• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This header defines the BitcodeReader class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "BitcodeReader.h"
15 #include "BitReader_2_7.h"
16 
17 #include "llvm/Bitcode/ReaderWriter.h"
18 #include "llvm/Constants.h"
19 #include "llvm/DerivedTypes.h"
20 #include "llvm/InlineAsm.h"
21 #include "llvm/IntrinsicInst.h"
22 #include "llvm/Module.h"
23 #include "llvm/Operator.h"
24 #include "llvm/AutoUpgrade.h"
25 #include "llvm/ADT/SmallString.h"
26 #include "llvm/ADT/SmallVector.h"
27 #include "llvm/Support/MathExtras.h"
28 #include "llvm/Support/MemoryBuffer.h"
29 #include "llvm/OperandTraits.h"
30 
31 using namespace llvm;
32 using namespace llvm_2_7;
33 
34 #define METADATA_NODE_2_7             2
35 #define METADATA_FN_NODE_2_7          3
36 #define METADATA_NAMED_NODE_2_7       5
37 #define METADATA_ATTACHMENT_2_7       7
38 #define FUNC_CODE_INST_UNWIND_2_7     14
39 #define FUNC_CODE_INST_MALLOC_2_7     17
40 #define FUNC_CODE_INST_FREE_2_7       18
41 #define FUNC_CODE_INST_STORE_2_7      21
42 #define FUNC_CODE_INST_CALL_2_7       22
43 #define FUNC_CODE_INST_GETRESULT_2_7  25
44 #define FUNC_CODE_DEBUG_LOC_2_7       32
45 
46 #define TYPE_BLOCK_ID_OLD_3_0         10
47 #define TYPE_SYMTAB_BLOCK_ID_OLD_3_0  13
48 #define TYPE_CODE_STRUCT_OLD_3_0      10
49 
50 namespace {
51   /// This function strips all debug info intrinsics, except for llvm.dbg.declare.
52   /// If an llvm.dbg.declare intrinsic is invalid, then this function simply
53   /// strips that use.
CheckDebugInfoIntrinsics(Module * M)54   void CheckDebugInfoIntrinsics(Module *M) {
55     if (Function *FuncStart = M->getFunction("llvm.dbg.func.start")) {
56       while (!FuncStart->use_empty())
57         cast<CallInst>(FuncStart->use_back())->eraseFromParent();
58       FuncStart->eraseFromParent();
59     }
60 
61     if (Function *StopPoint = M->getFunction("llvm.dbg.stoppoint")) {
62       while (!StopPoint->use_empty())
63         cast<CallInst>(StopPoint->use_back())->eraseFromParent();
64       StopPoint->eraseFromParent();
65     }
66 
67     if (Function *RegionStart = M->getFunction("llvm.dbg.region.start")) {
68       while (!RegionStart->use_empty())
69         cast<CallInst>(RegionStart->use_back())->eraseFromParent();
70       RegionStart->eraseFromParent();
71     }
72 
73     if (Function *RegionEnd = M->getFunction("llvm.dbg.region.end")) {
74       while (!RegionEnd->use_empty())
75         cast<CallInst>(RegionEnd->use_back())->eraseFromParent();
76       RegionEnd->eraseFromParent();
77     }
78 
79     if (Function *Declare = M->getFunction("llvm.dbg.declare")) {
80       if (!Declare->use_empty()) {
81         DbgDeclareInst *DDI = cast<DbgDeclareInst>(Declare->use_back());
82         if (!isa<MDNode>(DDI->getArgOperand(0)) ||
83             !isa<MDNode>(DDI->getArgOperand(1))) {
84           while (!Declare->use_empty()) {
85             CallInst *CI = cast<CallInst>(Declare->use_back());
86             CI->eraseFromParent();
87           }
88           Declare->eraseFromParent();
89         }
90       }
91     }
92   }
93 } // end anonymous namespace
94 
FreeState()95 void BitcodeReader::FreeState() {
96   if (BufferOwned)
97     delete Buffer;
98   Buffer = 0;
99   std::vector<Type*>().swap(TypeList);
100   ValueList.clear();
101   MDValueList.clear();
102 
103   std::vector<AttrListPtr>().swap(MAttributes);
104   std::vector<BasicBlock*>().swap(FunctionBBs);
105   std::vector<Function*>().swap(FunctionsWithBodies);
106   DeferredFunctionInfo.clear();
107   MDKindMap.clear();
108 }
109 
110 //===----------------------------------------------------------------------===//
111 //  Helper functions to implement forward reference resolution, etc.
112 //===----------------------------------------------------------------------===//
113 
114 /// ConvertToString - Convert a string from a record into an std::string, return
115 /// true on failure.
116 template<typename StrTy>
ConvertToString(SmallVector<uint64_t,64> & Record,unsigned Idx,StrTy & Result)117 static bool ConvertToString(SmallVector<uint64_t, 64> &Record, unsigned Idx,
118                             StrTy &Result) {
119   if (Idx > Record.size())
120     return true;
121 
122   for (unsigned i = Idx, e = Record.size(); i != e; ++i)
123     Result += (char)Record[i];
124   return false;
125 }
126 
GetDecodedLinkage(unsigned Val)127 static GlobalValue::LinkageTypes GetDecodedLinkage(unsigned Val) {
128   switch (Val) {
129   default: // Map unknown/new linkages to external
130   case 0:  return GlobalValue::ExternalLinkage;
131   case 1:  return GlobalValue::WeakAnyLinkage;
132   case 2:  return GlobalValue::AppendingLinkage;
133   case 3:  return GlobalValue::InternalLinkage;
134   case 4:  return GlobalValue::LinkOnceAnyLinkage;
135   case 5:  return GlobalValue::DLLImportLinkage;
136   case 6:  return GlobalValue::DLLExportLinkage;
137   case 7:  return GlobalValue::ExternalWeakLinkage;
138   case 8:  return GlobalValue::CommonLinkage;
139   case 9:  return GlobalValue::PrivateLinkage;
140   case 10: return GlobalValue::WeakODRLinkage;
141   case 11: return GlobalValue::LinkOnceODRLinkage;
142   case 12: return GlobalValue::AvailableExternallyLinkage;
143   case 13: return GlobalValue::LinkerPrivateLinkage;
144   case 14: return GlobalValue::LinkerPrivateWeakLinkage;
145   case 15: return GlobalValue::LinkOnceODRAutoHideLinkage;
146   }
147 }
148 
GetDecodedVisibility(unsigned Val)149 static GlobalValue::VisibilityTypes GetDecodedVisibility(unsigned Val) {
150   switch (Val) {
151   default: // Map unknown visibilities to default.
152   case 0: return GlobalValue::DefaultVisibility;
153   case 1: return GlobalValue::HiddenVisibility;
154   case 2: return GlobalValue::ProtectedVisibility;
155   }
156 }
157 
GetDecodedThreadLocalMode(unsigned Val)158 static GlobalVariable::ThreadLocalMode GetDecodedThreadLocalMode(unsigned Val) {
159   switch (Val) {
160     case 0: return GlobalVariable::NotThreadLocal;
161     default: // Map unknown non-zero value to general dynamic.
162     case 1: return GlobalVariable::GeneralDynamicTLSModel;
163     case 2: return GlobalVariable::LocalDynamicTLSModel;
164     case 3: return GlobalVariable::InitialExecTLSModel;
165     case 4: return GlobalVariable::LocalExecTLSModel;
166   }
167 }
168 
GetDecodedCastOpcode(unsigned Val)169 static int GetDecodedCastOpcode(unsigned Val) {
170   switch (Val) {
171   default: return -1;
172   case bitc::CAST_TRUNC   : return Instruction::Trunc;
173   case bitc::CAST_ZEXT    : return Instruction::ZExt;
174   case bitc::CAST_SEXT    : return Instruction::SExt;
175   case bitc::CAST_FPTOUI  : return Instruction::FPToUI;
176   case bitc::CAST_FPTOSI  : return Instruction::FPToSI;
177   case bitc::CAST_UITOFP  : return Instruction::UIToFP;
178   case bitc::CAST_SITOFP  : return Instruction::SIToFP;
179   case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
180   case bitc::CAST_FPEXT   : return Instruction::FPExt;
181   case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
182   case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
183   case bitc::CAST_BITCAST : return Instruction::BitCast;
184   }
185 }
GetDecodedBinaryOpcode(unsigned Val,Type * Ty)186 static int GetDecodedBinaryOpcode(unsigned Val, Type *Ty) {
187   switch (Val) {
188   default: return -1;
189   case bitc::BINOP_ADD:
190     return Ty->isFPOrFPVectorTy() ? Instruction::FAdd : Instruction::Add;
191   case bitc::BINOP_SUB:
192     return Ty->isFPOrFPVectorTy() ? Instruction::FSub : Instruction::Sub;
193   case bitc::BINOP_MUL:
194     return Ty->isFPOrFPVectorTy() ? Instruction::FMul : Instruction::Mul;
195   case bitc::BINOP_UDIV: return Instruction::UDiv;
196   case bitc::BINOP_SDIV:
197     return Ty->isFPOrFPVectorTy() ? Instruction::FDiv : Instruction::SDiv;
198   case bitc::BINOP_UREM: return Instruction::URem;
199   case bitc::BINOP_SREM:
200     return Ty->isFPOrFPVectorTy() ? Instruction::FRem : Instruction::SRem;
201   case bitc::BINOP_SHL:  return Instruction::Shl;
202   case bitc::BINOP_LSHR: return Instruction::LShr;
203   case bitc::BINOP_ASHR: return Instruction::AShr;
204   case bitc::BINOP_AND:  return Instruction::And;
205   case bitc::BINOP_OR:   return Instruction::Or;
206   case bitc::BINOP_XOR:  return Instruction::Xor;
207   }
208 }
209 
210 namespace llvm {
211 namespace {
212   /// @brief A class for maintaining the slot number definition
213   /// as a placeholder for the actual definition for forward constants defs.
214   class ConstantPlaceHolder : public ConstantExpr {
215     void operator=(const ConstantPlaceHolder &); // DO NOT IMPLEMENT
216   public:
217     // allocate space for exactly one operand
operator new(size_t s)218     void *operator new(size_t s) {
219       return User::operator new(s, 1);
220     }
ConstantPlaceHolder(Type * Ty,LLVMContext & Context)221     explicit ConstantPlaceHolder(Type *Ty, LLVMContext& Context)
222       : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) {
223       Op<0>() = UndefValue::get(Type::getInt32Ty(Context));
224     }
225 
226     /// @brief Methods to support type inquiry through isa, cast, and dyn_cast.
227     //static inline bool classof(const ConstantPlaceHolder *) { return true; }
classof(const Value * V)228     static bool classof(const Value *V) {
229       return isa<ConstantExpr>(V) &&
230              cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1;
231     }
232 
233 
234     /// Provide fast operand accessors
235     //DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
236   };
237 }
238 
239 // FIXME: can we inherit this from ConstantExpr?
240 template <>
241 struct OperandTraits<ConstantPlaceHolder> :
242   public FixedNumOperandTraits<ConstantPlaceHolder, 1> {
243 };
244 }
245 
246 
AssignValue(Value * V,unsigned Idx)247 void BitcodeReaderValueList::AssignValue(Value *V, unsigned Idx) {
248   if (Idx == size()) {
249     push_back(V);
250     return;
251   }
252 
253   if (Idx >= size())
254     resize(Idx+1);
255 
256   WeakVH &OldV = ValuePtrs[Idx];
257   if (OldV == 0) {
258     OldV = V;
259     return;
260   }
261 
262   // Handle constants and non-constants (e.g. instrs) differently for
263   // efficiency.
264   if (Constant *PHC = dyn_cast<Constant>(&*OldV)) {
265     ResolveConstants.push_back(std::make_pair(PHC, Idx));
266     OldV = V;
267   } else {
268     // If there was a forward reference to this value, replace it.
269     Value *PrevVal = OldV;
270     OldV->replaceAllUsesWith(V);
271     delete PrevVal;
272   }
273 }
274 
275 
getConstantFwdRef(unsigned Idx,Type * Ty)276 Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx,
277                                                     Type *Ty) {
278   if (Idx >= size())
279     resize(Idx + 1);
280 
281   if (Value *V = ValuePtrs[Idx]) {
282     assert(Ty == V->getType() && "Type mismatch in constant table!");
283     return cast<Constant>(V);
284   }
285 
286   // Create and return a placeholder, which will later be RAUW'd.
287   Constant *C = new ConstantPlaceHolder(Ty, Context);
288   ValuePtrs[Idx] = C;
289   return C;
290 }
291 
getValueFwdRef(unsigned Idx,Type * Ty)292 Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, Type *Ty) {
293   if (Idx >= size())
294     resize(Idx + 1);
295 
296   if (Value *V = ValuePtrs[Idx]) {
297     assert((Ty == 0 || Ty == V->getType()) && "Type mismatch in value table!");
298     return V;
299   }
300 
301   // No type specified, must be invalid reference.
302   if (Ty == 0) return 0;
303 
304   // Create and return a placeholder, which will later be RAUW'd.
305   Value *V = new Argument(Ty);
306   ValuePtrs[Idx] = V;
307   return V;
308 }
309 
310 /// ResolveConstantForwardRefs - Once all constants are read, this method bulk
311 /// resolves any forward references.  The idea behind this is that we sometimes
312 /// get constants (such as large arrays) which reference *many* forward ref
313 /// constants.  Replacing each of these causes a lot of thrashing when
314 /// building/reuniquing the constant.  Instead of doing this, we look at all the
315 /// uses and rewrite all the place holders at once for any constant that uses
316 /// a placeholder.
ResolveConstantForwardRefs()317 void BitcodeReaderValueList::ResolveConstantForwardRefs() {
318   // Sort the values by-pointer so that they are efficient to look up with a
319   // binary search.
320   std::sort(ResolveConstants.begin(), ResolveConstants.end());
321 
322   SmallVector<Constant*, 64> NewOps;
323 
324   while (!ResolveConstants.empty()) {
325     Value *RealVal = operator[](ResolveConstants.back().second);
326     Constant *Placeholder = ResolveConstants.back().first;
327     ResolveConstants.pop_back();
328 
329     // Loop over all users of the placeholder, updating them to reference the
330     // new value.  If they reference more than one placeholder, update them all
331     // at once.
332     while (!Placeholder->use_empty()) {
333       Value::use_iterator UI = Placeholder->use_begin();
334       User *U = *UI;
335 
336       // If the using object isn't uniqued, just update the operands.  This
337       // handles instructions and initializers for global variables.
338       if (!isa<Constant>(U) || isa<GlobalValue>(U)) {
339         UI.getUse().set(RealVal);
340         continue;
341       }
342 
343       // Otherwise, we have a constant that uses the placeholder.  Replace that
344       // constant with a new constant that has *all* placeholder uses updated.
345       Constant *UserC = cast<Constant>(U);
346       for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end();
347            I != E; ++I) {
348         Value *NewOp;
349         if (!isa<ConstantPlaceHolder>(*I)) {
350           // Not a placeholder reference.
351           NewOp = *I;
352         } else if (*I == Placeholder) {
353           // Common case is that it just references this one placeholder.
354           NewOp = RealVal;
355         } else {
356           // Otherwise, look up the placeholder in ResolveConstants.
