1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Bitcode writer implementation.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "ReaderWriter_2_9_func.h"
15 #include "llvm/Bitcode/BitstreamWriter.h"
16 #include "llvm/Bitcode/LLVMBitCodes.h"
17 #include "ValueEnumerator.h"
18 #include "llvm/Constants.h"
19 #include "llvm/DerivedTypes.h"
20 #include "llvm/InlineAsm.h"
21 #include "llvm/Instructions.h"
22 #include "llvm/Module.h"
23 #include "llvm/Operator.h"
24 #include "llvm/ValueSymbolTable.h"
25 #include "llvm/ADT/Triple.h"
26 #include "llvm/Support/ErrorHandling.h"
27 #include "llvm/Support/MathExtras.h"
28 #include "llvm/Support/raw_ostream.h"
29 #include "llvm/Support/Program.h"
30 #include <cctype>
31 #include <map>
32 using namespace llvm;
33
34 /// These are manifest constants used by the bitcode writer. They do not need to
35 /// be kept in sync with the reader, but need to be consistent within this file.
36 enum {
37 CurVersion = 0,
38
39 // VALUE_SYMTAB_BLOCK abbrev id's.
40 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
41 VST_ENTRY_7_ABBREV,
42 VST_ENTRY_6_ABBREV,
43 VST_BBENTRY_6_ABBREV,
44
45 // CONSTANTS_BLOCK abbrev id's.
46 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
47 CONSTANTS_INTEGER_ABBREV,
48 CONSTANTS_CE_CAST_Abbrev,
49 CONSTANTS_NULL_Abbrev,
50
51 // FUNCTION_BLOCK abbrev id's.
52 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
53 FUNCTION_INST_BINOP_ABBREV,
54 FUNCTION_INST_BINOP_FLAGS_ABBREV,
55 FUNCTION_INST_CAST_ABBREV,
56 FUNCTION_INST_RET_VOID_ABBREV,
57 FUNCTION_INST_RET_VAL_ABBREV,
58 FUNCTION_INST_UNREACHABLE_ABBREV
59 };
60
GetEncodedCastOpcode(unsigned Opcode)61 static unsigned GetEncodedCastOpcode(unsigned Opcode) {
62 switch (Opcode) {
63 default: llvm_unreachable("Unknown cast instruction!");
64 case Instruction::Trunc : return bitc::CAST_TRUNC;
65 case Instruction::ZExt : return bitc::CAST_ZEXT;
66 case Instruction::SExt : return bitc::CAST_SEXT;
67 case Instruction::FPToUI : return bitc::CAST_FPTOUI;
68 case Instruction::FPToSI : return bitc::CAST_FPTOSI;
69 case Instruction::UIToFP : return bitc::CAST_UITOFP;
70 case Instruction::SIToFP : return bitc::CAST_SITOFP;
71 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC;
72 case Instruction::FPExt : return bitc::CAST_FPEXT;
73 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT;
74 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR;
75 case Instruction::BitCast : return bitc::CAST_BITCAST;
76 }
77 }
78
GetEncodedBinaryOpcode(unsigned Opcode)79 static unsigned GetEncodedBinaryOpcode(unsigned Opcode) {
80 switch (Opcode) {
81 default: llvm_unreachable("Unknown binary instruction!");
82 case Instruction::Add:
83 case Instruction::FAdd: return bitc::BINOP_ADD;
84 case Instruction::Sub:
85 case Instruction::FSub: return bitc::BINOP_SUB;
86 case Instruction::Mul:
87 case Instruction::FMul: return bitc::BINOP_MUL;
88 case Instruction::UDiv: return bitc::BINOP_UDIV;
89 case Instruction::FDiv:
90 case Instruction::SDiv: return bitc::BINOP_SDIV;
91 case Instruction::URem: return bitc::BINOP_UREM;
92 case Instruction::FRem:
93 case Instruction::SRem: return bitc::BINOP_SREM;
94 case Instruction::Shl: return bitc::BINOP_SHL;
95 case Instruction::LShr: return bitc::BINOP_LSHR;
96 case Instruction::AShr: return bitc::BINOP_ASHR;
97 case Instruction::And: return bitc::BINOP_AND;
98 case Instruction::Or: return bitc::BINOP_OR;
99 case Instruction::Xor: return bitc::BINOP_XOR;
100 }
101 }
102
GetEncodedRMWOperation(AtomicRMWInst::BinOp Op)103 static unsigned GetEncodedRMWOperation(AtomicRMWInst::BinOp Op) {
104 switch (Op) {
105 default: llvm_unreachable("Unknown RMW operation!");
106 case AtomicRMWInst::Xchg: return bitc::RMW_XCHG;
107 case AtomicRMWInst::Add: return bitc::RMW_ADD;
108 case AtomicRMWInst::Sub: return bitc::RMW_SUB;
109 case AtomicRMWInst::And: return bitc::RMW_AND;
110 case AtomicRMWInst::Nand: return bitc::RMW_NAND;
111 case AtomicRMWInst::Or: return bitc::RMW_OR;
112 case AtomicRMWInst::Xor: return bitc::RMW_XOR;
113 case AtomicRMWInst::Max: return bitc::RMW_MAX;
114 case AtomicRMWInst::Min: return bitc::RMW_MIN;
115 case AtomicRMWInst::UMax: return bitc::RMW_UMAX;
116 case AtomicRMWInst::UMin: return bitc::RMW_UMIN;
117 }
118 }
119
GetEncodedOrdering(AtomicOrdering Ordering)120 static unsigned GetEncodedOrdering(AtomicOrdering Ordering) {
121 switch (Ordering) {
122 default: llvm_unreachable("Unknown atomic ordering");
123 case NotAtomic: return bitc::ORDERING_NOTATOMIC;
124 case Unordered: return bitc::ORDERING_UNORDERED;
125 case Monotonic: return bitc::ORDERING_MONOTONIC;
126 case Acquire: return bitc::ORDERING_ACQUIRE;
127 case Release: return bitc::ORDERING_RELEASE;
128 case AcquireRelease: return bitc::ORDERING_ACQREL;
129 case SequentiallyConsistent: return bitc::ORDERING_SEQCST;
130 }
131 }
132
GetEncodedSynchScope(SynchronizationScope SynchScope)133 static unsigned GetEncodedSynchScope(SynchronizationScope SynchScope) {
134 switch (SynchScope) {
135 default: llvm_unreachable("Unknown synchronization scope");
136 case SingleThread: return bitc::SYNCHSCOPE_SINGLETHREAD;
137 case CrossThread: return bitc::SYNCHSCOPE_CROSSTHREAD;
138 }
139 }
140
WriteStringRecord(unsigned Code,StringRef Str,unsigned AbbrevToUse,BitstreamWriter & Stream)141 static void WriteStringRecord(unsigned Code, StringRef Str,
142 unsigned AbbrevToUse, BitstreamWriter &Stream) {
143 SmallVector<unsigned, 64> Vals;
144
145 // Code: [strchar x N]
146 for (unsigned i = 0, e = Str.size(); i != e; ++i) {
147 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i]))
148 AbbrevToUse = 0;
149 Vals.push_back(Str[i]);
150 }
151
152 // Emit the finished record.
153 Stream.EmitRecord(Code, Vals, AbbrevToUse);
154 }
155
156 // Emit information about parameter attributes.
WriteAttributeTable(const llvm_2_9_func::ValueEnumerator & VE,BitstreamWriter & Stream)157 static void WriteAttributeTable(const llvm_2_9_func::ValueEnumerator &VE,
158 BitstreamWriter &Stream) {
159 const std::vector<AttrListPtr> &Attrs = VE.getAttributes();
160 if (Attrs.empty()) return;
161
162 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3);
163
164 SmallVector<uint64_t, 64> Record;
165 for (unsigned i = 0, e = Attrs.size(); i != e; ++i) {
166 const AttrListPtr &A = Attrs[i];
167 for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i) {
168 const AttributeWithIndex &PAWI = A.getSlot(i);
169 Record.push_back(PAWI.Index);
170
171 // FIXME: remove in LLVM 3.0
172 // Store the alignment in the bitcode as a 16-bit raw value instead of a
173 // 5-bit log2 encoded value. Shift the bits above the alignment up by
174 // 11 bits.
175 uint64_t FauxAttr = PAWI.Attrs.Raw() & 0xffff;
176 if (PAWI.Attrs & Attribute::Alignment)
177 FauxAttr |= (1ull<<16)<<
178 (((PAWI.Attrs & Attribute::Alignment).Raw()-1) >> 16);
179 FauxAttr |= (PAWI.Attrs.Raw() & (0x3FFull << 21)) << 11;
180
181 Record.push_back(FauxAttr);
182 }
183
184 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record);
185 Record.clear();
186 }
187
188 Stream.ExitBlock();
189 }
190
191 /// WriteTypeTable - Write out the type table for a module.
WriteTypeTable(const llvm_2_9_func::ValueEnumerator & VE,BitstreamWriter & Stream)192 static void WriteTypeTable(const llvm_2_9_func::ValueEnumerator &VE,
193 BitstreamWriter &Stream) {
194 const llvm_2_9_func::ValueEnumerator::TypeList &TypeList = VE.getTypes();
195
196 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */);
197 SmallVector<uint64_t, 64> TypeVals;
198
199 // Abbrev for TYPE_CODE_POINTER.
