immediately closed after opening.", device->path.string());
1382         if (pred) {
1383             pred->next = device->next;
1384         } else {
1385             mOpeningDevices = device->next;
1386         }
1387         delete device;
1388     } else {
1389         // Link into closing devices list.
1390         // The device will be deleted later after we have informed the client.
1391         device->next = mClosingDevices;
1392         mClosingDevices = device;
1393     }
1394 }
1395 
readNotifyLocked()1396 status_t EventHub::readNotifyLocked() {
1397     int res;
1398     char devname[PATH_MAX];
1399     char *filename;
1400     char event_buf[512];
1401     int event_size;
1402     int event_pos = 0;
1403     struct inotify_event *event;
1404 
1405     ALOGV("EventHub::readNotify nfd: %d\n", mINotifyFd);
1406     res = read(mINotifyFd, event_buf, sizeof(event_buf));
1407     if(res < (int)sizeof(*event)) {
1408         if(errno == EINTR)
1409             return 0;
1410         ALOGW("could not get event, %s\n", strerror(errno));
1411         return -1;
1412     }
1413     //printf("got %d bytes of event information\n", res);
1414 
1415     strcpy(devname, DEVICE_PATH);
1416     filename = devname + strlen(devname);
1417     *filename++ = '/';
1418 
1419     while(res >= (int)sizeof(*event)) {
1420         event = (struct inotify_event *)(event_buf + event_pos);
1421         //printf("%d: %08x \"%s\"\n", event->wd, event->mask, event->len ? event->name : "");
1422         if(event->len) {
1423             strcpy(filename, event->name);
1424             if(event->mask & IN_CREATE) {
1425                 openDeviceLocked(devname);
1426             } else {
1427                 ALOGI("Removing device '%s' due to inotify event\n", devname);
1428                 closeDeviceByPathLocked(devname);
1429             }
1430         }
1431         event_size = sizeof(*event) + event->len;
1432         res -= event_size;
1433         event_pos += event_size;
1434     }
1435     return 0;
1436 }
1437 
scanDirLocked(const char * dirname)1438 status_t EventHub::scanDirLocked(const char *dirname)
1439 {
1440     char devname[PATH_MAX];
1441     char *filename;
1442     DIR *dir;
1443     struct dirent *de;
1444     dir = opendir(dirname);
1445     if(dir == NULL)
1446         return -1;
1447     strcpy(devname, dirname);
1448     filename = devname + strlen(devname);
1449     *filename++ = '/';
1450     while((de = readdir(dir))) {
1451         if(de->d_name[0] == '.' &&
1452            (de->d_name[1] == '\0' ||
1453             (de->d_name[1] == '.' && de->d_name[2] == '\0')))
1454             continue;
1455         strcpy(filename, de->d_name);
1456         openDeviceLocked(devname);
1457     }
1458     closedir(dir);
1459     return 0;
1460 }
1461 
requestReopenDevices()1462 void EventHub::requestReopenDevices() {
1463     ALOGV("requestReopenDevices() called");
1464 
1465     AutoMutex _l(mLock);
1466     mNeedToReopenDevices = true;
1467 }
1468 
dump(String8 & dump)1469 void EventHub::dump(String8& dump) {
1470     dump.append("Event Hub State:\n");
1471 
1472     { // acquire lock
1473         AutoMutex _l(mLock);
1474 
1475         dump.appendFormat(INDENT "BuiltInKeyboardId: %d\n", mBuiltInKeyboardId);
1476 
1477         dump.append(INDENT "Devices:\n");
1478 
1479         for (size_t i = 0; i < mDevices.size(); i++) {
1480             const Device* device = mDevices.valueAt(i);
1481             if (mBuiltInKeyboardId == device->id) {
1482                 dump.appendFormat(INDENT2 "%d: %s (aka device 0 - built-in keyboard)\n",
1483                         device->id, device->identifier.name.string());
1484             } else {
1485                 dump.appendFormat(INDENT2 "%d: %s\n", device->id,
1486                         device->identifier.name.string());
1487             }
1488             dump.appendFormat(INDENT3 "Classes: 0x%08x\n", device->classes);
1489             dump.appendFormat(INDENT3 "Path: %s\n", device->path.string());
1490             dump.appendFormat(INDENT3 "Descriptor: %s\n", device->identifier.descriptor.string());
1491             dump.appendFormat(INDENT3 "Location: %s\n", device->identifier.location.string());
1492             dump.appendFormat(INDENT3 "UniqueId: %s\n", device->identifier.uniqueId.string());
1493             dump.appendFormat(INDENT3 "Identifier: bus=0x%04x, vendor=0x%04x, "
1494                     "product=0x%04x, version=0x%04x\n",
1495                     device->identifier.bus, device->identifier.vendor,
1496                     device->identifier.product, device->identifier.version);
1497             dump.appendFormat(INDENT3 "KeyLayoutFile: %s\n",
1498                     device->keyMap.keyLayoutFile.string());
1499             dump.appendFormat(INDENT3 "KeyCharacterMapFile: %s\n",
1500                     device->keyMap.keyCharacterMapFile.string());
1501             dump.appendFormat(INDENT3 "ConfigurationFile: %s\n",
1502                     device->configurationFile.string());
1503             dump.appendFormat(INDENT3 "HaveKeyboardLayoutOverlay: %s\n",
1504                     toString(device->overlayKeyMap != NULL));
1505         }
1506     } // release lock
1507 }
1508 
monitor()1509 void EventHub::monitor() {
1510     // Acquire and release the lock to ensure that the event hub has not deadlocked.
1511     mLock.lock();
1512     mLock.unlock();
1513 }
1514 
1515 
1516 }; // namespace android
1517