357           ResolveConstantsTy::iterator It =
358             std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(),
359                              std::pair<Constant*, unsigned>(cast<Constant>(*I),
360                                                             0));
361           assert(It != ResolveConstants.end() && It->first == *I);
362           NewOp = operator[](It->second);
363         }
364 
365         NewOps.push_back(cast<Constant>(NewOp));
366       }
367 
368       // Make the new constant.
369       Constant *NewC;
370       if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) {
371         NewC = ConstantArray::get(UserCA->getType(), NewOps);
372       } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) {
373         NewC = ConstantStruct::get(UserCS->getType(), NewOps);
374       } else if (isa<ConstantVector>(UserC)) {
375         NewC = ConstantVector::get(NewOps);
376       } else {
377         assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr.");
378         NewC = cast<ConstantExpr>(UserC)->getWithOperands(NewOps);
379       }
380 
381       UserC->replaceAllUsesWith(NewC);
382       UserC->destroyConstant();
383       NewOps.clear();
384     }
385 
386     // Update all ValueHandles, they should be the only users at this point.
387     Placeholder->replaceAllUsesWith(RealVal);
388     delete Placeholder;
389   }
390 }
391 
AssignValue(Value * V,unsigned Idx)392 void BitcodeReaderMDValueList::AssignValue(Value *V, unsigned Idx) {
393   if (Idx == size()) {
394     push_back(V);
395     return;
396   }
397 
398   if (Idx >= size())
399     resize(Idx+1);
400 
401   WeakVH &OldV = MDValuePtrs[Idx];
402   if (OldV == 0) {
403     OldV = V;
404     return;
405   }
406 
407   // If there was a forward reference to this value, replace it.
408   MDNode *PrevVal = cast<MDNode>(OldV);
409   OldV->replaceAllUsesWith(V);
410   MDNode::deleteTemporary(PrevVal);
411   // Deleting PrevVal sets Idx value in MDValuePtrs to null. Set new
412   // value for Idx.
413   MDValuePtrs[Idx] = V;
414 }
415 
getValueFwdRef(unsigned Idx)416 Value *BitcodeReaderMDValueList::getValueFwdRef(unsigned Idx) {
417   if (Idx >= size())
418     resize(Idx + 1);
419 
420   if (Value *V = MDValuePtrs[Idx]) {
421     assert(V->getType()->isMetadataTy() && "Type mismatch in value table!");
422     return V;
423   }
424 
425   // Create and return a placeholder, which will later be RAUW'd.
426   Value *V = MDNode::getTemporary(Context, ArrayRef<Value*>());
427   MDValuePtrs[Idx] = V;
428   return V;
429 }
430 
getTypeByID(unsigned ID)431 Type *BitcodeReader::getTypeByID(unsigned ID) {
432   // The type table size is always specified correctly.
433   if (ID >= TypeList.size())
434     return 0;
435 
436   if (Type *Ty = TypeList[ID])
437     return Ty;
438 
439   // If we have a forward reference, the only possible case is when it is to a
440   // named struct.  Just create a placeholder for now.
441   return TypeList[ID] = StructType::create(Context, "");
442 }
443 
444 /// FIXME: Remove in LLVM 3.1, only used by ParseOldTypeTable.
getTypeByIDOrNull(unsigned ID)445 Type *BitcodeReader::getTypeByIDOrNull(unsigned ID) {
446   if (ID >= TypeList.size())
447     TypeList.resize(ID+1);
448 
449   return TypeList[ID];
450 }
451 
452 
453 //===----------------------------------------------------------------------===//
454 //  Functions for parsing blocks from the bitcode file
455 //===----------------------------------------------------------------------===//
456 
ParseAttributeBlock()457 bool BitcodeReader::ParseAttributeBlock() {
458   if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
459     return Error("Malformed block record");
460 
461   if (!MAttributes.empty())
462     return Error("Multiple PARAMATTR blocks found!");
463 
464   SmallVector<uint64_t, 64> Record;
465 
466   SmallVector<AttributeWithIndex, 8> Attrs;
467 
468   // Read all the records.
469   while (1) {
470     unsigned Code = Stream.ReadCode();
471     if (Code == bitc::END_BLOCK) {
472       if (Stream.ReadBlockEnd())
473         return Error("Error at end of PARAMATTR block");
474       return false;
475     }
476 
477     if (Code == bitc::ENTER_SUBBLOCK) {
478       // No known subblocks, always skip them.
479       Stream.ReadSubBlockID();
480       if (Stream.SkipBlock())
481         return Error("Malformed block record");
482       continue;
483     }
484 
485     if (Code == bitc::DEFINE_ABBREV) {
486       Stream.ReadAbbrevRecord();
487       continue;
488     }
489 
490     // Read a record.
491     Record.clear();
492     switch (Stream.ReadRecord(Code, Record)) {
493     default:  // Default behavior: ignore.
494       break;
495     case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [paramidx0, attr0, ...]
496       if (Record.size() & 1)
497         return Error("Invalid ENTRY record");
498 
499       // FIXME : Remove this autoupgrade code in LLVM 3.0.
500       // If Function attributes are using index 0 then transfer them
501       // to index ~0. Index 0 is used for return value attributes but used to be
502       // used for function attributes.
503       Attributes RetAttribute = Attribute::None;
504       Attributes FnAttribute = Attribute::None;
505       for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
506         // FIXME: remove in LLVM 3.0
507         // The alignment is stored as a 16-bit raw value from bits 31--16.
508         // We shift the bits above 31 down by 11 bits.
509 
510         unsigned Alignment = (Record[i+1] & (0xffffull << 16)) >> 16;
511         if (Alignment && !isPowerOf2_32(Alignment))
512           return Error("Alignment is not a power of two.");
513 
514         Attributes ReconstitutedAttr(Record[i+1] & 0xffff);
515         if (Alignment)
516           ReconstitutedAttr |= Attribute::constructAlignmentFromInt(Alignment);
517         ReconstitutedAttr |=
518             Attributes((Record[i+1] & (0xffffull << 32)) >> 11);
519 
520         Record[i+1] = ReconstitutedAttr.Raw();
521         if (Record[i] == 0)
522           RetAttribute = ReconstitutedAttr;
523         else if (Record[i] == ~0U)
524           FnAttribute = ReconstitutedAttr;
525       }
526 
527       Attributes OldRetAttrs = (Attribute::NoUnwind|Attribute::NoReturn |
528                              Attribute::ReadOnly|Attribute::ReadNone);
529 
530       if (FnAttribute == Attribute::None && RetAttribute != Attribute::None &&
531           (RetAttribute & OldRetAttrs)) {
532         if (FnAttribute == Attribute::None) { // add a slot so they get added.
533           Record.push_back(~0U);
534           Record.push_back(0);
535         }
536 
537         FnAttribute  |= RetAttribute & OldRetAttrs;
538         RetAttribute &= ~OldRetAttrs;
539       }
540 
541       for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
542         if (Record[i] == 0) {
543           if (RetAttribute != Attribute::None)
544             Attrs.push_back(AttributeWithIndex::get(0, RetAttribute));
545         } else if (Record[i] == ~0U) {
546           if (FnAttribute != Attribute::None)
547             Attrs.push_back(AttributeWithIndex::get(~0U, FnAttribute));
548         } else if (Attributes(Record[i+1]) != Attribute::None)
549           Attrs.push_back(AttributeWithIndex::get(Record[i],
550                                                   Attributes(Record[i+1])));
551       }
552 
553       MAttributes.push_back(AttrListPtr::get(Attrs));
554       Attrs.clear();
555       break;
556     }
557     }
558   }
559 }
560 
ParseTypeTable()561 bool BitcodeReader::ParseTypeTable() {
562   if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW))
563     return Error("Malformed block record");
564 
565   return ParseTypeTableBody();
566 }
567 
ParseTypeTableBody()568 bool BitcodeReader::ParseTypeTableBody() {
569   if (!TypeList.empty())
570     return Error("Multiple TYPE_BLOCKs found!");
571 
572   SmallVector<uint64_t, 64> Record;
573   unsigned NumRecords = 0;
574 
575   SmallString<64> TypeName;
576 
577   // Read all the records for this type table.
578   while (1) {
579     unsigned Code = Stream.ReadCode();
580     if (Code == bitc::END_BLOCK) {
581       if (NumRecords != TypeList.size())
582         return Error("Invalid type forward reference in TYPE_BLOCK");
583       if (Stream.ReadBlockEnd())
584         return Error("Error at end of type table block");
585       return false;
586     }
587 
588     if (Code == bitc::ENTER_SUBBLOCK) {
589       // No known subblocks, always skip them.
590       Stream.ReadSubBlockID();
591       if (Stream.SkipBlock())
592         return Error("Malformed block record");
593       continue;
594     }
595 
596     if (Code == bitc::DEFINE_ABBREV) {
597       Stream.ReadAbbrevRecord();
598       continue;
599     }
600 
601     // Read a record.
602     Record.clear();
603     Type *ResultTy = 0;
604     switch (Stream.ReadRecord(Code, Record)) {
605     default: return Error("unknown type in type table");
606     case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
607       // TYPE_CODE_NUMENTRY contains a count of the number of types in the
608       // type list.  This allows us to reserve space.
609       if (Record.size() < 1)
610         return Error("Invalid TYPE_CODE_NUMENTRY record");
611       TypeList.resize(Record[0]);
612       continue;
613     case bitc::TYPE_CODE_VOID:      // VOID
614       ResultTy = Type::getVoidTy(Context);
615       break;
616     case bitc::TYPE_CODE_FLOAT:     // FLOAT
617       ResultTy = Type::getFloatTy(Context);
618       break;
619     case bitc::TYPE_CODE_DOUBLE:    // DOUBLE
620       ResultTy = Type::getDoubleTy(Context);
621       break;
622     case bitc::TYPE_CODE_X86_FP80:  // X86_FP80
623       ResultTy = Type::getX86_FP80Ty(Context);
624       break;
625     case bitc::TYPE_CODE_FP128:     // FP128
626       ResultTy = Type::getFP128Ty(Context);
627       break;
628     case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
629       ResultTy = Type::getPPC_FP128Ty(Context);
630       break;
631     case bitc::TYPE_CODE_LABEL:     // LABEL
632       ResultTy = Type::getLabelTy(Context);
633       break;
634     case bitc::TYPE_CODE_METADATA:  // METADATA
635       ResultTy = Type::getMetadataTy(Context);
636       break;
637     case bitc::TYPE_CODE_X86_MMX:   // X86_MMX
638       ResultTy = Type::getX86_MMXTy(Context);
639       break;
640     case bitc::TYPE_CODE_INTEGER:   // INTEGER: [width]
641       if (Record.size() < 1)
642         return Error("Invalid Integer type record");
643 
644       ResultTy = IntegerType::get(Context, Record[0]);
645       break;
646     case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
647                                     //          [pointee type, address space]
648       if (Record.size() < 1)
649         return Error("Invalid POINTER type record");
650       unsigned AddressSpace = 0;
651       if (Record.size() == 2)
652         AddressSpace = Record[1];
653       ResultTy = getTypeByID(Record[0]);
654       if (ResultTy == 0) return Error("invalid element type in pointer type");
655       ResultTy = PointerType::get(ResultTy, AddressSpace);
656       break;
657     }
658     case bitc::TYPE_CODE_FUNCTION_OLD: {
659       // FIXME: attrid is dead, remove it in LLVM 3.0
660       // FUNCTION: [vararg, attrid, retty, paramty x N]
661       if (Record.size() < 3)
662         return Error("Invalid FUNCTION type record");
663       std::vector<Type*> ArgTys;
664       for (unsigned i = 3, e = Record.size(); i != e; ++i) {
665         if (Type *T = getTypeByID(Record[i]))
666           ArgTys.push_back(T);
667         else
668           break;
669       }
670 
671       ResultTy = getTypeByID(Record[2]);
672       if (ResultTy == 0 || ArgTys.size() < Record.size()-3)
673         return Error("invalid type in function type");
674 
675       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
676       break;
677     }
678     case bitc::TYPE_CODE_STRUCT_ANON: {  // STRUCT: [ispacked, eltty x N]
679       if (Record.size() < 1)
680         return Error("Invalid STRUCT type record");
681       std::vector<Type*> EltTys;
682       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
683         if (Type *T = getTypeByID(Record[i]))
684           EltTys.push_back(T);
685         else
686           break;
687       }
688       if (EltTys.size() != Record.size()-1)
689         return Error("invalid type in struct type");
690       ResultTy = StructType::get(Context, EltTys, Record[0]);
691       break;
692     }
693     case bitc::TYPE_CODE_STRUCT_NAME:   // STRUCT_NAME: [strchr x N]
694       if (ConvertToString(Record, 0, TypeName))
695         return Error("Invalid STRUCT_NAME record");
696       continue;
697 
698     case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N]
699       if (Record.size() < 1)
700         return Error("Invalid STRUCT type record");
701 
702       if (NumRecords >= TypeList.size())
703         return Error("invalid TYPE table");
704 
705       // Check to see if this was forward referenced, if so fill in the temp.
706       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
707       if (Res) {
708         Res->setName(TypeName);
709         TypeList[NumRecords] = 0;
710       } else  // Otherwise, create a new struct.
711         Res = StructType::create(Context, TypeName);
712       TypeName.clear();
713 
714       SmallVector<Type*, 8> EltTys;
715       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
716         if (Type *T = getTypeByID(Record[i]))
717           EltTys.push_back(T);
718         else
719           break;
720       }
721       if (EltTys.size() != Record.size()-1)
722         return Error("invalid STRUCT type record");
723       Res->setBody(EltTys, Record[0]);
724       ResultTy = Res;
725       break;
726     }
727     case bitc::TYPE_CODE_OPAQUE: {       // OPAQUE: []
728       if (Record.size() != 1)
729         return Error("Invalid OPAQUE type record");
730 
731       if (NumRecords >= TypeList.size())
732         return Error("invalid TYPE table");
733 
734       // Check to see if this was forward referenced, if so fill in the temp.
735       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
736       if (Res) {
737         Res->setName(TypeName);
738         TypeList[NumRecords] = 0;
739       } else  // Otherwise, create a new struct with no body.
740         Res = StructType::create(Context, TypeName);
741       TypeName.clear();
742       ResultTy = Res;
743       break;
744     }
745     case bitc::TYPE_CODE_ARRAY:     // ARRAY: [numelts, eltty]
746       if (Record.size() < 2)
747         return Error("Invalid ARRAY type record");
748       if ((ResultTy = getTypeByID(Record[1])))
749         ResultTy = ArrayType::get(ResultTy, Record[0]);
750       else
751         return Error("Invalid ARRAY type element");
752       break;
753     case bitc::TYPE_CODE_VECTOR:    // VECTOR: [numelts, eltty]
754       if (Record.size() < 2)
755         return Error("Invalid VECTOR type record");
756       if ((ResultTy = getTypeByID(Record[1])))
757         ResultTy = VectorType::get(ResultTy, Record[0]);
758       else
759         return Error("Invalid ARRAY type element");
760       break;
761     }
762 
763     if (NumRecords >= TypeList.size())
764       return Error("invalid TYPE table");
765     assert(ResultTy && "Didn't read a type?");
766     assert(TypeList[NumRecords] == 0 && "Already read type?");
767     TypeList[NumRecords++] = ResultTy;
768   }
769 }
770 
771 // FIXME: Remove in LLVM 3.1
ParseOldTypeTable()772 bool BitcodeReader::ParseOldTypeTable() {
773   if (Stream.EnterSubBlock(TYPE_BLOCK_ID_OLD_3_0))
774     return Error("Malformed block record");
775 
776   if (!TypeList.empty())
777     return Error("Multiple TYPE_BLOCKs found!");
778 
779 
780   // While horrible, we have no good ordering of types in the bc file.  Just
781   // iteratively parse types out of the bc file in multiple passes until we get
782   // them all.  Do this by saving a cursor for the start of the type block.