200 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
201 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER));
202 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
203 Log2_32_Ceil(VE.getTypes().size()+1)));
204 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0
205 unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv);
206
207 // Abbrev for TYPE_CODE_FUNCTION.
208 Abbv = new BitCodeAbbrev();
209 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION_OLD));
210 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg
211 Abbv->Add(BitCodeAbbrevOp(0)); // FIXME: DEAD value, remove in LLVM 3.0
212 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
213 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
214 Log2_32_Ceil(VE.getTypes().size()+1)));
215 unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv);
216
217 // Abbrev for TYPE_CODE_STRUCT_ANON.
218 Abbv = new BitCodeAbbrev();
219 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON));
220 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked
221 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
222 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
223 Log2_32_Ceil(VE.getTypes().size()+1)));
224 unsigned StructAnonAbbrev = Stream.EmitAbbrev(Abbv);
225
226 // Abbrev for TYPE_CODE_STRUCT_NAME.
227 Abbv = new BitCodeAbbrev();
228 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME));
229 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
230 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
231 unsigned StructNameAbbrev = Stream.EmitAbbrev(Abbv);
232
233 // Abbrev for TYPE_CODE_STRUCT_NAMED.
234 Abbv = new BitCodeAbbrev();
235 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED));
236 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked
237 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
238 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
239 Log2_32_Ceil(VE.getTypes().size()+1)));
240 unsigned StructNamedAbbrev = Stream.EmitAbbrev(Abbv);
241
242 // Abbrev for TYPE_CODE_ARRAY.
243 Abbv = new BitCodeAbbrev();
244 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY));
245 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size
246 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
247 Log2_32_Ceil(VE.getTypes().size()+1)));
248 unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv);
249
250 // Emit an entry count so the reader can reserve space.
251 TypeVals.push_back(TypeList.size());
252 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals);
253 TypeVals.clear();
254
255 // Loop over all of the types, emitting each in turn.
256 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) {
257 Type *T = TypeList[i];
258 int AbbrevToUse = 0;
259 unsigned Code = 0;
260
261 switch (T->getTypeID()) {
262 default: llvm_unreachable("Unknown type!");
263 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break;
264 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break;
265 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break;
266 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break;
267 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break;
268 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break;
269 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break;
270 case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break;
271 case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break;
272 case Type::IntegerTyID:
273 // INTEGER: [width]
274 Code = bitc::TYPE_CODE_INTEGER;
275 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth());
276 break;
277 case Type::PointerTyID: {
278 PointerType *PTy = cast<PointerType>(T);
279 // POINTER: [pointee type, address space]
280 Code = bitc::TYPE_CODE_POINTER;
281 TypeVals.push_back(VE.getTypeID(PTy->getElementType()));
282 unsigned AddressSpace = PTy->getAddressSpace();
283 TypeVals.push_back(AddressSpace);
284 if (AddressSpace == 0) AbbrevToUse = PtrAbbrev;
285 break;
286 }
287 case Type::FunctionTyID: {
288 FunctionType *FT = cast<FunctionType>(T);
289 // FUNCTION: [isvararg, attrid, retty, paramty x N]
290 Code = bitc::TYPE_CODE_FUNCTION_OLD;
291 TypeVals.push_back(FT->isVarArg());
292 TypeVals.push_back(0); // FIXME: DEAD: remove in llvm 3.0
293 TypeVals.push_back(VE.getTypeID(FT->getReturnType()));
294 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i)
295 TypeVals.push_back(VE.getTypeID(FT->getParamType(i)));
296 AbbrevToUse = FunctionAbbrev;
297 break;
298 }
299 case Type::StructTyID: {
300 StructType *ST = cast<StructType>(T);
301 // STRUCT: [ispacked, eltty x N]
302 TypeVals.push_back(ST->isPacked());
303 // Output all of the element types.
304 for (StructType::element_iterator I = ST->element_begin(),
305 E = ST->element_end(); I != E; ++I)
306 TypeVals.push_back(VE.getTypeID(*I));
307
308 if (ST->isLiteral()) {
309 Code = bitc::TYPE_CODE_STRUCT_ANON;
310 AbbrevToUse = StructAnonAbbrev;
311 } else {
312 if (ST->isOpaque()) {
313 Code = bitc::TYPE_CODE_OPAQUE;
314 } else {
315 Code = bitc::TYPE_CODE_STRUCT_NAMED;
316 AbbrevToUse = StructNamedAbbrev;
317 }
318
319 // Emit the name if it is present.
320 if (!ST->getName().empty())
321 WriteStringRecord(bitc::TYPE_CODE_STRUCT_NAME, ST->getName(),
322 StructNameAbbrev, Stream);
323 }
324 break;
325 }
326 case Type::ArrayTyID: {
327 ArrayType *AT = cast<ArrayType>(T);
328 // ARRAY: [numelts, eltty]
329 Code = bitc::TYPE_CODE_ARRAY;
330 TypeVals.push_back(AT->getNumElements());
331 TypeVals.push_back(VE.getTypeID(AT->getElementType()));
332 AbbrevToUse = ArrayAbbrev;
333 break;
334 }
335 case Type::VectorTyID: {
336 VectorType *VT = cast<VectorType>(T);
337 // VECTOR [numelts, eltty]
338 Code = bitc::TYPE_CODE_VECTOR;
339 TypeVals.push_back(VT->getNumElements());
340 TypeVals.push_back(VE.getTypeID(VT->getElementType()));
341 break;
342 }
343 }
344
345 // Emit the finished record.
346 Stream.EmitRecord(Code, TypeVals, AbbrevToUse);
347 TypeVals.clear();
348 }
349
350 Stream.ExitBlock();
351 }
352
getEncodedLinkage(const GlobalValue * GV)353 static unsigned getEncodedLinkage(const GlobalValue *GV) {
354 switch (GV->getLinkage()) {
355 case GlobalValue::ExternalLinkage: return 0;
356 case GlobalValue::WeakAnyLinkage: return 1;
357 case GlobalValue::AppendingLinkage: return 2;
358 case GlobalValue::InternalLinkage: return 3;
359 case GlobalValue::LinkOnceAnyLinkage: return 4;
360 case GlobalValue::DLLImportLinkage: return 5;
361 case GlobalValue::DLLExportLinkage: return 6;
362 case GlobalValue::ExternalWeakLinkage: return 7;
363 case GlobalValue::CommonLinkage: return 8;
364 case GlobalValue::PrivateLinkage: return 9;
365 case GlobalValue::WeakODRLinkage: return 10;
366 case GlobalValue::LinkOnceODRLinkage: return 11;
367 case GlobalValue::AvailableExternallyLinkage: return 12;
368 case GlobalValue::LinkerPrivateLinkage: return 13;
369 case GlobalValue::LinkerPrivateWeakLinkage: return 14;
370 case GlobalValue::LinkOnceODRAutoHideLinkage: return 15;
371 }
372 llvm_unreachable("Invalid linkage");
373 }
374
getEncodedVisibility(const GlobalValue * GV)375 static unsigned getEncodedVisibility(const GlobalValue *GV) {
376 switch (GV->getVisibility()) {
377 default: llvm_unreachable("Invalid visibility!");
378 case GlobalValue::DefaultVisibility: return 0;
379 case GlobalValue::HiddenVisibility: return 1;
380 case GlobalValue::ProtectedVisibility: return 2;
381 }
382 }
383
384 // Emit top-level description of module, including target triple, inline asm,
385 // descriptors for global variables, and function prototype info.
WriteModuleInfo(const Module * M,const llvm_2_9_func::ValueEnumerator & VE,BitstreamWriter & Stream)386 static void WriteModuleInfo(const Module *M,
387 const llvm_2_9_func::ValueEnumerator &VE,
388 BitstreamWriter &Stream) {
389 // Emit the list of dependent libraries for the Module.
390 for (Module::lib_iterator I = M->lib_begin(), E = M->lib_end(); I != E; ++I)
391 WriteStringRecord(bitc::MODULE_CODE_DEPLIB, *I, 0/*TODO*/, Stream);
392
393 // Emit various pieces of data attached to a module.
394 if (!M->getTargetTriple().empty())
395 WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(),
396 0/*TODO*/, Stream);
397 if (!M->getDataLayout().empty())
398 WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, M->getDataLayout(),
399 0/*TODO*/, Stream);
400 if (!M->getModuleInlineAsm().empty())
401 WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(),
402 0/*TODO*/, Stream);
403
404 // Emit information about sections and GC, computing how many there are. Also
405 // compute the maximum alignment value.
406 std::map<std::string, unsigned> SectionMap;
407 std::map<std::string, unsigned> GCMap;
408 unsigned MaxAlignment = 0;
409 unsigned MaxGlobalType = 0;
410 for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end();
411 GV != E; ++GV) {
412 MaxAlignment = std::max(MaxAlignment, GV->getAlignment());
413 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV->getType()));
414 if (GV->hasSection()) {
415 // Give section names unique ID's.
416 unsigned &Entry = SectionMap[GV->getSection()];
417 if (!Entry) {
418 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV->getSection(),
419 0/*TODO*/, Stream);
420 Entry = SectionMap.size();
421 }
422 }
423 }
424 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) {
425 MaxAlignment = std::max(MaxAlignment, F->getAlignment());
426 if (F->hasSection()) {
427 // Give section names unique ID's.
428 unsigned &Entry = SectionMap[F->getSection()];
429 if (!Entry) {
430 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F->getSection(),
431 0/*TODO*/, Stream);
432 Entry = SectionMap.size();
433 }
434 }
435 if (F->hasGC()) {
436 // Same for GC names.
437 unsigned &Entry = GCMap[F->getGC()];
438 if (!Entry) {
439 WriteStringRecord(bitc::MODULE_CODE_GCNAME, F->getGC(),
440 0/*TODO*/, Stream);
441 Entry = GCMap.size();
442 }
443 }
444 }
445
446 // Emit abbrev for globals, now that we know # sections and max alignment.
447 unsigned SimpleGVarAbbrev = 0;
448 if (!M->global_empty()) {
449 // Add an abbrev for common globals with no visibility or thread localness.
450 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
451 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR));
452 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
453 Log2_32_Ceil(MaxGlobalType+1)));
454 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // Constant.
455 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer.
456 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // Linkage.
457 if (MaxAlignment == 0) // Alignment.
458 Abbv->Add(BitCodeAbbrevOp(0));
459 else {
460 unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1;
461 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
462 Log2_32_Ceil(MaxEncAlignment+1)));
463 }
464 if (SectionMap.empty()) // Section.
465 Abbv->Add(BitCodeAbbrevOp(0));
466 else
467 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
468 Log2_32_Ceil(SectionMap.size()+1)));
469 // Don't bother emitting vis + thread local.
470 SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv);
471 }
472
473 // Emit the global variable information.
474 SmallVector<unsigned, 64> Vals;
475 for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end();
476 GV != E; ++GV) {
477 unsigned AbbrevToUse = 0;
478
479 // GLOBALVAR: [type, isconst, initid,
480 // linkage, alignment, section, visibility, threadlocal,
481 // unnamed_addr]
482 Vals.push_back(VE.getTypeID(GV->getType()));
483 Vals.push_back(GV->isConstant());
484 Vals.push_back(GV->isDeclaration() ? 0 :
485 (VE.getValueID(GV->getInitializer()) + 1));
486 Vals.push_back(getEncodedLinkage(GV));
487 Vals.push_back(Log2_32(GV->getAlignment())+1);
488 Vals.push_back(GV->hasSection() ? SectionMap[GV->getSection()] : 0);
489 if (GV->isThreadLocal() ||
490 GV->getVisibility() != GlobalValue::DefaultVisibility ||
491 GV->hasUnnamedAddr()) {
492 Vals.push_back(getEncodedVisibility(GV));
493 Vals.push_back(GV->isThreadLocal());
494 Vals.push_back(GV->hasUnnamedAddr());
495 } else {
496 AbbrevToUse = SimpleGVarAbbrev;
497 }
498
499 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse);
500 Vals.clear();
501 }
502
503 // Emit the function proto information.
504 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) {
505 // FUNCTION: [type, callingconv, isproto, paramattr,
506 // linkage, alignment, section, visibility, gc, unnamed_addr]
507 Vals.push_back(VE.getTypeID(F->getType()));
508 Vals.push_back(F->getCallingConv());
509 Vals.push_back(F->isDeclaration());
510 Vals.push_back(getEncodedLinkage(F));
511 Vals.push_back(VE.getAttributeID(F->getAttributes()));
512 Vals.push_back(Log2_32(F->getAlignment())+1);
513 Vals.push_back(F->hasSection() ? SectionMap[F->getSection()] : 0);
514 Vals.push_back(getEncodedVisibility(F));
515 Vals.push_back(F->hasGC() ? GCMap[F->getGC()] : 0);
516 Vals.push_back(F->hasUnnamedAddr());
517
518 unsigned AbbrevToUse = 0;
519 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse);
520 Vals.clear();
521 }
522
523 // Emit the alias information.
524 for (Module::const_alias_iterator AI = M->alias_begin(), E = M->alias_end();
525 AI != E; ++AI) {
526 Vals.push_back(VE.getTypeID(AI->getType()));
527 Vals.push_back(VE.getValueID(AI->getAliasee()));
528 Vals.push_back(getEncodedLinkage(AI));
529 Vals.push_back(getEncodedVisibility(AI));
530 unsigned AbbrevToUse = 0;
531 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse);
532 Vals.clear();
533 }
534 }
535
GetOptimizationFlags(const Value * V)536 static uint64_t GetOptimizationFlags(const Value *V) {
537 uint64_t Flags = 0;
538
539 if (const OverflowingBinaryOperator *OBO =
540 dyn_cast<OverflowingBinaryOperator>(V)) {
541 if (OBO->hasNoSignedWrap())
542 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP;
543 if (OBO->hasNoUnsignedWrap())
544 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP;
545 } else if (const PossiblyExactOperator *PEO =
546 dyn_cast<PossiblyExactOperator>(V)) {
547 if (PEO->isExact())
548 Flags |= 1 << bitc::PEO_EXACT;
549 }
550
551 return Flags;
552 }
553
WriteMDNode(const MDNode * N,const llvm_2_9_func::ValueEnumerator & VE,BitstreamWriter & Stream,SmallVector<uint64_t,64> & Record)554 static void WriteMDNode(const MDNode *N,
555 const llvm_2_9_func::ValueEnumerator &VE,
556 BitstreamWriter &Stream,
557 SmallVector<uint64_t, 64> &Record) {
558 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
559 if (N->getOperand(i)) {
560 Record.push_back(VE.getTypeID(N->getOperand(i)->getType()));
561 Record.push_back(VE.getValueID(N->getOperand(i)));
562 } else {
563 Record.push_back(VE.getTypeID(Type::getVoidTy(N->getContext())));
564 Record.push_back(0);
565 }
566 }
567 unsigned MDCode = N->isFunctionLocal() ? bitc::METADATA_FN_NODE :
568 bitc::METADATA_NODE;
569 Stream.EmitRecord(MDCode, Record, 0);
570 Record.clear();
571 }
572
WriteModuleMetadata(const Module * M,const llvm_2_9_func::ValueEnumerator & VE,BitstreamWriter & Stream)573 static void WriteModuleMetadata(const Module *M,
574 const llvm_2_9_func::ValueEnumerator &VE,
575 BitstreamWriter &Stream) {
576 const llvm_2_9_func::ValueEnumerator::ValueList &Vals = VE.getMDValues();
577 bool StartedMetadataBlock = false;
578 unsigned MDSAbbrev = 0;
579 SmallVector<uint64_t, 64> Record;
580 for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
581
582 if (const MDNode *N = dyn_cast<MDNode>(Vals[i].first)) {
583 if (!N->isFunctionLocal() || !N->getFunction()) {
584 if (!StartedMetadataBlock) {
585 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
586 StartedMetadataBlock = true;
587 }
588 WriteMDNode(N, VE, Stream, Record);
589 }
590 } else if (const MDString *MDS = dyn_cast<MDString>(Vals[i].first)) {
591 if (!StartedMetadataBlock) {
592 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
593
594 // Abbrev for METADATA_STRING.
595 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
596 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRING));
597 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
598 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
599 MDSAbbrev = Stream.EmitAbbrev(Abbv);
600 StartedMetadataBlock = true;
601 }
602
603 // Code: [strchar x N]
604 Record.append(MDS->begin(), MDS->end());
605
606 // Emit the finished record.
607 Stream.EmitRecord(bitc::METADATA_STRING, Record, MDSAbbrev);
608 Record.clear();
609 }
610 }
611
612 // Write named metadata.
613 for (Module::const_named_metadata_iterator I = M->named_metadata_begin(),
614 E = M->named_metadata_end(); I != E; ++I) {
615 const NamedMDNode *NMD = I;
616 if (!StartedMetadataBlock) {
617 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
618 StartedMetadataBlock = true;
619 }
620
621 // Write name.
622 StringRef Str = NMD->getName();
623 for (unsigned i = 0, e = Str.size(); i != e; ++i)
624 Record.push_back(Str[i]);
625 Stream.EmitRecord(bitc::METADATA_NAME, Record, 0/*TODO*/);
626 Record.clear();
627
628 // Write named metadata operands.