783   BitstreamCursor StartOfTypeBlockCursor(Stream);
784 
785   unsigned NumTypesRead = 0;
786 
787   SmallVector<uint64_t, 64> Record;
788 RestartScan:
789   unsigned NextTypeID = 0;
790   bool ReadAnyTypes = false;
791 
792   // Read all the records for this type table.
793   while (1) {
794     unsigned Code = Stream.ReadCode();
795     if (Code == bitc::END_BLOCK) {
796       if (NextTypeID != TypeList.size())
797         return Error("Invalid type forward reference in TYPE_BLOCK_ID_OLD");
798 
799       // If we haven't read all of the types yet, iterate again.
800       if (NumTypesRead != TypeList.size()) {
801         // If we didn't successfully read any types in this pass, then we must
802         // have an unhandled forward reference.
803         if (!ReadAnyTypes)
804           return Error("Obsolete bitcode contains unhandled recursive type");
805 
806         Stream = StartOfTypeBlockCursor;
807         goto RestartScan;
808       }
809 
810       if (Stream.ReadBlockEnd())
811         return Error("Error at end of type table block");
812       return false;
813     }
814 
815     if (Code == bitc::ENTER_SUBBLOCK) {
816       // No known subblocks, always skip them.
817       Stream.ReadSubBlockID();
818       if (Stream.SkipBlock())
819         return Error("Malformed block record");
820       continue;
821     }
822 
823     if (Code == bitc::DEFINE_ABBREV) {
824       Stream.ReadAbbrevRecord();
825       continue;
826     }
827 
828     // Read a record.
829     Record.clear();
830     Type *ResultTy = 0;
831     switch (Stream.ReadRecord(Code, Record)) {
832     default: return Error("unknown type in type table");
833     case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
834       // TYPE_CODE_NUMENTRY contains a count of the number of types in the
835       // type list.  This allows us to reserve space.
836       if (Record.size() < 1)
837         return Error("Invalid TYPE_CODE_NUMENTRY record");
838       TypeList.resize(Record[0]);
839       continue;
840     case bitc::TYPE_CODE_VOID:      // VOID
841       ResultTy = Type::getVoidTy(Context);
842       break;
843     case bitc::TYPE_CODE_FLOAT:     // FLOAT
844       ResultTy = Type::getFloatTy(Context);
845       break;
846     case bitc::TYPE_CODE_DOUBLE:    // DOUBLE
847       ResultTy = Type::getDoubleTy(Context);
848       break;
849     case bitc::TYPE_CODE_X86_FP80:  // X86_FP80
850       ResultTy = Type::getX86_FP80Ty(Context);
851       break;
852     case bitc::TYPE_CODE_FP128:     // FP128
853       ResultTy = Type::getFP128Ty(Context);
854       break;
855     case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
856       ResultTy = Type::getPPC_FP128Ty(Context);
857       break;
858     case bitc::TYPE_CODE_LABEL:     // LABEL
859       ResultTy = Type::getLabelTy(Context);
860       break;
861     case bitc::TYPE_CODE_METADATA:  // METADATA
862       ResultTy = Type::getMetadataTy(Context);
863       break;
864     case bitc::TYPE_CODE_X86_MMX:   // X86_MMX
865       ResultTy = Type::getX86_MMXTy(Context);
866       break;
867     case bitc::TYPE_CODE_INTEGER:   // INTEGER: [width]
868       if (Record.size() < 1)
869         return Error("Invalid Integer type record");
870       ResultTy = IntegerType::get(Context, Record[0]);
871       break;
872     case bitc::TYPE_CODE_OPAQUE:    // OPAQUE
873       if (NextTypeID < TypeList.size() && TypeList[NextTypeID] == 0)
874         ResultTy = StructType::create(Context, "");
875       break;
876     case TYPE_CODE_STRUCT_OLD_3_0: {// STRUCT_OLD
877       if (NextTypeID >= TypeList.size()) break;
878       // If we already read it, don't reprocess.
879       if (TypeList[NextTypeID] &&
880           !cast<StructType>(TypeList[NextTypeID])->isOpaque())
881         break;
882 
883       // Set a type.
884       if (TypeList[NextTypeID] == 0)
885         TypeList[NextTypeID] = StructType::create(Context, "");
886 
887       std::vector<Type*> EltTys;
888       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
889         if (Type *Elt = getTypeByIDOrNull(Record[i]))
890           EltTys.push_back(Elt);
891         else
892           break;
893       }
894 
895       if (EltTys.size() != Record.size()-1)
896         break;      // Not all elements are ready.
897 
898       cast<StructType>(TypeList[NextTypeID])->setBody(EltTys, Record[0]);
899       ResultTy = TypeList[NextTypeID];
900       TypeList[NextTypeID] = 0;
901       break;
902     }
903     case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
904       //          [pointee type, address space]
905       if (Record.size() < 1)
906         return Error("Invalid POINTER type record");
907       unsigned AddressSpace = 0;
908       if (Record.size() == 2)
909         AddressSpace = Record[1];
910       if ((ResultTy = getTypeByIDOrNull(Record[0])))
911         ResultTy = PointerType::get(ResultTy, AddressSpace);
912       break;
913     }
914     case bitc::TYPE_CODE_FUNCTION_OLD: {
915       // FIXME: attrid is dead, remove it in LLVM 3.0
916       // FUNCTION: [vararg, attrid, retty, paramty x N]
917       if (Record.size() < 3)
918         return Error("Invalid FUNCTION type record");
919       std::vector<Type*> ArgTys;
920       for (unsigned i = 3, e = Record.size(); i != e; ++i) {
921         if (Type *Elt = getTypeByIDOrNull(Record[i]))
922           ArgTys.push_back(Elt);
923         else
924           break;
925       }
926       if (ArgTys.size()+3 != Record.size())
927         break;  // Something was null.
928       if ((ResultTy = getTypeByIDOrNull(Record[2])))
929         ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
930       break;
931     }
932     case bitc::TYPE_CODE_ARRAY:     // ARRAY: [numelts, eltty]
933       if (Record.size() < 2)
934         return Error("Invalid ARRAY type record");
935       if ((ResultTy = getTypeByIDOrNull(Record[1])))
936         ResultTy = ArrayType::get(ResultTy, Record[0]);
937       break;
938     case bitc::TYPE_CODE_VECTOR:    // VECTOR: [numelts, eltty]
939       if (Record.size() < 2)
940         return Error("Invalid VECTOR type record");
941       if ((ResultTy = getTypeByIDOrNull(Record[1])))
942         ResultTy = VectorType::get(ResultTy, Record[0]);
943       break;
944     }
945 
946     if (NextTypeID >= TypeList.size())
947       return Error("invalid TYPE table");
948 
949     if (ResultTy && TypeList[NextTypeID] == 0) {
950       ++NumTypesRead;
951       ReadAnyTypes = true;
952 
953       TypeList[NextTypeID] = ResultTy;
954     }
955 
956     ++NextTypeID;
957   }
958 }
959 
960 
ParseOldTypeSymbolTable()961 bool BitcodeReader::ParseOldTypeSymbolTable() {
962   if (Stream.EnterSubBlock(TYPE_SYMTAB_BLOCK_ID_OLD_3_0))
963     return Error("Malformed block record");
964 
965   SmallVector<uint64_t, 64> Record;
966 
967   // Read all the records for this type table.
968   std::string TypeName;
969   while (1) {
970     unsigned Code = Stream.ReadCode();
971     if (Code == bitc::END_BLOCK) {
972       if (Stream.ReadBlockEnd())
973         return Error("Error at end of type symbol table block");
974       return false;
975     }
976 
977     if (Code == bitc::ENTER_SUBBLOCK) {
978       // No known subblocks, always skip them.
979       Stream.ReadSubBlockID();
980       if (Stream.SkipBlock())
981         return Error("Malformed block record");
982       continue;
983     }
984 
985     if (Code == bitc::DEFINE_ABBREV) {
986       Stream.ReadAbbrevRecord();
987       continue;
988     }
989 
990     // Read a record.
991     Record.clear();
992     switch (Stream.ReadRecord(Code, Record)) {
993     default:  // Default behavior: unknown type.
994       break;
995     case bitc::TST_CODE_ENTRY:    // TST_ENTRY: [typeid, namechar x N]
996       if (ConvertToString(Record, 1, TypeName))
997         return Error("Invalid TST_ENTRY record");
998       unsigned TypeID = Record[0];
999       if (TypeID >= TypeList.size())
1000         return Error("Invalid Type ID in TST_ENTRY record");
1001 
1002       // Only apply the type name to a struct type with no name.
1003       if (StructType *STy = dyn_cast<StructType>(TypeList[TypeID]))
1004         if (!STy->isLiteral() && !STy->hasName())
1005           STy->setName(TypeName);
1006       TypeName.clear();
1007       break;
1008     }
1009   }
1010 }
1011 
ParseValueSymbolTable()1012 bool BitcodeReader::ParseValueSymbolTable() {
1013   if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
1014     return Error("Malformed block record");
1015 
1016   SmallVector<uint64_t, 64> Record;
1017 
1018   // Read all the records for this value table.
1019   SmallString<128> ValueName;
1020   while (1) {
1021     unsigned Code = Stream.ReadCode();
1022     if (Code == bitc::END_BLOCK) {
1023       if (Stream.ReadBlockEnd())
1024         return Error("Error at end of value symbol table block");
1025       return false;
1026     }
1027     if (Code == bitc::ENTER_SUBBLOCK) {
1028       // No known subblocks, always skip them.
1029       Stream.ReadSubBlockID();
1030       if (Stream.SkipBlock())
1031         return Error("Malformed block record");
1032       continue;
1033     }
1034 
1035     if (Code == bitc::DEFINE_ABBREV) {
1036       Stream.ReadAbbrevRecord();
1037       continue;
1038     }
1039 
1040     // Read a record.
1041     Record.clear();
1042     switch (Stream.ReadRecord(Code, Record)) {
1043     default:  // Default behavior: unknown type.
1044       break;
1045     case bitc::VST_CODE_ENTRY: {  // VST_ENTRY: [valueid, namechar x N]
1046       if (ConvertToString(Record, 1, ValueName))
1047         return Error("Invalid VST_ENTRY record");
1048       unsigned ValueID = Record[0];
1049       if (ValueID >= ValueList.size())
1050         return Error("Invalid Value ID in VST_ENTRY record");
1051       Value *V = ValueList[ValueID];
1052 
1053       V->setName(StringRef(ValueName.data(), ValueName.size()));
1054       ValueName.clear();
1055       break;
1056     }
1057     case bitc::VST_CODE_BBENTRY: {
1058       if (ConvertToString(Record, 1, ValueName))
1059         return Error("Invalid VST_BBENTRY record");
1060       BasicBlock *BB = getBasicBlock(Record[0]);
1061       if (BB == 0)
1062         return Error("Invalid BB ID in VST_BBENTRY record");
1063 
1064       BB->setName(StringRef(ValueName.data(), ValueName.size()));
1065       ValueName.clear();
1066       break;
1067     }
1068     }
1069   }
1070 }
1071 
ParseMetadata()1072 bool BitcodeReader::ParseMetadata() {
1073   unsigned NextMDValueNo = MDValueList.size();
1074 
1075   if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID))
1076     return Error("Malformed block record");
1077 
1078   SmallVector<uint64_t, 64> Record;
1079 
1080   // Read all the records.
1081   while (1) {
1082     unsigned Code = Stream.ReadCode();
1083     if (Code == bitc::END_BLOCK) {
1084       if (Stream.ReadBlockEnd())
1085         return Error("Error at end of PARAMATTR block");
1086       return false;
1087     }
1088 
1089     if (Code == bitc::ENTER_SUBBLOCK) {
1090       // No known subblocks, always skip them.
1091       Stream.ReadSubBlockID();
1092       if (Stream.SkipBlock())
1093         return Error("Malformed block record");
1094       continue;
1095     }
1096 
1097     if (Code == bitc::DEFINE_ABBREV) {
1098       Stream.ReadAbbrevRecord();
1099       continue;
1100     }
1101 
1102     bool IsFunctionLocal = false;
1103     // Read a record.
1104     Record.clear();
1105     Code = Stream.ReadRecord(Code, Record);
1106     switch (Code) {
1107     default:  // Default behavior: ignore.
1108       break;
1109     case bitc::METADATA_NAME: {
1110       // Read named of the named metadata.
1111       unsigned NameLength = Record.size();
1112       SmallString<8> Name;
1113       Name.resize(NameLength);
1114       for (unsigned i = 0; i != NameLength; ++i)
1115         Name[i] = Record[i];
1116       Record.clear();
1117       Code = Stream.ReadCode();
1118 
1119       // METADATA_NAME is always followed by METADATA_NAMED_NODE.
1120       unsigned NextBitCode = Stream.ReadRecord(Code, Record);
1121       if (NextBitCode == METADATA_NAMED_NODE_2_7) {
1122         LLVM2_7MetadataDetected = true;
1123       } else if (NextBitCode != bitc::METADATA_NAMED_NODE) {
1124         assert(!"Invalid Named Metadata record.");  (void)NextBitCode;
1125       }
1126 
1127       // Read named metadata elements.
1128       unsigned Size = Record.size();
1129       NamedMDNode *NMD = TheModule->getOrInsertNamedMetadata(Name);
1130       for (unsigned i = 0; i != Size; ++i) {
1131         MDNode *MD = dyn_cast<MDNode>(MDValueList.getValueFwdRef(Record[i]));
1132         if (MD == 0)
1133           return Error("Malformed metadata record");
1134         NMD->addOperand(MD);
1135       }
1136 
1137       if (LLVM2_7MetadataDetected) {
1138         MDValueList.AssignValue(0, NextMDValueNo++);
1139       }
1140       break;
1141     }
1142     case METADATA_FN_NODE_2_7:
1143     case bitc::METADATA_FN_NODE:
1144       IsFunctionLocal = true;
1145       // fall-through
1146     case METADATA_NODE_2_7:
1147     case bitc::METADATA_NODE: {
1148       if (Code == METADATA_FN_NODE_2_7 ||
1149           Code == METADATA_NODE_2_7) {
1150         LLVM2_7MetadataDetected = true;
1151       }
1152 
1153       if (Record.size() % 2 == 1)
1154         return Error("Invalid METADATA_NODE record");
1155 
1156       unsigned Size = Record.size();
1157       SmallVector<Value*, 8> Elts;
1158       for (unsigned i = 0; i != Size; i += 2) {
1159         Type *Ty = getTypeByID(Record[i]);
1160         if (!Ty) return Error("Invalid METADATA_NODE record");
1161         if (Ty->isMetadataTy())
1162           Elts.push_back(MDValueList.getValueFwdRef(Record[i+1]));
1163         else if (!Ty->isVoidTy())
1164           Elts.push_back(ValueList.getValueFwdRef(Record[i+1], Ty));
1165         else
1166           Elts.push_back(NULL);
1167       }
1168       Value *V = MDNode::getWhenValsUnresolved(Context, Elts, IsFunctionLocal);
1169       IsFunctionLocal = false;
1170       MDValueList.AssignValue(V, NextMDValueNo++);
1171       break;
1172     }
1173     case bitc::METADATA_STRING: {
1174       unsigned MDStringLength = Record.size();
1175       SmallString<8> String;
1176       String.resize(MDStringLength);
1177       for (unsigned i = 0; i != MDStringLength; ++i)
1178         String[i] = Record[i];
1179       Value *V = MDString::get(Context,
1180                                StringRef(String.data(), String.size()));
1181       MDValueList.AssignValue(V, NextMDValueNo++);
1182       break;
1183     }
1184     case bitc::METADATA_KIND: {
1185       unsigned RecordLength = Record.size();
1186       if (Record.empty() || RecordLength < 2)
1187         return Error("Invalid METADATA_KIND record");
1188       SmallString<8> Name;
1189       Name.resize(RecordLength-1);
1190       unsigned Kind = Record[0];
1191       for (unsigned i = 1; i != RecordLength; ++i)
1192         Name[i-1] = Record[i];
1193 
1194       unsigned NewKind = TheModule->getMDKindID(Name.str());
1195       if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second)
1196         return Error("Conflicting METADATA_KIND records");
1197       break;
1198     }
1199     }
1200   }
1201 }
1202 
1203 /// DecodeSignRotatedValue - Decode a signed value stored with the sign bit in
1204 /// the LSB for dense VBR encoding.