629 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i)
630 Record.push_back(VE.getValueID(NMD->getOperand(i)));
631 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0);
632 Record.clear();
633 }
634
635 if (StartedMetadataBlock)
636 Stream.ExitBlock();
637 }
638
WriteFunctionLocalMetadata(const Function & F,const llvm_2_9_func::ValueEnumerator & VE,BitstreamWriter & Stream)639 static void WriteFunctionLocalMetadata(const Function &F,
640 const llvm_2_9_func::ValueEnumerator &VE,
641 BitstreamWriter &Stream) {
642 bool StartedMetadataBlock = false;
643 SmallVector<uint64_t, 64> Record;
644 const SmallVector<const MDNode *, 8> &Vals = VE.getFunctionLocalMDValues();
645 for (unsigned i = 0, e = Vals.size(); i != e; ++i)
646 if (const MDNode *N = Vals[i])
647 if (N->isFunctionLocal() && N->getFunction() == &F) {
648 if (!StartedMetadataBlock) {
649 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
650 StartedMetadataBlock = true;
651 }
652 WriteMDNode(N, VE, Stream, Record);
653 }
654
655 if (StartedMetadataBlock)
656 Stream.ExitBlock();
657 }
658
WriteMetadataAttachment(const Function & F,const llvm_2_9_func::ValueEnumerator & VE,BitstreamWriter & Stream)659 static void WriteMetadataAttachment(const Function &F,
660 const llvm_2_9_func::ValueEnumerator &VE,
661 BitstreamWriter &Stream) {
662 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3);
663
664 SmallVector<uint64_t, 64> Record;
665
666 // Write metadata attachments
667 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]]
668 SmallVector<std::pair<unsigned, MDNode*>, 4> MDs;
669
670 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
671 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
672 I != E; ++I) {
673 MDs.clear();
674 I->getAllMetadataOtherThanDebugLoc(MDs);
675
676 // If no metadata, ignore instruction.
677 if (MDs.empty()) continue;
678
679 Record.push_back(VE.getInstructionID(I));
680
681 for (unsigned i = 0, e = MDs.size(); i != e; ++i) {
682 Record.push_back(MDs[i].first);
683 Record.push_back(VE.getValueID(MDs[i].second));
684 }
685 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0);
686 Record.clear();
687 }
688
689 Stream.ExitBlock();
690 }
691
WriteModuleMetadataStore(const Module * M,BitstreamWriter & Stream)692 static void WriteModuleMetadataStore(const Module *M, BitstreamWriter &Stream) {
693 SmallVector<uint64_t, 64> Record;
694
695 // Write metadata kinds
696 // METADATA_KIND - [n x [id, name]]
697 SmallVector<StringRef, 4> Names;
698 M->getMDKindNames(Names);
699
700 if (Names.empty()) return;
701
702 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
703
704 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) {
705 Record.push_back(MDKindID);
706 StringRef KName = Names[MDKindID];
707 Record.append(KName.begin(), KName.end());
708
709 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0);
710 Record.clear();
711 }
712
713 Stream.ExitBlock();
714 }
715
WriteConstants(unsigned FirstVal,unsigned LastVal,const llvm_2_9_func::ValueEnumerator & VE,BitstreamWriter & Stream,bool isGlobal)716 static void WriteConstants(unsigned FirstVal, unsigned LastVal,
717 const llvm_2_9_func::ValueEnumerator &VE,
718 BitstreamWriter &Stream, bool isGlobal) {
719 if (FirstVal == LastVal) return;
720
721 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4);
722
723 unsigned AggregateAbbrev = 0;
724 unsigned String8Abbrev = 0;
725 unsigned CString7Abbrev = 0;
726 unsigned CString6Abbrev = 0;
727 // If this is a constant pool for the module, emit module-specific abbrevs.
728 if (isGlobal) {
729 // Abbrev for CST_CODE_AGGREGATE.
730 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
731 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE));
732 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
733 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1)));
734 AggregateAbbrev = Stream.EmitAbbrev(Abbv);
735
736 // Abbrev for CST_CODE_STRING.
737 Abbv = new BitCodeAbbrev();
738 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING));
739 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
740 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
741 String8Abbrev = Stream.EmitAbbrev(Abbv);
742 // Abbrev for CST_CODE_CSTRING.
743 Abbv = new BitCodeAbbrev();
744 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
745 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
746 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
747 CString7Abbrev = Stream.EmitAbbrev(Abbv);
748 // Abbrev for CST_CODE_CSTRING.
749 Abbv = new BitCodeAbbrev();
750 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
751 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
752 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
753 CString6Abbrev = Stream.EmitAbbrev(Abbv);
754 }
755
756 SmallVector<uint64_t, 64> Record;
757
758 const llvm_2_9_func::ValueEnumerator::ValueList &Vals = VE.getValues();
759 Type *LastTy = 0;
760 for (unsigned i = FirstVal; i != LastVal; ++i) {
761 const Value *V = Vals[i].first;
762 // If we need to switch types, do so now.
763 if (V->getType() != LastTy) {
764 LastTy = V->getType();
765 Record.push_back(VE.getTypeID(LastTy));
766 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record,
767 CONSTANTS_SETTYPE_ABBREV);
768 Record.clear();
769 }
770
771 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
772 Record.push_back(unsigned(IA->hasSideEffects()) |
773 unsigned(IA->isAlignStack()) << 1);
774
775 // Add the asm string.
776 const std::string &AsmStr = IA->getAsmString();
777 Record.push_back(AsmStr.size());
778 for (unsigned i = 0, e = AsmStr.size(); i != e; ++i)
779 Record.push_back(AsmStr[i]);
780
781 // Add the constraint string.
782 const std::string &ConstraintStr = IA->getConstraintString();
783 Record.push_back(ConstraintStr.size());
784 for (unsigned i = 0, e = ConstraintStr.size(); i != e; ++i)
785 Record.push_back(ConstraintStr[i]);
786 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record);
787 Record.clear();
788 continue;
789 }
790 const Constant *C = cast<Constant>(V);
791 unsigned Code = -1U;
792 unsigned AbbrevToUse = 0;
793 if (C->isNullValue()) {
794 Code = bitc::CST_CODE_NULL;
795 } else if (isa<UndefValue>(C)) {
796 Code = bitc::CST_CODE_UNDEF;
797 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) {
798 if (IV->getBitWidth() <= 64) {
799 uint64_t V = IV->getSExtValue();
800 if ((int64_t)V >= 0)
801 Record.push_back(V << 1);
802 else
803 Record.push_back((-V << 1) | 1);
804 Code = bitc::CST_CODE_INTEGER;
805 AbbrevToUse = CONSTANTS_INTEGER_ABBREV;
806 } else { // Wide integers, > 64 bits in size.
807 // We have an arbitrary precision integer value to write whose
808 // bit width is > 64. However, in canonical unsigned integer
809 // format it is likely that the high bits are going to be zero.
810 // So, we only write the number of active words.
811 unsigned NWords = IV->getValue().getActiveWords();
812 const uint64_t *RawWords = IV->getValue().getRawData();
813 for (unsigned i = 0; i != NWords; ++i) {
814 int64_t V = RawWords[i];
815 if (V >= 0)
816 Record.push_back(V << 1);
817 else
818 Record.push_back((-V << 1) | 1);
819 }
820 Code = bitc::CST_CODE_WIDE_INTEGER;
821 }
822 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
823 Code = bitc::CST_CODE_FLOAT;
824 Type *Ty = CFP->getType();
825 if (Ty->isFloatTy() || Ty->isDoubleTy()) {
826 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
827 } else if (Ty->isX86_FP80Ty()) {
828 // api needed to prevent premature destruction
829 // bits are not in the same order as a normal i80 APInt, compensate.
830 APInt api = CFP->getValueAPF().bitcastToAPInt();
831 const uint64_t *p = api.getRawData();
832 Record.push_back((p[1] << 48) | (p[0] >> 16));
833 Record.push_back(p[0] & 0xffffLL);
834 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) {
835 APInt api = CFP->getValueAPF().bitcastToAPInt();
836 const uint64_t *p = api.getRawData();
837 Record.push_back(p[0]);
838 Record.push_back(p[1]);
839 } else {
840 assert (0 && "Unknown FP type!");
841 }
842 } else if (isa<ConstantDataSequential>(C) &&
843 cast<ConstantDataSequential>(C)->isString()) {
844 const ConstantDataSequential *Str = cast<ConstantDataSequential>(C);
845 // Emit constant strings specially.
846 unsigned NumElts = Str->getNumElements();
847 // If this is a null-terminated string, use the denser CSTRING encoding.
848 if (Str->isCString()) {
849 Code = bitc::CST_CODE_CSTRING;
850 --NumElts; // Don't encode the null, which isn't allowed by char6.
851 } else {
852 Code = bitc::CST_CODE_STRING;
853 AbbrevToUse = String8Abbrev;
854 }
855 bool isCStr7 = Code == bitc::CST_CODE_CSTRING;
856 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING;
857 for (unsigned i = 0; i != NumElts; ++i) {
858 unsigned char V = Str->getElementAsInteger(i);
859 Record.push_back(V);
860 isCStr7 &= (V & 128) == 0;
861 if (isCStrChar6)
862 isCStrChar6 = BitCodeAbbrevOp::isChar6(V);
863 }
864
865 if (isCStrChar6)
866 AbbrevToUse = CString6Abbrev;
867 else if (isCStr7)
868 AbbrevToUse = CString7Abbrev;
869 } else if (const ConstantDataSequential *CDS =
870 dyn_cast<ConstantDataSequential>(C)) {
871 // We must replace ConstantDataSequential's representation with the
872 // legacy ConstantArray/ConstantVector/ConstantStruct version.
873 // ValueEnumerator is similarly modified to mark the appropriate
874 // Constants as used (so they are emitted).
875 Code = bitc::CST_CODE_AGGREGATE;
876 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i)
877 Record.push_back(VE.getValueID(CDS->getElementAsConstant(i)));
878 AbbrevToUse = AggregateAbbrev;
879 } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(C) ||
880 isa<ConstantVector>(C)) {
881 Code = bitc::CST_CODE_AGGREGATE;
882 for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i)
883 Record.push_back(VE.getValueID(C->getOperand(i)));
884 AbbrevToUse = AggregateAbbrev;
885 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
886 switch (CE->getOpcode()) {
887 default:
888 if (Instruction::isCast(CE->getOpcode())) {
889 Code = bitc::CST_CODE_CE_CAST;
890 Record.push_back(GetEncodedCastOpcode(CE->getOpcode()));
891 Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
892 Record.push_back(VE.getValueID(C->getOperand(0)));
893 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev;
894 } else {
895 assert(CE->getNumOperands() == 2 && "Unknown constant expr!");
896 Code = bitc::CST_CODE_CE_BINOP;
897 Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode()));
898 Record.push_back(VE.getValueID(C->getOperand(0)));
899 Record.push_back(VE.getValueID(C->getOperand(1)));
900 uint64_t Flags = GetOptimizationFlags(CE);
901 if (Flags != 0)
902 Record.push_back(Flags);
903 }
904 break;
905 case Instruction::GetElementPtr:
906 Code = bitc::CST_CODE_CE_GEP;
907 if (cast<GEPOperator>(C)->isInBounds())
908 Code = bitc::CST_CODE_CE_INBOUNDS_GEP;
909 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) {
910 Record.push_back(VE.getTypeID(C->getOperand(i)->getType()));
911 Record.push_back(VE.getValueID(C->getOperand(i)));
912 }
913 break;
914 case Instruction::Select:
915 Code = bitc::CST_CODE_CE_SELECT;
916 Record.push_back(VE.getValueID(C->getOperand(0)));
917 Record.push_back(VE.getValueID(C->getOperand(1)));
918 Record.push_back(VE.getValueID(C->getOperand(2)));
919 break;
920 case Instruction::ExtractElement:
921 Code = bitc::CST_CODE_CE_EXTRACTELT;
922 Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
923 Record.push_back(VE.getValueID(C->getOperand(0)));
924 Record.push_back(VE.getValueID(C->getOperand(1)));
925 break;
926 case Instruction::InsertElement:
927 Code = bitc::CST_CODE_CE_INSERTELT;
928 Record.push_back(VE.getValueID(C->getOperand(0)));
929 Record.push_back(VE.getValueID(C->getOperand(1)));
930 Record.push_back(VE.getValueID(C->getOperand(2)));
931 break;
932 case Instruction::ShuffleVector:
933 // If the return type and argument types are the same, this is a
934 // standard shufflevector instruction. If the types are different,
935 // then the shuffle is widening or truncating the input vectors, and
936 // the argument type must also be encoded.
937 if (C->getType() == C->getOperand(0)->getType()) {
938 Code = bitc::CST_CODE_CE_SHUFFLEVEC;
939 } else {
940 Code = bitc::CST_CODE_CE_SHUFVEC_EX;
941 Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
942 }
943 Record.push_back(VE.getValueID(C->getOperand(0)));
944 Record.push_back(VE.getValueID(C->getOperand(1)));
945 Record.push_back(VE.getValueID(C->getOperand(2)));
946 break;
947 case Instruction::ICmp:
948 case Instruction::FCmp:
949 Code = bitc::CST_CODE_CE_CMP;
950 Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
951 Record.push_back(VE.getValueID(C->getOperand(0)));
952 Record.push_back(VE.getValueID(C->getOperand(1)));
953 Record.push_back(CE->getPredicate());
954 break;
955 }
956 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) {
957 Code = bitc::CST_CODE_BLOCKADDRESS;
958 Record.push_back(VE.getTypeID(BA->getFunction()->getType()));
959 Record.push_back(VE.getValueID(BA->getFunction()));
960 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock()));
961 } else {
962 #ifndef NDEBUG
963 C->dump();
964 #endif
965 llvm_unreachable("Unknown constant!");
966 }
967 Stream.EmitRecord(Code, Record, AbbrevToUse);
968 Record.clear();
969 }
970
971 Stream.ExitBlock();
972 }
973
WriteModuleConstants(const llvm_2_9_func::ValueEnumerator & VE,BitstreamWriter & Stream)974 static void WriteModuleConstants(const llvm_2_9_func::ValueEnumerator &VE,
975 BitstreamWriter &Stream) {
976 const llvm_2_9_func::ValueEnumerator::ValueList &Vals = VE.getValues();
977
978 // Find the first constant to emit, which is the first non-globalvalue value.
979 // We know globalvalues have been emitted by WriteModuleInfo.
980 for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
981 if (!isa<GlobalValue>(Vals[i].first)) {
982 WriteConstants(i, Vals.size(), VE, Stream, true);
983 return;
984 }
985 }
986 }
987
988 /// PushValueAndType - The file has to encode both the value and type id for
989 /// many values, because we need to know what type to create for forward
990 /// references. However, most operands are not forward references, so this type
991 /// field is not needed.
992 ///
993 /// This function adds V's value ID to Vals. If the value ID is higher than the
994 /// instruction ID, then it is a forward reference, and it also includes the
995 /// type ID.
PushValueAndType(const Value * V,unsigned InstID,SmallVector<unsigned,64> & Vals,llvm_2_9_func::ValueEnumerator & VE)996 static bool PushValueAndType(const Value *V, unsigned InstID,
997 SmallVector<unsigned, 64> &Vals,
998 llvm_2_9_func::ValueEnumerator &VE) {
999 unsigned ValID = VE.getValueID(V);
1000 Vals.push_back(ValID);
1001 if (ValID >= InstID) {
1002 Vals.push_back(VE.getTypeID(V->getType()));
1003 return true;
1004 }
1005 return false;
1006 }
1007
1008 /// WriteInstruction - Emit an instruction to the specified stream.
WriteInstruction(const Instruction & I,unsigned InstID,llvm_2_9_func::ValueEnumerator & VE,BitstreamWriter & Stream,SmallVector<unsigned,64> & Vals)1009 static void WriteInstruction(const Instruction &I, unsigned InstID,
1010 llvm_2_9_func::ValueEnumerator &VE,
1011 BitstreamWriter &Stream,
1012 SmallVector<unsigned, 64> &Vals) {
1013 unsigned Code = 0;
1014 unsigned AbbrevToUse = 0;
1015 VE.setInstructionID(&I);
1016 switch (I.getOpcode()) {
1017 default:
1018 if (Instruction::isCast(I.getOpcode())) {
1019 Code = bitc::FUNC_CODE_INST_CAST;
1020 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
1021 AbbrevToUse = FUNCTION_INST_CAST_ABBREV;
1022 Vals.push_back(VE.getTypeID(I.getType()));
1023 Vals.push_back(GetEncodedCastOpcode(I.getOpcode()));
1024 } else {
1025 assert(isa<BinaryOperator>(I) && "Unknown instruction!");
1026 Code = bitc::FUNC_CODE_INST_BINOP;
1027 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
1028 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV;
1029 Vals.push_back(VE.getValueID(I.getOperand(1)));
1030 Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode()));
1031 uint64_t Flags = GetOptimizationFlags(&I);
1032 if (Flags != 0) {
1033 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV)
1034 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV;
1035 Vals.push_back(Flags);
1036 }
1037 }
1038 break;
1039
1040 case Instruction::GetElementPtr:
1041 Code = bitc::FUNC_CODE_INST_GEP;
1042 if (cast<GEPOperator>(&I)->isInBounds())
1043 Code = bitc::FUNC_CODE_INST_INBOUNDS_GEP;
1044 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
1045 PushValueAndType(I.getOperand(i), InstID, Vals, VE);
1046 break;
1047 case Instruction::ExtractValue: {
1048 Code = bitc::FUNC_CODE_INST_EXTRACTVAL;
1049 PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1050 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I);
1051 for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i)
1052 Vals.push_back(*i);
1053 break;
1054 }
1055 case Instruction::InsertValue: {
1056 Code = bitc::FUNC_CODE_INST_INSERTVAL;
1057 PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1058 PushValueAndType(I.getOperand(1), InstID, Vals, VE);
1059 const InsertValueInst *IVI = cast<InsertValueInst>(&I);
1060 for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i)
1061 Vals.push_back(*i);
1062 break;
1063 }
1064 case Instruction::Select:
1065 Code = bitc::FUNC_CODE_INST_VSELECT;
1066 PushValueAndType(I.getOperand(1), InstID, Vals, VE);
1067 Vals.push_back(VE.getValueID(I.getOperand(2)));
1068 PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1069 break;
1070 case Instruction::ExtractElement:
1071 Code = bitc::FUNC_CODE_INST_EXTRACTELT;
1072 PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1073 Vals.push_back(VE.getValueID(I.getOperand(1)));
1074 break;
1075 case Instruction::InsertElement:
1076 Code = bitc::FUNC_CODE_INST_INSERTELT;
1077 PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1078 Vals.push_back(VE.getValueID(I.getOperand(1)));