DecodeSignRotatedValue(uint64_t V)1205 static uint64_t DecodeSignRotatedValue(uint64_t V) {
1206   if ((V & 1) == 0)
1207     return V >> 1;
1208   if (V != 1)
1209     return -(V >> 1);
1210   // There is no such thing as -0 with integers.  "-0" really means MININT.
1211   return 1ULL << 63;
1212 }
1213 
1214 /// ResolveGlobalAndAliasInits - Resolve all of the initializers for global
1215 /// values and aliases that we can.
ResolveGlobalAndAliasInits()1216 bool BitcodeReader::ResolveGlobalAndAliasInits() {
1217   std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist;
1218   std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist;
1219 
1220   GlobalInitWorklist.swap(GlobalInits);
1221   AliasInitWorklist.swap(AliasInits);
1222 
1223   while (!GlobalInitWorklist.empty()) {
1224     unsigned ValID = GlobalInitWorklist.back().second;
1225     if (ValID >= ValueList.size()) {
1226       // Not ready to resolve this yet, it requires something later in the file.
1227       GlobalInits.push_back(GlobalInitWorklist.back());
1228     } else {
1229       if (Constant *C = dyn_cast<Constant>(ValueList[ValID]))
1230         GlobalInitWorklist.back().first->setInitializer(C);
1231       else
1232         return Error("Global variable initializer is not a constant!");
1233     }
1234     GlobalInitWorklist.pop_back();
1235   }
1236 
1237   while (!AliasInitWorklist.empty()) {
1238     unsigned ValID = AliasInitWorklist.back().second;
1239     if (ValID >= ValueList.size()) {
1240       AliasInits.push_back(AliasInitWorklist.back());
1241     } else {
1242       if (Constant *C = dyn_cast<Constant>(ValueList[ValID]))
1243         AliasInitWorklist.back().first->setAliasee(C);
1244       else
1245         return Error("Alias initializer is not a constant!");
1246     }
1247     AliasInitWorklist.pop_back();
1248   }
1249   return false;
1250 }
1251 
ParseConstants()1252 bool BitcodeReader::ParseConstants() {
1253   if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
1254     return Error("Malformed block record");
1255 
1256   SmallVector<uint64_t, 64> Record;
1257 
1258   // Read all the records for this value table.
1259   Type *CurTy = Type::getInt32Ty(Context);
1260   unsigned NextCstNo = ValueList.size();
1261   while (1) {
1262     unsigned Code = Stream.ReadCode();
1263     if (Code == bitc::END_BLOCK)
1264       break;
1265 
1266     if (Code == bitc::ENTER_SUBBLOCK) {
1267       // No known subblocks, always skip them.
1268       Stream.ReadSubBlockID();
1269       if (Stream.SkipBlock())
1270         return Error("Malformed block record");
1271       continue;
1272     }
1273 
1274     if (Code == bitc::DEFINE_ABBREV) {
1275       Stream.ReadAbbrevRecord();
1276       continue;
1277     }
1278 
1279     // Read a record.
1280     Record.clear();
1281     Value *V = 0;
1282     unsigned BitCode = Stream.ReadRecord(Code, Record);
1283     switch (BitCode) {
1284     default:  // Default behavior: unknown constant
1285     case bitc::CST_CODE_UNDEF:     // UNDEF
1286       V = UndefValue::get(CurTy);
1287       break;
1288     case bitc::CST_CODE_SETTYPE:   // SETTYPE: [typeid]
1289       if (Record.empty())
1290         return Error("Malformed CST_SETTYPE record");
1291       if (Record[0] >= TypeList.size())
1292         return Error("Invalid Type ID in CST_SETTYPE record");
1293       CurTy = TypeList[Record[0]];
1294       continue;  // Skip the ValueList manipulation.
1295     case bitc::CST_CODE_NULL:      // NULL
1296       V = Constant::getNullValue(CurTy);
1297       break;
1298     case bitc::CST_CODE_INTEGER:   // INTEGER: [intval]
1299       if (!CurTy->isIntegerTy() || Record.empty())
1300         return Error("Invalid CST_INTEGER record");
1301       V = ConstantInt::get(CurTy, DecodeSignRotatedValue(Record[0]));
1302       break;
1303     case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
1304       if (!CurTy->isIntegerTy() || Record.empty())
1305         return Error("Invalid WIDE_INTEGER record");
1306 
1307       unsigned NumWords = Record.size();
1308       SmallVector<uint64_t, 8> Words;
1309       Words.resize(NumWords);
1310       for (unsigned i = 0; i != NumWords; ++i)
1311         Words[i] = DecodeSignRotatedValue(Record[i]);
1312       V = ConstantInt::get(Context,
1313                            APInt(cast<IntegerType>(CurTy)->getBitWidth(),
1314                                  Words));
1315       break;
1316     }
1317     case bitc::CST_CODE_FLOAT: {    // FLOAT: [fpval]
1318       if (Record.empty())
1319         return Error("Invalid FLOAT record");
1320       if (CurTy->isFloatTy())
1321         V = ConstantFP::get(Context, APFloat(APInt(32, (uint32_t)Record[0])));
1322       else if (CurTy->isDoubleTy())
1323         V = ConstantFP::get(Context, APFloat(APInt(64, Record[0])));
1324       else if (CurTy->isX86_FP80Ty()) {
1325         // Bits are not stored the same way as a normal i80 APInt, compensate.
1326         uint64_t Rearrange[2];
1327         Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
1328         Rearrange[1] = Record[0] >> 48;
1329         V = ConstantFP::get(Context, APFloat(APInt(80, Rearrange)));
1330       } else if (CurTy->isFP128Ty())
1331         V = ConstantFP::get(Context, APFloat(APInt(128, Record), true));
1332       else if (CurTy->isPPC_FP128Ty())
1333         V = ConstantFP::get(Context, APFloat(APInt(128, Record)));
1334       else
1335         V = UndefValue::get(CurTy);
1336       break;
1337     }
1338 
1339     case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
1340       if (Record.empty())
1341         return Error("Invalid CST_AGGREGATE record");
1342 
1343       unsigned Size = Record.size();
1344       std::vector<Constant*> Elts;
1345 
1346       if (StructType *STy = dyn_cast<StructType>(CurTy)) {
1347         for (unsigned i = 0; i != Size; ++i)
1348           Elts.push_back(ValueList.getConstantFwdRef(Record[i],
1349                                                      STy->getElementType(i)));
1350         V = ConstantStruct::get(STy, Elts);
1351       } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) {
1352         Type *EltTy = ATy->getElementType();
1353         for (unsigned i = 0; i != Size; ++i)
1354           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
1355         V = ConstantArray::get(ATy, Elts);
1356       } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) {
1357         Type *EltTy = VTy->getElementType();
1358         for (unsigned i = 0; i != Size; ++i)
1359           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
1360         V = ConstantVector::get(Elts);
1361       } else {
1362         V = UndefValue::get(CurTy);
1363       }
1364       break;
1365     }
1366     case bitc::CST_CODE_STRING: { // STRING: [values]
1367       if (Record.empty())
1368         return Error("Invalid CST_AGGREGATE record");
1369 
1370       ArrayType *ATy = cast<ArrayType>(CurTy);
1371       Type *EltTy = ATy->getElementType();
1372 
1373       unsigned Size = Record.size();
1374       std::vector<Constant*> Elts;
1375       for (unsigned i = 0; i != Size; ++i)
1376         Elts.push_back(ConstantInt::get(EltTy, Record[i]));
1377       V = ConstantArray::get(ATy, Elts);
1378       break;
1379     }
1380     case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
1381       if (Record.empty())
1382         return Error("Invalid CST_AGGREGATE record");
1383 
1384       ArrayType *ATy = cast<ArrayType>(CurTy);
1385       Type *EltTy = ATy->getElementType();
1386 
1387       unsigned Size = Record.size();
1388       std::vector<Constant*> Elts;
1389       for (unsigned i = 0; i != Size; ++i)
1390         Elts.push_back(ConstantInt::get(EltTy, Record[i]));
1391       Elts.push_back(Constant::getNullValue(EltTy));
1392       V = ConstantArray::get(ATy, Elts);
1393       break;
1394     }
1395     case bitc::CST_CODE_CE_BINOP: {  // CE_BINOP: [opcode, opval, opval]
1396       if (Record.size() < 3) return Error("Invalid CE_BINOP record");
1397       int Opc = GetDecodedBinaryOpcode(Record[0], CurTy);
1398       if (Opc < 0) {
1399         V = UndefValue::get(CurTy);  // Unknown binop.
1400       } else {
1401         Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
1402         Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy);
1403         unsigned Flags = 0;
1404         if (Record.size() >= 4) {
1405           if (Opc == Instruction::Add ||
1406               Opc == Instruction::Sub ||
1407               Opc == Instruction::Mul ||
1408               Opc == Instruction::Shl) {
1409             if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
1410               Flags |= OverflowingBinaryOperator::NoSignedWrap;
1411             if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
1412               Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
1413           } else if (Opc == Instruction::SDiv ||
1414                      Opc == Instruction::UDiv ||
1415                      Opc == Instruction::LShr ||
1416                      Opc == Instruction::AShr) {
1417             if (Record[3] & (1 << bitc::PEO_EXACT))
1418               Flags |= SDivOperator::IsExact;
1419           }
1420         }
1421         V = ConstantExpr::get(Opc, LHS, RHS, Flags);
1422       }
1423       break;
1424     }
1425     case bitc::CST_CODE_CE_CAST: {  // CE_CAST: [opcode, opty, opval]
1426       if (Record.size() < 3) return Error("Invalid CE_CAST record");
1427       int Opc = GetDecodedCastOpcode(Record[0]);
1428       if (Opc < 0) {
1429         V = UndefValue::get(CurTy);  // Unknown cast.
1430       } else {
1431         Type *OpTy = getTypeByID(Record[1]);
1432         if (!OpTy) return Error("Invalid CE_CAST record");
1433         Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy);
1434         V = ConstantExpr::getCast(Opc, Op, CurTy);
1435       }
1436       break;
1437     }
1438     case bitc::CST_CODE_CE_INBOUNDS_GEP:
1439     case bitc::CST_CODE_CE_GEP: {  // CE_GEP:        [n x operands]
1440       if (Record.size() & 1) return Error("Invalid CE_GEP record");
1441       SmallVector<Constant*, 16> Elts;
1442       for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
1443         Type *ElTy = getTypeByID(Record[i]);
1444         if (!ElTy) return Error("Invalid CE_GEP record");
1445         Elts.push_back(ValueList.getConstantFwdRef(Record[i+1], ElTy));
1446       }
1447       if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP)
1448         V = ConstantExpr::getInBoundsGetElementPtr(Elts[0],
1449           llvm::ArrayRef<llvm::Constant*>(&Elts[1], Elts.size() - 1));
1450       else
1451         V = ConstantExpr::getGetElementPtr(Elts[0],
1452           llvm::ArrayRef<llvm::Constant*>(&Elts[1], Elts.size() - 1));
1453       break;
1454     }
1455     case bitc::CST_CODE_CE_SELECT:  // CE_SELECT: [opval#, opval#, opval#]
1456       if (Record.size() < 3) return Error("Invalid CE_SELECT record");
1457       V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0],
1458                                                               Type::getInt1Ty(Context)),
1459                                   ValueList.getConstantFwdRef(Record[1],CurTy),
1460                                   ValueList.getConstantFwdRef(Record[2],CurTy));
1461       break;
1462     case bitc::CST_CODE_CE_EXTRACTELT: { // CE_EXTRACTELT: [opty, opval, opval]
1463       if (Record.size() < 3) return Error("Invalid CE_EXTRACTELT record");
1464       VectorType *OpTy =
1465         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
1466       if (OpTy == 0) return Error("Invalid CE_EXTRACTELT record");
1467       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
1468       Constant *Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
1469       V = ConstantExpr::getExtractElement(Op0, Op1);
1470       break;
1471     }
1472     case bitc::CST_CODE_CE_INSERTELT: { // CE_INSERTELT: [opval, opval, opval]
1473       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
1474       if (Record.size() < 3 || OpTy == 0)
1475         return Error("Invalid CE_INSERTELT record");
1476       Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
1477       Constant *Op1 = ValueList.getConstantFwdRef(Record[1],
1478                                                   OpTy->getElementType());
1479       Constant *Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
1480       V = ConstantExpr::getInsertElement(Op0, Op1, Op2);
1481       break;
1482     }
1483     case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
1484       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
1485       if (Record.size() < 3 || OpTy == 0)
1486         return Error("Invalid CE_SHUFFLEVEC record");
1487       Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
1488       Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy);
1489       Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
1490                                                  OpTy->getNumElements());
1491       Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy);
1492       V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
1493       break;
1494     }
1495     case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
1496       VectorType *RTy = dyn_cast<VectorType>(CurTy);
1497       VectorType *OpTy =
1498         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
1499       if (Record.size() < 4 || RTy == 0 || OpTy == 0)
1500         return Error("Invalid CE_SHUFVEC_EX record");
1501       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
1502       Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
1503       Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
1504                                                  RTy->getNumElements());
1505       Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy);
1506       V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
1507       break;
1508     }
1509     case bitc::CST_CODE_CE_CMP: {     // CE_CMP: [opty, opval, opval, pred]
1510       if (Record.size() < 4) return Error("Invalid CE_CMP record");
1511       Type *OpTy = getTypeByID(Record[0]);
1512       if (OpTy == 0) return Error("Invalid CE_CMP record");
1513       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
1514       Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
1515 
1516       if (OpTy->isFPOrFPVectorTy())
1517         V = ConstantExpr::getFCmp(Record[3], Op0, Op1);
1518       else
1519         V = ConstantExpr::getICmp(Record[3], Op0, Op1);
1520       break;
1521     }
1522     case bitc::CST_CODE_INLINEASM: {
1523       if (Record.size() < 2) return Error("Invalid INLINEASM record");
1524       std::string AsmStr, ConstrStr;
1525       bool HasSideEffects = Record[0] & 1;
1526       bool IsAlignStack = Record[0] >> 1;
1527       unsigned AsmStrSize = Record[1];
1528       if (2+AsmStrSize >= Record.size())
1529         return Error("Invalid INLINEASM record");
1530       unsigned ConstStrSize = Record[2+AsmStrSize];
1531       if (3+AsmStrSize+ConstStrSize > Record.size())
1532         return Error("Invalid INLINEASM record");
1533 
1534       for (unsigned i = 0; i != AsmStrSize; ++i)
1535         AsmStr += (char)Record[2+i];
1536       for (unsigned i = 0; i != ConstStrSize; ++i)
1537         ConstrStr += (char)Record[3+AsmStrSize+i];
1538       PointerType *PTy = cast<PointerType>(CurTy);
1539       V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()),
1540                          AsmStr, ConstrStr, HasSideEffects, IsAlignStack);
1541       break;
1542     }
1543     case bitc::CST_CODE_BLOCKADDRESS:{
1544       if (Record.size() < 3) return Error("Invalid CE_BLOCKADDRESS record");
1545       Type *FnTy = getTypeByID(Record[0]);
1546       if (FnTy == 0) return Error("Invalid CE_BLOCKADDRESS record");
1547       Function *Fn =
1548         dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy));
1549       if (Fn == 0) return Error("Invalid CE_BLOCKADDRESS record");
1550 
1551       GlobalVariable *FwdRef = new GlobalVariable(*Fn->getParent(),
1552                                                   Type::getInt8Ty(Context),
1553                                             false, GlobalValue::InternalLinkage,
1554                                                   0, "");
1555       BlockAddrFwdRefs[Fn].push_back(std::make_pair(Record[2], FwdRef));
1556       V = FwdRef;
1557       break;
1558     }
1559     }
1560 
1561     ValueList.AssignValue(V, NextCstNo);
1562     ++NextCstNo;
1563   }
1564 
1565   if (NextCstNo != ValueList.size())
1566     return Error("Invalid constant reference!");
1567 
1568   if (Stream.ReadBlockEnd())
1569     return Error("Error at end of constants block");
1570 
1571   // Once all the constants have been read, go through and resolve forward
1572   // references.
1573   ValueList.ResolveConstantForwardRefs();
1574   return false;
1575 }
1576 
1577 /// RememberAndSkipFunctionBody - When we see the block for a function body,
1578 /// remember where it is and then skip it.  This lets us lazily deserialize the
1579 /// functions.
RememberAndSkipFunctionBody()1580 bool BitcodeReader::RememberAndSkipFunctionBody() {
1581   // Get the function we are talking about.
1582   if (FunctionsWithBodies.empty())
1583     return Error("Insufficient function protos");
1584 
1585   Function *Fn = FunctionsWithBodies.back();
1586   FunctionsWithBodies.pop_back();
1587 
1588   // Save the current stream state.
1589   uint64_t CurBit = Stream.GetCurrentBitNo();
1590   DeferredFunctionInfo[Fn] = CurBit;
1591 
1592   // Skip over the function block for now.
1593   if (Stream.SkipBlock())
1594     return Error("Malformed block record");
1595   return false;
1596 }
1597 
ParseModule()1598 bool BitcodeReader::ParseModule() {
1599   if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
1600     return Error("Malformed block record");
1601 
1602   SmallVector<uint64_t, 64> Record;
1603   std::vector<std::string> SectionTable;
1604   std::vector<std::string> GCTable;
1605 
1606   // Read all the records for this module.
1607   while (!Stream.AtEndOfStream()) {
1608     unsigned Code = Stream.ReadCode();
1609     if (Code == bitc::END_BLOCK) {
1610       if (Stream.ReadBlockEnd())
1611         return Error("Error at end of module block");
1612 
1613       // Patch the initializers for globals and aliases up.
1614       ResolveGlobalAndAliasInits();
1615       if (!GlobalInits.empty() || !AliasInits.empty())
1616         return Error("Malformed global initializer set");
1617       if (!FunctionsWithBodies.empty())
1618         return Error("Too few function bodies found");
1619 
1620       // Look for intrinsic functions which need to be upgraded at some point
1621       for (Module::iterator FI = TheModule->begin(), FE = TheModule->end();
1622            FI != FE; ++FI) {
1623         Function* NewFn;
1624         if (UpgradeIntrinsicFunction(FI, NewFn))
1625           UpgradedIntrinsics.push_back(std::make_pair(FI, NewFn));
1626       }
1627 
1628       // Look for global variables which need to be renamed.
1629       for (Module::global_iterator
1630              GI = TheModule->global_begin(), GE = TheModule->global_end();
1631            GI != GE; ++GI)
1632         UpgradeGlobalVariable(GI);
1633 
1634       // Force deallocation of memory for these vectors to favor the client that
1635       // want lazy deserialization.
1636       std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits);
1637       std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits);
1638       std::vector<Function*>().swap(FunctionsWithBodies);
1639       return false;
1640     }
1641 
1642     if (Code == bitc::ENTER_SUBBLOCK) {
1643       switch (Stream.ReadSubBlockID()) {
1644       default:  // Skip unknown content.
1645         if (Stream.SkipBlock())
1646           return Error("Malformed block record");
1647         break;
1648       case bitc::BLOCKINFO_BLOCK_ID:
1649         if (Stream.ReadBlockInfoBlock())
1650           return Error("Malformed BlockInfoBlock");
1651         break;
1652       case bitc::PARAMATTR_BLOCK_ID:
1653         if (ParseAttributeBlock())
1654           return true;
1655         break;
1656       case bitc::TYPE_BLOCK_ID_NEW:
1657         if (ParseTypeTable())
1658           return true;
1659         break;
1660       case TYPE_BLOCK_ID_OLD_3_0:
1661         if (ParseOldTypeTable())
1662           return true;
1663         break;
1664       case TYPE_SYMTAB_BLOCK_ID_OLD_3_0:
1665         if (ParseOldTypeSymbolTable())
1666           return true;
1667         break;
1668       case bitc::VALUE_SYMTAB_BLOCK_ID:
1669         if (ParseValueSymbolTable())
1670           return true;
1671         break;
1672       case bitc::CONSTANTS_BLOCK_ID:
1673         if (ParseConstants() || ResolveGlobalAndAliasInits())
1674           return true;
1675         break;
1676       case bitc::METADATA_BLOCK_ID:
1677         if (ParseMetadata())
1678           return true;
1679         break;
1680       case bitc::FUNCTION_BLOCK_ID:
1681         // If this is the first function body we've seen, reverse the
1682         // FunctionsWithBodies list.
1683         if (!HasReversedFunctionsWithBodies) {
1684           std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
1685           HasReversedFunctionsWithBodies = true;
1686         }
1687 
1688         if (RememberAndSkipFunctionBody())
1689           return true;
1690         break;
1691       }
1692       continue;
1693     }
1694 
1695     if (Code == bitc::DEFINE_ABBREV) {
1696       Stream.ReadAbbrevRecord();
1697       continue;
1698     }
1699 
1700     // Read a record.
1701     switch (Stream.ReadRecord(Code, Record)) {
1702     default: break;  // Default behavior, ignore unknown content.
1703     case bitc::MODULE_CODE_VERSION:  // VERSION: [version#]
1704       if (Record.size() < 1)
1705         return Error("Malformed MODULE_CODE_VERSION");
1706       // Only version #0 is supported so far.
1707       if (Record[0] != 0)
1708         return Error("Unknown bitstream version!");
1709       break;
1710     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
1711       std::string S;
1712       if (ConvertToString(Record, 0, S))
1713         return Error("Invalid MODULE_CODE_TRIPLE record");
1714       TheModule->setTargetTriple(S);
1715       break;
1716     }
1717     case bitc::MODULE_CODE_DATALAYOUT: {  // DATALAYOUT: [strchr x N]
1718       std::string S;
1719       if (ConvertToString(Record, 0, S))
1720         return Error("Invalid MODULE_CODE_DATALAYOUT record");
1721       TheModule->setDataLayout(S);
1722       break;
1723     }
1724     case bitc::MODULE_CODE_ASM: {  // ASM: [strchr x N]
1725       std::string S;
1726       if (ConvertToString(Record, 0, S))
1727         return Error("Invalid MODULE_CODE_ASM record");
1728       TheModule->setModuleInlineAsm(S);
1729       break;
1730     }
1731     case bitc::MODULE_CODE_DEPLIB: {  // DEPLIB: [strchr x N]
1732       std::string S;
1733       if (ConvertToString(Record, 0, S))
1734         return Error("Invalid MODULE_CODE_DEPLIB record");
1735       TheModule->addLibrary(S);
1736       break;
1737     }
1738     case bitc::MODULE_CODE_SECTIONNAME: {  // SECTIONNAME: [strchr x N]
1739       std::string S;
1740       if (ConvertToString(Record, 0, S))
1741         return Error("Invalid MODULE_CODE_SECTIONNAME record");
1742       SectionTable.push_back(S);
1743       break;
1744     }
1745     case bitc::MODULE_CODE_GCNAME: {  // SECTIONNAME: [strchr x N]
1746       std::string S;
1747       if (ConvertToString(Record, 0, S))
1748         return Error("Invalid MODULE_CODE_GCNAME record");
1749       GCTable.push_back(S);
1750       break;
1751     }
1752     // GLOBALVAR: [pointer type, isconst, initid,
1753     //             linkage, alignment, section, visibility, threadlocal,
1754     //             unnamed_addr]
1755     case bitc::MODULE_CODE_GLOBALVAR: {
1756       if (Record.size() < 6)
1757         return Error("Invalid MODULE_CODE_GLOBALVAR record");
1758       Type *Ty = getTypeByID(Record[0]);
1759       if (!Ty) return Error("Invalid MODULE_CODE_GLOBALVAR record");
1760       if (!Ty->isPointerTy())
1761         return Error("Global not a pointer type!");
1762       unsigned AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
1763       Ty = cast<PointerType>(Ty)->getElementType();
1764 
1765       bool isConstant = Record[1];
1766       GlobalValue::LinkageTypes Linkage = GetDecodedLinkage(Record[3]);
1767       unsigned Alignment = (1 << Record[4]) >> 1;
1768       std::string Section;
1769       if (Record[5]) {
1770         if (Record[5]-1 >= SectionTable.size())
1771           return Error("Invalid section ID");
1772         Section = SectionTable[Record[5]-1];
1773       }
1774       GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
1775       if (Record.size() > 6)
1776         Visibility = GetDecodedVisibility(Record[6]);
1777 
1778       GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal;
1779       if (Record.size() > 7)
1780         TLM = GetDecodedThreadLocalMode(Record[7]);
1781 
1782       bool UnnamedAddr = false;
1783       if (Record.size() > 8)
1784         UnnamedAddr = Record[8];
1785 
1786       GlobalVariable *NewGV =
1787         new GlobalVariable(*TheModule, Ty, isConstant, Linkage, 0, "", 0,
1788                            TLM, AddressSpace);
1789       NewGV->setAlignment(Alignment);
1790       if (!Section.empty())
1791         NewGV->setSection(Section);
1792       NewGV->setVisibility(Visibility);
1793       NewGV->setUnnamedAddr(UnnamedAddr);
1794 
1795       ValueList.push_back(NewGV);
1796 
1797       // Remember which value to use for the global initializer.
1798       if (unsigned InitID = Record[2])
1799         GlobalInits.push_back(std::make_pair(NewGV, InitID-1));
1800       break;
1801     }
1802     // FUNCTION:  [type, callingconv, isproto, linkage, paramattr,
1803     //             alignment, section, visibility, gc, unnamed_addr]
1804     case bitc::MODULE_CODE_FUNCTION: {
1805       if (Record.size() < 8)
1806         return Error("Invalid MODULE_CODE_FUNCTION record");
1807       Type *Ty = getTypeByID(Record[0]);
1808       if (!Ty) return Error("Invalid MODULE_CODE_FUNCTION record");
1809       if (!Ty->isPointerTy())
1810         return Error("Function not a pointer type!");
1811       FunctionType *FTy =
1812         dyn_cast<FunctionType>(cast<PointerType>(Ty)->getElementType());
1813       if (!FTy)
1814         return Error("Function not a pointer to function type!");
1815 
1816       Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage,
1817                                         "", TheModule);
1818 
1819       Func->setCallingConv(static_cast<CallingConv::ID>(Record[1]));
1820       bool isProto = Record[2];
1821       Func->setLinkage(GetDecodedLinkage(Record[3]));
1822       Func->setAttributes(getAttributes(Record[4]));
1823 
1824       Func->setAlignment((1 << Record[5]) >> 1);
1825       if (Record[6]) {
1826         if (Record[6]-1 >= SectionTable.size())
1827           return Error("Invalid section ID");
1828         Func->setSection(SectionTable[Record[6]-1]);
1829       }
1830       Func->setVisibility(GetDecodedVisibility(Record[7]));
1831       if (Record.size() > 8 && Record[8]) {
1832         if (Record[8]-1 > GCTable.size())
1833           return Error("Invalid GC ID");
1834         Func->setGC(GCTable[Record[8]-1].c_str());
1835       }
1836       bool UnnamedAddr = false;
1837       if (Record.size() > 9)
1838         UnnamedAddr = Record[9];
1839       Func->setUnnamedAddr(UnnamedAddr);
1840       ValueList.push_back(Func);
1841 
1842       // If this is a function with a body, remember the prototype we are
1843       // creating now, so that we can match up the body with them later.
1844       if (!isProto)
1845         FunctionsWithBodies.push_back(Func);
1846       break;
1847     }
1848     // ALIAS: [alias type, aliasee val#, linkage]
1849     // ALIAS: [alias type, aliasee val#, linkage, visibility]
1850     case bitc::MODULE_CODE_ALIAS: {
1851       if (Record.size() < 3)
1852         return Error("Invalid MODULE_ALIAS record");
1853       Type *Ty = getTypeByID(Record[0]);
1854       if (!Ty) return Error("Invalid MODULE_ALIAS record");
1855       if (!Ty->isPointerTy())
1856         return Error("Function not a pointer type!");
1857 
1858       GlobalAlias *NewGA = new GlobalAlias(Ty, GetDecodedLinkage(Record[2]),
1859                                            "", 0, TheModule);
1860       // Old bitcode files didn't have visibility field.
1861       if (Record.size() > 3)
1862         NewGA->setVisibility(GetDecodedVisibility(Record[3]));
1863       ValueList.push_back(NewGA);
1864       AliasInits.push_back(std::make_pair(NewGA, Record[1]));
1865       break;
1866     }
1867     /// MODULE_CODE_PURGEVALS: [numvals]
1868     case bitc::MODULE_CODE_PURGEVALS:
1869       // Trim down the value list to the specified size.