1079 Vals.push_back(VE.getValueID(I.getOperand(2)));
1080 break;
1081 case Instruction::ShuffleVector:
1082 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC;
1083 PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1084 Vals.push_back(VE.getValueID(I.getOperand(1)));
1085 Vals.push_back(VE.getValueID(I.getOperand(2)));
1086 break;
1087 case Instruction::ICmp:
1088 case Instruction::FCmp:
1089 // compare returning Int1Ty or vector of Int1Ty
1090 Code = bitc::FUNC_CODE_INST_CMP2;
1091 PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1092 Vals.push_back(VE.getValueID(I.getOperand(1)));
1093 Vals.push_back(cast<CmpInst>(I).getPredicate());
1094 break;
1095
1096 case Instruction::Ret:
1097 {
1098 Code = bitc::FUNC_CODE_INST_RET;
1099 unsigned NumOperands = I.getNumOperands();
1100 if (NumOperands == 0)
1101 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV;
1102 else if (NumOperands == 1) {
1103 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
1104 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV;
1105 } else {
1106 for (unsigned i = 0, e = NumOperands; i != e; ++i)
1107 PushValueAndType(I.getOperand(i), InstID, Vals, VE);
1108 }
1109 }
1110 break;
1111 case Instruction::Br:
1112 {
1113 Code = bitc::FUNC_CODE_INST_BR;
1114 BranchInst &II = cast<BranchInst>(I);
1115 Vals.push_back(VE.getValueID(II.getSuccessor(0)));
1116 if (II.isConditional()) {
1117 Vals.push_back(VE.getValueID(II.getSuccessor(1)));
1118 Vals.push_back(VE.getValueID(II.getCondition()));
1119 }
1120 }
1121 break;
1122 case Instruction::Switch:
1123 {
1124 Code = bitc::FUNC_CODE_INST_SWITCH;
1125 SwitchInst &SI = cast<SwitchInst>(I);
1126
1127 Vals.push_back(VE.getTypeID(SI.getCondition()->getType()));
1128 Vals.push_back(VE.getValueID(SI.getCondition()));
1129 Vals.push_back(VE.getValueID(SI.getDefaultDest()));
1130 for (SwitchInst::CaseIt i = SI.case_begin(), e = SI.case_end();
1131 i != e; ++i) {
1132 IntegersSubset& CaseRanges = i.getCaseValueEx();
1133
1134 if (CaseRanges.isSingleNumber()) {
1135 Vals.push_back(VE.getValueID(CaseRanges.getSingleNumber(0).toConstantInt()));
1136 Vals.push_back(VE.getValueID(i.getCaseSuccessor()));
1137 } else if (CaseRanges.isSingleNumbersOnly()) {
1138 for (unsigned ri = 0, rn = CaseRanges.getNumItems();
1139 ri != rn; ++ri) {
1140 Vals.push_back(VE.getValueID(CaseRanges.getSingleNumber(ri).toConstantInt()));
1141 Vals.push_back(VE.getValueID(i.getCaseSuccessor()));
1142 }
1143 } else {
1144 llvm_unreachable("Not single number?");
1145 }
1146 }
1147 }
1148 break;
1149 case Instruction::IndirectBr:
1150 Code = bitc::FUNC_CODE_INST_INDIRECTBR;
1151 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
1152 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
1153 Vals.push_back(VE.getValueID(I.getOperand(i)));
1154 break;
1155
1156 case Instruction::Invoke: {
1157 const InvokeInst *II = cast<InvokeInst>(&I);
1158 const Value *Callee(II->getCalledValue());
1159 PointerType *PTy = cast<PointerType>(Callee->getType());
1160 FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
1161 Code = bitc::FUNC_CODE_INST_INVOKE;
1162
1163 Vals.push_back(VE.getAttributeID(II->getAttributes()));
1164 Vals.push_back(II->getCallingConv());
1165 Vals.push_back(VE.getValueID(II->getNormalDest()));
1166 Vals.push_back(VE.getValueID(II->getUnwindDest()));
1167 PushValueAndType(Callee, InstID, Vals, VE);
1168
1169 // Emit value #'s for the fixed parameters.
1170 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
1171 Vals.push_back(VE.getValueID(I.getOperand(i))); // fixed param.
1172
1173 // Emit type/value pairs for varargs params.
1174 if (FTy->isVarArg()) {
1175 for (unsigned i = FTy->getNumParams(), e = I.getNumOperands()-3;
1176 i != e; ++i)
1177 PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg
1178 }
1179 break;
1180 }
1181 case Instruction::Resume:
1182 Code = bitc::FUNC_CODE_INST_RESUME;
1183 PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1184 break;
1185 case Instruction::Unreachable:
1186 Code = bitc::FUNC_CODE_INST_UNREACHABLE;
1187 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV;
1188 break;
1189
1190 case Instruction::PHI: {
1191 const PHINode &PN = cast<PHINode>(I);
1192 Code = bitc::FUNC_CODE_INST_PHI;
1193 Vals.push_back(VE.getTypeID(PN.getType()));
1194 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
1195 Vals.push_back(VE.getValueID(PN.getIncomingValue(i)));
1196 Vals.push_back(VE.getValueID(PN.getIncomingBlock(i)));
1197 }
1198 break;
1199 }
1200
1201 case Instruction::LandingPad: {
1202 const LandingPadInst &LP = cast<LandingPadInst>(I);
1203 Code = bitc::FUNC_CODE_INST_LANDINGPAD;
1204 Vals.push_back(VE.getTypeID(LP.getType()));
1205 PushValueAndType(LP.getPersonalityFn(), InstID, Vals, VE);
1206 Vals.push_back(LP.isCleanup());
1207 Vals.push_back(LP.getNumClauses());
1208 for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) {
1209 if (LP.isCatch(I))
1210 Vals.push_back(LandingPadInst::Catch);
1211 else
1212 Vals.push_back(LandingPadInst::Filter);
1213 PushValueAndType(LP.getClause(I), InstID, Vals, VE);
1214 }
1215 break;
1216 }
1217
1218 case Instruction::Alloca:
1219 Code = bitc::FUNC_CODE_INST_ALLOCA;
1220 Vals.push_back(VE.getTypeID(I.getType()));
1221 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
1222 Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
1223 Vals.push_back(Log2_32(cast<AllocaInst>(I).getAlignment())+1);
1224 break;
1225
1226 case Instruction::Load:
1227 if (cast<LoadInst>(I).isAtomic()) {
1228 Code = bitc::FUNC_CODE_INST_LOADATOMIC;
1229 PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1230 } else {
1231 Code = bitc::FUNC_CODE_INST_LOAD;
1232 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) // ptr
1233 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV;
1234 }
1235 Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1);
1236 Vals.push_back(cast<LoadInst>(I).isVolatile());
1237 if (cast<LoadInst>(I).isAtomic()) {
1238 Vals.push_back(GetEncodedOrdering(cast<LoadInst>(I).getOrdering()));
1239 Vals.push_back(GetEncodedSynchScope(cast<LoadInst>(I).getSynchScope()));
1240 }
1241 break;
1242 case Instruction::Store:
1243 if (cast<StoreInst>(I).isAtomic())
1244 Code = bitc::FUNC_CODE_INST_STOREATOMIC;
1245 else
1246 Code = bitc::FUNC_CODE_INST_STORE;
1247 PushValueAndType(I.getOperand(1), InstID, Vals, VE); // ptrty + ptr
1248 Vals.push_back(VE.getValueID(I.getOperand(0))); // val.
1249 Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1);
1250 Vals.push_back(cast<StoreInst>(I).isVolatile());
1251 if (cast<StoreInst>(I).isAtomic()) {
1252 Vals.push_back(GetEncodedOrdering(cast<StoreInst>(I).getOrdering()));
1253 Vals.push_back(GetEncodedSynchScope(cast<StoreInst>(I).getSynchScope()));
1254 }
1255 break;
1256 case Instruction::AtomicCmpXchg:
1257 Code = bitc::FUNC_CODE_INST_CMPXCHG;
1258 PushValueAndType(I.getOperand(0), InstID, Vals, VE); // ptrty + ptr
1259 Vals.push_back(VE.getValueID(I.getOperand(1))); // cmp.
1260 Vals.push_back(VE.getValueID(I.getOperand(2))); // newval.
1261 Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile());
1262 Vals.push_back(GetEncodedOrdering(
1263 cast<AtomicCmpXchgInst>(I).getOrdering()));
1264 Vals.push_back(GetEncodedSynchScope(
1265 cast<AtomicCmpXchgInst>(I).getSynchScope()));
1266 break;
1267 case Instruction::AtomicRMW:
1268 Code = bitc::FUNC_CODE_INST_ATOMICRMW;
1269 PushValueAndType(I.getOperand(0), InstID, Vals, VE); // ptrty + ptr
1270 Vals.push_back(VE.getValueID(I.getOperand(1))); // val.
1271 Vals.push_back(GetEncodedRMWOperation(
1272 cast<AtomicRMWInst>(I).getOperation()));
1273 Vals.push_back(cast<AtomicRMWInst>(I).isVolatile());
1274 Vals.push_back(GetEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering()));
1275 Vals.push_back(GetEncodedSynchScope(
1276 cast<AtomicRMWInst>(I).getSynchScope()));
1277 break;
1278 case Instruction::Fence:
1279 Code = bitc::FUNC_CODE_INST_FENCE;
1280 Vals.push_back(GetEncodedOrdering(cast<FenceInst>(I).getOrdering()));
1281 Vals.push_back(GetEncodedSynchScope(cast<FenceInst>(I).getSynchScope()));
1282 break;
1283 case Instruction::Call: {
1284 const CallInst &CI = cast<CallInst>(I);
1285 PointerType *PTy = cast<PointerType>(CI.getCalledValue()->getType());
1286 FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
1287
1288 Code = bitc::FUNC_CODE_INST_CALL;
1289
1290 Vals.push_back(VE.getAttributeID(CI.getAttributes()));
1291 Vals.push_back((CI.getCallingConv() << 1) | unsigned(CI.isTailCall()));
1292 PushValueAndType(CI.getCalledValue(), InstID, Vals, VE); // Callee
1293
1294 // Emit value #'s for the fixed parameters.