1870       if (Record.size() < 1 || Record[0] > ValueList.size())
1871         return Error("Invalid MODULE_PURGEVALS record");
1872       ValueList.shrinkTo(Record[0]);
1873       break;
1874     }
1875     Record.clear();
1876   }
1877 
1878   return Error("Premature end of bitstream");
1879 }
1880 
ParseBitcodeInto(Module * M)1881 bool BitcodeReader::ParseBitcodeInto(Module *M) {
1882   TheModule = 0;
1883 
1884   const unsigned char *BufPtr = (unsigned char *)Buffer->getBufferStart();
1885   const unsigned char *BufEnd = BufPtr+Buffer->getBufferSize();
1886 
1887   if (Buffer->getBufferSize() & 3) {
1888     if (!isRawBitcode(BufPtr, BufEnd) && !isBitcodeWrapper(BufPtr, BufEnd))
1889       return Error("Invalid bitcode signature");
1890     else
1891       return Error("Bitcode stream should be a multiple of 4 bytes in length");
1892   }
1893 
1894   // If we have a wrapper header, parse it and ignore the non-bc file contents.
1895   // The magic number is 0x0B17C0DE stored in little endian.
1896   if (isBitcodeWrapper(BufPtr, BufEnd))
1897     if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true))
1898       return Error("Invalid bitcode wrapper header");
1899 
1900   StreamFile.init(BufPtr, BufEnd);
1901   Stream.init(StreamFile);
1902 
1903   // Sniff for the signature.
1904   if (Stream.Read(8) != 'B' ||
1905       Stream.Read(8) != 'C' ||
1906       Stream.Read(4) != 0x0 ||
1907       Stream.Read(4) != 0xC ||
1908       Stream.Read(4) != 0xE ||
1909       Stream.Read(4) != 0xD)
1910     return Error("Invalid bitcode signature");
1911 
1912   // We expect a number of well-defined blocks, though we don't necessarily
1913   // need to understand them all.
1914   while (!Stream.AtEndOfStream()) {
1915     unsigned Code = Stream.ReadCode();
1916 
1917     if (Code != bitc::ENTER_SUBBLOCK) {
1918 
1919       // The ranlib in xcode 4 will align archive members by appending newlines to the
1920       // end of them. If this file size is a multiple of 4 but not 8, we have to read and
1921       // ignore these final 4 bytes :-(
1922       if (Stream.GetAbbrevIDWidth() == 2 && Code == 2 &&
1923           Stream.Read(6) == 2 && Stream.Read(24) == 0xa0a0a &&
1924 	  Stream.AtEndOfStream())
1925         return false;
1926 
1927       return Error("Invalid record at top-level");
1928     }
1929 
1930     unsigned BlockID = Stream.ReadSubBlockID();
1931 
1932     // We only know the MODULE subblock ID.
1933     switch (BlockID) {
1934     case bitc::BLOCKINFO_BLOCK_ID:
1935       if (Stream.ReadBlockInfoBlock())
1936         return Error("Malformed BlockInfoBlock");
1937       break;
1938     case bitc::MODULE_BLOCK_ID:
1939       // Reject multiple MODULE_BLOCK's in a single bitstream.
1940       if (TheModule)
1941         return Error("Multiple MODULE_BLOCKs in same stream");
1942       TheModule = M;
1943       if (ParseModule())
1944         return true;
1945       break;
1946     default:
1947       if (Stream.SkipBlock())
1948         return Error("Malformed block record");
1949       break;
1950     }
1951   }
1952 
1953   return false;
1954 }
1955 
ParseModuleTriple(std::string & Triple)1956 bool BitcodeReader::ParseModuleTriple(std::string &Triple) {
1957   if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
1958     return Error("Malformed block record");
1959 
1960   SmallVector<uint64_t, 64> Record;
1961 
1962   // Read all the records for this module.
1963   while (!Stream.AtEndOfStream()) {
1964     unsigned Code = Stream.ReadCode();
1965     if (Code == bitc::END_BLOCK) {
1966       if (Stream.ReadBlockEnd())
1967         return Error("Error at end of module block");
1968 
1969       return false;
1970     }
1971 
1972     if (Code == bitc::ENTER_SUBBLOCK) {
1973       switch (Stream.ReadSubBlockID()) {
1974       default:  // Skip unknown content.
1975         if (Stream.SkipBlock())
1976           return Error("Malformed block record");
1977         break;
1978       }
1979       continue;
1980     }
1981 
1982     if (Code == bitc::DEFINE_ABBREV) {
1983       Stream.ReadAbbrevRecord();
1984       continue;
1985     }
1986 
1987     // Read a record.
1988     switch (Stream.ReadRecord(Code, Record)) {
1989     default: break;  // Default behavior, ignore unknown content.
1990     case bitc::MODULE_CODE_VERSION:  // VERSION: [version#]
1991       if (Record.size() < 1)
1992         return Error("Malformed MODULE_CODE_VERSION");
1993       // Only version #0 is supported so far.
1994       if (Record[0] != 0)
1995         return Error("Unknown bitstream version!");
1996       break;
1997     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
1998       std::string S;
1999       if (ConvertToString(Record, 0, S))
2000         return Error("Invalid MODULE_CODE_TRIPLE record");
2001       Triple = S;
2002       break;
2003     }
2004     }
2005     Record.clear();
2006   }
2007 
2008   return Error("Premature end of bitstream");
2009 }
2010 
ParseTriple(std::string & Triple)2011 bool BitcodeReader::ParseTriple(std::string &Triple) {
2012   if (Buffer->getBufferSize() & 3)
2013     return Error("Bitcode stream should be a multiple of 4 bytes in length");
2014 
2015   const unsigned char *BufPtr = (unsigned char *)Buffer->getBufferStart();
2016   const unsigned char *BufEnd = BufPtr+Buffer->getBufferSize();
2017 
2018   // If we have a wrapper header, parse it and ignore the non-bc file contents.
2019   // The magic number is 0x0B17C0DE stored in little endian.
2020   if (isBitcodeWrapper(BufPtr, BufEnd))
2021     if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true))
2022       return Error("Invalid bitcode wrapper header");
2023 
2024   StreamFile.init(BufPtr, BufEnd);
2025   Stream.init(StreamFile);
2026 
2027   // Sniff for the signature.
2028   if (Stream.Read(8) != 'B' ||
2029       Stream.Read(8) != 'C' ||
2030       Stream.Read(4) != 0x0 ||
2031       Stream.Read(4) != 0xC ||
2032       Stream.Read(4) != 0xE ||
2033       Stream.Read(4) != 0xD)
2034     return Error("Invalid bitcode signature");
2035 
2036   // We expect a number of well-defined blocks, though we don't necessarily
2037   // need to understand them all.
2038   while (!Stream.AtEndOfStream()) {
2039     unsigned Code = Stream.ReadCode();
2040 
2041     if (Code != bitc::ENTER_SUBBLOCK)
2042       return Error("Invalid record at top-level");
2043 
2044     unsigned BlockID = Stream.ReadSubBlockID();
2045 
2046     // We only know the MODULE subblock ID.
2047     switch (BlockID) {
2048     case bitc::MODULE_BLOCK_ID:
2049       if (ParseModuleTriple(Triple))
2050         return true;
2051       break;
2052     default:
2053       if (Stream.SkipBlock())
2054         return Error("Malformed block record");
2055       break;
2056     }
2057   }
2058 
2059   return false;
2060 }
2061 
2062 /// ParseMetadataAttachment - Parse metadata attachments.
ParseMetadataAttachment()2063 bool BitcodeReader::ParseMetadataAttachment() {
2064   if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID))
2065     return Error("Malformed block record");
2066 
2067   SmallVector<uint64_t, 64> Record;
2068   while(1) {
2069     unsigned Code = Stream.ReadCode();
2070     if (Code == bitc::END_BLOCK) {
2071       if (Stream.ReadBlockEnd())
2072         return Error("Error at end of PARAMATTR block");
2073       break;
2074     }
2075     if (Code == bitc::DEFINE_ABBREV) {
2076       Stream.ReadAbbrevRecord();
2077       continue;
2078     }
2079     // Read a metadata attachment record.
2080     Record.clear();
2081     switch (Stream.ReadRecord(Code, Record)) {
2082     default:  // Default behavior: ignore.
2083       break;
2084     case METADATA_ATTACHMENT_2_7:
2085       LLVM2_7MetadataDetected = true;
2086     case bitc::METADATA_ATTACHMENT: {
2087       unsigned RecordLength = Record.size();
2088       if (Record.empty() || (RecordLength - 1) % 2 == 1)
2089         return Error ("Invalid METADATA_ATTACHMENT reader!");
2090       Instruction *Inst = InstructionList[Record[0]];
2091       for (unsigned i = 1; i != RecordLength; i = i+2) {
2092         unsigned Kind = Record[i];
2093         DenseMap<unsigned, unsigned>::iterator I =
2094           MDKindMap.find(Kind);
2095         if (I == MDKindMap.end())
2096           return Error("Invalid metadata kind ID");
2097         Value *Node = MDValueList.getValueFwdRef(Record[i+1]);
2098         Inst->setMetadata(I->second, cast<MDNode>(Node));
2099       }
2100       break;
2101     }
2102     }
2103   }
2104   return false;
2105 }
2106 
2107 /// ParseFunctionBody - Lazily parse the specified function body block.
ParseFunctionBody(Function * F)2108 bool BitcodeReader::ParseFunctionBody(Function *F) {
2109   if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
2110     return Error("Malformed block record");
2111 
2112   InstructionList.clear();
2113   unsigned ModuleValueListSize = ValueList.size();
2114   unsigned ModuleMDValueListSize = MDValueList.size();
2115 
2116   // Add all the function arguments to the value table.
2117   for(Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I)
2118     ValueList.push_back(I);
2119 
2120   unsigned NextValueNo = ValueList.size();
2121   BasicBlock *CurBB = 0;
2122   unsigned CurBBNo = 0;
2123 
2124   DebugLoc LastLoc;
2125 
2126   // Read all the records.
2127   SmallVector<uint64_t, 64> Record;
2128   while (1) {
2129     unsigned Code = Stream.ReadCode();
2130     if (Code == bitc::END_BLOCK) {
2131       if (Stream.ReadBlockEnd())
2132         return Error("Error at end of function block");
2133       break;
2134     }
2135 
2136     if (Code == bitc::ENTER_SUBBLOCK) {
2137       switch (Stream.ReadSubBlockID()) {
2138       default:  // Skip unknown content.
2139         if (Stream.SkipBlock())
2140           return Error("Malformed block record");
2141         break;
2142       case bitc::CONSTANTS_BLOCK_ID:
2143         if (ParseConstants()) return true;
2144         NextValueNo = ValueList.size();
2145         break;
2146       case bitc::VALUE_SYMTAB_BLOCK_ID:
2147         if (ParseValueSymbolTable()) return true;
2148         break;
2149       case bitc::METADATA_ATTACHMENT_ID:
2150         if (ParseMetadataAttachment()) return true;
2151         break;
2152       case bitc::METADATA_BLOCK_ID:
2153         if (ParseMetadata()) return true;
2154         break;
2155       }
2156       continue;
2157     }
2158 
2159     if (Code == bitc::DEFINE_ABBREV) {
2160       Stream.ReadAbbrevRecord();
2161       continue;
2162     }
2163 
2164     // Read a record.
2165     Record.clear();
2166     Instruction *I = 0;
2167     unsigned BitCode = Stream.ReadRecord(Code, Record);
2168     switch (BitCode) {
2169     default: // Default behavior: reject
2170       return Error("Unknown instruction");
2171     case bitc::FUNC_CODE_DECLAREBLOCKS:     // DECLAREBLOCKS: [nblocks]
2172       if (Record.size() < 1 || Record[0] == 0)
2173         return Error("Invalid DECLAREBLOCKS record");
2174       // Create all the basic blocks for the function.
2175       FunctionBBs.resize(Record[0]);
2176       for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i)
2177         FunctionBBs[i] = BasicBlock::Create(Context, "", F);
2178       CurBB = FunctionBBs[0];
2179       continue;
2180 
2181     case bitc::FUNC_CODE_DEBUG_LOC_AGAIN:  // DEBUG_LOC_AGAIN
2182       // This record indicates that the last instruction is at the same
2183       // location as the previous instruction with a location.
2184       I = 0;
2185 
2186       // Get the last instruction emitted.
2187       if (CurBB && !CurBB->empty())
2188         I = &CurBB->back();
2189       else if (CurBBNo && FunctionBBs[CurBBNo-1] &&
2190                !FunctionBBs[CurBBNo-1]->empty())
2191         I = &FunctionBBs[CurBBNo-1]->back();
2192 
2193       if (I == 0) return Error("Invalid DEBUG_LOC_AGAIN record");
2194       I->setDebugLoc(LastLoc);
2195       I = 0;
2196       continue;
2197 
2198     case FUNC_CODE_DEBUG_LOC_2_7:
2199       LLVM2_7MetadataDetected = true;
2200     case bitc::FUNC_CODE_DEBUG_LOC: {      // DEBUG_LOC: [line, col, scope, ia]
2201       I = 0;     // Get the last instruction emitted.
2202       if (CurBB && !CurBB->empty())
2203         I = &CurBB->back();
2204       else if (CurBBNo && FunctionBBs[CurBBNo-1] &&
2205                !FunctionBBs[CurBBNo-1]->empty())
2206         I = &FunctionBBs[CurBBNo-1]->back();
2207       if (I == 0 || Record.size() < 4)
2208         return Error("Invalid FUNC_CODE_DEBUG_LOC record");
2209 
2210       unsigned Line = Record[0], Col = Record[1];
2211       unsigned ScopeID = Record[2], IAID = Record[3];
2212 
2213       MDNode *Scope = 0, *IA = 0;
2214       if (ScopeID) Scope = cast<MDNode>(MDValueList.getValueFwdRef(ScopeID-1));
2215       if (IAID)    IA = cast<MDNode>(MDValueList.getValueFwdRef(IAID-1));
2216       LastLoc = DebugLoc::get(Line, Col, Scope, IA);
2217       I->setDebugLoc(LastLoc);
2218       I = 0;
2219       continue;
2220     }
2221 
2222     case bitc::FUNC_CODE_INST_BINOP: {    // BINOP: [opval, ty, opval, opcode]
2223       unsigned OpNum = 0;
2224       Value *LHS, *RHS;
2225       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
2226           getValue(Record, OpNum, LHS->getType(), RHS) ||
2227           OpNum+1 > Record.size())
2228         return Error("Invalid BINOP record");
2229 
2230       int Opc = GetDecodedBinaryOpcode(Record[OpNum++], LHS->getType());
2231       if (Opc == -1) return Error("Invalid BINOP record");
2232       I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
2233       InstructionList.push_back(I);
2234       if (OpNum < Record.size()) {
2235         if (Opc == Instruction::Add ||
2236             Opc == Instruction::Sub ||
2237             Opc == Instruction::Mul ||
2238             Opc == Instruction::Shl) {
2239           if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP))
2240             cast<BinaryOperator>(I)->setHasNoSignedWrap(true);
2241           if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
2242             cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true);
2243         } else if (Opc == Instruction::SDiv ||
2244                    Opc == Instruction::UDiv ||
2245                    Opc == Instruction::LShr ||
2246                    Opc == Instruction::AShr) {
2247           if (Record[OpNum] & (1 << bitc::PEO_EXACT))
2248             cast<BinaryOperator>(I)->setIsExact(true);
2249         }
2250       }
2251       break;
2252     }
2253     case bitc::FUNC_CODE_INST_CAST: {    // CAST: [opval, opty, destty, castopc]
2254       unsigned OpNum = 0;
2255       Value *Op;
2256       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
2257           OpNum+2 != Record.size())
2258         return Error("Invalid CAST record");
2259 
2260       Type *ResTy = getTypeByID(Record[OpNum]);
2261       int Opc = GetDecodedCastOpcode(Record[OpNum+1]);
2262       if (Opc == -1 || ResTy == 0)
2263         return Error("Invalid CAST record");
2264       I = CastInst::Create((Instruction::CastOps)Opc, Op, ResTy);
2265       InstructionList.push_back(I);
2266       break;
2267     }
2268     case bitc::FUNC_CODE_INST_INBOUNDS_GEP:
2269     case bitc::FUNC_CODE_INST_GEP: { // GEP: [n x operands]
2270       unsigned OpNum = 0;
2271       Value *BasePtr;
2272       if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr))
2273         return Error("Invalid GEP record");
2274 
2275       SmallVector<Value*, 16> GEPIdx;
2276       while (OpNum != Record.size()) {
2277         Value *Op;
2278         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
2279           return Error("Invalid GEP record");
2280         GEPIdx.push_back(Op);
2281       }
2282 
2283       I = GetElementPtrInst::Create(BasePtr, GEPIdx);
2284       InstructionList.push_back(I);
2285       if (BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP)
2286         cast<GetElementPtrInst>(I)->setIsInBounds(true);
2287       break;
2288     }
2289 
2290     case bitc::FUNC_CODE_INST_EXTRACTVAL: {
2291                                        // EXTRACTVAL: [opty, opval, n x indices]
2292       unsigned OpNum = 0;
2293       Value *Agg;
2294       if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
2295         return Error("Invalid EXTRACTVAL record");
2296 
2297       SmallVector<unsigned, 4> EXTRACTVALIdx;
2298       for (unsigned RecSize = Record.size();
2299            OpNum != RecSize; ++OpNum) {
2300         uint64_t Index = Record[OpNum];
2301         if ((unsigned)Index != Index)
2302           return Error("Invalid EXTRACTVAL index");
2303         EXTRACTVALIdx.push_back((unsigned)Index);
2304       }
2305 
2306       I = ExtractValueInst::Create(Agg, EXTRACTVALIdx);
2307       InstructionList.push_back(I);
2308       break;
2309     }
2310 
2311     case bitc::FUNC_CODE_INST_INSERTVAL: {
2312                            // INSERTVAL: [opty, opval, opty, opval, n x indices]
2313       unsigned OpNum = 0;
2314       Value *Agg;
2315       if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
2316         return Error("Invalid INSERTVAL record");
2317       Value *Val;
2318       if (getValueTypePair(Record, OpNum, NextValueNo, Val))
2319         return Error("Invalid INSERTVAL record");
2320 
2321       SmallVector<unsigned, 4> INSERTVALIdx;
2322       for (unsigned RecSize = Record.size();
2323            OpNum != RecSize; ++OpNum) {
2324         uint64_t Index = Record[OpNum];
2325         if ((unsigned)Index != Index)
2326           return Error("Invalid INSERTVAL index");
2327         INSERTVALIdx.push_back((unsigned)Index);
2328       }
2329 
2330       I = InsertValueInst::Create(Agg, Val, INSERTVALIdx);
2331       InstructionList.push_back(I);
2332       break;
2333     }
2334 
2335     case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
2336       // obsolete form of select
2337       // handles select i1 ... in old bitcode
2338       unsigned OpNum = 0;
2339       Value *TrueVal, *FalseVal, *Cond;
2340       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
2341           getValue(Record, OpNum, TrueVal->getType(), FalseVal) ||
2342           getValue(Record, OpNum, Type::getInt1Ty(Context), Cond))
2343         return Error("Invalid SELECT record");
2344 
2345       I = SelectInst::Create(Cond, TrueVal, FalseVal);
2346       InstructionList.push_back(I);
2347       break;
2348     }
2349 
2350     case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
2351       // new form of select
2352       // handles select i1 or select [N x i1]
2353       unsigned OpNum = 0;
2354       Value *TrueVal, *FalseVal, *Cond;
2355       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
2356           getValue(Record, OpNum, TrueVal->getType(), FalseVal) ||
2357           getValueTypePair(Record, OpNum, NextValueNo, Cond))
2358         return Error("Invalid SELECT record");
2359 
2360       // select condition can be either i1 or [N x i1]
2361       if (VectorType* vector_type =
2362           dyn_cast<VectorType>(Cond->getType())) {
2363         // expect <n x i1>
2364         if (vector_type->getElementType() != Type::getInt1Ty(Context))
2365           return Error("Invalid SELECT condition type");
2366       } else {
2367         // expect i1
2368         if (Cond->getType() != Type::getInt1Ty(Context))
2369           return Error("Invalid SELECT condition type");
2370       }
2371 
2372       I = SelectInst::Create(Cond, TrueVal, FalseVal);
2373       InstructionList.push_back(I);
2374       break;
2375     }
2376 
2377     case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
2378       unsigned OpNum = 0;
2379       Value *Vec, *Idx;
2380       if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
2381           getValue(Record, OpNum, Type::getInt32Ty(Context), Idx))
2382         return Error("Invalid EXTRACTELT record");
2383       I = ExtractElementInst::Create(Vec, Idx);
2384       InstructionList.push_back(I);
2385       break;
2386     }
2387 
2388     case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
2389       unsigned OpNum = 0;
2390       Value *Vec, *Elt, *Idx;
2391       if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
2392           getValue(Record, OpNum,
2393                    cast<VectorType>(Vec->getType())->getElementType(), Elt) ||
2394           getValue(Record, OpNum, Type::getInt32Ty(Context), Idx))
2395         return Error("Invalid INSERTELT record");
2396       I = InsertElementInst::Create(Vec, Elt, Idx);
2397       InstructionList.push_back(I);
2398       break;
2399     }
2400 
2401     case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
2402       unsigned OpNum = 0;
2403       Value *Vec1, *Vec2, *Mask;
2404       if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) ||
2405           getValue(Record, OpNum, Vec1->getType(), Vec2))
2406         return Error("Invalid SHUFFLEVEC record");
2407 
2408       if (getValueTypePair(Record, OpNum, NextValueNo, Mask))
2409         return Error("Invalid SHUFFLEVEC record");
2410       I = new ShuffleVectorInst(Vec1, Vec2, Mask);
2411       InstructionList.push_back(I);
2412       break;
2413     }
2414 
2415     case bitc::FUNC_CODE_INST_CMP:   // CMP: [opty, opval, opval, pred]
2416       // Old form of ICmp/FCmp returning bool
2417       // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were
2418       // both legal on vectors but had different behaviour.
2419     case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
2420       // FCmp/ICmp returning bool or vector of bool
2421 
2422       unsigned OpNum = 0;
2423       Value *LHS, *RHS;
2424       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
2425           getValue(Record, OpNum, LHS->getType(), RHS) ||
2426           OpNum+1 != Record.size())
2427         return Error("Invalid CMP record");
2428 
2429       if (LHS->getType()->isFPOrFPVectorTy())
2430         I = new FCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS);
2431       else
2432         I = new ICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS);
2433       InstructionList.push_back(I);
2434       break;
2435     }
2436 
2437     case FUNC_CODE_INST_GETRESULT_2_7: {
2438       if (Record.size() != 2) {
2439         return Error("Invalid GETRESULT record");
2440       }
2441       unsigned OpNum = 0;
2442       Value *Op;
2443       getValueTypePair(Record, OpNum, NextValueNo, Op);
2444       unsigned Index = Record[1];
2445       I = ExtractValueInst::Create(Op, Index);
2446       InstructionList.push_back(I);
2447       break;
2448     }
2449 
2450     case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
2451       {
2452         unsigned Size = Record.size();
2453         if (Size == 0) {
2454           I = ReturnInst::Create(Context);
2455           InstructionList.push_back(I);
2456           break;
2457         }
2458 
2459         unsigned OpNum = 0;
2460         Value *Op = NULL;
2461         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
2462           return Error("Invalid RET record");
2463         if (OpNum != Record.size())
2464           return Error("Invalid RET record");
2465 
2466         I = ReturnInst::Create(Context, Op);
2467         InstructionList.push_back(I);
2468         break;
2469       }
2470     case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
2471       if (Record.size() != 1 && Record.size() != 3)
2472         return Error("Invalid BR record");
2473       BasicBlock *TrueDest = getBasicBlock(Record[0]);
2474       if (TrueDest == 0)
2475         return Error("Invalid BR record");
2476 
2477       if (Record.size() == 1) {
2478         I = BranchInst::Create(TrueDest);
2479         InstructionList.push_back(I);
2480       }
2481       else {
2482         BasicBlock *FalseDest = getBasicBlock(Record[1]);
2483         Value *Cond = getFnValueByID(Record[2], Type::getInt1Ty(Context));
2484         if (FalseDest == 0 || Cond == 0)
2485           return Error("Invalid BR record");
2486         I = BranchInst::Create(TrueDest, FalseDest, Cond);
2487         InstructionList.push_back(I);
2488       }
2489       break;
2490     }
2491     case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...]
2492       if (Record.size() < 3 || (Record.size() & 1) == 0)
2493         return Error("Invalid SWITCH record");
2494       Type *OpTy = getTypeByID(Record[0]);
2495       Value *Cond = getFnValueByID(Record[1], OpTy);
2496       BasicBlock *Default = getBasicBlock(Record[2]);
2497       if (OpTy == 0 || Cond == 0 || Default == 0)
2498         return Error("Invalid SWITCH record");
2499       unsigned NumCases = (Record.size()-3)/2;
2500       SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
2501       InstructionList.push_back(SI);
2502       for (unsigned i = 0, e = NumCases; i != e; ++i) {
2503         ConstantInt *CaseVal =
2504           dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy));
2505         BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
2506         if (CaseVal == 0 || DestBB == 0) {
2507           delete SI;
2508           return Error("Invalid SWITCH record!");
2509         }
2510         SI->addCase(CaseVal, DestBB);
2511       }
2512       I = SI;
2513       break;
2514     }
2515     case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...]
2516       if (Record.size() < 2)
2517         return Error("Invalid INDIRECTBR record");
2518       Type *OpTy = getTypeByID(Record[0]);
2519       Value *Address = getFnValueByID(Record[1], OpTy);
2520       if (OpTy == 0 || Address == 0)
2521         return Error("Invalid INDIRECTBR record");
2522       unsigned NumDests = Record.size()-2;
2523       IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests);
2524       InstructionList.push_back(IBI);
2525       for (unsigned i = 0, e = NumDests; i != e; ++i) {
2526         if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) {
2527           IBI->addDestination(DestBB);
2528         } else {
2529           delete IBI;
2530           return Error("Invalid INDIRECTBR record!");
2531         }
2532       }
2533       I = IBI;
2534       break;
2535     }
2536 
2537     case bitc::FUNC_CODE_INST_INVOKE: {
2538       // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
2539       if (Record.size() < 4) return Error("Invalid INVOKE record");
2540       AttrListPtr PAL = getAttributes(Record[0]);
2541       unsigned CCInfo = Record[1];
2542       BasicBlock *NormalBB = getBasicBlock(Record[2]);
2543       BasicBlock *UnwindBB = getBasicBlock(Record[3]);
2544 
2545       unsigned OpNum = 4;
2546       Value *Callee;
2547       if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
2548         return Error("Invalid INVOKE record");
2549 
2550       PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
2551       FunctionType *FTy = !CalleeTy ? 0 :
2552         dyn_cast<FunctionType>(CalleeTy->getElementType());
2553 
2554       // Check that the right number of fixed parameters are here.
2555       if (FTy == 0 || NormalBB == 0 || UnwindBB == 0 ||
2556           Record.size() < OpNum+FTy->getNumParams())
2557         return Error("Invalid INVOKE record");
2558 
2559       SmallVector<Value*, 16> Ops;
2560       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
2561         Ops.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i)));
2562         if (Ops.back() == 0) return Error("Invalid INVOKE record");
2563       }
2564 
2565       if (!FTy->isVarArg()) {
2566         if (Record.size() != OpNum)
2567           return Error("Invalid INVOKE record");
2568       } else {
2569         // Read type/value pairs for varargs params.
2570         while (OpNum != Record.size()) {
2571           Value *Op;
2572           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
2573             return Error("Invalid INVOKE record");
2574           Ops.push_back(Op);
2575         }
2576       }
2577 
2578       I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops);
2579       InstructionList.push_back(I);
2580       cast<InvokeInst>(I)->setCallingConv(
2581         static_cast<CallingConv::ID>(CCInfo));
2582       cast<InvokeInst>(I)->setAttributes(PAL);
2583       break;
2584     }
2585     case FUNC_CODE_INST_UNWIND_2_7: { // UNWIND_OLD
2586       // 'unwind' instruction has been removed in LLVM 3.1
2587       // Replace 'unwind' with 'landingpad' and 'resume'.
2588       Type *ExnTy = StructType::get(Type::getInt8PtrTy(Context),
2589                                     Type::getInt32Ty(Context), NULL);
2590       Constant *PersFn =
2591         F->getParent()->
2592         getOrInsertFunction("__gcc_personality_v0",
2593                           FunctionType::get(Type::getInt32Ty(Context), true));
2594 
2595       LandingPadInst *LP = LandingPadInst::Create(ExnTy, PersFn, 1);
2596       LP->setCleanup(true);
2597 
2598       CurBB->getInstList().push_back(LP);
2599       I = ResumeInst::Create(LP);
2600       InstructionList.push_back(I);
2601       break;
2602     }
2603     case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
2604       I = new UnreachableInst(Context);
2605       InstructionList.push_back(I);
2606       break;
2607     case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
2608       if (Record.size() < 1 || ((Record.size()-1)&1))
2609         return Error("Invalid PHI record");
2610       Type *Ty = getTypeByID(Record[0]);
2611       if (!Ty) return Error("Invalid PHI record");
2612 
2613       PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2);
2614       InstructionList.push_back(PN);
2615 
2616       for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) {
2617         Value *V = getFnValueByID(Record[1+i], Ty);
2618         BasicBlock *BB = getBasicBlock(Record[2+i]);
2619         if (!V || !BB) return Error("Invalid PHI record");
2620         PN->addIncoming(V, BB);
2621       }
2622       I = PN;
2623       break;
2624     }
2625 
2626     case FUNC_CODE_INST_MALLOC_2_7: { // MALLOC: [instty, op, align]
2627       // Autoupgrade malloc instruction to malloc call.
2628       // FIXME: Remove in LLVM 3.0.
2629       if (Record.size() < 3) {
2630         return Error("Invalid MALLOC record");
2631       }
2632       PointerType *Ty =
2633           dyn_cast_or_null<PointerType>(getTypeByID(Record[0]));
2634       Value *Size = getFnValueByID(Record[1], Type::getInt32Ty(Context));
2635       if (!Ty || !Size) return Error("Invalid MALLOC record");
2636       if (!CurBB) return Error("Invalid malloc instruction with no BB");
2637       Type *Int32Ty = IntegerType::getInt32Ty(CurBB->getContext());
2638       Constant *AllocSize = ConstantExpr::getSizeOf(Ty->getElementType());
2639       AllocSize = ConstantExpr::getTruncOrBitCast(AllocSize, Int32Ty);
2640       I = CallInst::CreateMalloc(CurBB, Int32Ty, Ty->getElementType(),
2641                                  AllocSize, Size, NULL);
2642       InstructionList.push_back(I);
2643       break;
2644     }
2645     case FUNC_CODE_INST_FREE_2_7: { // FREE: [op, opty]
2646       unsigned OpNum = 0;
2647       Value *Op;
2648       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
2649           OpNum != Record.size()) {
2650         return Error("Invalid FREE record");
2651       }
2652       if (!CurBB) return Error("Invalid free instruction with no BB");
2653       I = CallInst::CreateFree(Op, CurBB);
2654       InstructionList.push_back(I);
2655       break;
2656     }
2657 
2658     case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align]
2659       // For backward compatibility, tolerate a lack of an opty, and use i32.