1295 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
1296 Vals.push_back(VE.getValueID(CI.getArgOperand(i))); // fixed param.
1297
1298 // Emit type/value pairs for varargs params.
1299 if (FTy->isVarArg()) {
1300 for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands();
1301 i != e; ++i)
1302 PushValueAndType(CI.getArgOperand(i), InstID, Vals, VE); // varargs
1303 }
1304 break;
1305 }
1306 case Instruction::VAArg:
1307 Code = bitc::FUNC_CODE_INST_VAARG;
1308 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty
1309 Vals.push_back(VE.getValueID(I.getOperand(0))); // valist.
1310 Vals.push_back(VE.getTypeID(I.getType())); // restype.
1311 break;
1312 }
1313
1314 Stream.EmitRecord(Code, Vals, AbbrevToUse);
1315 Vals.clear();
1316 }
1317
1318 // Emit names for globals/functions etc.
WriteValueSymbolTable(const ValueSymbolTable & VST,const llvm_2_9_func::ValueEnumerator & VE,BitstreamWriter & Stream)1319 static void WriteValueSymbolTable(const ValueSymbolTable &VST,
1320 const llvm_2_9_func::ValueEnumerator &VE,
1321 BitstreamWriter &Stream) {
1322 if (VST.empty()) return;
1323 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
1324
1325 // FIXME: Set up the abbrev, we know how many values there are!
1326 // FIXME: We know if the type names can use 7-bit ascii.
1327 SmallVector<unsigned, 64> NameVals;
1328
1329 for (ValueSymbolTable::const_iterator SI = VST.begin(), SE = VST.end();
1330 SI != SE; ++SI) {
1331
1332 const ValueName &Name = *SI;
1333
1334 // Figure out the encoding to use for the name.
1335 bool is7Bit = true;
1336 bool isChar6 = true;
1337 for (const char *C = Name.getKeyData(), *E = C+Name.getKeyLength();
1338 C != E; ++C) {
1339 if (isChar6)
1340 isChar6 = BitCodeAbbrevOp::isChar6(*C);
1341 if ((unsigned char)*C & 128) {
1342 is7Bit = false;
1343 break; // don't bother scanning the rest.
1344 }
1345 }
1346
1347 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV;
1348
1349 // VST_ENTRY: [valueid, namechar x N]
1350 // VST_BBENTRY: [bbid, namechar x N]
1351 unsigned Code;
1352 if (isa<BasicBlock>(SI->getValue())) {
1353 Code = bitc::VST_CODE_BBENTRY;
1354 if (isChar6)
1355 AbbrevToUse = VST_BBENTRY_6_ABBREV;
1356 } else {
1357 Code = bitc::VST_CODE_ENTRY;
1358 if (isChar6)
1359 AbbrevToUse = VST_ENTRY_6_ABBREV;
1360 else if (is7Bit)
1361 AbbrevToUse = VST_ENTRY_7_ABBREV;
1362 }
1363
1364 NameVals.push_back(VE.getValueID(SI->getValue()));
1365 for (const char *P = Name.getKeyData(),
1366 *E = Name.getKeyData()+Name.getKeyLength(); P != E; ++P)
1367 NameVals.push_back((unsigned char)*P);
1368
1369 // Emit the finished record.
1370 Stream.EmitRecord(Code, NameVals, AbbrevToUse);
1371 NameVals.clear();
1372 }
1373 Stream.ExitBlock();
1374 }
1375
1376 /// WriteFunction - Emit a function body to the module stream.
WriteFunction(const Function & F,llvm_2_9_func::ValueEnumerator & VE,BitstreamWriter & Stream)1377 static void WriteFunction(const Function &F, llvm_2_9_func::ValueEnumerator &VE,
1378 BitstreamWriter &Stream) {
1379 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4);
1380 VE.incorporateFunction(F);
1381
1382 SmallVector<unsigned, 64> Vals;
1383
1384 // Emit the number of basic blocks, so the reader can create them ahead of
1385 // time.
1386 Vals.push_back(VE.getBasicBlocks().size());
1387 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals);
1388 Vals.clear();
1389
1390 // If there are function-local constants, emit them now.
1391 unsigned CstStart, CstEnd;
1392 VE.getFunctionConstantRange(CstStart, CstEnd);
1393 WriteConstants(CstStart, CstEnd, VE, Stream, false);
1394
1395 // If there is function-local metadata, emit it now.
1396 WriteFunctionLocalMetadata(F, VE, Stream);
1397
1398 // Keep a running idea of what the instruction ID is.
1399 unsigned InstID = CstEnd;
1400
1401 bool NeedsMetadataAttachment = false;
1402
1403 DebugLoc LastDL;
1404
1405 // Finally, emit all the instructions, in order.
1406 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
1407 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
1408 I != E; ++I) {
1409 WriteInstruction(*I, InstID, VE, Stream, Vals);
1410
1411 if (!I->getType()->isVoidTy())
1412 ++InstID;
1413
1414 // If the instruction has metadata, write a metadata attachment later.
1415 NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc();
1416
1417 // If the instruction has a debug location, emit it.
1418 DebugLoc DL = I->getDebugLoc();
1419 if (DL.isUnknown()) {
1420 // nothing todo.
1421 } else if (DL == LastDL) {
1422 // Just repeat the same debug loc as last time.
1423 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals);
1424 } else {
1425 MDNode *Scope, *IA;
1426 DL.getScopeAndInlinedAt(Scope, IA, I->getContext());
1427
1428 Vals.push_back(DL.getLine());
1429 Vals.push_back(DL.getCol());
1430 Vals.push_back(Scope ? VE.getValueID(Scope)+1 : 0);
1431 Vals.push_back(IA ? VE.getValueID(IA)+1 : 0);
1432 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals);
1433 Vals.clear();
1434
1435 LastDL = DL;
1436 }
1437 }
1438
1439 // Emit names for all the instructions etc.
1440 WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream);
1441
1442 if (NeedsMetadataAttachment)
1443 WriteMetadataAttachment(F, VE, Stream);
1444 VE.purgeFunction();
1445 Stream.ExitBlock();
1446 }
1447
1448 // Emit blockinfo, which defines the standard abbreviations etc.
WriteBlockInfo(const llvm_2_9_func::ValueEnumerator & VE,BitstreamWriter & Stream)1449 static void WriteBlockInfo(const llvm_2_9_func::ValueEnumerator &VE,
1450 BitstreamWriter &Stream) {
1451 // We only want to emit block info records for blocks that have multiple
1452 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. Other
1453 // blocks can defined their abbrevs inline.
1454 Stream.EnterBlockInfoBlock(2);
1455
1456 { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings.
1457 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1458 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3));
1459 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1460 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1461 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
1462 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1463 Abbv) != VST_ENTRY_8_ABBREV)
1464 llvm_unreachable("Unexpected abbrev ordering!");
1465 }
1466
1467 { // 7-bit fixed width VST_ENTRY strings.
1468 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1469 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
1470 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1471 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1472 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
1473 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1474 Abbv) != VST_ENTRY_7_ABBREV)
1475 llvm_unreachable("Unexpected abbrev ordering!");
1476 }
1477 { // 6-bit char6 VST_ENTRY strings.
1478 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1479 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
1480 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1481 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1482 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
1483 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1484 Abbv) != VST_ENTRY_6_ABBREV)
1485 llvm_unreachable("Unexpected abbrev ordering!");
1486 }
1487 { // 6-bit char6 VST_BBENTRY strings.
1488 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1489 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY));
1490 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1491 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1492 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
1493 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1494 Abbv) != VST_BBENTRY_6_ABBREV)
1495 llvm_unreachable("Unexpected abbrev ordering!");
1496 }
1497
1498
1499
1500 { // SETTYPE abbrev for CONSTANTS_BLOCK.
1501 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1502 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE));
1503 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1504 Log2_32_Ceil(VE.getTypes().size()+1)));
1505 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1506 Abbv) != CONSTANTS_SETTYPE_ABBREV)
1507 llvm_unreachable("Unexpected abbrev ordering!");
1508 }
1509
1510 { // INTEGER abbrev for CONSTANTS_BLOCK.
1511 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1512 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER));
1513 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1514 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1515 Abbv) != CONSTANTS_INTEGER_ABBREV)
1516 llvm_unreachable("Unexpected abbrev ordering!");
1517 }
1518
1519 { // CE_CAST abbrev for CONSTANTS_BLOCK.