2660       // Remove this in LLVM 3.0.
2661       if (Record.size() < 3 || Record.size() > 4) {
2662         return Error("Invalid ALLOCA record");
2663       }
2664       unsigned OpNum = 0;
2665       PointerType *Ty =
2666         dyn_cast_or_null<PointerType>(getTypeByID(Record[OpNum++]));
2667       Type *OpTy = Record.size() == 4 ? getTypeByID(Record[OpNum++]) :
2668                                               Type::getInt32Ty(Context);
2669       Value *Size = getFnValueByID(Record[OpNum++], OpTy);
2670       unsigned Align = Record[OpNum++];
2671       if (!Ty || !Size) return Error("Invalid ALLOCA record");
2672       I = new AllocaInst(Ty->getElementType(), Size, (1 << Align) >> 1);
2673       InstructionList.push_back(I);
2674       break;
2675     }
2676     case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
2677       unsigned OpNum = 0;
2678       Value *Op;
2679       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
2680           OpNum+2 != Record.size())
2681         return Error("Invalid LOAD record");
2682 
2683       I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1);
2684       InstructionList.push_back(I);
2685       break;
2686     }
2687     case bitc::FUNC_CODE_INST_STORE: { // STORE2:[ptrty, ptr, val, align, vol]
2688       unsigned OpNum = 0;
2689       Value *Val, *Ptr;
2690       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
2691           getValue(Record, OpNum,
2692                     cast<PointerType>(Ptr->getType())->getElementType(), Val) ||
2693           OpNum+2 != Record.size())
2694         return Error("Invalid STORE record");
2695 
2696       I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1);
2697       InstructionList.push_back(I);
2698       break;
2699     }
2700     case FUNC_CODE_INST_STORE_2_7: {
2701       unsigned OpNum = 0;
2702       Value *Val, *Ptr;
2703       if (getValueTypePair(Record, OpNum, NextValueNo, Val) ||
2704           getValue(Record, OpNum,
2705                    PointerType::getUnqual(Val->getType()), Ptr)||
2706           OpNum+2 != Record.size()) {
2707         return Error("Invalid STORE record");
2708       }
2709       I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1);
2710       InstructionList.push_back(I);
2711       break;
2712     }
2713     case FUNC_CODE_INST_CALL_2_7:
2714       LLVM2_7MetadataDetected = true;
2715     case bitc::FUNC_CODE_INST_CALL: {
2716       // CALL: [paramattrs, cc, fnty, fnid, arg0, arg1...]
2717       if (Record.size() < 3)
2718         return Error("Invalid CALL record");
2719 
2720       AttrListPtr PAL = getAttributes(Record[0]);
2721       unsigned CCInfo = Record[1];
2722 
2723       unsigned OpNum = 2;
2724       Value *Callee;
2725       if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
2726         return Error("Invalid CALL record");
2727 
2728       PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
2729       FunctionType *FTy = 0;
2730       if (OpTy) FTy = dyn_cast<FunctionType>(OpTy->getElementType());
2731       if (!FTy || Record.size() < FTy->getNumParams()+OpNum)
2732         return Error("Invalid CALL record");
2733 
2734       SmallVector<Value*, 16> Args;
2735       // Read the fixed params.
2736       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
2737         if (FTy->getParamType(i)->isLabelTy())
2738           Args.push_back(getBasicBlock(Record[OpNum]));
2739         else
2740           Args.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i)));
2741         if (Args.back() == 0) return Error("Invalid CALL record");
2742       }
2743 
2744       // Read type/value pairs for varargs params.
2745       if (!FTy->isVarArg()) {
2746         if (OpNum != Record.size())
2747           return Error("Invalid CALL record");
2748       } else {
2749         while (OpNum != Record.size()) {
2750           Value *Op;
2751           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
2752             return Error("Invalid CALL record");
2753           Args.push_back(Op);
2754         }
2755       }
2756 
2757       I = CallInst::Create(Callee, Args);
2758       InstructionList.push_back(I);
2759       cast<CallInst>(I)->setCallingConv(
2760         static_cast<CallingConv::ID>(CCInfo>>1));
2761       cast<CallInst>(I)->setTailCall(CCInfo & 1);
2762       cast<CallInst>(I)->setAttributes(PAL);
2763       break;
2764     }
2765     case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
2766       if (Record.size() < 3)
2767         return Error("Invalid VAARG record");
2768       Type *OpTy = getTypeByID(Record[0]);
2769       Value *Op = getFnValueByID(Record[1], OpTy);
2770       Type *ResTy = getTypeByID(Record[2]);
2771       if (!OpTy || !Op || !ResTy)
2772         return Error("Invalid VAARG record");
2773       I = new VAArgInst(Op, ResTy);
2774       InstructionList.push_back(I);
2775       break;
2776     }
2777     }
2778 
2779     // Add instruction to end of current BB.  If there is no current BB, reject
2780     // this file.
2781     if (CurBB == 0) {
2782       delete I;
2783       return Error("Invalid instruction with no BB");
2784     }
2785     CurBB->getInstList().push_back(I);
2786 
2787     // If this was a terminator instruction, move to the next block.
2788     if (isa<TerminatorInst>(I)) {
2789       ++CurBBNo;
2790       CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : 0;
2791     }
2792 
2793     // Non-void values get registered in the value table for future use.
2794     if (I && !I->getType()->isVoidTy())
2795       ValueList.AssignValue(I, NextValueNo++);
2796   }
2797 
2798   // Check the function list for unresolved values.
2799   if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
2800     if (A->getParent() == 0) {
2801       // We found at least one unresolved value.  Nuke them all to avoid leaks.
2802       for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
2803         if ((A = dyn_cast<Argument>(ValueList[i])) && A->getParent() == 0) {
2804           A->replaceAllUsesWith(UndefValue::get(A->getType()));
2805           delete A;
2806         }
2807       }
2808       return Error("Never resolved value found in function!");
2809     }
2810   }
2811 
2812   // FIXME: Check for unresolved forward-declared metadata references
2813   // and clean up leaks.
2814 
2815   // See if anything took the address of blocks in this function.  If so,
2816   // resolve them now.
2817   DenseMap<Function*, std::vector<BlockAddrRefTy> >::iterator BAFRI =
2818     BlockAddrFwdRefs.find(F);
2819   if (BAFRI != BlockAddrFwdRefs.end()) {
2820     std::vector<BlockAddrRefTy> &RefList = BAFRI->second;
2821     for (unsigned i = 0, e = RefList.size(); i != e; ++i) {
2822       unsigned BlockIdx = RefList[i].first;
2823       if (BlockIdx >= FunctionBBs.size())
2824         return Error("Invalid blockaddress block #");
2825 
2826       GlobalVariable *FwdRef = RefList[i].second;
2827       FwdRef->replaceAllUsesWith(BlockAddress::get(F, FunctionBBs[BlockIdx]));
2828       FwdRef->eraseFromParent();
2829     }
2830 
2831     BlockAddrFwdRefs.erase(BAFRI);
2832   }
2833 
2834   unsigned NewMDValueListSize = MDValueList.size();
2835   // Trim the value list down to the size it was before we parsed this function.
2836   ValueList.shrinkTo(ModuleValueListSize);
2837   MDValueList.shrinkTo(ModuleMDValueListSize);
2838 
2839   if (LLVM2_7MetadataDetected) {
2840     MDValueList.resize(NewMDValueListSize);
2841   }
2842 
2843   std::vector<BasicBlock*>().swap(FunctionBBs);
2844   return false;
2845 }
2846 
2847 //===----------------------------------------------------------------------===//
2848 // GVMaterializer implementation
2849 //===----------------------------------------------------------------------===//
2850 
2851 
isMaterializable(const GlobalValue * GV) const2852 bool BitcodeReader::isMaterializable(const GlobalValue *GV) const {
2853   if (const Function *F = dyn_cast<Function>(GV)) {
2854     return F->isDeclaration() &&
2855       DeferredFunctionInfo.count(const_cast<Function*>(F));
2856   }
2857   return false;
2858 }
2859 
Materialize(GlobalValue * GV,std::string * ErrInfo)2860 bool BitcodeReader::Materialize(GlobalValue *GV, std::string *ErrInfo) {
2861   Function *F = dyn_cast<Function>(GV);
2862   // If it's not a function or is already material, ignore the request.
2863   if (!F || !F->isMaterializable()) return false;
2864 
2865   DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F);
2866   assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
2867 
2868   // Move the bit stream to the saved position of the deferred function body.
2869   Stream.JumpToBit(DFII->second);
2870 
2871   if (ParseFunctionBody(F)) {
2872     if (ErrInfo) *ErrInfo = ErrorString;
2873     return true;
2874   }
2875 
2876   // Upgrade any old intrinsic calls in the function.
2877   for (UpgradedIntrinsicMap::iterator I = UpgradedIntrinsics.begin(),
2878        E = UpgradedIntrinsics.end(); I != E; ++I) {
2879     if (I->first != I->second) {
2880       for (Value::use_iterator UI = I->first->use_begin(),
2881            UE = I->first->use_end(); UI != UE; ) {
2882         if (CallInst* CI = dyn_cast<CallInst>(*UI++))
2883           UpgradeIntrinsicCall(CI, I->second);
2884       }
2885     }
2886   }
2887 
2888   return false;
2889 }
2890 
isDematerializable(const GlobalValue * GV) const2891 bool BitcodeReader::isDematerializable(const GlobalValue *GV) const {
2892   const Function *F = dyn_cast<Function>(GV);
2893   if (!F || F->isDeclaration())
2894     return false;
2895   return DeferredFunctionInfo.count(const_cast<Function*>(F));
2896 }
2897 
Dematerialize(GlobalValue * GV)2898 void BitcodeReader::Dematerialize(GlobalValue *GV) {
2899   Function *F = dyn_cast<Function>(GV);
2900   // If this function isn't dematerializable, this is a noop.
2901   if (!F || !isDematerializable(F))
2902     return;
2903 
2904   assert(DeferredFunctionInfo.count(F) && "No info to read function later?");
2905 
2906   // Just forget the function body, we can remat it later.
2907   F->deleteBody();
2908 }
2909 
2910 
MaterializeModule(Module * M,std::string * ErrInfo)2911 bool BitcodeReader::MaterializeModule(Module *M, std::string *ErrInfo) {
2912   assert(M == TheModule &&
2913          "Can only Materialize the Module this BitcodeReader is attached to.");
2914   // Iterate over the module, deserializing any functions that are still on
2915   // disk.
2916   for (Module::iterator F = TheModule->begin(), E = TheModule->end();
2917        F != E; ++F)
2918     if (F->isMaterializable() &&
2919         Materialize(F, ErrInfo))
2920       return true;
2921 
2922   // Upgrade any intrinsic calls that slipped through (should not happen!) and
2923   // delete the old functions to clean up. We can't do this unless the entire
2924   // module is materialized because there could always be another function body
2925   // with calls to the old function.
2926   for (std::vector<std::pair<Function*, Function*> >::iterator I =
2927        UpgradedIntrinsics.begin(), E = UpgradedIntrinsics.end(); I != E; ++I) {
2928     if (I->first != I->second) {
2929       for (Value::use_iterator UI = I->first->use_begin(),
2930            UE = I->first->use_end(); UI != UE; ) {
2931         if (CallInst* CI = dyn_cast<CallInst>(*UI++))
2932           UpgradeIntrinsicCall(CI, I->second);
2933       }
2934       if (!I->first->use_empty())
2935         I->first->replaceAllUsesWith(I->second);
2936       I->first->eraseFromParent();
2937     }
2938   }
2939   std::vector<std::pair<Function*, Function*> >().swap(UpgradedIntrinsics);
2940 
2941   // Check debug info intrinsics.
2942   CheckDebugInfoIntrinsics(TheModule);
2943 
2944   return false;
2945 }
2946 
2947 
2948 //===----------------------------------------------------------------------===//
2949 // External interface
2950 //===----------------------------------------------------------------------===//
2951 
2952 /// getLazyBitcodeModule - lazy function-at-a-time loading from a file.
2953 ///
getLazyBitcodeModule(MemoryBuffer * Buffer,LLVMContext & Context,std::string * ErrMsg)2954 Module *llvm_2_7::getLazyBitcodeModule(MemoryBuffer *Buffer,
2955                                        LLVMContext& Context,
2956                                        std::string *ErrMsg) {
2957   Module *M = new Module(Buffer->getBufferIdentifier(), Context);
2958   BitcodeReader *R = new BitcodeReader(Buffer, Context);
2959   M->setMaterializer(R);
2960   if (R->ParseBitcodeInto(M)) {
2961     if (ErrMsg)
2962       *ErrMsg = R->getErrorString();
2963 
2964     delete M;  // Also deletes R.
2965     return 0;
2966   }
2967   // Have the BitcodeReader dtor delete 'Buffer'.
2968   R->setBufferOwned(true);
2969   return M;
2970 }
2971 
2972 /// ParseBitcodeFile - Read the specified bitcode file, returning the module.
2973 /// If an error occurs, return null and fill in *ErrMsg if non-null.
ParseBitcodeFile(MemoryBuffer * Buffer,LLVMContext & Context,std::string * ErrMsg)2974 Module *llvm_2_7::ParseBitcodeFile(MemoryBuffer *Buffer, LLVMContext& Context,
2975                                    std::string *ErrMsg){
2976   Module *M = llvm_2_7::getLazyBitcodeModule(Buffer, Context, ErrMsg);
2977   if (!M) return 0;
2978 
2979   // Don't let the BitcodeReader dtor delete 'Buffer', regardless of whether
2980   // there was an error.
2981   static_cast<BitcodeReader*>(M->getMaterializer())->setBufferOwned(false);
2982 
2983   // Read in the entire module, and destroy the BitcodeReader.
2984   if (M->MaterializeAllPermanently(ErrMsg)) {
2985     delete M;
2986     return 0;
2987   }
2988 
2989   return M;
2990 }
2991 
getBitcodeTargetTriple(MemoryBuffer * Buffer,LLVMContext & Context,std::string * ErrMsg)2992 std::string llvm_2_7::getBitcodeTargetTriple(MemoryBuffer *Buffer,
2993                                              LLVMContext& Context,
2994                                              std::string *ErrMsg) {
2995   BitcodeReader *R = new BitcodeReader(Buffer, Context);
2996   // Don't let the BitcodeReader dtor delete 'Buffer'.
2997   R->setBufferOwned(false);
2998 
2999   std::string Triple("");
3000   if (R->ParseTriple(Triple))
3001     if (ErrMsg)
3002       *ErrMsg = R->getErrorString();
3003 
3004   delete R;
3005   return Triple;
3006 }
3007