1520 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1521 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST));
1522 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc
1523 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid
1524 Log2_32_Ceil(VE.getTypes().size()+1)));
1525 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id
1526
1527 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1528 Abbv) != CONSTANTS_CE_CAST_Abbrev)
1529 llvm_unreachable("Unexpected abbrev ordering!");
1530 }
1531 { // NULL abbrev for CONSTANTS_BLOCK.
1532 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1533 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL));
1534 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1535 Abbv) != CONSTANTS_NULL_Abbrev)
1536 llvm_unreachable("Unexpected abbrev ordering!");
1537 }
1538
1539 // FIXME: This should only use space for first class types!
1540
1541 { // INST_LOAD abbrev for FUNCTION_BLOCK.
1542 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1543 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD));
1544 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr
1545 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align
1546 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile
1547 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1548 Abbv) != FUNCTION_INST_LOAD_ABBREV)
1549 llvm_unreachable("Unexpected abbrev ordering!");
1550 }
1551 { // INST_BINOP abbrev for FUNCTION_BLOCK.
1552 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1553 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
1554 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
1555 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
1556 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
1557 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1558 Abbv) != FUNCTION_INST_BINOP_ABBREV)
1559 llvm_unreachable("Unexpected abbrev ordering!");
1560 }
1561 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK.
1562 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1563 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
1564 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
1565 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
1566 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
1567 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags
1568 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1569 Abbv) != FUNCTION_INST_BINOP_FLAGS_ABBREV)
1570 llvm_unreachable("Unexpected abbrev ordering!");
1571 }
1572 { // INST_CAST abbrev for FUNCTION_BLOCK.
1573 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1574 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST));
1575 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal
1576 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty
1577 Log2_32_Ceil(VE.getTypes().size()+1)));
1578 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
1579 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1580 Abbv) != FUNCTION_INST_CAST_ABBREV)
1581 llvm_unreachable("Unexpected abbrev ordering!");
1582 }
1583
1584 { // INST_RET abbrev for FUNCTION_BLOCK.
1585 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1586 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
1587 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1588 Abbv) != FUNCTION_INST_RET_VOID_ABBREV)
1589 llvm_unreachable("Unexpected abbrev ordering!");
1590 }
1591 { // INST_RET abbrev for FUNCTION_BLOCK.
1592 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1593 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
1594 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID
1595 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1596 Abbv) != FUNCTION_INST_RET_VAL_ABBREV)
1597 llvm_unreachable("Unexpected abbrev ordering!");
1598 }
1599 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK.
1600 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1601 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE));
1602 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1603 Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV)
1604 llvm_unreachable("Unexpected abbrev ordering!");
1605 }
1606
1607 Stream.ExitBlock();
1608 }
1609
1610
1611 /// WriteModule - Emit the specified module to the bitstream.
WriteModule(const Module * M,BitstreamWriter & Stream)1612 static void WriteModule(const Module *M, BitstreamWriter &Stream) {
1613 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
1614
1615 // Emit the version number if it is non-zero.
1616 if (CurVersion) {
1617 SmallVector<unsigned, 1> Vals;
1618 Vals.push_back(CurVersion);
1619 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals);
1620 }
1621
1622 // Analyze the module, enumerating globals, functions, etc.
1623 llvm_2_9_func::ValueEnumerator VE(M);
1624
1625 // Emit blockinfo, which defines the standard abbreviations etc.
1626 WriteBlockInfo(VE, Stream);
1627
1628 // Emit information about parameter attributes.
1629 WriteAttributeTable(VE, Stream);
1630
1631 // Emit information describing all of the types in the module.
1632 WriteTypeTable(VE, Stream);
1633
1634 // Emit top-level description of module, including target triple, inline asm,
1635 // descriptors for global variables, and function prototype info.
1636 WriteModuleInfo(M, VE, Stream);
1637
1638 // Emit constants.
1639 WriteModuleConstants(VE, Stream);
1640
1641 // Emit metadata.
1642 WriteModuleMetadata(M, VE, Stream);
1643
1644 // Emit function bodies.
1645 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F)
1646 if (!F->isDeclaration())
1647 WriteFunction(*F, VE, Stream);
1648
1649 // Emit metadata.
1650 WriteModuleMetadataStore(M, Stream);
1651
1652 // Emit names for globals/functions etc.
1653 WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream);
1654
1655 Stream.ExitBlock();
1656 }
1657
1658 /// EmitDarwinBCHeader - If generating a bc file on darwin, we have to emit a
1659 /// header and trailer to make it compatible with the system archiver. To do
1660 /// this we emit the following header, and then emit a trailer that pads the
1661 /// file out to be a multiple of 16 bytes.
1662 ///
1663 /// struct bc_header {
1664 /// uint32_t Magic; // 0x0B17C0DE
1665 /// uint32_t Version; // Version, currently always 0.
1666 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file.
1667 /// uint32_t BitcodeSize; // Size of traditional bitcode file.
1668 /// uint32_t CPUType; // CPU specifier.
1669 /// ... potentially more later ...
1670 /// };
1671 enum {
1672 DarwinBCSizeFieldOffset = 3*4, // Offset to bitcode_size.
1673 DarwinBCHeaderSize = 5*4
1674 };
1675
WriteInt32ToBuffer(uint32_t Value,SmallVectorImpl<char> & Buffer,uint32_t & Position)1676 static void WriteInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer,
1677 uint32_t &Position) {
1678 Buffer[Position + 0] = (unsigned char) (Value >> 0);
1679 Buffer[Position + 1] = (unsigned char) (Value >> 8);
1680 Buffer[Position + 2] = (unsigned char) (Value >> 16);
1681 Buffer[Position + 3] = (unsigned char) (Value >> 24);
1682 Position += 4;
1683 }
1684
EmitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> & Buffer,const Triple & TT)1685 static void EmitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer,
1686 const Triple &TT) {
1687 unsigned CPUType = ~0U;
1688
1689 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*,
1690 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic
1691 // number from /usr/include/mach/machine.h. It is ok to reproduce the
1692 // specific constants here because they are implicitly part of the Darwin ABI.
1693 enum {
1694 DARWIN_CPU_ARCH_ABI64 = 0x01000000,
1695 DARWIN_CPU_TYPE_X86 = 7,
1696 DARWIN_CPU_TYPE_ARM = 12,
1697 DARWIN_CPU_TYPE_POWERPC = 18
1698 };
1699
1700 Triple::ArchType Arch = TT.getArch();
1701 if (Arch == Triple::x86_64)
1702 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64;
1703 else if (Arch == Triple::x86)
1704 CPUType = DARWIN_CPU_TYPE_X86;
1705 else if (Arch == Triple::ppc)
1706 CPUType = DARWIN_CPU_TYPE_POWERPC;
1707 else if (Arch == Triple::ppc64)
1708 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64;
1709 else if (Arch == Triple::arm || Arch == Triple::thumb)
1710 CPUType = DARWIN_CPU_TYPE_ARM;
1711
1712 // Traditional Bitcode starts after header.
1713 assert(Buffer.size() >= DarwinBCHeaderSize &&
1714 "Expected header size to be reserved");
1715 unsigned BCOffset = DarwinBCHeaderSize;
1716 unsigned BCSize = Buffer.size()-DarwinBCHeaderSize;
1717
1718 // Write the magic and version.
1719 unsigned Position = 0;
1720 WriteInt32ToBuffer(0x0B17C0DE , Buffer, Position);
1721 WriteInt32ToBuffer(0 , Buffer, Position); // Version.
1722 WriteInt32ToBuffer(BCOffset , Buffer, Position);
1723 WriteInt32ToBuffer(BCSize , Buffer, Position);
1724 WriteInt32ToBuffer(CPUType , Buffer, Position);
1725
1726 // If the file is not a multiple of 16 bytes, insert dummy padding.
1727 while (Buffer.size() & 15)
1728 Buffer.push_back(0);
1729 }
1730
1731 /// WriteBitcodeToFile - Write the specified module to the specified output
1732 /// stream.
WriteBitcodeToFile(const Module * M,raw_ostream & Out)1733 void llvm_2_9_func::WriteBitcodeToFile(const Module *M, raw_ostream &Out) {
1734 SmallVector<char, 1024> Buffer;
1735 Buffer.reserve(256*1024);
1736
1737 // If this is darwin or another generic macho target, reserve space for the
1738 // header.
1739 Triple TT(M->getTargetTriple());
1740 if (TT.isOSDarwin())
1741 Buffer.insert(Buffer.begin(), DarwinBCHeaderSize, 0);
1742
1743 // Emit the module into the buffer.
1744 {
1745 BitstreamWriter Stream(Buffer);
1746
1747 // Emit the file header.
1748 Stream.Emit((unsigned)'B', 8);
1749 Stream.Emit((unsigned)'C', 8);
1750 Stream.Emit(0x0, 4);
1751 Stream.Emit(0xC, 4);
1752 Stream.Emit(0xE, 4);
1753 Stream.Emit(0xD, 4);
1754
1755 // Emit the module.
1756 WriteModule(M, Stream);
1757 }
1758
1759 if (TT.isOSDarwin())
1760 EmitDarwinBCHeaderAndTrailer(Buffer, TT);
1761
1762 // Write the generated bitstream to "Out".
1763 Out.write((char*)&Buffer.front(), Buffer.size());
1764 }
1765